text
stringlengths 145
7.65M
|
---|
===========================================================================================================================================
SOURCE CODE FILE: feature_extraction_detr.py
LINES: 1
SIZE: 1.48 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\detr\feature_extraction_detr.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for DETR."""
import warnings
from ...image_transforms import rgb_to_id as _rgb_to_id
from ...utils import logging
from .image_processing_detr import DetrImageProcessor
logger = logging.get_logger(__name__)
def rgb_to_id(x):
warnings.warn(
"rgb_to_id has moved and will not be importable from this module from v5. "
"Please import from transformers.image_transforms instead.",
FutureWarning,
)
return _rgb_to_id(x)
class DetrFeatureExtractor(DetrImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class DetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use DetrImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
__all__ = ["DetrFeatureExtractor"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: image_processing_detr.py
LINES: 1
SIZE: 91.78 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\detr\image_processing_detr.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for DETR."""
import io
import pathlib
from collections import defaultdict
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
PaddingMode,
center_to_corners_format,
corners_to_center_format,
id_to_rgb,
pad,
rescale,
resize,
rgb_to_id,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
AnnotationFormat,
AnnotationType,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_annotations,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import (
TensorType,
is_flax_available,
is_jax_tensor,
is_scipy_available,
is_tf_available,
is_tf_tensor,
is_torch_available,
is_torch_tensor,
is_vision_available,
logging,
)
if is_torch_available():
import torch
from torch import nn
if is_vision_available():
import PIL
if is_scipy_available():
import scipy.special
import scipy.stats
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC)
# From the original repo: https://github.com/facebookresearch/detr/blob/3af9fa878e73b6894ce3596450a8d9b89d918ca9/datasets/transforms.py#L76
def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size.
Args:
image_size (`Tuple[int, int]`):
The input image size.
size (`int`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
"""
height, width = image_size
raw_size = None
if max_size is not None:
min_original_size = float(min((height, width)))
max_original_size = float(max((height, width)))
if max_original_size / min_original_size * size > max_size:
raw_size = max_size * min_original_size / max_original_size
size = int(round(raw_size))
if (height <= width and height == size) or (width <= height and width == size):
oh, ow = height, width
elif width < height:
ow = size
if max_size is not None and raw_size is not None:
oh = int(raw_size * height / width)
else:
oh = int(size * height / width)
else:
oh = size
if max_size is not None and raw_size is not None:
ow = int(raw_size * width / height)
else:
ow = int(size * width / height)
return (oh, ow)
def get_image_size_for_max_height_width(
input_image: np.ndarray,
max_height: int,
max_width: int,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
"""
Computes the output image size given the input image and the maximum allowed height and width. Keep aspect ratio.
Important, even if image_height < max_height and image_width < max_width, the image will be resized
to at least one of the edges be equal to max_height or max_width.
For example:
- input_size: (100, 200), max_height: 50, max_width: 50 -> output_size: (25, 50)
- input_size: (100, 200), max_height: 200, max_width: 500 -> output_size: (200, 400)
Args:
input_image (`np.ndarray`):
The image to resize.
max_height (`int`):
The maximum allowed height.
max_width (`int`):
The maximum allowed width.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
"""
image_size = get_image_size(input_image, input_data_format)
height, width = image_size
height_scale = max_height / height
width_scale = max_width / width
min_scale = min(height_scale, width_scale)
new_height = int(height * min_scale)
new_width = int(width * min_scale)
return new_height, new_width
def get_resize_output_image_size(
input_image: np.ndarray,
size: Union[int, Tuple[int, int], List[int]],
max_size: Optional[int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
"""
Computes the output image size given the input image size and the desired output size. If the desired output size
is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output
image size is computed by keeping the aspect ratio of the input image size.
Args:
input_image (`np.ndarray`):
The image to resize.
size (`int` or `Tuple[int, int]` or `List[int]`):
The desired output size.
max_size (`int`, *optional*):
The maximum allowed output size.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
"""
image_size = get_image_size(input_image, input_data_format)
if isinstance(size, (list, tuple)):
return size
return get_size_with_aspect_ratio(image_size, size, max_size)
def get_numpy_to_framework_fn(arr) -> Callable:
"""
Returns a function that converts a numpy array to the framework of the input array.
Args:
arr (`np.ndarray`): The array to convert.
"""
if isinstance(arr, np.ndarray):
return np.array
if is_tf_available() and is_tf_tensor(arr):
import tensorflow as tf
return tf.convert_to_tensor
if is_torch_available() and is_torch_tensor(arr):
import torch
return torch.tensor
if is_flax_available() and is_jax_tensor(arr):
import jax.numpy as jnp
return jnp.array
raise ValueError(f"Cannot convert arrays of type {type(arr)}")
def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray:
"""
Squeezes an array, but only if the axis specified has dim 1.
"""
if axis is None:
return arr.squeeze()
try:
return arr.squeeze(axis=axis)
except ValueError:
return arr
def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict:
image_height, image_width = image_size
norm_annotation = {}
for key, value in annotation.items():
if key == "boxes":
boxes = value
boxes = corners_to_center_format(boxes)
boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32)
norm_annotation[key] = boxes
else:
norm_annotation[key] = value
return norm_annotation
# Copied from transformers.models.vilt.image_processing_vilt.max_across_indices
def max_across_indices(values: Iterable[Any]) -> List[Any]:
"""
Return the maximum value across all indices of an iterable of values.
"""
return [max(values_i) for values_i in zip(*values)]
# Copied from transformers.models.vilt.image_processing_vilt.get_max_height_width
def get_max_height_width(
images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
"""
Get the maximum height and width across all images in a batch.
"""
if input_data_format is None:
input_data_format = infer_channel_dimension_format(images[0])
if input_data_format == ChannelDimension.FIRST:
_, max_height, max_width = max_across_indices([img.shape for img in images])
elif input_data_format == ChannelDimension.LAST:
max_height, max_width, _ = max_across_indices([img.shape for img in images])
else:
raise ValueError(f"Invalid channel dimension format: {input_data_format}")
return (max_height, max_width)
# Copied from transformers.models.vilt.image_processing_vilt.make_pixel_mask
def make_pixel_mask(
image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
"""
Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
Args:
image (`np.ndarray`):
Image to make the pixel mask for.
output_size (`Tuple[int, int]`):
Output size of the mask.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
mask = np.zeros(output_size, dtype=np.int64)
mask[:input_height, :input_width] = 1
return mask
# inspired by https://github.com/facebookresearch/detr/blob/master/datasets/coco.py#L33
def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray:
"""
Convert a COCO polygon annotation to a mask.
Args:
segmentations (`List[List[float]]`):
List of polygons, each polygon represented by a list of x-y coordinates.
height (`int`):
Height of the mask.
width (`int`):
Width of the mask.
"""
try:
from pycocotools import mask as coco_mask
except ImportError:
raise ImportError("Pycocotools is not installed in your environment.")
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = np.asarray(mask, dtype=np.uint8)
mask = np.any(mask, axis=2)
masks.append(mask)
if masks:
masks = np.stack(masks, axis=0)
else:
masks = np.zeros((0, height, width), dtype=np.uint8)
return masks
# inspired by https://github.com/facebookresearch/detr/blob/master/datasets/coco.py#L50
def prepare_coco_detection_annotation(
image,
target,
return_segmentation_masks: bool = False,
input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
"""
Convert the target in COCO format into the format expected by DETR.
"""
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
image_id = target["image_id"]
image_id = np.asarray([image_id], dtype=np.int64)
# Get all COCO annotations for the given image.
annotations = target["annotations"]
annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0]
classes = [obj["category_id"] for obj in annotations]
classes = np.asarray(classes, dtype=np.int64)
# for conversion to coco api
area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32)
iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64)
boxes = [obj["bbox"] for obj in annotations]
# guard against no boxes via resizing
boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2]
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
new_target = {}
new_target["image_id"] = image_id
new_target["class_labels"] = classes[keep]
new_target["boxes"] = boxes[keep]
new_target["area"] = area[keep]
new_target["iscrowd"] = iscrowd[keep]
new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64)
if annotations and "keypoints" in annotations[0]:
keypoints = [obj["keypoints"] for obj in annotations]
# Converting the filtered keypoints list to a numpy array
keypoints = np.asarray(keypoints, dtype=np.float32)
# Apply the keep mask here to filter the relevant annotations
keypoints = keypoints[keep]
num_keypoints = keypoints.shape[0]
keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
new_target["keypoints"] = keypoints
if return_segmentation_masks:
segmentation_masks = [obj["segmentation"] for obj in annotations]
masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width)
new_target["masks"] = masks[keep]
return new_target
def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
"""
Compute the bounding boxes around the provided panoptic segmentation masks.
Args:
masks: masks in format `[number_masks, height, width]` where N is the number of masks
Returns:
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
"""
if masks.size == 0:
return np.zeros((0, 4))
h, w = masks.shape[-2:]
y = np.arange(0, h, dtype=np.float32)
x = np.arange(0, w, dtype=np.float32)
# see https://github.com/pytorch/pytorch/issues/50276
y, x = np.meshgrid(y, x, indexing="ij")
x_mask = masks * np.expand_dims(x, axis=0)
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
x_min = x.filled(fill_value=1e8)
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
y_mask = masks * np.expand_dims(y, axis=0)
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
y_min = y.filled(fill_value=1e8)
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
return np.stack([x_min, y_min, x_max, y_max], 1)
def prepare_coco_panoptic_annotation(
image: np.ndarray,
target: Dict,
masks_path: Union[str, pathlib.Path],
return_masks: bool = True,
input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
"""
Prepare a coco panoptic annotation for DETR.
"""
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
annotation_path = pathlib.Path(masks_path) / target["file_name"]
new_target = {}
new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64)
new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64)
new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64)
if "segments_info" in target:
masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32)
masks = rgb_to_id(masks)
ids = np.array([segment_info["id"] for segment_info in target["segments_info"]])
masks = masks == ids[:, None, None]
masks = masks.astype(np.uint8)
if return_masks:
new_target["masks"] = masks
new_target["boxes"] = masks_to_boxes(masks)
new_target["class_labels"] = np.array(
[segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64
)
new_target["iscrowd"] = np.asarray(
[segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64
)
new_target["area"] = np.asarray(
[segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32
)
return new_target
def get_segmentation_image(
masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False
):
h, w = input_size
final_h, final_w = target_size
m_id = scipy.special.softmax(masks.transpose(0, 1), -1)
if m_id.shape[-1] == 0:
# We didn't detect any mask :(
m_id = np.zeros((h, w), dtype=np.int64)
else:
m_id = m_id.argmax(-1).reshape(h, w)
if deduplicate:
# Merge the masks corresponding to the same stuff class
for equiv in stuff_equiv_classes.values():
for eq_id in equiv:
m_id[m_id == eq_id] = equiv[0]
seg_img = id_to_rgb(m_id)
seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST)
return seg_img
def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray:
final_h, final_w = target_size
np_seg_img = seg_img.astype(np.uint8)
np_seg_img = np_seg_img.reshape(final_h, final_w, 3)
m_id = rgb_to_id(np_seg_img)
area = [(m_id == i).sum() for i in range(n_classes)]
return area
def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
probs = scipy.special.softmax(logits, axis=-1)
labels = probs.argmax(-1, keepdims=True)
scores = np.take_along_axis(probs, labels, axis=-1)
scores, labels = scores.squeeze(-1), labels.squeeze(-1)
return scores, labels
def post_process_panoptic_sample(
out_logits: np.ndarray,
masks: np.ndarray,
boxes: np.ndarray,
processed_size: Tuple[int, int],
target_size: Tuple[int, int],
is_thing_map: Dict,
threshold=0.85,
) -> Dict:
"""
Converts the output of [`DetrForSegmentation`] into panoptic segmentation predictions for a single sample.
Args:
out_logits (`torch.Tensor`):
The logits for this sample.
masks (`torch.Tensor`):
The predicted segmentation masks for this sample.
boxes (`torch.Tensor`):
The prediced bounding boxes for this sample. The boxes are in the normalized format `(center_x, center_y,
width, height)` and values between `[0, 1]`, relative to the size the image (disregarding padding).
processed_size (`Tuple[int, int]`):
The processed size of the image `(height, width)`, as returned by the preprocessing step i.e. the size
after data augmentation but before batching.
target_size (`Tuple[int, int]`):
The target size of the image, `(height, width)` corresponding to the requested final size of the
prediction.
is_thing_map (`Dict`):
A dictionary mapping class indices to a boolean value indicating whether the class is a thing or not.
threshold (`float`, *optional*, defaults to 0.85):
The threshold used to binarize the segmentation masks.
"""
# we filter empty queries and detection below threshold
scores, labels = score_labels_from_class_probabilities(out_logits)
keep = (labels != out_logits.shape[-1] - 1) & (scores > threshold)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_boxes = center_to_corners_format(boxes[keep])
if len(cur_boxes) != len(cur_classes):
raise ValueError("Not as many boxes as there are classes")
cur_masks = masks[keep]
cur_masks = resize(cur_masks[:, None], processed_size, resample=PILImageResampling.BILINEAR)
cur_masks = safe_squeeze(cur_masks, 1)
b, h, w = cur_masks.shape
# It may be that we have several predicted masks for the same stuff class.
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
cur_masks = cur_masks.reshape(b, -1)
stuff_equiv_classes = defaultdict(list)
for k, label in enumerate(cur_classes):
if not is_thing_map[label]:
stuff_equiv_classes[label].append(k)
seg_img = get_segmentation_image(cur_masks, processed_size, target_size, stuff_equiv_classes, deduplicate=True)
area = get_mask_area(cur_masks, processed_size, n_classes=len(cur_scores))
# We filter out any mask that is too small
if cur_classes.size() > 0:
# We know filter empty masks as long as we find some
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
while filtered_small.any():
cur_masks = cur_masks[~filtered_small]
cur_scores = cur_scores[~filtered_small]
cur_classes = cur_classes[~filtered_small]
seg_img = get_segmentation_image(cur_masks, (h, w), target_size, stuff_equiv_classes, deduplicate=True)
area = get_mask_area(seg_img, target_size, n_classes=len(cur_scores))
filtered_small = np.array([a <= 4 for a in area], dtype=bool)
else:
cur_classes = np.ones((1, 1), dtype=np.int64)
segments_info = [
{"id": i, "isthing": is_thing_map[cat], "category_id": int(cat), "area": a}
for i, (cat, a) in enumerate(zip(cur_classes, area))
]
del cur_classes
with io.BytesIO() as out:
PIL.Image.fromarray(seg_img).save(out, format="PNG")
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
return predictions
def resize_annotation(
annotation: Dict[str, Any],
orig_size: Tuple[int, int],
target_size: Tuple[int, int],
threshold: float = 0.5,
resample: PILImageResampling = PILImageResampling.NEAREST,
):
"""
Resizes an annotation to a target size.
Args:
annotation (`Dict[str, Any]`):
The annotation dictionary.
orig_size (`Tuple[int, int]`):
The original size of the input image.
target_size (`Tuple[int, int]`):
The target size of the image, as returned by the preprocessing `resize` step.
threshold (`float`, *optional*, defaults to 0.5):
The threshold used to binarize the segmentation masks.
resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`):
The resampling filter to use when resizing the masks.
"""
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size))
ratio_height, ratio_width = ratios
new_annotation = {}
new_annotation["size"] = target_size
for key, value in annotation.items():
if key == "boxes":
boxes = value
scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32)
new_annotation["boxes"] = scaled_boxes
elif key == "area":
area = value
scaled_area = area * (ratio_width * ratio_height)
new_annotation["area"] = scaled_area
elif key == "masks":
masks = value[:, None]
masks = np.array([resize(mask, target_size, resample=resample) for mask in masks])
masks = masks.astype(np.float32)
masks = masks[:, 0] > threshold
new_annotation["masks"] = masks
elif key == "size":
new_annotation["size"] = target_size
else:
new_annotation[key] = value
return new_annotation
# TODO - (Amy) make compatible with other frameworks
def binary_mask_to_rle(mask):
"""
Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
mask (`torch.Tensor` or `numpy.array`):
A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
segment_id or class_id.
Returns:
`List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
format.
"""
if is_torch_tensor(mask):
mask = mask.numpy()
pixels = mask.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return list(runs)
# TODO - (Amy) make compatible with other frameworks
def convert_segmentation_to_rle(segmentation):
"""
Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.
Args:
segmentation (`torch.Tensor` or `numpy.array`):
A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
Returns:
`List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
"""
segment_ids = torch.unique(segmentation)
run_length_encodings = []
for idx in segment_ids:
mask = torch.where(segmentation == idx, 1, 0)
rle = binary_mask_to_rle(mask)
run_length_encodings.append(rle)
return run_length_encodings
def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
"""
Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
`labels`.
Args:
masks (`torch.Tensor`):
A tensor of shape `(num_queries, height, width)`.
scores (`torch.Tensor`):
A tensor of shape `(num_queries)`.
labels (`torch.Tensor`):
A tensor of shape `(num_queries)`.
object_mask_threshold (`float`):
A number between 0 and 1 used to binarize the masks.
Raises:
`ValueError`: Raised when the first dimension doesn't match in all input tensors.
Returns:
`Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
< `object_mask_threshold`.
"""
if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
raise ValueError("mask, scores and labels must have the same shape!")
to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)
return masks[to_keep], scores[to_keep], labels[to_keep]
def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8):
# Get the mask associated with the k class
mask_k = mask_labels == k
mask_k_area = mask_k.sum()
# Compute the area of all the stuff in query k
original_area = (mask_probs[k] >= mask_threshold).sum()
mask_exists = mask_k_area > 0 and original_area > 0
# Eliminate disconnected tiny segments
if mask_exists:
area_ratio = mask_k_area / original_area
if not area_ratio.item() > overlap_mask_area_threshold:
mask_exists = False
return mask_exists, mask_k
def compute_segments(
mask_probs,
pred_scores,
pred_labels,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None,
target_size: Tuple[int, int] = None,
):
height = mask_probs.shape[1] if target_size is None else target_size[0]
width = mask_probs.shape[2] if target_size is None else target_size[1]
segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
segments: List[Dict] = []
if target_size is not None:
mask_probs = nn.functional.interpolate(
mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False
)[0]
current_segment_id = 0
# Weigh each mask by its prediction score
mask_probs *= pred_scores.view(-1, 1, 1)
mask_labels = mask_probs.argmax(0) # [height, width]
# Keep track of instances of each class
stuff_memory_list: Dict[str, int] = {}
for k in range(pred_labels.shape[0]):
pred_class = pred_labels[k].item()
should_fuse = pred_class in label_ids_to_fuse
# Check if mask exists and large enough to be a segment
mask_exists, mask_k = check_segment_validity(
mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
)
if mask_exists:
if pred_class in stuff_memory_list:
current_segment_id = stuff_memory_list[pred_class]
else:
current_segment_id += 1
# Add current object segment to final segmentation map
segmentation[mask_k] = current_segment_id
segment_score = round(pred_scores[k].item(), 6)
segments.append(
{
"id": current_segment_id,
"label_id": pred_class,
"was_fused": should_fuse,
"score": segment_score,
}
)
if should_fuse:
stuff_memory_list[pred_class] = current_segment_id
return segmentation, segments
class DetrImageProcessor(BaseImageProcessor):
r"""
Constructs a Detr image processor.
Args:
format (`str`, *optional*, defaults to `"coco_detection"`):
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
do_resize (`bool`, *optional*, defaults to `True`):
Controls whether to resize the image's `(height, width)` dimensions to the specified `size`. Can be
overridden by the `do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`):
Size of the image's `(height, width)` dimensions after resizing. Can be overridden by the `size` parameter
in the `preprocess` method. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
`do_rescale` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to True):
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
`preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
Mean values to use when normalizing the image. Can be a single value or a list of values, one for each
channel. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one
for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_annotations (`bool`, *optional*, defaults to `True`):
Controls whether to convert the annotations to the format expected by the DETR model. Converts the
bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
do_pad (`bool`, *optional*, defaults to `True`):
Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
method. If `True`, padding will be applied to the bottom and right of the image with zeros.
If `pad_size` is provided, the image will be padded to the specified dimensions.
Otherwise, the image will be padded to the maximum height and width of the batch.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
model_input_names = ["pixel_values", "pixel_mask"]
def __init__(
self,
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Union[float, List[float]] = None,
image_std: Union[float, List[float]] = None,
do_convert_annotations: Optional[bool] = None,
do_pad: bool = True,
pad_size: Optional[Dict[str, int]] = None,
**kwargs,
) -> None:
if "pad_and_return_pixel_mask" in kwargs:
do_pad = kwargs.pop("pad_and_return_pixel_mask")
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` parameter is deprecated and will be removed in v4.26. "
"Please specify in `size['longest_edge'] instead`.",
)
max_size = kwargs.pop("max_size")
else:
max_size = None if size is None else 1333
size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
size = get_size_dict(size, max_size=max_size, default_to_square=False)
# Backwards compatibility
if do_convert_annotations is None:
do_convert_annotations = do_normalize
super().__init__(**kwargs)
self.format = format
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.do_convert_annotations = do_convert_annotations
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_pad = do_pad
self.pad_size = pad_size
self._valid_processor_keys = [
"images",
"annotations",
"return_segmentation_masks",
"masks_path",
"do_resize",
"size",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"do_convert_annotations",
"image_mean",
"image_std",
"do_pad",
"pad_size",
"format",
"return_tensors",
"data_format",
"input_data_format",
]
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `DetrImageProcessor.from_pretrained(checkpoint, size=600,
max_size=800)`
"""
image_processor_dict = image_processor_dict.copy()
if "max_size" in kwargs:
image_processor_dict["max_size"] = kwargs.pop("max_size")
if "pad_and_return_pixel_mask" in kwargs:
image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
return super().from_dict(image_processor_dict, **kwargs)
def prepare_annotation(
self,
image: np.ndarray,
target: Dict,
format: Optional[AnnotationFormat] = None,
return_segmentation_masks: Optional[bool] = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into DETR model.
"""
format = format if format is not None else self.format
if format == AnnotationFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotationFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
return target
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` parameter is deprecated and will be removed in v4.26. "
"Please specify in `size['longest_edge'] instead`.",
)
max_size = kwargs.pop("max_size")
else:
max_size = None
size = get_size_dict(size, max_size=max_size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
new_size = get_resize_output_image_size(
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
)
elif "max_height" in size and "max_width" in size:
new_size = get_image_size_for_max_height_width(
image, size["max_height"], size["max_width"], input_data_format=input_data_format
)
elif "height" in size and "width" in size:
new_size = (size["height"], size["width"])
else:
raise ValueError(
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = resize(
image,
size=new_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return image
def resize_annotation(
self,
annotation,
orig_size,
size,
resample: PILImageResampling = PILImageResampling.NEAREST,
) -> Dict:
"""
Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
to this number.
"""
return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)
# TODO (Amy) - update to use `rescale_factor` instead of `scale`
def rescale(
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
Args:
image (`np.ndarray`):
Image to rescale.
rescale_factor (`float`):
The value to use for rescaling.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
"""
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
`[center_x, center_y, width, height]` format and from absolute to relative pixel values.
"""
return normalize_annotation(annotation, image_size=image_size)
def _update_annotation_for_padded_image(
self,
annotation: Dict,
input_image_size: Tuple[int, int],
output_image_size: Tuple[int, int],
padding,
update_bboxes,
) -> Dict:
"""
Update the annotation for a padded image.
"""
new_annotation = {}
new_annotation["size"] = output_image_size
for key, value in annotation.items():
if key == "masks":
masks = value
masks = pad(
masks,
padding,
mode=PaddingMode.CONSTANT,
constant_values=0,
input_data_format=ChannelDimension.FIRST,
)
masks = safe_squeeze(masks, 1)
new_annotation["masks"] = masks
elif key == "boxes" and update_bboxes:
boxes = value
boxes *= np.asarray(
[
input_image_size[1] / output_image_size[1],
input_image_size[0] / output_image_size[0],
input_image_size[1] / output_image_size[1],
input_image_size[0] / output_image_size[0],
]
)
new_annotation["boxes"] = boxes
elif key == "size":
new_annotation["size"] = output_image_size
else:
new_annotation[key] = value
return new_annotation
def _pad_image(
self,
image: np.ndarray,
output_size: Tuple[int, int],
annotation: Optional[Dict[str, Any]] = None,
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
update_bboxes: bool = True,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
if annotation is not None:
annotation = self._update_annotation_for_padded_image(
annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes
)
return padded_image, annotation
def pad(
self,
images: List[np.ndarray],
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
constant_values: Union[float, Iterable[float]] = 0,
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
update_bboxes: bool = True,
pad_size: Optional[Dict[str, int]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
in the batch and optionally returns their corresponding pixel mask.
Args:
images (List[`np.ndarray`]):
Images to pad.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
Annotations to transform according to the padding that is applied to the images.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
return_pixel_mask (`bool`, *optional*, defaults to `True`):
Whether to return a pixel mask.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
update_bboxes (`bool`, *optional*, defaults to `True`):
Whether to update the bounding boxes in the annotations to match the padded images. If the
bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)`
format, the bounding boxes will not be updated.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
pad_size = pad_size if pad_size is not None else self.pad_size
if pad_size is not None:
padded_size = (pad_size["height"], pad_size["width"])
else:
padded_size = get_max_height_width(images, input_data_format=input_data_format)
annotation_list = annotations if annotations is not None else [None] * len(images)
padded_images = []
padded_annotations = []
for image, annotation in zip(images, annotation_list):
padded_image, padded_annotation = self._pad_image(
image,
padded_size,
annotation,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
update_bboxes=update_bboxes,
)
padded_images.append(padded_image)
padded_annotations.append(padded_annotation)
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [
make_pixel_mask(image=image, output_size=padded_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations
]
return encoded_inputs
def preprocess(
self,
images: ImageInput,
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
return_segmentation_masks: Optional[bool] = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample=None, # PILImageResampling
do_rescale: Optional[bool] = None,
rescale_factor: Optional[Union[int, float]] = None,
do_normalize: Optional[bool] = None,
do_convert_annotations: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
format: Optional[Union[str, AnnotationFormat]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
pad_size: Optional[Dict[str, int]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or a batch of images so that it can be used by the model.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
dictionary. An image can have no annotations, in which case the list should be empty.
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
An image can have no segments, in which case the list should be empty.
- "file_name" (`str`): The file name of the image.
return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
Whether to return segmentation masks.
masks_path (`str` or `pathlib.Path`, *optional*):
Path to the directory containing the segmentation masks.
do_resize (`bool`, *optional*, defaults to self.do_resize):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to self.size):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to self.resample):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to self.do_rescale):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
Rescale factor to use when rescaling the image.
do_normalize (`bool`, *optional*, defaults to self.do_normalize):
Whether to normalize the image.
do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations):
Whether to convert the annotations to the format expected by the model. Converts the bounding
boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)`
and in relative coordinates.
image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
Mean to use when normalizing the image.
image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
Standard deviation to use when normalizing the image.
do_pad (`bool`, *optional*, defaults to self.do_pad):
Whether to pad the image. If `True`, padding will be applied to the bottom and right of
the image with zeros. If `pad_size` is provided, the image will be padded to the specified
dimensions. Otherwise, the image will be padded to the maximum height and width of the batch.
format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
Format of the annotations.
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
Type of tensors to return. If `None`, will return the list of images.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
if "pad_and_return_pixel_mask" in kwargs:
logger.warning_once(
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
"use `do_pad` instead."
)
do_pad = kwargs.pop("pad_and_return_pixel_mask")
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` argument is deprecated and will be removed in a future version, use"
" `size['longest_edge']` instead."
)
size = kwargs.pop("max_size")
do_resize = self.do_resize if do_resize is None else do_resize
size = self.size if size is None else size
size = get_size_dict(size=size, default_to_square=False)
resample = self.resample if resample is None else resample
do_rescale = self.do_rescale if do_rescale is None else do_rescale
rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
do_normalize = self.do_normalize if do_normalize is None else do_normalize
image_mean = self.image_mean if image_mean is None else image_mean
image_std = self.image_std if image_std is None else image_std
do_convert_annotations = (
self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations
)
do_pad = self.do_pad if do_pad is None else do_pad
pad_size = self.pad_size if pad_size is None else pad_size
format = self.format if format is None else format
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
# Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if annotations is not None and isinstance(annotations, dict):
annotations = [annotations]
if annotations is not None and len(images) != len(annotations):
raise ValueError(
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
)
format = AnnotationFormat(format)
if annotations is not None:
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
if (
masks_path is not None
and format == AnnotationFormat.COCO_PANOPTIC
and not isinstance(masks_path, (pathlib.Path, str))
):
raise ValueError(
"The path to the directory containing the mask PNG files should be provided as a"
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
)
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
prepared_images = []
prepared_annotations = []
for image, target in zip(images, annotations):
target = self.prepare_annotation(
image,
target,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=input_data_format,
)
prepared_images.append(image)
prepared_annotations.append(target)
images = prepared_images
annotations = prepared_annotations
del prepared_images, prepared_annotations
# transformations
if do_resize:
if annotations is not None:
resized_images, resized_annotations = [], []
for image, target in zip(images, annotations):
orig_size = get_image_size(image, input_data_format)
resized_image = self.resize(
image, size=size, resample=resample, input_data_format=input_data_format
)
resized_annotation = self.resize_annotation(
target, orig_size, get_image_size(resized_image, input_data_format)
)
resized_images.append(resized_image)
resized_annotations.append(resized_annotation)
images = resized_images
annotations = resized_annotations
del resized_images, resized_annotations
else:
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
if do_normalize:
images = [
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
]
if do_convert_annotations and annotations is not None:
annotations = [
self.normalize_annotation(annotation, get_image_size(image, input_data_format))
for annotation, image in zip(annotations, images)
]
if do_pad:
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
encoded_inputs = self.pad(
images,
annotations=annotations,
return_pixel_mask=True,
data_format=data_format,
input_data_format=input_data_format,
update_bboxes=do_convert_annotations,
return_tensors=return_tensors,
pad_size=pad_size,
)
else:
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
]
return encoded_inputs
# POSTPROCESSING METHODS - TODO: add support for other frameworks
# inspired by https://github.com/facebookresearch/detr/blob/master/models/detr.py#L258
def post_process(self, outputs, target_sizes):
"""
Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`DetrObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
original image size (before any data augmentation). For visualization, this should be the image size
after data augment, but before padding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
logger.warning_once(
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
)
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if len(out_logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
prob = nn.functional.softmax(out_logits, -1)
scores, labels = prob[..., :-1].max(-1)
# convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(out_bbox)
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
return results
def post_process_segmentation(self, outputs, target_sizes, threshold=0.9, mask_threshold=0.5):
"""
Converts the output of [`DetrForSegmentation`] into image segmentation predictions. Only supports PyTorch.
Args:
outputs ([`DetrSegmentationOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`):
Torch Tensor (or list) corresponding to the requested final size (h, w) of each prediction.
threshold (`float`, *optional*, defaults to 0.9):
Threshold to use to filter out queries.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, and masks for an image
in the batch as predicted by the model.
"""
logger.warning_once(
"`post_process_segmentation` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_semantic_segmentation`.",
)
out_logits, raw_masks = outputs.logits, outputs.pred_masks
empty_label = out_logits.shape[-1] - 1
preds = []
def to_tuple(tup):
if isinstance(tup, tuple):
return tup
return tuple(tup.tolist())
for cur_logits, cur_masks, size in zip(out_logits, raw_masks, target_sizes):
# we filter empty queries and detection below threshold
cur_scores, cur_labels = cur_logits.softmax(-1).max(-1)
keep = cur_labels.ne(empty_label) & (cur_scores > threshold)
cur_scores = cur_scores[keep]
cur_labels = cur_labels[keep]
cur_masks = cur_masks[keep]
cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1)
cur_masks = (cur_masks.sigmoid() > mask_threshold) * 1
predictions = {"scores": cur_scores, "labels": cur_labels, "masks": cur_masks}
preds.append(predictions)
return preds
# inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L218
def post_process_instance(self, results, outputs, orig_target_sizes, max_target_sizes, threshold=0.5):
"""
Converts the output of [`DetrForSegmentation`] into actual instance segmentation predictions. Only supports
PyTorch.
Args:
results (`List[Dict]`):
Results list obtained by [`~DetrImageProcessor.post_process`], to which "masks" results will be added.
outputs ([`DetrSegmentationOutput`]):
Raw outputs of the model.
orig_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original
image size (before any data augmentation).
max_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the maximum size (h, w) of each image of the batch. For evaluation, this must be the
original image size (before any data augmentation).
threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, boxes and masks for an
image in the batch as predicted by the model.
"""
logger.warning_once(
"`post_process_instance` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_instance_segmentation`.",
)
if len(orig_target_sizes) != len(max_target_sizes):
raise ValueError("Make sure to pass in as many orig_target_sizes as max_target_sizes")
max_h, max_w = max_target_sizes.max(0)[0].tolist()
outputs_masks = outputs.pred_masks.squeeze(2)
outputs_masks = nn.functional.interpolate(
outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False
)
outputs_masks = (outputs_masks.sigmoid() > threshold).cpu()
for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)):
img_h, img_w = t[0], t[1]
results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1)
results[i]["masks"] = nn.functional.interpolate(
results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest"
).byte()
return results
# inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L241
def post_process_panoptic(self, outputs, processed_sizes, target_sizes=None, is_thing_map=None, threshold=0.85):
"""
Converts the output of [`DetrForSegmentation`] into actual panoptic predictions. Only supports PyTorch.
Args:
outputs ([`DetrSegmentationOutput`]):
Raw outputs of the model.
processed_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`):
Torch Tensor (or list) containing the size (h, w) of each image of the batch, i.e. the size after data
augmentation but before batching.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`, *optional*):
Torch Tensor (or list) corresponding to the requested final size `(height, width)` of each prediction.
If left to None, it will default to the `processed_sizes`.
is_thing_map (`torch.Tensor` of shape `(batch_size, 2)`, *optional*):
Dictionary mapping class indices to either True or False, depending on whether or not they are a thing.
If not set, defaults to the `is_thing_map` of COCO panoptic.
threshold (`float`, *optional*, defaults to 0.85):
Threshold to use to filter out queries.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing a PNG string and segments_info values for
an image in the batch as predicted by the model.
"""
logger.warning_once(
"`post_process_panoptic is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_panoptic_segmentation`.",
)
if target_sizes is None:
target_sizes = processed_sizes
if len(processed_sizes) != len(target_sizes):
raise ValueError("Make sure to pass in as many processed_sizes as target_sizes")
if is_thing_map is None:
# default to is_thing_map of COCO panoptic
is_thing_map = {i: i <= 90 for i in range(201)}
out_logits, raw_masks, raw_boxes = outputs.logits, outputs.pred_masks, outputs.pred_boxes
if not len(out_logits) == len(raw_masks) == len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits and masks"
)
empty_label = out_logits.shape[-1] - 1
preds = []
def to_tuple(tup):
if isinstance(tup, tuple):
return tup
return tuple(tup.tolist())
for cur_logits, cur_masks, cur_boxes, size, target_size in zip(
out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes
):
# we filter empty queries and detection below threshold
cur_scores, cur_labels = cur_logits.softmax(-1).max(-1)
keep = cur_labels.ne(empty_label) & (cur_scores > threshold)
cur_scores = cur_scores[keep]
cur_labels = cur_labels[keep]
cur_masks = cur_masks[keep]
cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1)
cur_boxes = center_to_corners_format(cur_boxes[keep])
h, w = cur_masks.shape[-2:]
if len(cur_boxes) != len(cur_labels):
raise ValueError("Not as many boxes as there are classes")
# It may be that we have several predicted masks for the same stuff class.
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
cur_masks = cur_masks.flatten(1)
stuff_equiv_classes = defaultdict(lambda: [])
for k, label in enumerate(cur_labels):
if not is_thing_map[label.item()]:
stuff_equiv_classes[label.item()].append(k)
def get_ids_area(masks, scores, dedup=False):
# This helper function creates the final panoptic segmentation image
# It also returns the area of the masks that appears on the image
m_id = masks.transpose(0, 1).softmax(-1)
if m_id.shape[-1] == 0:
# We didn't detect any mask :(
m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device)
else:
m_id = m_id.argmax(-1).view(h, w)
if dedup:
# Merge the masks corresponding to the same stuff class
for equiv in stuff_equiv_classes.values():
if len(equiv) > 1:
for eq_id in equiv:
m_id.masked_fill_(m_id.eq(eq_id), equiv[0])
final_h, final_w = to_tuple(target_size)
seg_img = PIL.Image.fromarray(id_to_rgb(m_id.view(h, w).cpu().numpy()))
seg_img = seg_img.resize(size=(final_w, final_h), resample=PILImageResampling.NEAREST)
np_seg_img = torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes()))
np_seg_img = np_seg_img.view(final_h, final_w, 3)
np_seg_img = np_seg_img.numpy()
m_id = torch.from_numpy(rgb_to_id(np_seg_img))
area = []
for i in range(len(scores)):
area.append(m_id.eq(i).sum().item())
return area, seg_img
area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True)
if cur_labels.numel() > 0:
# We know filter empty masks as long as we find some
while True:
filtered_small = torch.as_tensor(
[area[i] <= 4 for i, c in enumerate(cur_labels)], dtype=torch.bool, device=keep.device
)
if filtered_small.any().item():
cur_scores = cur_scores[~filtered_small]
cur_labels = cur_labels[~filtered_small]
cur_masks = cur_masks[~filtered_small]
area, seg_img = get_ids_area(cur_masks, cur_scores)
else:
break
else:
cur_labels = torch.ones(1, dtype=torch.long, device=cur_labels.device)
segments_info = []
for i, a in enumerate(area):
cat = cur_labels[i].item()
segments_info.append({"id": i, "isthing": is_thing_map[cat], "category_id": cat, "area": a})
del cur_labels
with io.BytesIO() as out:
seg_img.save(out, format="PNG")
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
preds.append(predictions)
return preds
# inspired by https://github.com/facebookresearch/detr/blob/master/models/detr.py#L258
def post_process_object_detection(
self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None
):
"""
Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`DetrObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if target_sizes is not None:
if len(out_logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
prob = nn.functional.softmax(out_logits, -1)
scores, labels = prob[..., :-1].max(-1)
# Convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(out_bbox)
# Convert from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for s, l, b in zip(scores, labels, boxes):
score = s[s > threshold]
label = l[s > threshold]
box = b[s > threshold]
results.append({"scores": score, "labels": label, "boxes": box})
return results
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None):
"""
Converts the output of [`DetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`DetrForSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple[int, int]]`, *optional*):
A list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the
batch. If unset, predictions will not be resized.
Returns:
`List[torch.Tensor]`:
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
`torch.Tensor` correspond to a semantic class id.
"""
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
# Remove the null class `[..., :-1]`
masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Semantic segmentation logits of shape (batch_size, num_classes, height, width)
segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
batch_size = class_queries_logits.shape[0]
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if batch_size != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
semantic_segmentation = []
for idx in range(batch_size):
resized_logits = nn.functional.interpolate(
segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = segmentation.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
# inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L218
def post_process_instance_segmentation(
self,
outputs,
threshold: float = 0.5,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
target_sizes: Optional[List[Tuple[int, int]]] = None,
return_coco_annotation: Optional[bool] = False,
) -> List[Dict]:
"""
Converts the output of [`DetrForSegmentation`] into instance segmentation predictions. Only supports PyTorch.
Args:
outputs ([`DetrForSegmentation`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.5):
The probability score threshold to keep predicted instance masks.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
The overlap mask area threshold to merge or discard small disconnected parts within each binary
instance mask.
target_sizes (`List[Tuple]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction. If unset, predictions will not be resized.
return_coco_annotation (`bool`, *optional*):
Defaults to `False`. If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE)
format.
Returns:
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
- **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or
`List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to
`True`. Set to `None` if no mask if found above `threshold`.
- **segments_info** -- A dictionary that contains additional information on each segment.
- **id** -- An integer representing the `segment_id`.
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
- **score** -- Prediction score of segment with `segment_id`.
"""
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
batch_size = class_queries_logits.shape[0]
num_labels = class_queries_logits.shape[-1] - 1
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Predicted label and score of each query (batch_size, num_queries)
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
# Loop over items in batch size
results: List[Dict[str, TensorType]] = []
for i in range(batch_size):
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
)
# No mask found
if mask_probs_item.shape[0] <= 0:
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
segmentation = torch.zeros((height, width)) - 1
results.append({"segmentation": segmentation, "segments_info": []})
continue
# Get segmentation map and segment information of batch item
target_size = target_sizes[i] if target_sizes is not None else None
segmentation, segments = compute_segments(
mask_probs=mask_probs_item,
pred_scores=pred_scores_item,
pred_labels=pred_labels_item,
mask_threshold=mask_threshold,
overlap_mask_area_threshold=overlap_mask_area_threshold,
label_ids_to_fuse=[],
target_size=target_size,
)
# Return segmentation map in run-length encoding (RLE) format
if return_coco_annotation:
segmentation = convert_segmentation_to_rle(segmentation)
results.append({"segmentation": segmentation, "segments_info": segments})
return results
# inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L241
def post_process_panoptic_segmentation(
self,
outputs,
threshold: float = 0.5,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None,
target_sizes: Optional[List[Tuple[int, int]]] = None,
) -> List[Dict]:
"""
Converts the output of [`DetrForSegmentation`] into image panoptic segmentation predictions. Only supports
PyTorch.
Args:
outputs ([`DetrForSegmentation`]):
The outputs from [`DetrForSegmentation`].
threshold (`float`, *optional*, defaults to 0.5):
The probability score threshold to keep predicted instance masks.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
The overlap mask area threshold to merge or discard small disconnected parts within each binary
instance mask.
label_ids_to_fuse (`Set[int]`, *optional*):
The labels in this state will have all their instances be fused together. For instance we could say
there can only be one sky in an image, but several persons, so the label ID for sky would be in that
set, but not the one for person.
target_sizes (`List[Tuple]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction in batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
- **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id` or
`None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to
the corresponding `target_sizes` entry.
- **segments_info** -- A dictionary that contains additional information on each segment.
- **id** -- an integer representing the `segment_id`.
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
- **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise.
Multiple instances of the same class / label were fused and assigned a single `segment_id`.
- **score** -- Prediction score of segment with `segment_id`.
"""
if label_ids_to_fuse is None:
logger.warning_once("`label_ids_to_fuse` unset. No instance will be fused.")
label_ids_to_fuse = set()
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
batch_size = class_queries_logits.shape[0]
num_labels = class_queries_logits.shape[-1] - 1
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Predicted label and score of each query (batch_size, num_queries)
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
# Loop over items in batch size
results: List[Dict[str, TensorType]] = []
for i in range(batch_size):
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
)
# No mask found
if mask_probs_item.shape[0] <= 0:
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
segmentation = torch.zeros((height, width)) - 1
results.append({"segmentation": segmentation, "segments_info": []})
continue
# Get segmentation map and segment information of batch item
target_size = target_sizes[i] if target_sizes is not None else None
segmentation, segments = compute_segments(
mask_probs=mask_probs_item,
pred_scores=pred_scores_item,
pred_labels=pred_labels_item,
mask_threshold=mask_threshold,
overlap_mask_area_threshold=overlap_mask_area_threshold,
label_ids_to_fuse=label_ids_to_fuse,
target_size=target_size,
)
results.append({"segmentation": segmentation, "segments_info": segments})
return results
__all__ = ["DetrImageProcessor"]
```
|
==============================================================================================================================================
SOURCE CODE FILE: image_processing_detr_fast.py
LINES: 1
SIZE: 60.10 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\detr\image_processing_detr_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Image processor class for DETR."""
import io
import pathlib
from collections import defaultdict
from typing import Any, Dict, List, Optional, Set, Tuple, Union
from ...image_processing_utils import BatchFeature, get_size_dict
from ...image_processing_utils_fast import (
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
BaseImageProcessorFast,
DefaultFastImageProcessorKwargs,
SizeDict,
get_image_size_for_max_height_width,
get_max_height_width,
safe_squeeze,
)
from ...image_transforms import (
center_to_corners_format,
corners_to_center_format,
id_to_rgb,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
AnnotationFormat,
AnnotationType,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
validate_annotations,
)
from ...processing_utils import Unpack
from ...utils import (
TensorType,
add_start_docstrings,
is_torch_available,
is_torchvision_available,
is_torchvision_v2_available,
is_vision_available,
logging,
)
from .image_processing_detr import (
compute_segments,
convert_segmentation_to_rle,
get_size_with_aspect_ratio,
remove_low_and_no_objects,
)
if is_torch_available():
import torch
from torch import nn
if is_vision_available():
import PIL
if is_torchvision_v2_available():
from torchvision.io import read_image
from torchvision.transforms.v2 import functional as F
elif is_torchvision_available():
from torchvision.io import read_image
from torchvision.transforms import functional as F
logger = logging.get_logger(__name__)
SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC)
# inspired by https://github.com/facebookresearch/detr/blob/master/datasets/coco.py#L33
def convert_coco_poly_to_mask(segmentations, height: int, width: int, device: torch.device) -> torch.Tensor:
"""
Convert a COCO polygon annotation to a mask.
Args:
segmentations (`List[List[float]]`):
List of polygons, each polygon represented by a list of x-y coordinates.
height (`int`):
Height of the mask.
width (`int`):
Width of the mask.
"""
try:
from pycocotools import mask as coco_mask
except ImportError:
raise ImportError("Pycocotools is not installed in your environment.")
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = torch.as_tensor(mask, dtype=torch.uint8, device=device)
mask = torch.any(mask, axis=2)
masks.append(mask)
if masks:
masks = torch.stack(masks, axis=0)
else:
masks = torch.zeros((0, height, width), dtype=torch.uint8, device=device)
return masks
# inspired by https://github.com/facebookresearch/detr/blob/master/datasets/coco.py#L50
def prepare_coco_detection_annotation(
image,
target,
return_segmentation_masks: bool = False,
input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
"""
Convert the target in COCO format into the format expected by DETR.
"""
image_height, image_width = image.size()[-2:]
image_id = target["image_id"]
image_id = torch.as_tensor([image_id], dtype=torch.int64, device=image.device)
# Get all COCO annotations for the given image.
annotations = target["annotations"]
classes = []
area = []
boxes = []
keypoints = []
for obj in annotations:
if "iscrowd" not in obj or obj["iscrowd"] == 0:
classes.append(obj["category_id"])
area.append(obj["area"])
boxes.append(obj["bbox"])
if "keypoints" in obj:
keypoints.append(obj["keypoints"])
classes = torch.as_tensor(classes, dtype=torch.int64, device=image.device)
area = torch.as_tensor(area, dtype=torch.float32, device=image.device)
iscrowd = torch.zeros_like(classes, dtype=torch.int64, device=image.device)
# guard against no boxes via resizing
boxes = torch.as_tensor(boxes, dtype=torch.float32, device=image.device).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2]
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
new_target = {
"image_id": image_id,
"class_labels": classes[keep],
"boxes": boxes[keep],
"area": area[keep],
"iscrowd": iscrowd[keep],
"orig_size": torch.as_tensor([int(image_height), int(image_width)], dtype=torch.int64, device=image.device),
}
if keypoints:
keypoints = torch.as_tensor(keypoints, dtype=torch.float32, device=image.device)
# Apply the keep mask here to filter the relevant annotations
keypoints = keypoints[keep]
num_keypoints = keypoints.shape[0]
keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
new_target["keypoints"] = keypoints
if return_segmentation_masks:
segmentation_masks = [obj["segmentation"] for obj in annotations]
masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width, device=image.device)
new_target["masks"] = masks[keep]
return new_target
def masks_to_boxes(masks: torch.Tensor) -> torch.Tensor:
"""
Compute the bounding boxes around the provided panoptic segmentation masks.
Args:
masks: masks in format `[number_masks, height, width]` where N is the number of masks
Returns:
boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
"""
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device)
h, w = masks.shape[-2:]
y = torch.arange(0, h, dtype=torch.float32, device=masks.device)
x = torch.arange(0, w, dtype=torch.float32, device=masks.device)
# see https://github.com/pytorch/pytorch/issues/50276
y, x = torch.meshgrid(y, x, indexing="ij")
x_mask = masks * torch.unsqueeze(x, 0)
x_max = x_mask.view(x_mask.shape[0], -1).max(-1)[0]
x_min = (
torch.where(masks, x.unsqueeze(0), torch.tensor(1e8, device=masks.device)).view(masks.shape[0], -1).min(-1)[0]
)
y_mask = masks * torch.unsqueeze(y, 0)
y_max = y_mask.view(y_mask.shape[0], -1).max(-1)[0]
y_min = (
torch.where(masks, y.unsqueeze(0), torch.tensor(1e8, device=masks.device)).view(masks.shape[0], -1).min(-1)[0]
)
return torch.stack([x_min, y_min, x_max, y_max], 1)
# 2 functions below adapted from https://github.com/cocodataset/panopticapi/blob/master/panopticapi/utils.py
# Copyright (c) 2018, Alexander Kirillov
# All rights reserved.
def rgb_to_id(color):
"""
Converts RGB color to unique ID.
"""
if isinstance(color, torch.Tensor) and len(color.shape) == 3:
if color.dtype == torch.uint8:
color = color.to(torch.int32)
return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2]
return int(color[0] + 256 * color[1] + 256 * 256 * color[2])
def prepare_coco_panoptic_annotation(
image: torch.Tensor,
target: Dict,
masks_path: Union[str, pathlib.Path],
return_masks: bool = True,
input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
"""
Prepare a coco panoptic annotation for DETR.
"""
image_height, image_width = get_image_size(image, channel_dim=input_data_format)
annotation_path = pathlib.Path(masks_path) / target["file_name"]
new_target = {}
new_target["image_id"] = torch.as_tensor(
[target["image_id"] if "image_id" in target else target["id"]], dtype=torch.int64, device=image.device
)
new_target["size"] = torch.as_tensor([image_height, image_width], dtype=torch.int64, device=image.device)
new_target["orig_size"] = torch.as_tensor([image_height, image_width], dtype=torch.int64, device=image.device)
if "segments_info" in target:
masks = read_image(annotation_path).permute(1, 2, 0).to(dtype=torch.int32, device=image.device)
masks = rgb_to_id(masks)
ids = torch.as_tensor([segment_info["id"] for segment_info in target["segments_info"]], device=image.device)
masks = masks == ids[:, None, None]
masks = masks.to(torch.bool)
if return_masks:
new_target["masks"] = masks
new_target["boxes"] = masks_to_boxes(masks)
new_target["class_labels"] = torch.as_tensor(
[segment_info["category_id"] for segment_info in target["segments_info"]],
dtype=torch.int64,
device=image.device,
)
new_target["iscrowd"] = torch.as_tensor(
[segment_info["iscrowd"] for segment_info in target["segments_info"]],
dtype=torch.int64,
device=image.device,
)
new_target["area"] = torch.as_tensor(
[segment_info["area"] for segment_info in target["segments_info"]],
dtype=torch.float32,
device=image.device,
)
return new_target
class DetrFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
format: Optional[Union[str, AnnotationFormat]]
do_convert_annotations: Optional[bool]
do_pad: Optional[bool]
pad_size: Optional[Dict[str, int]]
return_segmentation_masks: Optional[bool]
@add_start_docstrings(
"Constructs a fast Detr image processor.",
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
"""
format (`str`, *optional*, defaults to `AnnotationFormat.COCO_DETECTION`):
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
do_convert_annotations (`bool`, *optional*, defaults to `True`):
Controls whether to convert the annotations to the format expected by the DETR model. Converts the
bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
do_pad (`bool`, *optional*, defaults to `True`):
Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
method. If `True`, padding will be applied to the bottom and right of the image with zeros.
If `pad_size` is provided, the image will be padded to the specified dimensions.
Otherwise, the image will be padded to the maximum height and width of the batch.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
return_segmentation_masks (`bool`, *optional*, defaults to `False`):
Whether to return segmentation masks.
""",
)
class DetrImageProcessorFast(BaseImageProcessorFast):
resample = PILImageResampling.BILINEAR
image_mean = IMAGENET_DEFAULT_MEAN
image_std = IMAGENET_DEFAULT_STD
format = AnnotationFormat.COCO_DETECTION
do_resize = True
do_rescale = True
do_normalize = True
do_pad = True
size = {"shortest_edge": 800, "longest_edge": 1333}
default_to_square = False
model_input_names = ["pixel_values", "pixel_mask"]
valid_kwargs = DetrFastImageProcessorKwargs
def __init__(self, **kwargs: Unpack[DetrFastImageProcessorKwargs]) -> None:
if "pad_and_return_pixel_mask" in kwargs:
kwargs["do_pad"] = kwargs.pop("pad_and_return_pixel_mask")
size = kwargs.pop("size", None)
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` parameter is deprecated and will be removed in v4.26. "
"Please specify in `size['longest_edge'] instead`.",
)
max_size = kwargs.pop("max_size")
else:
max_size = None if size is None else 1333
size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
self.size = get_size_dict(size, max_size=max_size, default_to_square=False)
# Backwards compatibility
do_convert_annotations = kwargs.get("do_convert_annotations", None)
do_normalize = kwargs.get("do_normalize", None)
if do_convert_annotations is None and getattr(self, "do_convert_annotations", None) is None:
self.do_convert_annotations = do_normalize if do_normalize is not None else self.do_normalize
super().__init__(**kwargs)
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `DetrImageProcessorFast.from_pretrained(checkpoint, size=600,
max_size=800)`
"""
image_processor_dict = image_processor_dict.copy()
if "max_size" in kwargs:
image_processor_dict["max_size"] = kwargs.pop("max_size")
if "pad_and_return_pixel_mask" in kwargs:
image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
return super().from_dict(image_processor_dict, **kwargs)
def prepare_annotation(
self,
image: torch.Tensor,
target: Dict,
format: Optional[AnnotationFormat] = None,
return_segmentation_masks: Optional[bool] = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into DETR model.
"""
format = format if format is not None else self.format
if format == AnnotationFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotationFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
return target
def resize(
self,
image: torch.Tensor,
size: SizeDict,
interpolation: "F.InterpolationMode" = None,
**kwargs,
) -> torch.Tensor:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`torch.Tensor`):
Image to resize.
size (`SizeDict`):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
interpolation (`InterpolationMode`, *optional*, defaults to `InterpolationMode.BILINEAR`):
Resampling filter to use if resizing the image.
"""
interpolation = interpolation if interpolation is not None else F.InterpolationMode.BILINEAR
if size.shortest_edge and size.longest_edge:
# Resize the image so that the shortest edge or the longest edge is of the given size
# while maintaining the aspect ratio of the original image.
new_size = get_size_with_aspect_ratio(
image.size()[-2:],
size["shortest_edge"],
size["longest_edge"],
)
elif size.max_height and size.max_width:
new_size = get_image_size_for_max_height_width(image.size()[-2:], size["max_height"], size["max_width"])
elif size.height and size.width:
new_size = (size["height"], size["width"])
else:
raise ValueError(
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = F.resize(
image,
size=new_size,
interpolation=interpolation,
**kwargs,
)
return image
def resize_annotation(
self,
annotation: Dict[str, Any],
orig_size: Tuple[int, int],
target_size: Tuple[int, int],
threshold: float = 0.5,
interpolation: "F.InterpolationMode" = None,
):
"""
Resizes an annotation to a target size.
Args:
annotation (`Dict[str, Any]`):
The annotation dictionary.
orig_size (`Tuple[int, int]`):
The original size of the input image.
target_size (`Tuple[int, int]`):
The target size of the image, as returned by the preprocessing `resize` step.
threshold (`float`, *optional*, defaults to 0.5):
The threshold used to binarize the segmentation masks.
resample (`InterpolationMode`, defaults to `InterpolationMode.NEAREST`):
The resampling filter to use when resizing the masks.
"""
interpolation = interpolation if interpolation is not None else F.InterpolationMode.NEAREST
ratio_height, ratio_width = [target / orig for target, orig in zip(target_size, orig_size)]
new_annotation = {}
new_annotation["size"] = target_size
for key, value in annotation.items():
if key == "boxes":
boxes = value
scaled_boxes = boxes * torch.as_tensor(
[ratio_width, ratio_height, ratio_width, ratio_height], dtype=torch.float32, device=boxes.device
)
new_annotation["boxes"] = scaled_boxes
elif key == "area":
area = value
scaled_area = area * (ratio_width * ratio_height)
new_annotation["area"] = scaled_area
elif key == "masks":
masks = value[:, None]
masks = [F.resize(mask, target_size, interpolation=interpolation) for mask in masks]
masks = torch.stack(masks).to(torch.float32)
masks = masks[:, 0] > threshold
new_annotation["masks"] = masks
elif key == "size":
new_annotation["size"] = target_size
else:
new_annotation[key] = value
return new_annotation
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
image_height, image_width = image_size
norm_annotation = {}
for key, value in annotation.items():
if key == "boxes":
boxes = value
boxes = corners_to_center_format(boxes)
boxes /= torch.as_tensor(
[image_width, image_height, image_width, image_height], dtype=torch.float32, device=boxes.device
)
norm_annotation[key] = boxes
else:
norm_annotation[key] = value
return norm_annotation
def _update_annotation_for_padded_image(
self,
annotation: Dict,
input_image_size: Tuple[int, int],
output_image_size: Tuple[int, int],
padding,
update_bboxes,
) -> Dict:
"""
Update the annotation for a padded image.
"""
new_annotation = {}
new_annotation["size"] = output_image_size
ratio_height, ratio_width = (input / output for output, input in zip(output_image_size, input_image_size))
for key, value in annotation.items():
if key == "masks":
masks = value
masks = F.pad(
masks,
padding,
fill=0,
)
masks = safe_squeeze(masks, 1)
new_annotation["masks"] = masks
elif key == "boxes" and update_bboxes:
boxes = value
boxes *= torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height], device=boxes.device)
new_annotation["boxes"] = boxes
elif key == "size":
new_annotation["size"] = output_image_size
else:
new_annotation[key] = value
return new_annotation
def pad(
self,
image: torch.Tensor,
padded_size: Tuple[int, int],
annotation: Optional[Dict[str, Any]] = None,
update_bboxes: bool = True,
fill: int = 0,
):
original_size = image.size()[-2:]
padding_bottom = padded_size[0] - original_size[0]
padding_right = padded_size[1] - original_size[1]
if padding_bottom < 0 or padding_right < 0:
raise ValueError(
f"Padding dimensions are negative. Please make sure that the padded size is larger than the "
f"original size. Got padded size: {padded_size}, original size: {original_size}."
)
if original_size != padded_size:
padding = [0, 0, padding_right, padding_bottom]
image = F.pad(image, padding, fill=fill)
if annotation is not None:
annotation = self._update_annotation_for_padded_image(
annotation, original_size, padded_size, padding, update_bboxes
)
# Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.
pixel_mask = torch.zeros(padded_size, dtype=torch.int64, device=image.device)
pixel_mask[: original_size[0], : original_size[1]] = 1
return image, pixel_mask, annotation
@add_start_docstrings(
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
"""
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
dictionary. An image can have no annotations, in which case the list should be empty.
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
An image can have no segments, in which case the list should be empty.
- "file_name" (`str`): The file name of the image.
format (`str`, *optional*, defaults to `AnnotationFormat.COCO_DETECTION`):
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
do_convert_annotations (`bool`, *optional*, defaults to `True`):
Controls whether to convert the annotations to the format expected by the DETR model. Converts the
bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
do_pad (`bool`, *optional*, defaults to `True`):
Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
method. If `True`, padding will be applied to the bottom and right of the image with zeros.
If `pad_size` is provided, the image will be padded to the specified dimensions.
Otherwise, the image will be padded to the maximum height and width of the batch.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
return_segmentation_masks (`bool`, *optional*, defaults to `False`):
Whether to return segmentation masks.
masks_path (`str` or `pathlib.Path`, *optional*):
Path to the directory containing the segmentation masks.
""",
)
def preprocess(
self,
images: ImageInput,
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
**kwargs: Unpack[DetrFastImageProcessorKwargs],
) -> BatchFeature:
if "pad_and_return_pixel_mask" in kwargs:
kwargs["do_pad"] = kwargs.pop("pad_and_return_pixel_mask")
logger.warning_once(
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
"use `do_pad` instead."
)
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` argument is deprecated and will be removed in a future version, use"
" `size['longest_edge']` instead."
)
kwargs["size"] = kwargs.pop("max_size")
return super().preprocess(images, annotations=annotations, masks_path=masks_path, **kwargs)
def _preprocess(
self,
images: List["torch.Tensor"],
annotations: Optional[Union[AnnotationType, List[AnnotationType]]],
return_segmentation_masks: bool,
masks_path: Optional[Union[str, pathlib.Path]],
do_resize: bool,
size: SizeDict,
interpolation: Optional["F.InterpolationMode"],
do_center_crop: bool,
crop_size: SizeDict,
do_rescale: bool,
rescale_factor: float,
do_normalize: bool,
do_convert_annotations: bool,
image_mean: Optional[Union[float, List[float]]],
image_std: Optional[Union[float, List[float]]],
do_pad: bool,
pad_size: Optional[Dict[str, int]],
format: Optional[Union[str, AnnotationFormat]],
return_tensors: Optional[Union[str, TensorType]],
) -> BatchFeature:
"""
Preprocess an image or a batch of images so that it can be used by the model.
"""
if annotations is not None and isinstance(annotations, dict):
annotations = [annotations]
if annotations is not None and len(images) != len(annotations):
raise ValueError(
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
)
format = AnnotationFormat(format)
if annotations is not None:
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
if (
masks_path is not None
and format == AnnotationFormat.COCO_PANOPTIC
and not isinstance(masks_path, (pathlib.Path, str))
):
raise ValueError(
"The path to the directory containing the mask PNG files should be provided as a"
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
)
data = {}
processed_images = []
processed_annotations = []
pixel_masks = [] # Initialize pixel_masks here
for image, annotation in zip(images, annotations if annotations is not None else [None] * len(images)):
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
annotation = self.prepare_annotation(
image,
annotation,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=ChannelDimension.FIRST,
)
if do_resize:
resized_image = self.resize(image, size=size, interpolation=interpolation)
if annotations is not None:
annotation = self.resize_annotation(
annotation,
orig_size=image.size()[-2:],
target_size=resized_image.size()[-2:],
)
image = resized_image
# Fused rescale and normalize
image = self.rescale_and_normalize(image, do_rescale, rescale_factor, do_normalize, image_mean, image_std)
if do_convert_annotations and annotations is not None:
annotation = self.normalize_annotation(annotation, get_image_size(image, ChannelDimension.FIRST))
processed_images.append(image)
processed_annotations.append(annotation)
images = processed_images
annotations = processed_annotations if annotations is not None else None
if do_pad:
# depends on all resized image shapes so we need another loop
if pad_size is not None:
padded_size = (pad_size["height"], pad_size["width"])
else:
padded_size = get_max_height_width(images)
padded_images = []
padded_annotations = []
for image, annotation in zip(images, annotations if annotations is not None else [None] * len(images)):
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
if padded_size == image.size()[-2:]:
padded_images.append(image)
pixel_masks.append(torch.ones(padded_size, dtype=torch.int64, device=image.device))
padded_annotations.append(annotation)
continue
image, pixel_mask, annotation = self.pad(
image, padded_size, annotation=annotation, update_bboxes=do_convert_annotations
)
padded_images.append(image)
padded_annotations.append(annotation)
pixel_masks.append(pixel_mask)
images = padded_images
annotations = padded_annotations if annotations is not None else None
data.update({"pixel_mask": torch.stack(pixel_masks, dim=0)})
data.update({"pixel_values": torch.stack(images, dim=0)})
encoded_inputs = BatchFeature(data, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
]
return encoded_inputs
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process
def post_process(self, outputs, target_sizes):
"""
Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`DetrObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
original image size (before any data augmentation). For visualization, this should be the image size
after data augment, but before padding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
logger.warning_once(
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
)
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if len(out_logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
prob = nn.functional.softmax(out_logits, -1)
scores, labels = prob[..., :-1].max(-1)
# convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(out_bbox)
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
return results
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_segmentation
def post_process_segmentation(self, outputs, target_sizes, threshold=0.9, mask_threshold=0.5):
"""
Converts the output of [`DetrForSegmentation`] into image segmentation predictions. Only supports PyTorch.
Args:
outputs ([`DetrSegmentationOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`):
Torch Tensor (or list) corresponding to the requested final size (h, w) of each prediction.
threshold (`float`, *optional*, defaults to 0.9):
Threshold to use to filter out queries.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, and masks for an image
in the batch as predicted by the model.
"""
logger.warning_once(
"`post_process_segmentation` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_semantic_segmentation`.",
)
out_logits, raw_masks = outputs.logits, outputs.pred_masks
empty_label = out_logits.shape[-1] - 1
preds = []
def to_tuple(tup):
if isinstance(tup, tuple):
return tup
return tuple(tup.tolist())
for cur_logits, cur_masks, size in zip(out_logits, raw_masks, target_sizes):
# we filter empty queries and detection below threshold
cur_scores, cur_labels = cur_logits.softmax(-1).max(-1)
keep = cur_labels.ne(empty_label) & (cur_scores > threshold)
cur_scores = cur_scores[keep]
cur_labels = cur_labels[keep]
cur_masks = cur_masks[keep]
cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1)
cur_masks = (cur_masks.sigmoid() > mask_threshold) * 1
predictions = {"scores": cur_scores, "labels": cur_labels, "masks": cur_masks}
preds.append(predictions)
return preds
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_instance
def post_process_instance(self, results, outputs, orig_target_sizes, max_target_sizes, threshold=0.5):
"""
Converts the output of [`DetrForSegmentation`] into actual instance segmentation predictions. Only supports
PyTorch.
Args:
results (`List[Dict]`):
Results list obtained by [`~DetrImageProcessor.post_process`], to which "masks" results will be added.
outputs ([`DetrSegmentationOutput`]):
Raw outputs of the model.
orig_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original
image size (before any data augmentation).
max_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the maximum size (h, w) of each image of the batch. For evaluation, this must be the
original image size (before any data augmentation).
threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, boxes and masks for an
image in the batch as predicted by the model.
"""
logger.warning_once(
"`post_process_instance` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_instance_segmentation`.",
)
if len(orig_target_sizes) != len(max_target_sizes):
raise ValueError("Make sure to pass in as many orig_target_sizes as max_target_sizes")
max_h, max_w = max_target_sizes.max(0)[0].tolist()
outputs_masks = outputs.pred_masks.squeeze(2)
outputs_masks = nn.functional.interpolate(
outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False
)
outputs_masks = (outputs_masks.sigmoid() > threshold).cpu()
for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)):
img_h, img_w = t[0], t[1]
results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1)
results[i]["masks"] = nn.functional.interpolate(
results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest"
).byte()
return results
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_panoptic
def post_process_panoptic(self, outputs, processed_sizes, target_sizes=None, is_thing_map=None, threshold=0.85):
"""
Converts the output of [`DetrForSegmentation`] into actual panoptic predictions. Only supports PyTorch.
Args:
outputs ([`DetrSegmentationOutput`]):
Raw outputs of the model.
processed_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`):
Torch Tensor (or list) containing the size (h, w) of each image of the batch, i.e. the size after data
augmentation but before batching.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`, *optional*):
Torch Tensor (or list) corresponding to the requested final size `(height, width)` of each prediction.
If left to None, it will default to the `processed_sizes`.
is_thing_map (`torch.Tensor` of shape `(batch_size, 2)`, *optional*):
Dictionary mapping class indices to either True or False, depending on whether or not they are a thing.
If not set, defaults to the `is_thing_map` of COCO panoptic.
threshold (`float`, *optional*, defaults to 0.85):
Threshold to use to filter out queries.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing a PNG string and segments_info values for
an image in the batch as predicted by the model.
"""
logger.warning_once(
"`post_process_panoptic is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_panoptic_segmentation`.",
)
if target_sizes is None:
target_sizes = processed_sizes
if len(processed_sizes) != len(target_sizes):
raise ValueError("Make sure to pass in as many processed_sizes as target_sizes")
if is_thing_map is None:
# default to is_thing_map of COCO panoptic
is_thing_map = {i: i <= 90 for i in range(201)}
out_logits, raw_masks, raw_boxes = outputs.logits, outputs.pred_masks, outputs.pred_boxes
if not len(out_logits) == len(raw_masks) == len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits and masks"
)
empty_label = out_logits.shape[-1] - 1
preds = []
def to_tuple(tup):
if isinstance(tup, tuple):
return tup
return tuple(tup.tolist())
for cur_logits, cur_masks, cur_boxes, size, target_size in zip(
out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes
):
# we filter empty queries and detection below threshold
cur_scores, cur_labels = cur_logits.softmax(-1).max(-1)
keep = cur_labels.ne(empty_label) & (cur_scores > threshold)
cur_scores = cur_scores[keep]
cur_labels = cur_labels[keep]
cur_masks = cur_masks[keep]
cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1)
cur_boxes = center_to_corners_format(cur_boxes[keep])
h, w = cur_masks.shape[-2:]
if len(cur_boxes) != len(cur_labels):
raise ValueError("Not as many boxes as there are classes")
# It may be that we have several predicted masks for the same stuff class.
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
cur_masks = cur_masks.flatten(1)
stuff_equiv_classes = defaultdict(lambda: [])
for k, label in enumerate(cur_labels):
if not is_thing_map[label.item()]:
stuff_equiv_classes[label.item()].append(k)
def get_ids_area(masks, scores, dedup=False):
# This helper function creates the final panoptic segmentation image
# It also returns the area of the masks that appears on the image
m_id = masks.transpose(0, 1).softmax(-1)
if m_id.shape[-1] == 0:
# We didn't detect any mask :(
m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device)
else:
m_id = m_id.argmax(-1).view(h, w)
if dedup:
# Merge the masks corresponding to the same stuff class
for equiv in stuff_equiv_classes.values():
if len(equiv) > 1:
for eq_id in equiv:
m_id.masked_fill_(m_id.eq(eq_id), equiv[0])
final_h, final_w = to_tuple(target_size)
seg_img = PIL.Image.fromarray(id_to_rgb(m_id.view(h, w).cpu().numpy()))
seg_img = seg_img.resize(size=(final_w, final_h), resample=PILImageResampling.NEAREST)
np_seg_img = torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes()))
np_seg_img = np_seg_img.view(final_h, final_w, 3)
np_seg_img = np_seg_img.numpy()
m_id = torch.from_numpy(rgb_to_id(np_seg_img))
area = []
for i in range(len(scores)):
area.append(m_id.eq(i).sum().item())
return area, seg_img
area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True)
if cur_labels.numel() > 0:
# We know filter empty masks as long as we find some
while True:
filtered_small = torch.as_tensor(
[area[i] <= 4 for i, c in enumerate(cur_labels)], dtype=torch.bool, device=keep.device
)
if filtered_small.any().item():
cur_scores = cur_scores[~filtered_small]
cur_labels = cur_labels[~filtered_small]
cur_masks = cur_masks[~filtered_small]
area, seg_img = get_ids_area(cur_masks, cur_scores)
else:
break
else:
cur_labels = torch.ones(1, dtype=torch.long, device=cur_labels.device)
segments_info = []
for i, a in enumerate(area):
cat = cur_labels[i].item()
segments_info.append({"id": i, "isthing": is_thing_map[cat], "category_id": cat, "area": a})
del cur_labels
with io.BytesIO() as out:
seg_img.save(out, format="PNG")
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
preds.append(predictions)
return preds
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_object_detection
def post_process_object_detection(
self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None
):
"""
Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`DetrObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if target_sizes is not None:
if len(out_logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
prob = nn.functional.softmax(out_logits, -1)
scores, labels = prob[..., :-1].max(-1)
# Convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(out_bbox)
# Convert from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for s, l, b in zip(scores, labels, boxes):
score = s[s > threshold]
label = l[s > threshold]
box = b[s > threshold]
results.append({"scores": score, "labels": label, "boxes": box})
return results
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_semantic_segmentation
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None):
"""
Converts the output of [`DetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`DetrForSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple[int, int]]`, *optional*):
A list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the
batch. If unset, predictions will not be resized.
Returns:
`List[torch.Tensor]`:
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
`torch.Tensor` correspond to a semantic class id.
"""
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
# Remove the null class `[..., :-1]`
masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Semantic segmentation logits of shape (batch_size, num_classes, height, width)
segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
batch_size = class_queries_logits.shape[0]
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if batch_size != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
semantic_segmentation = []
for idx in range(batch_size):
resized_logits = nn.functional.interpolate(
segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = segmentation.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_instance_segmentation
def post_process_instance_segmentation(
self,
outputs,
threshold: float = 0.5,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
target_sizes: Optional[List[Tuple[int, int]]] = None,
return_coco_annotation: Optional[bool] = False,
) -> List[Dict]:
"""
Converts the output of [`DetrForSegmentation`] into instance segmentation predictions. Only supports PyTorch.
Args:
outputs ([`DetrForSegmentation`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.5):
The probability score threshold to keep predicted instance masks.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
The overlap mask area threshold to merge or discard small disconnected parts within each binary
instance mask.
target_sizes (`List[Tuple]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction. If unset, predictions will not be resized.
return_coco_annotation (`bool`, *optional*):
Defaults to `False`. If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE)
format.
Returns:
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
- **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or
`List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to
`True`. Set to `None` if no mask if found above `threshold`.
- **segments_info** -- A dictionary that contains additional information on each segment.
- **id** -- An integer representing the `segment_id`.
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
- **score** -- Prediction score of segment with `segment_id`.
"""
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
batch_size = class_queries_logits.shape[0]
num_labels = class_queries_logits.shape[-1] - 1
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Predicted label and score of each query (batch_size, num_queries)
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
# Loop over items in batch size
results: List[Dict[str, TensorType]] = []
for i in range(batch_size):
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
)
# No mask found
if mask_probs_item.shape[0] <= 0:
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
segmentation = torch.zeros((height, width)) - 1
results.append({"segmentation": segmentation, "segments_info": []})
continue
# Get segmentation map and segment information of batch item
target_size = target_sizes[i] if target_sizes is not None else None
segmentation, segments = compute_segments(
mask_probs=mask_probs_item,
pred_scores=pred_scores_item,
pred_labels=pred_labels_item,
mask_threshold=mask_threshold,
overlap_mask_area_threshold=overlap_mask_area_threshold,
label_ids_to_fuse=[],
target_size=target_size,
)
# Return segmentation map in run-length encoding (RLE) format
if return_coco_annotation:
segmentation = convert_segmentation_to_rle(segmentation)
results.append({"segmentation": segmentation, "segments_info": segments})
return results
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_panoptic_segmentation
def post_process_panoptic_segmentation(
self,
outputs,
threshold: float = 0.5,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None,
target_sizes: Optional[List[Tuple[int, int]]] = None,
) -> List[Dict]:
"""
Converts the output of [`DetrForSegmentation`] into image panoptic segmentation predictions. Only supports
PyTorch.
Args:
outputs ([`DetrForSegmentation`]):
The outputs from [`DetrForSegmentation`].
threshold (`float`, *optional*, defaults to 0.5):
The probability score threshold to keep predicted instance masks.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
The overlap mask area threshold to merge or discard small disconnected parts within each binary
instance mask.
label_ids_to_fuse (`Set[int]`, *optional*):
The labels in this state will have all their instances be fused together. For instance we could say
there can only be one sky in an image, but several persons, so the label ID for sky would be in that
set, but not the one for person.
target_sizes (`List[Tuple]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction in batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
- **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id` or
`None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to
the corresponding `target_sizes` entry.
- **segments_info** -- A dictionary that contains additional information on each segment.
- **id** -- an integer representing the `segment_id`.
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
- **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise.
Multiple instances of the same class / label were fused and assigned a single `segment_id`.
- **score** -- Prediction score of segment with `segment_id`.
"""
if label_ids_to_fuse is None:
logger.warning_once("`label_ids_to_fuse` unset. No instance will be fused.")
label_ids_to_fuse = set()
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
batch_size = class_queries_logits.shape[0]
num_labels = class_queries_logits.shape[-1] - 1
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Predicted label and score of each query (batch_size, num_queries)
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
# Loop over items in batch size
results: List[Dict[str, TensorType]] = []
for i in range(batch_size):
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
)
# No mask found
if mask_probs_item.shape[0] <= 0:
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
segmentation = torch.zeros((height, width)) - 1
results.append({"segmentation": segmentation, "segments_info": []})
continue
# Get segmentation map and segment information of batch item
target_size = target_sizes[i] if target_sizes is not None else None
segmentation, segments = compute_segments(
mask_probs=mask_probs_item,
pred_scores=pred_scores_item,
pred_labels=pred_labels_item,
mask_threshold=mask_threshold,
overlap_mask_area_threshold=overlap_mask_area_threshold,
label_ids_to_fuse=label_ids_to_fuse,
target_size=target_size,
)
results.append({"segmentation": segmentation, "segments_info": segments})
return results
__all__ = ["DetrImageProcessorFast"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_detr.py
LINES: 1
SIZE: 86.29 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\detr\modeling_detr.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Facebook AI Research The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DETR model."""
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import torch
from torch import Tensor, nn
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions, Seq2SeqModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_timm_available,
logging,
replace_return_docstrings,
requires_backends,
)
from ...utils.backbone_utils import load_backbone
from .configuration_detr import DetrConfig
if is_timm_available():
from timm import create_model
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DetrConfig"
_CHECKPOINT_FOR_DOC = "facebook/detr-resnet-50"
@dataclass
class DetrDecoderOutput(BaseModelOutputWithCrossAttentions):
"""
Base class for outputs of the DETR decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions,
namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
"""
intermediate_hidden_states: Optional[torch.FloatTensor] = None
@dataclass
class DetrModelOutput(Seq2SeqModelOutput):
"""
Base class for outputs of the DETR encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput,
namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
"""
intermediate_hidden_states: Optional[torch.FloatTensor] = None
@dataclass
class DetrObjectDetectionOutput(ModelOutput):
"""
Output type of [`DetrForObjectDetection`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
Classification logits (including no-object) for all queries.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~DetrImageProcessor.post_process_object_detection`] to retrieve the
unnormalized bounding boxes.
auxiliary_outputs (`list[Dict]`, *optional*):
Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: Optional[torch.FloatTensor] = None
pred_boxes: Optional[torch.FloatTensor] = None
auxiliary_outputs: Optional[List[Dict]] = None
last_hidden_state: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class DetrSegmentationOutput(ModelOutput):
"""
Output type of [`DetrForSegmentation`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
Classification logits (including no-object) for all queries.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~DetrImageProcessor.post_process_object_detection`] to retrieve the
unnormalized bounding boxes.
pred_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height/4, width/4)`):
Segmentation masks logits for all queries. See also
[`~DetrImageProcessor.post_process_semantic_segmentation`] or
[`~DetrImageProcessor.post_process_instance_segmentation`]
[`~DetrImageProcessor.post_process_panoptic_segmentation`] to evaluate semantic, instance and panoptic
segmentation masks respectively.
auxiliary_outputs (`list[Dict]`, *optional*):
Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: Optional[torch.FloatTensor] = None
pred_boxes: Optional[torch.FloatTensor] = None
pred_masks: Optional[torch.FloatTensor] = None
auxiliary_outputs: Optional[List[Dict]] = None
last_hidden_state: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
# BELOW: utilities copied from
# https://github.com/facebookresearch/detr/blob/master/backbone.py
class DetrFrozenBatchNorm2d(nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
torchvision.models.resnet[18,34,50,101] produce nans.
"""
def __init__(self, n):
super().__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
# move reshapes to the beginning
# to make it user-friendly
weight = self.weight.reshape(1, -1, 1, 1)
bias = self.bias.reshape(1, -1, 1, 1)
running_var = self.running_var.reshape(1, -1, 1, 1)
running_mean = self.running_mean.reshape(1, -1, 1, 1)
epsilon = 1e-5
scale = weight * (running_var + epsilon).rsqrt()
bias = bias - running_mean * scale
return x * scale + bias
def replace_batch_norm(model):
r"""
Recursively replace all `torch.nn.BatchNorm2d` with `DetrFrozenBatchNorm2d`.
Args:
model (torch.nn.Module):
input model
"""
for name, module in model.named_children():
if isinstance(module, nn.BatchNorm2d):
new_module = DetrFrozenBatchNorm2d(module.num_features)
if not module.weight.device == torch.device("meta"):
new_module.weight.data.copy_(module.weight)
new_module.bias.data.copy_(module.bias)
new_module.running_mean.data.copy_(module.running_mean)
new_module.running_var.data.copy_(module.running_var)
model._modules[name] = new_module
if len(list(module.children())) > 0:
replace_batch_norm(module)
class DetrConvEncoder(nn.Module):
"""
Convolutional backbone, using either the AutoBackbone API or one from the timm library.
nn.BatchNorm2d layers are replaced by DetrFrozenBatchNorm2d as defined above.
"""
def __init__(self, config):
super().__init__()
self.config = config
# For backwards compatibility we have to use the timm library directly instead of the AutoBackbone API
if config.use_timm_backbone:
# We default to values which were previously hard-coded. This enables configurability from the config
# using backbone arguments, while keeping the default behavior the same.
requires_backends(self, ["timm"])
kwargs = getattr(config, "backbone_kwargs", {})
kwargs = {} if kwargs is None else kwargs.copy()
out_indices = kwargs.pop("out_indices", (1, 2, 3, 4))
num_channels = kwargs.pop("in_chans", config.num_channels)
if config.dilation:
kwargs["output_stride"] = kwargs.get("output_stride", 16)
backbone = create_model(
config.backbone,
pretrained=config.use_pretrained_backbone,
features_only=True,
out_indices=out_indices,
in_chans=num_channels,
**kwargs,
)
else:
backbone = load_backbone(config)
# replace batch norm by frozen batch norm
with torch.no_grad():
replace_batch_norm(backbone)
self.model = backbone
self.intermediate_channel_sizes = (
self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels
)
backbone_model_type = None
if config.backbone is not None:
backbone_model_type = config.backbone
elif config.backbone_config is not None:
backbone_model_type = config.backbone_config.model_type
else:
raise ValueError("Either `backbone` or `backbone_config` should be provided in the config")
if "resnet" in backbone_model_type:
for name, parameter in self.model.named_parameters():
if config.use_timm_backbone:
if "layer2" not in name and "layer3" not in name and "layer4" not in name:
parameter.requires_grad_(False)
else:
if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name:
parameter.requires_grad_(False)
def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
# send pixel_values through the model to get list of feature maps
features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps
out = []
for feature_map in features:
# downsample pixel_mask to match shape of corresponding feature_map
mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
out.append((feature_map, mask))
return out
class DetrConvModel(nn.Module):
"""
This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder.
"""
def __init__(self, conv_encoder, position_embedding):
super().__init__()
self.conv_encoder = conv_encoder
self.position_embedding = position_embedding
def forward(self, pixel_values, pixel_mask):
# send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples
out = self.conv_encoder(pixel_values, pixel_mask)
pos = []
for feature_map, mask in out:
# position encoding
pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype))
return out, pos
class DetrSinePositionEmbedding(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
need paper, generalized to work on images.
"""
def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.embedding_dim = embedding_dim
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, pixel_values, pixel_mask):
if pixel_mask is None:
raise ValueError("No pixel mask provided")
y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale
dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float()
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
class DetrLearnedPositionEmbedding(nn.Module):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, embedding_dim=256):
super().__init__()
self.row_embeddings = nn.Embedding(50, embedding_dim)
self.column_embeddings = nn.Embedding(50, embedding_dim)
def forward(self, pixel_values, pixel_mask=None):
height, width = pixel_values.shape[-2:]
width_values = torch.arange(width, device=pixel_values.device)
height_values = torch.arange(height, device=pixel_values.device)
x_emb = self.column_embeddings(width_values)
y_emb = self.row_embeddings(height_values)
pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0)
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
return pos
def build_position_encoding(config):
n_steps = config.d_model // 2
if config.position_embedding_type == "sine":
# TODO find a better way of exposing other arguments
position_embedding = DetrSinePositionEmbedding(n_steps, normalize=True)
elif config.position_embedding_type == "learned":
position_embedding = DetrLearnedPositionEmbedding(n_steps)
else:
raise ValueError(f"Not supported {config.position_embedding_type}")
return position_embedding
class DetrAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper.
Here, we add position embeddings to the queries and keys (as explained in the DETR paper).
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor]):
return tensor if object_queries is None else tensor + object_queries
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
object_queries: Optional[torch.Tensor] = None,
key_value_states: Optional[torch.Tensor] = None,
spatial_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if object_queries is not None:
hidden_states_original = hidden_states
hidden_states = self.with_pos_embed(hidden_states, object_queries)
# add key-value position embeddings to the key value states
if spatial_position_embeddings is not None:
key_value_states_original = key_value_states
key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
class DetrEncoderLayer(nn.Module):
def __init__(self, config: DetrConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = DetrAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
object_queries: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
object_queries (`torch.FloatTensor`, *optional*):
Object queries (also called content embeddings), to be added to the hidden states.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
object_queries=object_queries,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class DetrDecoderLayer(nn.Module):
def __init__(self, config: DetrConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = DetrAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = DetrAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
object_queries: Optional[torch.Tensor] = None,
query_position_embeddings: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
object_queries (`torch.FloatTensor`, *optional*):
object_queries that are added to the hidden states
in the cross-attention layer.
query_position_embeddings (`torch.FloatTensor`, *optional*):
position embeddings that are added to the queries and keys
in the self-attention layer.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
object_queries=query_position_embeddings,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
object_queries=query_position_embeddings,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
spatial_position_embeddings=object_queries,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
class DetrPreTrainedModel(PreTrainedModel):
config_class = DetrConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
_no_split_modules = [r"DetrConvEncoder", r"DetrEncoderLayer", r"DetrDecoderLayer"]
def _init_weights(self, module):
std = self.config.init_std
xavier_std = self.config.init_xavier_std
if isinstance(module, DetrMHAttentionMap):
nn.init.zeros_(module.k_linear.bias)
nn.init.zeros_(module.q_linear.bias)
nn.init.xavier_uniform_(module.k_linear.weight, gain=xavier_std)
nn.init.xavier_uniform_(module.q_linear.weight, gain=xavier_std)
elif isinstance(module, DetrLearnedPositionEmbedding):
nn.init.uniform_(module.row_embeddings.weight)
nn.init.uniform_(module.column_embeddings.weight)
if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
DETR_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DetrConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DETR_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it.
Pixel values can be obtained using [`AutoImageProcessor`]. See [`DetrImageProcessor.__call__`] for details.
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
Not used by default. Can be used to mask object queries.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
can choose to directly pass a flattened representation of an image.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
embedded representation.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class DetrEncoder(DetrPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`DetrEncoderLayer`].
The encoder updates the flattened feature map through multiple self-attention layers.
Small tweak for DETR:
- object_queries are added to the forward pass.
Args:
config: DetrConfig
"""
def __init__(self, config: DetrConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.layers = nn.ModuleList([DetrEncoderLayer(config) for _ in range(config.encoder_layers)])
# in the original DETR, no layernorm is used at the end of the encoder, as "normalize_before" is set to False by default
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
inputs_embeds=None,
attention_mask=None,
object_queries=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 1 for pixel features that are real (i.e. **not masked**),
- 0 for pixel features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Object queries that are added to the queries in each self-attention layer.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeds
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
# we add object_queries as extra input to the encoder_layer
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
object_queries=object_queries,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class DetrDecoder(DetrPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DetrDecoderLayer`].
The decoder updates the query embeddings through multiple self-attention and cross-attention layers.
Some small tweaks for DETR:
- object_queries and query_position_embeddings are added to the forward pass.
- if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers.
Args:
config: DetrConfig
"""
def __init__(self, config: DetrConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.layers = nn.ModuleList([DetrDecoderLayer(config) for _ in range(config.decoder_layers)])
# in DETR, the decoder uses layernorm after the last decoder layer output
self.layernorm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
inputs_embeds=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
object_queries=None,
query_position_embeddings=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The query embeddings that are passed into the decoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`:
- 1 for queries that are **not masked**,
- 0 for queries that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Object queries that are added to the queries and keys in each cross-attention layer.
query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
, *optional*): Position embeddings that are added to the values and keys in each self-attention layer.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
hidden_states = inputs_embeds
input_shape = inputs_embeds.size()[:-1]
combined_attention_mask = None
if attention_mask is not None and combined_attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# optional intermediate hidden states
intermediate = () if self.config.auxiliary_loss else None
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
combined_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
object_queries=object_queries,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if self.config.auxiliary_loss:
hidden_states = self.layernorm(hidden_states)
intermediate += (hidden_states,)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# finally, apply layernorm
hidden_states = self.layernorm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
# stack intermediate decoder activations
if self.config.auxiliary_loss:
intermediate = torch.stack(intermediate)
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate]
if v is not None
)
return DetrDecoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
intermediate_hidden_states=intermediate,
)
@add_start_docstrings(
"""
The bare DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw hidden-states without
any specific head on top.
""",
DETR_START_DOCSTRING,
)
class DetrModel(DetrPreTrainedModel):
def __init__(self, config: DetrConfig):
super().__init__(config)
# Create backbone + positional encoding
backbone = DetrConvEncoder(config)
object_queries = build_position_encoding(config)
self.backbone = DetrConvModel(backbone, object_queries)
# Create projection layer
self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1)
self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model)
self.encoder = DetrEncoder(config)
self.decoder = DetrDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_backbone(self):
for name, param in self.backbone.conv_encoder.model.named_parameters():
param.requires_grad_(False)
def unfreeze_backbone(self):
for name, param in self.backbone.conv_encoder.model.named_parameters():
param.requires_grad_(True)
@add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DetrModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], DetrModelOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, DetrModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
>>> model = DetrModel.from_pretrained("facebook/detr-resnet-50")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> # the last hidden states are the final query embeddings of the Transformer decoder
>>> # these are of shape (batch_size, num_queries, hidden_size)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 100, 256]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_channels, height, width = pixel_values.shape
device = pixel_values.device
if pixel_mask is None:
pixel_mask = torch.ones(((batch_size, height, width)), device=device)
# First, sent pixel_values + pixel_mask through Backbone to obtain the features
# pixel_values should be of shape (batch_size, num_channels, height, width)
# pixel_mask should be of shape (batch_size, height, width)
features, object_queries_list = self.backbone(pixel_values, pixel_mask)
# get final feature map and downsampled mask
feature_map, mask = features[-1]
if mask is None:
raise ValueError("Backbone does not return downsampled pixel mask")
# Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
projected_feature_map = self.input_projection(feature_map)
# Third, flatten the feature map + position embeddings of shape NxCxHxW to NxCxHW, and permute it to NxHWxC
# In other words, turn their shape into (batch_size, sequence_length, hidden_size)
flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1)
object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1)
flattened_mask = mask.flatten(1)
# Fourth, sent flattened_features + flattened_mask + position embeddings through encoder
# flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size)
# flattened_mask is a Tensor of shape (batch_size, heigth*width)
if encoder_outputs is None:
encoder_outputs = self.encoder(
inputs_embeds=flattened_features,
attention_mask=flattened_mask,
object_queries=object_queries,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output)
query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1)
queries = torch.zeros_like(query_position_embeddings)
# decoder outputs consists of (dec_features, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
inputs_embeds=queries,
attention_mask=None,
object_queries=object_queries,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=flattened_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return DetrModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
)
# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py
class DetrMLPPredictionHead(nn.Module):
"""
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
height and width of a bounding box w.r.t. an image.
Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
@add_start_docstrings(
"""
DETR Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top, for tasks
such as COCO detection.
""",
DETR_START_DOCSTRING,
)
class DetrForObjectDetection(DetrPreTrainedModel):
def __init__(self, config: DetrConfig):
super().__init__(config)
# DETR encoder-decoder model
self.model = DetrModel(config)
# Object detection heads
self.class_labels_classifier = nn.Linear(
config.d_model, config.num_labels + 1
) # We add one for the "no object" class
self.bbox_predictor = DetrMLPPredictionHead(
input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], DetrObjectDetectionOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, DetrForObjectDetection
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
>>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> target_sizes = torch.tensor([image.size[::-1]])
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
... 0
... ]
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
... box = [round(i, 2) for i in box.tolist()]
... print(
... f"Detected {model.config.id2label[label.item()]} with confidence "
... f"{round(score.item(), 3)} at location {box}"
... )
Detected remote with confidence 0.998 at location [40.16, 70.81, 175.55, 117.98]
Detected remote with confidence 0.996 at location [333.24, 72.55, 368.33, 187.66]
Detected couch with confidence 0.995 at location [-0.02, 1.15, 639.73, 473.76]
Detected cat with confidence 0.999 at location [13.24, 52.05, 314.02, 470.93]
Detected cat with confidence 0.999 at location [345.4, 23.85, 640.37, 368.72]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# First, sent images through DETR base model to obtain encoder + decoder outputs
outputs = self.model(
pixel_values,
pixel_mask=pixel_mask,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# class logits + predicted bounding boxes
logits = self.class_labels_classifier(sequence_output)
pred_boxes = self.bbox_predictor(sequence_output).sigmoid()
loss, loss_dict, auxiliary_outputs = None, None, None
if labels is not None:
outputs_class, outputs_coord = None, None
if self.config.auxiliary_loss:
intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4]
outputs_class = self.class_labels_classifier(intermediate)
outputs_coord = self.bbox_predictor(intermediate).sigmoid()
loss, loss_dict, auxiliary_outputs = self.loss_function(
logits, labels, self.device, pred_boxes, self.config, outputs_class, outputs_coord
)
if not return_dict:
if auxiliary_outputs is not None:
output = (logits, pred_boxes) + auxiliary_outputs + outputs
else:
output = (logits, pred_boxes) + outputs
return ((loss, loss_dict) + output) if loss is not None else output
return DetrObjectDetectionOutput(
loss=loss,
loss_dict=loss_dict,
logits=logits,
pred_boxes=pred_boxes,
auxiliary_outputs=auxiliary_outputs,
last_hidden_state=outputs.last_hidden_state,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
DETR Model (consisting of a backbone and encoder-decoder Transformer) with a segmentation head on top, for tasks
such as COCO panoptic.
""",
DETR_START_DOCSTRING,
)
class DetrForSegmentation(DetrPreTrainedModel):
def __init__(self, config: DetrConfig):
super().__init__(config)
# object detection model
self.detr = DetrForObjectDetection(config)
# segmentation head
hidden_size, number_of_heads = config.d_model, config.encoder_attention_heads
intermediate_channel_sizes = self.detr.model.backbone.conv_encoder.intermediate_channel_sizes
self.mask_head = DetrMaskHeadSmallConv(
hidden_size + number_of_heads, intermediate_channel_sizes[::-1][-3:], hidden_size
)
self.bbox_attention = DetrMHAttentionMap(
hidden_size, hidden_size, number_of_heads, dropout=0.0, std=config.init_xavier_std
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DetrSegmentationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], DetrSegmentationOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each
dictionary containing at least the following 3 keys: 'class_labels', 'boxes' and 'masks' (the class labels,
bounding boxes and segmentation masks of an image in the batch respectively). The class labels themselves
should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)`, the boxes a
`torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)` and the masks a
`torch.FloatTensor` of shape `(number of bounding boxes in the image, height, width)`.
Returns:
Examples:
```python
>>> import io
>>> import requests
>>> from PIL import Image
>>> import torch
>>> import numpy
>>> from transformers import AutoImageProcessor, DetrForSegmentation
>>> from transformers.image_transforms import rgb_to_id
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic")
>>> model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> # Use the `post_process_panoptic_segmentation` method of the `image_processor` to retrieve post-processed panoptic segmentation maps
>>> # Segmentation results are returned as a list of dictionaries
>>> result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[(300, 500)])
>>> # A tensor of shape (height, width) where each value denotes a segment id, filled with -1 if no segment is found
>>> panoptic_seg = result[0]["segmentation"]
>>> # Get prediction score and segment_id to class_id mapping of each segment
>>> panoptic_segments_info = result[0]["segments_info"]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_channels, height, width = pixel_values.shape
device = pixel_values.device
if pixel_mask is None:
pixel_mask = torch.ones((batch_size, height, width), device=device)
# First, get list of feature maps and position embeddings
features, object_queries_list = self.detr.model.backbone(pixel_values, pixel_mask=pixel_mask)
# Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
feature_map, mask = features[-1]
batch_size, num_channels, height, width = feature_map.shape
projected_feature_map = self.detr.model.input_projection(feature_map)
# Third, flatten the feature map + position embeddings of shape NxCxHxW to NxCxHW, and permute it to NxHWxC
# In other words, turn their shape into (batch_size, sequence_length, hidden_size)
flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1)
object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1)
flattened_mask = mask.flatten(1)
# Fourth, sent flattened_features + flattened_mask + position embeddings through encoder
# flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size)
# flattened_mask is a Tensor of shape (batch_size, heigth*width)
if encoder_outputs is None:
encoder_outputs = self.detr.model.encoder(
inputs_embeds=flattened_features,
attention_mask=flattened_mask,
object_queries=object_queries,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# Fifth, sent query embeddings + position embeddings through the decoder (which is conditioned on the encoder output)
query_position_embeddings = self.detr.model.query_position_embeddings.weight.unsqueeze(0).repeat(
batch_size, 1, 1
)
queries = torch.zeros_like(query_position_embeddings)
# decoder outputs consists of (dec_features, dec_hidden, dec_attn)
decoder_outputs = self.detr.model.decoder(
inputs_embeds=queries,
attention_mask=None,
object_queries=object_queries,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=flattened_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
# Sixth, compute logits, pred_boxes and pred_masks
logits = self.detr.class_labels_classifier(sequence_output)
pred_boxes = self.detr.bbox_predictor(sequence_output).sigmoid()
memory = encoder_outputs[0].permute(0, 2, 1).view(batch_size, self.config.d_model, height, width)
mask = flattened_mask.view(batch_size, height, width)
# FIXME h_boxes takes the last one computed, keep this in mind
# important: we need to reverse the mask, since in the original implementation the mask works reversed
# bbox_mask is of shape (batch_size, num_queries, number_of_attention_heads in bbox_attention, height/32, width/32)
bbox_mask = self.bbox_attention(sequence_output, memory, mask=~mask)
seg_masks = self.mask_head(projected_feature_map, bbox_mask, [features[2][0], features[1][0], features[0][0]])
pred_masks = seg_masks.view(batch_size, self.detr.config.num_queries, seg_masks.shape[-2], seg_masks.shape[-1])
loss, loss_dict, auxiliary_outputs = None, None, None
if labels is not None:
outputs_class, outputs_coord = None, None
if self.config.auxiliary_loss:
intermediate = decoder_outputs.intermediate_hidden_states if return_dict else decoder_outputs[-1]
outputs_class = self.detr.class_labels_classifier(intermediate)
outputs_coord = self.detr.bbox_predictor(intermediate).sigmoid()
loss, loss_dict, auxiliary_outputs = self.loss_function(
logits, labels, device, pred_boxes, pred_masks, self.config, outputs_class, outputs_coord
)
if not return_dict:
if auxiliary_outputs is not None:
output = (logits, pred_boxes, pred_masks) + auxiliary_outputs + decoder_outputs + encoder_outputs
else:
output = (logits, pred_boxes, pred_masks) + decoder_outputs + encoder_outputs
return ((loss, loss_dict) + output) if loss is not None else output
return DetrSegmentationOutput(
loss=loss,
loss_dict=loss_dict,
logits=logits,
pred_boxes=pred_boxes,
pred_masks=pred_masks,
auxiliary_outputs=auxiliary_outputs,
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def _expand(tensor, length: int):
return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1)
# taken from https://github.com/facebookresearch/detr/blob/master/models/segmentation.py
class DetrMaskHeadSmallConv(nn.Module):
"""
Simple convolutional head, using group norm. Upsampling is done using a FPN approach
"""
def __init__(self, dim, fpn_dims, context_dim):
super().__init__()
if dim % 8 != 0:
raise ValueError(
"The hidden_size + number of attention heads must be divisible by 8 as the number of groups in"
" GroupNorm is set to 8"
)
inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64]
self.lay1 = nn.Conv2d(dim, dim, 3, padding=1)
self.gn1 = nn.GroupNorm(8, dim)
self.lay2 = nn.Conv2d(dim, inter_dims[1], 3, padding=1)
self.gn2 = nn.GroupNorm(min(8, inter_dims[1]), inter_dims[1])
self.lay3 = nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1)
self.gn3 = nn.GroupNorm(min(8, inter_dims[2]), inter_dims[2])
self.lay4 = nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1)
self.gn4 = nn.GroupNorm(min(8, inter_dims[3]), inter_dims[3])
self.lay5 = nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1)
self.gn5 = nn.GroupNorm(min(8, inter_dims[4]), inter_dims[4])
self.out_lay = nn.Conv2d(inter_dims[4], 1, 3, padding=1)
self.dim = dim
self.adapter1 = nn.Conv2d(fpn_dims[0], inter_dims[1], 1)
self.adapter2 = nn.Conv2d(fpn_dims[1], inter_dims[2], 1)
self.adapter3 = nn.Conv2d(fpn_dims[2], inter_dims[3], 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_uniform_(m.weight, a=1)
nn.init.constant_(m.bias, 0)
def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]):
# here we concatenate x, the projected feature map, of shape (batch_size, d_model, heigth/32, width/32) with
# the bbox_mask = the attention maps of shape (batch_size, n_queries, n_heads, height/32, width/32).
# We expand the projected feature map to match the number of heads.
x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1)
x = self.lay1(x)
x = self.gn1(x)
x = nn.functional.relu(x)
x = self.lay2(x)
x = self.gn2(x)
x = nn.functional.relu(x)
cur_fpn = self.adapter1(fpns[0])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay3(x)
x = self.gn3(x)
x = nn.functional.relu(x)
cur_fpn = self.adapter2(fpns[1])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay4(x)
x = self.gn4(x)
x = nn.functional.relu(x)
cur_fpn = self.adapter3(fpns[2])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay5(x)
x = self.gn5(x)
x = nn.functional.relu(x)
x = self.out_lay(x)
return x
class DetrMHAttentionMap(nn.Module):
"""This is a 2D attention module, which only returns the attention softmax (no multiplication by value)"""
def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True, std=None):
super().__init__()
self.num_heads = num_heads
self.hidden_dim = hidden_dim
self.dropout = nn.Dropout(dropout)
self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5
def forward(self, q, k, mask: Optional[Tensor] = None):
q = self.q_linear(q)
k = nn.functional.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias)
queries_per_head = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads)
keys_per_head = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1])
weights = torch.einsum("bqnc,bnchw->bqnhw", queries_per_head * self.normalize_fact, keys_per_head)
if mask is not None:
weights = weights.masked_fill(mask.unsqueeze(1).unsqueeze(1), torch.finfo(weights.dtype).min)
weights = nn.functional.softmax(weights.flatten(2), dim=-1).view(weights.size())
weights = self.dropout(weights)
return weights
__all__ = [
"DetrForObjectDetection",
"DetrForSegmentation",
"DetrModel",
"DetrPreTrainedModel",
]
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.00 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dialogpt\__init__.py
ENCODING: utf-8
```py
```
|
=================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\diffllama\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_diffllama import *
from .modeling_diffllama import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
================================================================================================================================================
SOURCE CODE FILE: configuration_diffllama.py
LINES: 1
SIZE: 10.43 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\diffllama\configuration_diffllama.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 weak-kajuma and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on Llama implementations in this library and Microsoft's
# Differential Transformer implementations.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DiffLlama model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class DiffLlamaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DiffLlamaModel`]. It is used to instantiate an DiffLlama
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults
will yield a similar configuration to that of the [kajuma/DiffLlama-0.3B-handcut](https://huggingface.co/kajuma/DiffLlama-0.3B-handcut).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the DiffLlama model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DiffLlamaModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 16):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'diffllama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'diffllama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'diffllama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'diffllama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
lambda_std_dev (`float`, *optional*, defaults to 0.1):
The standard deviation for initialization of parameter lambda in attention layer.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_heads
```python
>>> from transformers import DiffLlamaModel, DiffLlamaConfig
>>> # Initializing a DiffLlama diffllama-7b style configuration
>>> configuration = DiffLlamaConfig()
>>> # Initializing a model from the diffllama-7b style configuration
>>> model = DiffLlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "diffllama"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=2048,
intermediate_size=8192,
num_hidden_layers=16,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
lambda_std_dev=0.1,
head_dim=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.lambda_std_dev = lambda_std_dev
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["DiffLlamaConfig"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: modeling_diffllama.py
LINES: 1
SIZE: 62.45 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\diffllama\modeling_diffllama.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/diffllama/modular_diffllama.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_diffllama.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 weak-kajuma and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on Llama implementations in this library and Microsoft's
# Differential Transformer implementations.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from functools import partial
from typing import Optional, Tuple, Union
import torch
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import (
FlashAttentionKwargs,
_flash_attention_forward,
flash_attn_supports_top_left_mask,
)
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_diffllama import DiffLlamaConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "kajuma/DiffLlama-0.3B-handcut"
_CONFIG_FOR_DOC = "DiffLlamaConfig"
class DiffLlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def lambda_init_fn(layer_idx):
return 0.8 - 0.6 * math.exp(-0.3 * layer_idx)
class DiffLlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DiffLlamaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
# under this are not used
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.lambda_init = lambda_init_fn(layer_idx)
self.lambda_q1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_q2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.groupnorm = nn.RMSNorm(2 * self.head_dim, eps=config.rms_norm_eps, elementwise_affine=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, target_len, _ = hidden_states.size()
q_len = target_len
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = torch.matmul(attn_weights, value_states)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class DiffLlamaFlashAttention2(DiffLlamaAttention):
"""
DiffLlama flash attention module. This module inherits from `DiffLlamaAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (DiffLlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
value_states1, value_states2 = torch.chunk(value_states, 2, dim=2)
value_states1 = value_states1.repeat(1, 1, 2, 1)
value_states2 = value_states2.repeat(1, 1, 2, 1)
attn_output1 = _flash_attention_forward(
query_states,
key_states,
value_states1,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output2 = _flash_attention_forward(
query_states,
key_states,
value_states2,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = torch.cat([attn_output1, attn_output2], dim=-1)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=2)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class DiffLlamaSdpaAttention(DiffLlamaAttention):
"""
DiffLlama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`DiffLlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from DiffLlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"DiffLlamaModel is using DiffLlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None
class DiffLlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
DiffLlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
DIFFLLAMA_ATTENTION_CLASSES = {
"eager": DiffLlamaAttention,
"flash_attention_2": DiffLlamaFlashAttention2,
"sdpa": DiffLlamaSdpaAttention,
}
class DiffLlamaDecoderLayer(nn.Module):
def __init__(self, config: DiffLlamaConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = DIFFLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = DiffLlamaMLP(config)
self.input_layernorm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
DIFFLLAMA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DiffLlamaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare DiffLlama Model outputting raw hidden-states without any specific head on top.",
DIFFLLAMA_START_DOCSTRING,
)
class DiffLlamaPreTrainedModel(PreTrainedModel):
config_class = DiffLlamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DiffLlamaDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = False
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = False
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class DiffLlamaRotaryEmbedding(nn.Module):
def __init__(self, config: DiffLlamaConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
DIFFLLAMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare DiffLlama Model outputting raw hidden-states without any specific head on top.",
DIFFLLAMA_START_DOCSTRING,
)
class DiffLlamaModel(DiffLlamaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DiffLlamaDecoderLayer`]
Args:
config: DiffLlamaConfig
"""
def __init__(self, config: DiffLlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[DiffLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = DiffLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = DiffLlamaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class DiffLlamaForCausalLM(DiffLlamaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = DiffLlamaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, DiffLlamaForCausalLM
>>> model = DiffLlamaForCausalLM.from_pretrained("google/diffllama-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/diffllama-7b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The DiffLlama Model transformer with a sequence classification head on top (linear layer).
[`DiffLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
DIFFLLAMA_START_DOCSTRING,
)
class DiffLlamaForSequenceClassification(DiffLlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = DiffLlamaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The DiffLlama Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
DIFFLLAMA_START_DOCSTRING,
)
class DiffLlamaForQuestionAnswering(DiffLlamaPreTrainedModel):
base_model_prefix = "transformer"
def __init__(self, config):
super().__init__(config)
self.transformer = DiffLlamaModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.transformer.embed_tokens
def set_input_embeddings(self, value):
self.transformer.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**kwargs,
) -> QuestionAnsweringModelOutput:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs: BaseModelOutputWithPast = self.transformer(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
loss = None
if start_positions is not None and end_positions is not None:
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
return QuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The DiffLlama Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
DIFFLLAMA_START_DOCSTRING,
)
class DiffLlamaForTokenClassification(DiffLlamaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = DiffLlamaModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(DIFFLLAMA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"DiffLlamaPreTrainedModel",
"DiffLlamaModel",
"DiffLlamaForCausalLM",
"DiffLlamaForSequenceClassification",
"DiffLlamaForQuestionAnswering",
"DiffLlamaForTokenClassification",
]
```
|
==========================================================================================================================================
SOURCE CODE FILE: modular_diffllama.py
LINES: 1
SIZE: 20.61 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\diffllama\modular_diffllama.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 weak-kajuma and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on Llama implementations in this library and Microsoft's
# Differential Transformer implementations.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from ...cache_utils import Cache, StaticCache
from ...modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask
from ...utils import logging
from ..gemma.modeling_gemma import GemmaForCausalLM
from ..llama.modeling_llama import (
LlamaDecoderLayer,
LlamaForQuestionAnswering,
LlamaForSequenceClassification,
LlamaForTokenClassification,
LlamaModel,
LlamaPreTrainedModel,
apply_rotary_pos_emb,
repeat_kv,
)
from ..mistral.modeling_mistral import MistralMLP
from .configuration_diffllama import DiffLlamaConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "kajuma/DiffLlama-0.3B-handcut"
_CONFIG_FOR_DOC = "DiffLlamaConfig"
class DiffLlamaMLP(MistralMLP):
pass
def lambda_init_fn(layer_idx):
return 0.8 - 0.6 * math.exp(-0.3 * layer_idx)
class DiffLlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DiffLlamaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
# under this are not used
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
self.lambda_init = lambda_init_fn(layer_idx)
self.lambda_q1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k1 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_q2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.lambda_k2 = nn.Parameter(torch.normal(0, config.lambda_std_dev, size=(self.head_dim,)))
self.groupnorm = nn.RMSNorm(2 * self.head_dim, eps=config.rms_norm_eps, elementwise_affine=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, target_len, _ = hidden_states.size()
q_len = target_len
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = torch.matmul(attn_weights, value_states)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class DiffLlamaFlashAttention2(DiffLlamaAttention):
"""
DiffLlama flash attention module. This module inherits from `DiffLlamaAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (DiffLlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
value_states1, value_states2 = torch.chunk(value_states, 2, dim=2)
value_states1 = value_states1.repeat(1, 1, 2, 1)
value_states2 = value_states2.repeat(1, 1, 2, 1)
attn_output1 = _flash_attention_forward(
query_states,
key_states,
value_states1,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output2 = _flash_attention_forward(
query_states,
key_states,
value_states2,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = torch.cat([attn_output1, attn_output2], dim=-1)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=2)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class DiffLlamaSdpaAttention(DiffLlamaAttention):
"""
DiffLlama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`DiffLlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from DiffLlamaAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"DiffLlamaModel is using DiffLlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
value_states = torch.cat(torch.chunk(value_states, 2, dim=1), dim=-1)
value_states = value_states.repeat(1, 2, 1, 1)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output1, attn_output2 = torch.chunk(attn_output, 2, dim=1)
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1, dtype=torch.float32)).to(
query_states.dtype
)
lambda_full = lambda_1 - lambda_2 + self.lambda_init
attn_output = attn_output1 - lambda_full * attn_output2
attn_output = (1 - self.lambda_init) * self.groupnorm(attn_output)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None
DIFFLLAMA_ATTENTION_CLASSES = {
"eager": DiffLlamaAttention,
"flash_attention_2": DiffLlamaFlashAttention2,
"sdpa": DiffLlamaSdpaAttention,
}
class DiffLlamaDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: DiffLlamaConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = DIFFLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
class DiffLlamaPreTrainedModel(LlamaPreTrainedModel):
_supports_flex_attn = False
_supports_attention_backend = False
class DiffLlamaModel(LlamaModel):
pass
class DiffLlamaForCausalLM(GemmaForCausalLM):
pass
class DiffLlamaForSequenceClassification(LlamaForSequenceClassification):
pass
class DiffLlamaForQuestionAnswering(LlamaForQuestionAnswering):
pass
class DiffLlamaForTokenClassification(LlamaForTokenClassification):
pass
__all__ = [
"DiffLlamaPreTrainedModel",
"DiffLlamaModel", # noqa: F822
"DiffLlamaForCausalLM",
"DiffLlamaForSequenceClassification",
"DiffLlamaForQuestionAnswering",
"DiffLlamaForTokenClassification",
]
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dinat\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_dinat import *
from .modeling_dinat import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================
SOURCE CODE FILE: configuration_dinat.py
LINES: 1
SIZE: 7.18 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dinat\configuration_dinat.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dilated Neighborhood Attention Transformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
class DinatConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DinatModel`]. It is used to instantiate a Dinat
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Dinat
[shi-labs/dinat-mini-in1k-224](https://huggingface.co/shi-labs/dinat-mini-in1k-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
patch_size (`int`, *optional*, defaults to 4):
The size (resolution) of each patch. NOTE: Only patch size of 4 is supported at the moment.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embed_dim (`int`, *optional*, defaults to 64):
Dimensionality of patch embedding.
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 5]`):
Number of layers in each level of the encoder.
num_heads (`List[int]`, *optional*, defaults to `[2, 4, 8, 16]`):
Number of attention heads in each layer of the Transformer encoder.
kernel_size (`int`, *optional*, defaults to 7):
Neighborhood Attention kernel size.
dilations (`List[List[int]]`, *optional*, defaults to `[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]]`):
Dilation value of each NA layer in the Transformer encoder.
mlp_ratio (`float`, *optional*, defaults to 3.0):
Ratio of MLP hidden dimensionality to embedding dimensionality.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether or not a learnable bias should be added to the queries, keys and values.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings and encoder.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
layer_scale_init_value (`float`, *optional*, defaults to 0.0):
The initial value for the layer scale. Disabled if <=0.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import DinatConfig, DinatModel
>>> # Initializing a Dinat shi-labs/dinat-mini-in1k-224 style configuration
>>> configuration = DinatConfig()
>>> # Initializing a model (with random weights) from the shi-labs/dinat-mini-in1k-224 style configuration
>>> model = DinatModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "dinat"
attribute_map = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
patch_size=4,
num_channels=3,
embed_dim=64,
depths=[3, 4, 6, 5],
num_heads=[2, 4, 8, 16],
kernel_size=7,
dilations=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]],
mlp_ratio=3.0,
qkv_bias=True,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
drop_path_rate=0.1,
hidden_act="gelu",
initializer_range=0.02,
layer_norm_eps=1e-5,
layer_scale_init_value=0.0,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.depths = depths
self.num_layers = len(depths)
self.num_heads = num_heads
self.kernel_size = kernel_size
self.dilations = dilations
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
self.layer_scale_init_value = layer_scale_init_value
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
__all__ = ["DinatConfig"]
```
|
===================================================================================================================================
SOURCE CODE FILE: modeling_dinat.py
LINES: 1
SIZE: 39.50 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dinat\modeling_dinat.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Dilated Neighborhood Attention Transformer model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
OptionalDependencyNotAvailable,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_natten_available,
logging,
replace_return_docstrings,
requires_backends,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_dinat import DinatConfig
if is_natten_available():
from natten.functional import natten2dav, natten2dqkrpb
else:
def natten2dqkrpb(*args, **kwargs):
raise OptionalDependencyNotAvailable()
def natten2dav(*args, **kwargs):
raise OptionalDependencyNotAvailable()
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "DinatConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "shi-labs/dinat-mini-in1k-224"
_EXPECTED_OUTPUT_SHAPE = [1, 7, 7, 512]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "shi-labs/dinat-mini-in1k-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
# drop_path and DinatDropPath are from the timm library.
@dataclass
class DinatEncoderOutput(ModelOutput):
"""
Dinat encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class DinatModelOutput(ModelOutput):
"""
Dinat model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class DinatImageClassifierOutput(ModelOutput):
"""
Dinat outputs for image classification.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
class DinatEmbeddings(nn.Module):
"""
Construct the patch and position embeddings.
"""
def __init__(self, config):
super().__init__()
self.patch_embeddings = DinatPatchEmbeddings(config)
self.norm = nn.LayerNorm(config.embed_dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor]:
embeddings = self.patch_embeddings(pixel_values)
embeddings = self.norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class DinatPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, height, width, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
patch_size = config.patch_size
num_channels, hidden_size = config.num_channels, config.embed_dim
self.num_channels = num_channels
if patch_size == 4:
pass
else:
# TODO: Support arbitrary patch sizes.
raise ValueError("Dinat only supports patch size of 4 at the moment.")
self.projection = nn.Sequential(
nn.Conv2d(self.num_channels, hidden_size // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
nn.Conv2d(hidden_size // 2, hidden_size, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
)
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> torch.Tensor:
_, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
embeddings = embeddings.permute(0, 2, 3, 1)
return embeddings
class DinatDownsampler(nn.Module):
"""
Convolutional Downsampling Layer.
Args:
dim (`int`):
Number of input channels.
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
Normalization layer class.
"""
def __init__(self, dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
super().__init__()
self.dim = dim
self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
self.norm = norm_layer(2 * dim)
def forward(self, input_feature: torch.Tensor) -> torch.Tensor:
input_feature = self.reduction(input_feature.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
input_feature = self.norm(input_feature)
return input_feature
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Dinat
class DinatDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class NeighborhoodAttention(nn.Module):
def __init__(self, config, dim, num_heads, kernel_size, dilation):
super().__init__()
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.kernel_size = kernel_size
self.dilation = dilation
# rpb is learnable relative positional biases; same concept is used Swin.
self.rpb = nn.Parameter(torch.zeros(num_heads, (2 * self.kernel_size - 1), (2 * self.kernel_size - 1)))
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 3, 1, 2, 4)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
query_layer = self.transpose_for_scores(self.query(hidden_states))
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# Apply the scale factor before computing attention weights. It's usually more efficient because
# attention weights are typically a bigger tensor compared to query.
# It gives identical results because scalars are commutable in matrix multiplication.
query_layer = query_layer / math.sqrt(self.attention_head_size)
# Compute NA between "query" and "key" to get the raw attention scores, and add relative positional biases.
attention_scores = natten2dqkrpb(query_layer, key_layer, self.rpb, self.kernel_size, self.dilation)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = natten2dav(attention_probs, value_layer, self.kernel_size, self.dilation)
context_layer = context_layer.permute(0, 2, 3, 1, 4).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class NeighborhoodAttentionOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, dim)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class NeighborhoodAttentionModule(nn.Module):
def __init__(self, config, dim, num_heads, kernel_size, dilation):
super().__init__()
self.self = NeighborhoodAttention(config, dim, num_heads, kernel_size, dilation)
self.output = NeighborhoodAttentionOutput(config, dim)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(hidden_states, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class DinatIntermediate(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class DinatOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class DinatLayer(nn.Module):
def __init__(self, config, dim, num_heads, dilation, drop_path_rate=0.0):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.kernel_size = config.kernel_size
self.dilation = dilation
self.window_size = self.kernel_size * self.dilation
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attention = NeighborhoodAttentionModule(
config, dim, num_heads, kernel_size=self.kernel_size, dilation=self.dilation
)
self.drop_path = DinatDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.intermediate = DinatIntermediate(config, dim)
self.output = DinatOutput(config, dim)
self.layer_scale_parameters = (
nn.Parameter(config.layer_scale_init_value * torch.ones((2, dim)), requires_grad=True)
if config.layer_scale_init_value > 0
else None
)
def maybe_pad(self, hidden_states, height, width):
window_size = self.window_size
pad_values = (0, 0, 0, 0, 0, 0)
if height < window_size or width < window_size:
pad_l = pad_t = 0
pad_r = max(0, window_size - width)
pad_b = max(0, window_size - height)
pad_values = (0, 0, pad_l, pad_r, pad_t, pad_b)
hidden_states = nn.functional.pad(hidden_states, pad_values)
return hidden_states, pad_values
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, height, width, channels = hidden_states.size()
shortcut = hidden_states
hidden_states = self.layernorm_before(hidden_states)
# pad hidden_states if they are smaller than kernel size x dilation
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
_, height_pad, width_pad, _ = hidden_states.shape
attention_outputs = self.attention(hidden_states, output_attentions=output_attentions)
attention_output = attention_outputs[0]
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_output = attention_output[:, :height, :width, :].contiguous()
if self.layer_scale_parameters is not None:
attention_output = self.layer_scale_parameters[0] * attention_output
hidden_states = shortcut + self.drop_path(attention_output)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.output(self.intermediate(layer_output))
if self.layer_scale_parameters is not None:
layer_output = self.layer_scale_parameters[1] * layer_output
layer_output = hidden_states + self.drop_path(layer_output)
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
return layer_outputs
class DinatStage(nn.Module):
def __init__(self, config, dim, depth, num_heads, dilations, drop_path_rate, downsample):
super().__init__()
self.config = config
self.dim = dim
self.layers = nn.ModuleList(
[
DinatLayer(
config=config,
dim=dim,
num_heads=num_heads,
dilation=dilations[i],
drop_path_rate=drop_path_rate[i],
)
for i in range(depth)
]
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=nn.LayerNorm)
else:
self.downsample = None
self.pointing = False
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
_, height, width, _ = hidden_states.size()
for i, layer_module in enumerate(self.layers):
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
hidden_states = self.downsample(hidden_states_before_downsampling)
stage_outputs = (hidden_states, hidden_states_before_downsampling)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
class DinatEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.num_levels = len(config.depths)
self.config = config
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
self.levels = nn.ModuleList(
[
DinatStage(
config=config,
dim=int(config.embed_dim * 2**i_layer),
depth=config.depths[i_layer],
num_heads=config.num_heads[i_layer],
dilations=config.dilations[i_layer],
drop_path_rate=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
downsample=DinatDownsampler if (i_layer < self.num_levels - 1) else None,
)
for i_layer in range(self.num_levels)
]
)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
output_hidden_states_before_downsampling: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, DinatEncoderOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
# rearrange b h w c -> b c h w
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.levels):
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = layer_outputs[1]
if output_hidden_states and output_hidden_states_before_downsampling:
# rearrange b h w c -> b c h w
reshaped_hidden_state = hidden_states_before_downsampling.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
# rearrange b h w c -> b c h w
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[2:]
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return DinatEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
class DinatPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DinatConfig
base_model_prefix = "dinat"
main_input_name = "pixel_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
DINAT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`DinatConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DINAT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Dinat Model transformer outputting raw hidden-states without any specific head on top.",
DINAT_START_DOCSTRING,
)
class DinatModel(DinatPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
requires_backends(self, ["natten"])
self.config = config
self.num_levels = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_levels - 1))
self.embeddings = DinatEmbeddings(config)
self.encoder = DinatEncoder(config)
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=DinatModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, DinatModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output.flatten(1, 2).transpose(1, 2))
pooled_output = torch.flatten(pooled_output, 1)
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return DinatModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""
Dinat Model transformer with an image classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.
""",
DINAT_START_DOCSTRING,
)
class DinatForImageClassification(DinatPreTrainedModel):
def __init__(self, config):
super().__init__(config)
requires_backends(self, ["natten"])
self.num_labels = config.num_labels
self.dinat = DinatModel(config)
# Classifier head
self.classifier = (
nn.Linear(self.dinat.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=DinatImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, DinatImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.dinat(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return DinatImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"NAT backbone, to be used with frameworks like DETR and MaskFormer.",
DINAT_START_DOCSTRING,
)
class DinatBackbone(DinatPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
requires_backends(self, ["natten"])
self.embeddings = DinatEmbeddings(config)
self.encoder = DinatEncoder(config)
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = nn.LayerNorm(num_channels)
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
>>> model = AutoBackbone.from_pretrained(
... "shi-labs/nat-mini-in1k-224", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 512, 7, 7]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=True,
output_hidden_states_before_downsampling=True,
return_dict=True,
)
hidden_states = outputs.reshaped_hidden_states
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
batch_size, num_channels, height, width = hidden_state.shape
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous()
hidden_state = hidden_state.view(batch_size, height * width, num_channels)
hidden_state = self.hidden_states_norms[stage](hidden_state)
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_maps += (hidden_state,)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
__all__ = ["DinatForImageClassification", "DinatModel", "DinatPreTrainedModel", "DinatBackbone"]
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.01 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dinov2\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_dinov2 import *
from .modeling_dinov2 import *
from .modeling_flax_dinov2 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==========================================================================================================================================
SOURCE CODE FILE: configuration_dinov2.py
LINES: 1
SIZE: 8.09 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dinov2\configuration_dinov2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DINOv2 model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
class Dinov2Config(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an
Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Dinov2
[google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
mlp_ratio (`int`, *optional*, defaults to 4):
Ratio of the hidden size of the MLPs relative to the `hidden_size`.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
layerscale_value (`float`, *optional*, defaults to 1.0):
Initial value to use for layer scale.
drop_path_rate (`float`, *optional*, defaults to 0.0):
Stochastic depth rate per sample (when applied in the main path of residual layers).
use_swiglu_ffn (`bool`, *optional*, defaults to `False`):
Whether to use the SwiGLU feedforward neural network.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
apply_layernorm (`bool`, *optional*, defaults to `True`):
Whether to apply layer normalization to the feature maps in case the model is used as backbone.
reshape_hidden_states (`bool`, *optional*, defaults to `True`):
Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
seq_len, hidden_size)`.
use_mask_token (`bool`, *optional*, defaults to `True`):
Whether to use mask_token in embeddings.
Example:
```python
>>> from transformers import Dinov2Config, Dinov2Model
>>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration
>>> configuration = Dinov2Config()
>>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration
>>> model = Dinov2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "dinov2"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
mlp_ratio=4,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-6,
image_size=224,
patch_size=14,
num_channels=3,
qkv_bias=True,
layerscale_value=1.0,
drop_path_rate=0.0,
use_swiglu_ffn=False,
out_features=None,
out_indices=None,
apply_layernorm=True,
reshape_hidden_states=True,
use_mask_token=True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.mlp_ratio = mlp_ratio
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.layerscale_value = layerscale_value
self.drop_path_rate = drop_path_rate
self.use_swiglu_ffn = use_swiglu_ffn
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_hidden_layers + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
self.apply_layernorm = apply_layernorm
self.reshape_hidden_states = reshape_hidden_states
self.use_mask_token = use_mask_token
class Dinov2OnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
__all__ = ["Dinov2Config", "Dinov2OnnxConfig"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: modeling_dinov2.py
LINES: 1
SIZE: 37.13 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dinov2\modeling_dinov2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DINOv2 model."""
import collections.abc
from typing import Callable, Dict, List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
torch_int,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_dinov2 import Dinov2Config
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "Dinov2Config"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/dinov2-base"
_EXPECTED_OUTPUT_SHAPE = [1, 257, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-small-imagenet1k-1-layer"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
class Dinov2Embeddings(nn.Module):
"""
Construct the CLS token, mask token, position and patch embeddings.
"""
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
if config.use_mask_token:
self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
self.patch_embeddings = Dinov2PatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.patch_size = config.patch_size
self.use_mask_token = config.use_mask_token
self.config = config
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing and interpolation at torch.float32 precision.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
target_dtype = patch_pos_embed.dtype
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.to(torch.float32),
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
).to(dtype=target_dtype)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
target_dtype = self.patch_embeddings.projection.weight.dtype
embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype))
if bool_masked_pos is not None and self.use_mask_token:
embeddings = torch.where(
bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings
)
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
embeddings = self.dropout(embeddings)
return embeddings
class Dinov2PatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
f" Expected {self.num_channels} but got {num_channels}."
)
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
return embeddings
# Copied from transformers.models.vit.modeling_vit.eager_attention_forward
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
# Take the dot product between "query" and "key" to get the raw attention scores.
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
# Normalize the attention scores to probabilities.
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
# Mask heads if we want to
if attention_mask is not None:
attn_weights = attn_weights * attention_mask
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2
class Dinov2SelfAttention(nn.Module):
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.config = config
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.dropout_prob = config.attention_probs_dropout_prob
self.scaling = self.attention_head_size**-0.5
self.is_causal = False
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(self.query(hidden_states))
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and output_attentions:
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
context_layer, attention_probs = attention_interface(
self,
query_layer,
key_layer,
value_layer,
head_mask,
is_causal=self.is_causal,
scaling=self.scaling,
dropout=0.0 if not self.training else self.dropout_prob,
)
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.reshape(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2
class Dinov2SelfOutput(nn.Module):
"""
The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2
class Dinov2Attention(nn.Module):
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.attention = Dinov2SelfAttention(config)
self.output = Dinov2SelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class Dinov2LayerScale(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.lambda1 = nn.Parameter(config.layerscale_value * torch.ones(config.hidden_size))
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
return hidden_state * self.lambda1
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class Dinov2DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class Dinov2MLP(nn.Module):
def __init__(self, config) -> None:
super().__init__()
in_features = out_features = config.hidden_size
hidden_features = int(config.hidden_size * config.mlp_ratio)
self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
if isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
self.fc2 = nn.Linear(hidden_features, out_features, bias=True)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.fc1(hidden_state)
hidden_state = self.activation(hidden_state)
hidden_state = self.fc2(hidden_state)
return hidden_state
class Dinov2SwiGLUFFN(nn.Module):
def __init__(self, config) -> None:
super().__init__()
in_features = out_features = config.hidden_size
hidden_features = int(config.hidden_size * config.mlp_ratio)
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True)
self.weights_out = nn.Linear(hidden_features, out_features, bias=True)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.weights_in(hidden_state)
x1, x2 = hidden_state.chunk(2, dim=-1)
hidden = nn.functional.silu(x1) * x2
return self.weights_out(hidden)
class Dinov2Layer(nn.Module):
"""This corresponds to the Block class in the original implementation."""
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention = Dinov2Attention(config)
self.layer_scale1 = Dinov2LayerScale(config)
self.drop_path = Dinov2DropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if config.use_swiglu_ffn:
self.mlp = Dinov2SwiGLUFFN(config)
else:
self.mlp = Dinov2MLP(config)
self.layer_scale2 = Dinov2LayerScale(config)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.norm1(hidden_states), # in Dinov2, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
attention_output = self.layer_scale1(attention_output)
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = self.drop_path(attention_output) + hidden_states
# in Dinov2, layernorm is also applied after self-attention
layer_output = self.norm2(hidden_states)
layer_output = self.mlp(layer_output)
layer_output = self.layer_scale2(layer_output)
# second residual connection
layer_output = self.drop_path(layer_output) + hidden_states
outputs = (layer_output,) + outputs
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2
class Dinov2Encoder(nn.Module):
def __init__(self, config: Dinov2Config) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([Dinov2Layer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class Dinov2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Dinov2Config
base_model_prefix = "dinov2"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["Dinov2SwiGLUFFN"]
_supports_sdpa = True
_supports_flash_attn_2 = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, Dinov2Embeddings):
module.position_embeddings.data = nn.init.trunc_normal_(
module.position_embeddings.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.position_embeddings.dtype)
module.cls_token.data = nn.init.trunc_normal_(
module.cls_token.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.cls_token.dtype)
if self.config.use_mask_token:
module.mask_token.data.zero_()
elif isinstance(module, Dinov2LayerScale):
module.lambda1.data.fill_(self.config.layerscale_value)
DINOV2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Dinov2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DINOV2_BASE_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`BitImageProcessor.preprocess`] for details.
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for
pre-training.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
DINOV2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`BitImageProcessor.preprocess`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DINOv2 Model transformer outputting raw hidden-states without any specific head on top.",
DINOV2_START_DOCSTRING,
)
class Dinov2Model(Dinov2PreTrainedModel):
def __init__(self, config: Dinov2Config):
super().__init__(config)
self.config = config
self.embeddings = Dinov2Embeddings(config)
self.encoder = Dinov2Encoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = sequence_output[:, 0, :]
if not return_dict:
head_outputs = (sequence_output, pooled_output)
return head_outputs + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""
Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.
""",
DINOV2_START_DOCSTRING,
)
class Dinov2ForImageClassification(Dinov2PreTrainedModel):
def __init__(self, config: Dinov2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.dinov2 = Dinov2Model(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_size * 2, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.dinov2(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0] # batch_size, sequence_length, hidden_size
cls_token = sequence_output[:, 0]
patch_tokens = sequence_output[:, 1:]
linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1)
logits = self.classifier(linear_input)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Dinov2 backbone, to be used with frameworks like DETR and MaskFormer.
""",
DINOV2_START_DOCSTRING,
)
class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
self.embeddings = Dinov2Embeddings(config)
self.encoder = Dinov2Encoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
>>> model = AutoBackbone.from_pretrained(
... "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 768, 16, 16]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
if self.config.apply_layernorm:
hidden_state = self.layernorm(hidden_state)
if self.config.reshape_hidden_states:
hidden_state = hidden_state[:, 1:]
# this was actually a bug in the original implementation that we copied here,
# cause normally the order is height, width
batch_size, _, height, width = pixel_values.shape
patch_size = self.config.patch_size
hidden_state = hidden_state.reshape(batch_size, height // patch_size, width // patch_size, -1)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_maps += (hidden_state,)
if not return_dict:
if output_hidden_states:
output = (feature_maps,) + outputs[1:]
else:
output = (feature_maps,) + outputs[2:]
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions if output_attentions else None,
)
__all__ = ["Dinov2ForImageClassification", "Dinov2Model", "Dinov2PreTrainedModel", "Dinov2Backbone"]
```
|
==========================================================================================================================================
SOURCE CODE FILE: modeling_flax_dinov2.py
LINES: 1
SIZE: 30.32 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dinov2\modeling_flax_dinov2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax DINOv2 model."""
import collections.abc
import math
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling, FlaxSequenceClassifierOutput
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward
from .configuration_dinov2 import Dinov2Config
DINOV2_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`Dinov2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
DINOV2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`Dinov2ImageProcessor.__call__`]
for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxDinov2PatchEmbeddings(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
image_size = self.config.image_size
patch_size = self.config.patch_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.num_patches = num_patches
self.num_channels = self.config.num_channels
self.projection = nn.Conv(
self.config.hidden_size,
kernel_size=patch_size,
strides=patch_size,
padding="VALID",
dtype=self.dtype,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
)
# Copied from transformers.models.vit.modeling_flax_vit.FlaxViTPatchEmbeddings.__call__
def __call__(self, pixel_values):
num_channels = pixel_values.shape[-1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
batch_size, _, _, channels = embeddings.shape
return jnp.reshape(embeddings, (batch_size, -1, channels))
class FlaxDinov2Embeddings(nn.Module):
"""Construct the CLS token, position and patch embeddings."""
config: Dinov2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.cls_token = self.param(
"cls_token",
jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"),
(1, 1, self.config.hidden_size),
)
if self.config.use_mask_token:
self.mask_token = self.param(
"mask_token",
jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"),
(1, self.config.hidden_size),
)
self.patch_embeddings = FlaxDinov2PatchEmbeddings(self.config, dtype=self.dtype)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = self.param(
"position_embeddings",
jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"),
(1, num_patches + 1, self.config.hidden_size),
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def interpolate_pos_encoding(self, config, hidden_states, height, width, position_embeddings):
num_patches = hidden_states.shape[1] - 1
num_positions = position_embeddings.shape[1] - 1
if num_patches == num_positions and height == width:
return position_embeddings
class_pos_embed = position_embeddings[:, 0]
patch_pos_embed = position_embeddings[:, 1:]
dim = hidden_states.shape[-1]
h = height // config.patch_size
w = width // config.patch_size
height, width = h + 0.1, w + 0.1
patch_pos_embed = patch_pos_embed.reshape(
(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
)
patch_pos_embed = jnp.transpose(patch_pos_embed, (0, 3, 1, 2))
target_dtype = patch_pos_embed.dtype
new_height_ratio = jnp.float32(height / math.sqrt(num_positions))
new_width_ratio = jnp.float32(width / math.sqrt(num_positions))
scale = jnp.array([new_height_ratio, new_width_ratio], dtype=jnp.float32)
translation = jnp.array([0.0, 0.0], dtype=jnp.float32)
patch_pos_embed = jax.image.scale_and_translate(
patch_pos_embed.astype(jnp.float32),
shape=(patch_pos_embed.shape[0], patch_pos_embed.shape[1], h, w),
spatial_dims=(2, 3),
scale=scale,
translation=translation,
method="bicubic",
antialias=False,
)
patch_pos_embed = patch_pos_embed.astype(target_dtype)
patch_pos_embed = jnp.transpose(patch_pos_embed, (0, 2, 3, 1)).reshape((position_embeddings.shape[0], -1, dim))
patch_pos_embed_expanded = jnp.tile(patch_pos_embed, (hidden_states.shape[0], 1, 1))
class_pos_embed_expanded = jnp.tile(class_pos_embed, (hidden_states.shape[0], 1, 1))
return jnp.concatenate((class_pos_embed_expanded, patch_pos_embed_expanded), axis=1)
def __call__(self, pixel_values, deterministic=True):
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embeddings.projection.dtype
height, width = pixel_values.shape[1], pixel_values.shape[2]
embeddings = self.patch_embeddings(pixel_values.astype(target_dtype))
cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size))
embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1)
embeddings = embeddings + self.interpolate_pos_encoding(
self.config, embeddings, height, width, self.position_embeddings
)
embeddings = self.dropout(embeddings, deterministic=deterministic)
return embeddings
# Copied from transformers.models.vit.modeling_flax_vit.FlaxViTSelfAttention with ViT->Dinov2
class FlaxDinov2SelfAttention(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads`:"
" {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
),
use_bias=self.config.qkv_bias,
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
),
use_bias=self.config.qkv_bias,
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal"
),
use_bias=self.config.qkv_bias,
)
def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False):
head_dim = self.config.hidden_size // self.config.num_attention_heads
query_states = self.query(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
value_states = self.value(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
key_states = self.key(hidden_states).reshape(
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
)
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
# Copied from transformers.models.vit.modeling_flax_vit.FlaxViTSelfOutput with ViT->Dinov2
class FlaxDinov2SelfOutput(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
# Copied from transformers.models.vit.modeling_flax_vit.FlaxViTAttention with ViT->Dinov2
class FlaxDinov2Attention(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.attention = FlaxDinov2SelfAttention(self.config, dtype=self.dtype)
self.output = FlaxDinov2SelfOutput(self.config, dtype=self.dtype)
def __call__(self, hidden_states, deterministic=True, output_attentions: bool = False):
attn_outputs = self.attention(hidden_states, deterministic=deterministic, output_attentions=output_attentions)
attn_output = attn_outputs[0]
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
def ones_with_scale(key, shape, scale, dtype=jnp.float32):
return jnp.ones(shape, dtype) * scale
class FlaxDinov2LayerScale(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.lambda1 = self.config.layerscale_value * self.param(
"lambda1",
jax.nn.initializers.ones,
(self.config.hidden_size,),
)
self.lambda1 = self.lambda1 * self.config.layerscale_value
def __call__(self, hidden_states):
return self.lambda1 * hidden_states
# Copied from transformers.models.beit.modeling_flax_beit.FlaxBeitDropPath with Beit -> Dinov2
class FlaxDinov2DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
rate: float
@nn.module.compact
def __call__(self, inputs, deterministic: Optional[bool] = True):
if self.rate == 0.0:
return inputs
keep_prob = 1.0 - self.rate
if deterministic:
return inputs
else:
shape = (inputs.shape[0],) + (1,) * (inputs.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
rng = self.make_rng("droppath")
random_tensor = keep_prob + jax.random.uniform(rng, shape=shape, dtype=inputs.dtype)
binary_tensor = jnp.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
class FlaxDinov2MLP(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.fc1 = nn.Dense(
self.config.hidden_size * self.config.mlp_ratio,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
dtype=self.dtype,
)
self.fc2 = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
dtype=self.dtype,
)
if isinstance(self.config.hidden_act, str):
self.act = ACT2FN[self.config.hidden_act]
else:
self.act = self.config.hidden_act
def __call__(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class FlaxDinov2SwiGLUFFN(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
hidden_features = int(self.config.hidden_size * self.config.mlp_ratio)
hidden_features = (int(self.hidden_features * 2 / 3) + 7) // 8 * 8
self.weights_in = nn.Dense(
2 * hidden_features,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
dtype=self.dtype,
)
self.weights_out = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
dtype=self.dtype,
)
def __call__(self, hidden_states):
hidden_states = self.weights_in(hidden_states)
x1, x2 = jnp.split(hidden_states, 2, axis=-1)
hidden = nn.silu(x1) * x2
return self.weights_out(hidden)
class FlaxDinov2Layer(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.norm1 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.attention = FlaxDinov2Attention(self.config, dtype=self.dtype)
self.layer_scale1 = FlaxDinov2LayerScale(self.config, dtype=self.dtype)
self.drop_path = FlaxDinov2DropPath(self.config.drop_path_rate)
self.norm2 = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
if self.config.use_swiglu_ffn:
self.mlp = FlaxDinov2SwiGLUFFN(self.config, dtype=self.dtype)
else:
self.mlp = FlaxDinov2MLP(self.config, dtype=self.dtype)
self.layer_scale2 = FlaxDinov2LayerScale(self.config, dtype=self.dtype)
def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False):
self_attention_outputs = self.attention(
self.norm1(hidden_states), # in Dinov2, layernorm is applied before self-attention
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
attention_output = self.layer_scale1(attention_output)
outputs = self_attention_outputs[1:]
# first residual connection
hidden_states = self.drop_path(attention_output) + hidden_states
# in Dinov2, layernorm is also applied after self-attention
layer_output = self.norm2(hidden_states)
layer_output = self.mlp(layer_output)
layer_output = self.layer_scale2(layer_output)
# second residual connection
layer_output = self.drop_path(layer_output) + hidden_states
outputs = (layer_output,) + outputs
return outputs
# Copied from transformers.models.vit.modeling_flax_vit.FlaxViTLayerCollection with ViT->Dinov2
class FlaxDinov2LayerCollection(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxDinov2Layer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(hidden_states, deterministic=deterministic, output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states,)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
# Copied from transformers.models.vit.modeling_flax_vit.FlaxViTEncoder with ViT->Dinov2
class FlaxDinov2Encoder(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layer = FlaxDinov2LayerCollection(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxDinov2PreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Dinov2Config
base_model_prefix = "dinov2"
main_input_name = "pixel_values"
module_class: nn.Module = None
def __init__(
self,
config: Dinov2Config,
input_shape=None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
if input_shape is None:
input_shape = (1, config.image_size, config.image_size, config.num_channels)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
pixel_values = jnp.zeros(input_shape, dtype=self.dtype)
params_rng, dropout_rng = jax.random.split(rng)
dropout_rng, droppath_rng = jax.random.split(dropout_rng)
rngs = {"params": params_rng, "dropout": dropout_rng, "droppath": droppath_rng}
random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
pixel_values,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
dropout_rng, droppath_rng = jax.random.split(dropout_rng)
rngs["dropout"] = dropout_rng
rngs["droppath"] = droppath_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(pixel_values, dtype=jnp.float32),
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
class FlaxDinov2Module(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.embeddings = FlaxDinov2Embeddings(self.config, dtype=self.dtype)
self.encoder = FlaxDinov2Encoder(self.config, dtype=self.dtype)
self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(
self,
pixel_values,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
hidden_states = self.embeddings(pixel_values, deterministic=deterministic)
encoder_outputs = self.encoder(
hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = sequence_output[:, 0, :]
if not return_dict:
head_outputs = (sequence_output, pooled_output)
return head_outputs + encoder_outputs[1:]
return FlaxBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare Dinov2 Model transformer outputting raw hidden-states without any specific head on top.",
DINOV2_START_DOCSTRING,
)
class FlaxDinov2Model(FlaxDinov2PreTrainedModel):
module_class = FlaxDinov2Module
FLAX_VISION_MODEL_DOCSTRING = """
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, FlaxDinov2Model
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
>>> model = FlaxDinov2Model.from_pretrained("facebook/dinov2-base")
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```
"""
overwrite_call_docstring(FlaxDinov2Model, FLAX_VISION_MODEL_DOCSTRING)
append_replace_return_docstrings(
FlaxDinov2Model, output_type=FlaxBaseModelOutputWithPooling, config_class=Dinov2Config
)
class FlaxDinov2ForImageClassificationModule(nn.Module):
config: Dinov2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dinov2 = FlaxDinov2Module(config=self.config, dtype=self.dtype)
self.classifier = nn.Dense(
self.config.num_labels,
dtype=self.dtype,
kernel_init=jax.nn.initializers.variance_scaling(
self.config.initializer_range**2, "fan_in", "truncated_normal"
),
)
def __call__(
self,
pixel_values=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.dinov2(
pixel_values,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
cls_token = hidden_states[:, 0]
patch_tokens = hidden_states[:, 1:]
linear_input = jnp.concatenate([cls_token, patch_tokens.mean(axis=1)], axis=-1)
logits = self.classifier(linear_input)
if not return_dict:
output = (logits,) + outputs[2:]
return output
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
""",
DINOV2_START_DOCSTRING,
)
class FlaxDinov2ForImageClassification(FlaxDinov2PreTrainedModel):
module_class = FlaxDinov2ForImageClassificationModule
FLAX_VISION_CLASSIFICATION_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoImageProcessor, FlaxDinov2ForImageClassification
>>> from PIL import Image
>>> import jax
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base-imagenet1k-1-layer")
>>> model = FlaxDinov2ForImageClassification.from_pretrained("facebook/dinov2-base-imagenet1k-1-layer", from_pt=True)
>>> inputs = image_processor(images=image, return_tensors="np")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1)
>>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()])
```
"""
overwrite_call_docstring(FlaxDinov2ForImageClassification, FLAX_VISION_CLASSIFICATION_DOCSTRING)
append_replace_return_docstrings(
FlaxDinov2ForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=Dinov2Config
)
__all__ = ["FlaxDinov2ForImageClassification", "FlaxDinov2Model", "FlaxDinov2PreTrainedModel"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.00 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dinov2_with_registers\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_dinov2_with_registers import *
from .modeling_dinov2_with_registers import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================================================
SOURCE CODE FILE: configuration_dinov2_with_registers.py
LINES: 1
SIZE: 8.43 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dinov2_with_registers\configuration_dinov2_with_registers.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_dinov2_with_registers.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Meta Inc. and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
class Dinov2WithRegistersConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Dinov2WithRegistersModel`]. It is used to instantiate an
Dinov2WithRegisters model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the DINOv2 with Registers
[facebook/dinov2-with-registers-base](https://huggingface.co/facebook/dinov2-with-registers-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
mlp_ratio (`int`, *optional*, defaults to 4):
Ratio of the hidden size of the MLPs relative to the `hidden_size`.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
layerscale_value (`float`, *optional*, defaults to 1.0):
Initial value to use for layer scale.
drop_path_rate (`float`, *optional*, defaults to 0.0):
Stochastic depth rate per sample (when applied in the main path of residual layers).
use_swiglu_ffn (`bool`, *optional*, defaults to `False`):
Whether to use the SwiGLU feedforward neural network.
num_register_tokens (`int`, *optional*, defaults to 4):
Number of register tokens to use.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
apply_layernorm (`bool`, *optional*, defaults to `True`):
Whether to apply layer normalization to the feature maps in case the model is used as backbone.
reshape_hidden_states (`bool`, *optional*, defaults to `True`):
Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
seq_len, hidden_size)`.
Example:
```python
>>> from transformers import Dinov2WithRegistersConfig, Dinov2WithRegistersModel
>>> # Initializing a Dinov2WithRegisters base style configuration
>>> configuration = Dinov2WithRegistersConfig()
>>> # Initializing a model (with random weights) from the base style configuration
>>> model = Dinov2WithRegistersModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "dinov2_with_registers"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
mlp_ratio=4,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-6,
image_size=224,
patch_size=16,
num_channels=3,
qkv_bias=True,
layerscale_value=1.0,
drop_path_rate=0.0,
use_swiglu_ffn=False,
num_register_tokens=4,
out_features=None,
out_indices=None,
apply_layernorm=True,
reshape_hidden_states=True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.mlp_ratio = mlp_ratio
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.layerscale_value = layerscale_value
self.drop_path_rate = drop_path_rate
self.use_swiglu_ffn = use_swiglu_ffn
self.num_register_tokens = num_register_tokens
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_hidden_layers + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
self.apply_layernorm = apply_layernorm
self.reshape_hidden_states = reshape_hidden_states
__all__ = ["Dinov2WithRegistersConfig"]
```
|
===================================================================================================================================================================
SOURCE CODE FILE: modeling_dinov2_with_registers.py
LINES: 1
SIZE: 39.39 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dinov2_with_registers\modeling_dinov2_with_registers.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_dinov2_with_registers.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Meta Inc. and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections.abc
from typing import Callable, Dict, List, Optional, Set, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput, BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
torch_int,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_dinov2_with_registers import Dinov2WithRegistersConfig
logger = logging.get_logger(__name__)
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/dinov2_with_registers-base"
# General docstring
_CONFIG_FOR_DOC = "Dinov2WithRegistersConfig"
class Dinov2WithRegistersPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
num_channels = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
f" Expected {self.num_channels} but got {num_channels}."
)
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
return embeddings
class Dinov2WithRegistersEmbeddings(nn.Module):
"""
Construct the CLS token, mask token, register tokens, position and patch embeddings.
"""
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
self.register_tokens = nn.Parameter(torch.zeros(1, config.num_register_tokens, config.hidden_size))
self.patch_embeddings = Dinov2WithRegistersPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.patch_size = config.patch_size
self.config = config
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images. This implementation supports torch.jit tracing while maintaining backwards compatibility
with the original implementation.
Adapted from:
- https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
- https://github.com/facebookresearch/dinov2/blob/main/dinov2/models/vision_transformer.py
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
# Skip interpolation for matching dimensions (unless tracing)
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embeddings
# Handle class token and patch embeddings separately
class_pos_embed = self.position_embeddings[:, 0]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
# Calculate new dimensions
height = height // self.config.patch_size
width = width // self.config.patch_size
# Reshape for interpolation
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
# Store original dtype for restoration after interpolation
target_dtype = patch_pos_embed.dtype
# Interpolate at float32 precision
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.to(dtype=torch.float32),
size=(torch_int(height), torch_int(width)), # Explicit size instead of scale_factor
mode="bicubic",
align_corners=False,
antialias=True,
).to(dtype=target_dtype)
# Validate output dimensions if not tracing
if not torch.jit.is_tracing():
if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]:
raise ValueError("Width or height does not match with the interpolated position embeddings")
# Reshape back to original format
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
# Combine class and patch embeddings
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
target_dtype = self.patch_embeddings.projection.weight.dtype
embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype))
if bool_masked_pos is not None:
embeddings = torch.where(
bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings
)
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
# add register tokens
embeddings = torch.cat(
(embeddings[:, :1], self.register_tokens.expand(embeddings.shape[0], -1, -1), embeddings[:, 1:]), dim=1
)
embeddings = self.dropout(embeddings)
return embeddings
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
# Take the dot product between "query" and "key" to get the raw attention scores.
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
# Normalize the attention scores to probabilities.
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
# Mask heads if we want to
if attention_mask is not None:
attn_weights = attn_weights * attention_mask
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Dinov2WithRegistersSelfAttention(nn.Module):
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.config = config
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.dropout_prob = config.attention_probs_dropout_prob
self.scaling = self.attention_head_size**-0.5
self.is_causal = False
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(self.query(hidden_states))
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and output_attentions:
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
context_layer, attention_probs = attention_interface(
self,
query_layer,
key_layer,
value_layer,
head_mask,
is_causal=self.is_causal,
scaling=self.scaling,
dropout=0.0 if not self.training else self.dropout_prob,
)
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.reshape(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class Dinov2WithRegistersSelfOutput(nn.Module):
"""
The residual connection is defined in Dinov2WithRegistersLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class Dinov2WithRegistersAttention(nn.Module):
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
super().__init__()
self.attention = Dinov2WithRegistersSelfAttention(config)
self.output = Dinov2WithRegistersSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class Dinov2WithRegistersLayerScale(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.lambda1 = nn.Parameter(config.layerscale_value * torch.ones(config.hidden_size))
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
return hidden_state * self.lambda1
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
class Dinov2WithRegistersDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class Dinov2WithRegistersMLP(nn.Module):
def __init__(self, config) -> None:
super().__init__()
in_features = out_features = config.hidden_size
hidden_features = int(config.hidden_size * config.mlp_ratio)
self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
if isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
self.fc2 = nn.Linear(hidden_features, out_features, bias=True)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.fc1(hidden_state)
hidden_state = self.activation(hidden_state)
hidden_state = self.fc2(hidden_state)
return hidden_state
class Dinov2WithRegistersSwiGLUFFN(nn.Module):
def __init__(self, config) -> None:
super().__init__()
in_features = out_features = config.hidden_size
hidden_features = int(config.hidden_size * config.mlp_ratio)
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True)
self.weights_out = nn.Linear(hidden_features, out_features, bias=True)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.weights_in(hidden_state)
x1, x2 = hidden_state.chunk(2, dim=-1)
hidden = nn.functional.silu(x1) * x2
return self.weights_out(hidden)
class Dinov2WithRegistersLayer(nn.Module):
"""This corresponds to the Block class in the original implementation."""
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
super().__init__()
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attention = Dinov2WithRegistersAttention(config)
self.layer_scale1 = Dinov2WithRegistersLayerScale(config)
self.drop_path = (
Dinov2WithRegistersDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
)
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if config.use_swiglu_ffn:
self.mlp = Dinov2WithRegistersSwiGLUFFN(config)
else:
self.mlp = Dinov2WithRegistersMLP(config)
self.layer_scale2 = Dinov2WithRegistersLayerScale(config)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.norm1(hidden_states), # in Dinov2WithRegisters, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
attention_output = self.layer_scale1(attention_output)
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = self.drop_path(attention_output) + hidden_states
# in Dinov2WithRegisters, layernorm is also applied after self-attention
layer_output = self.norm2(hidden_states)
layer_output = self.mlp(layer_output)
layer_output = self.layer_scale2(layer_output)
# second residual connection
layer_output = self.drop_path(layer_output) + hidden_states
outputs = (layer_output,) + outputs
return outputs
class Dinov2WithRegistersEncoder(nn.Module):
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([Dinov2WithRegistersLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class Dinov2WithRegistersPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Dinov2WithRegistersConfig
base_model_prefix = "dinov2_with_registers"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["Dinov2WithRegistersSwiGLUFFN"]
_supports_sdpa = True
_supports_flash_attn_2 = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, Dinov2WithRegistersEmbeddings):
module.position_embeddings.data = nn.init.trunc_normal_(
module.position_embeddings.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.position_embeddings.dtype)
module.cls_token.data = nn.init.trunc_normal_(
module.cls_token.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.cls_token.dtype)
module.mask_token.data.zero_()
module.register_tokens.data.zero_()
elif isinstance(module, Dinov2WithRegistersLayerScale): # noqa: F821
module.lambda1.data.fill_(self.config.layerscale_value)
_EXPECTED_OUTPUT_SHAPE = [1, 257, 768]
DINOV2_WITH_REGISTERS_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Dinov2WithRegistersConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DINOV2_WITH_REGISTERS_BASE_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`BitImageProcessor.preprocess`] for details.
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for
pre-training.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Dinov2WithRegisters Model transformer outputting raw hidden-states without any specific head on top.",
DINOV2_WITH_REGISTERS_START_DOCSTRING,
)
class Dinov2WithRegistersModel(Dinov2WithRegistersPreTrainedModel):
def __init__(self, config: Dinov2WithRegistersConfig):
super().__init__(config)
self.config = config
self.embeddings = Dinov2WithRegistersEmbeddings(config)
self.encoder = Dinov2WithRegistersEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> Dinov2WithRegistersPatchEmbeddings:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DINOV2_WITH_REGISTERS_BASE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = sequence_output[:, 0, :]
if not return_dict:
head_outputs = (sequence_output, pooled_output)
return head_outputs + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2_with_registers-small-imagenet1k-1-layer"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
DINOV2_WITH_REGISTERS_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`BitImageProcessor.preprocess`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""
Dinov2WithRegisters Model transformer with an image classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.
""",
DINOV2_WITH_REGISTERS_START_DOCSTRING,
)
class Dinov2WithRegistersForImageClassification(Dinov2WithRegistersPreTrainedModel):
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.dinov2_with_registers = Dinov2WithRegistersModel(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_size * 2, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DINOV2_WITH_REGISTERS_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.dinov2_with_registers(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0] # batch_size, sequence_length, hidden_size
cls_token = sequence_output[:, 0]
patch_tokens = sequence_output[:, 1:]
linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1)
logits = self.classifier(linear_input)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Dinov2WithRegisters backbone, to be used with frameworks like DETR and MaskFormer.
""",
DINOV2_WITH_REGISTERS_START_DOCSTRING,
)
class Dinov2WithRegistersBackbone(Dinov2WithRegistersPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
self.embeddings = Dinov2WithRegistersEmbeddings(config)
self.encoder = Dinov2WithRegistersEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.num_register_tokens = config.num_register_tokens
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> Dinov2WithRegistersPatchEmbeddings:
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(DINOV2_WITH_REGISTERS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-with-registers-base")
>>> model = AutoBackbone.from_pretrained(
... "facebook/dinov2-with-registers-base", out_features=["stage2", "stage5", "stage8", "stage11"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 768, 16, 16]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
if self.config.apply_layernorm:
hidden_state = self.layernorm(hidden_state)
if self.config.reshape_hidden_states:
hidden_state = hidden_state[:, self.num_register_tokens + 1 :]
# this was actually a bug in the original implementation that we copied here,
# cause normally the order is height, width
batch_size, _, height, width = pixel_values.shape
patch_size = self.config.patch_size
hidden_state = hidden_state.reshape(batch_size, height // patch_size, width // patch_size, -1)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_maps += (hidden_state,)
if not return_dict:
if output_hidden_states:
output = (feature_maps,) + outputs[1:]
else:
output = (feature_maps,) + outputs[2:]
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions if output_attentions else None,
)
__all__ = [
"Dinov2WithRegistersPreTrainedModel",
"Dinov2WithRegistersModel",
"Dinov2WithRegistersForImageClassification",
"Dinov2WithRegistersBackbone",
]
```
|
==================================================================================================================================================================
SOURCE CODE FILE: modular_dinov2_with_registers.py
LINES: 1
SIZE: 18.24 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dinov2_with_registers\modular_dinov2_with_registers.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Meta Inc. and the HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ....transformers.models.dinov2.modeling_dinov2 import (
Dinov2Backbone,
Dinov2Encoder,
Dinov2ForImageClassification,
Dinov2Model,
Dinov2PatchEmbeddings,
Dinov2PreTrainedModel,
)
from ...configuration_utils import PretrainedConfig
from ...modeling_outputs import BackboneOutput
from ...utils import logging, torch_int
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
class Dinov2WithRegistersConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Dinov2WithRegistersModel`]. It is used to instantiate an
Dinov2WithRegisters model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the DINOv2 with Registers
[facebook/dinov2-with-registers-base](https://huggingface.co/facebook/dinov2-with-registers-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
mlp_ratio (`int`, *optional*, defaults to 4):
Ratio of the hidden size of the MLPs relative to the `hidden_size`.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
layerscale_value (`float`, *optional*, defaults to 1.0):
Initial value to use for layer scale.
drop_path_rate (`float`, *optional*, defaults to 0.0):
Stochastic depth rate per sample (when applied in the main path of residual layers).
use_swiglu_ffn (`bool`, *optional*, defaults to `False`):
Whether to use the SwiGLU feedforward neural network.
num_register_tokens (`int`, *optional*, defaults to 4):
Number of register tokens to use.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
apply_layernorm (`bool`, *optional*, defaults to `True`):
Whether to apply layer normalization to the feature maps in case the model is used as backbone.
reshape_hidden_states (`bool`, *optional*, defaults to `True`):
Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
seq_len, hidden_size)`.
Example:
```python
>>> from transformers import Dinov2WithRegistersConfig, Dinov2WithRegistersModel
>>> # Initializing a Dinov2WithRegisters base style configuration
>>> configuration = Dinov2WithRegistersConfig()
>>> # Initializing a model (with random weights) from the base style configuration
>>> model = Dinov2WithRegistersModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "dinov2_with_registers"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
mlp_ratio=4,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-6,
image_size=224,
patch_size=16,
num_channels=3,
qkv_bias=True,
layerscale_value=1.0,
drop_path_rate=0.0,
use_swiglu_ffn=False,
num_register_tokens=4,
out_features=None,
out_indices=None,
apply_layernorm=True,
reshape_hidden_states=True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.mlp_ratio = mlp_ratio
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.layerscale_value = layerscale_value
self.drop_path_rate = drop_path_rate
self.use_swiglu_ffn = use_swiglu_ffn
self.num_register_tokens = num_register_tokens
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_hidden_layers + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
self.apply_layernorm = apply_layernorm
self.reshape_hidden_states = reshape_hidden_states
class Dinov2WithRegistersPatchEmbeddings(Dinov2PatchEmbeddings):
pass
class Dinov2WithRegistersEmbeddings(nn.Module):
"""
Construct the CLS token, mask token, register tokens, position and patch embeddings.
"""
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
self.register_tokens = nn.Parameter(torch.zeros(1, config.num_register_tokens, config.hidden_size))
self.patch_embeddings = Dinov2WithRegistersPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.patch_size = config.patch_size
self.config = config
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images. This implementation supports torch.jit tracing while maintaining backwards compatibility
with the original implementation.
Adapted from:
- https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
- https://github.com/facebookresearch/dinov2/blob/main/dinov2/models/vision_transformer.py
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
# Skip interpolation for matching dimensions (unless tracing)
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embeddings
# Handle class token and patch embeddings separately
class_pos_embed = self.position_embeddings[:, 0]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
# Calculate new dimensions
height = height // self.config.patch_size
width = width // self.config.patch_size
# Reshape for interpolation
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
# Store original dtype for restoration after interpolation
target_dtype = patch_pos_embed.dtype
# Interpolate at float32 precision
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.to(dtype=torch.float32),
size=(torch_int(height), torch_int(width)), # Explicit size instead of scale_factor
mode="bicubic",
align_corners=False,
antialias=True,
).to(dtype=target_dtype)
# Validate output dimensions if not tracing
if not torch.jit.is_tracing():
if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]:
raise ValueError("Width or height does not match with the interpolated position embeddings")
# Reshape back to original format
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
# Combine class and patch embeddings
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
target_dtype = self.patch_embeddings.projection.weight.dtype
embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype))
if bool_masked_pos is not None:
embeddings = torch.where(
bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings
)
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
# add register tokens
embeddings = torch.cat(
(embeddings[:, :1], self.register_tokens.expand(embeddings.shape[0], -1, -1), embeddings[:, 1:]), dim=1
)
embeddings = self.dropout(embeddings)
return embeddings
class Dinov2WithRegistersEncoder(Dinov2Encoder):
pass
class Dinov2WithRegistersPreTrainedModel(Dinov2PreTrainedModel):
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, Dinov2WithRegistersEmbeddings):
module.position_embeddings.data = nn.init.trunc_normal_(
module.position_embeddings.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.position_embeddings.dtype)
module.cls_token.data = nn.init.trunc_normal_(
module.cls_token.data.to(torch.float32),
mean=0.0,
std=self.config.initializer_range,
).to(module.cls_token.dtype)
module.mask_token.data.zero_()
module.register_tokens.data.zero_()
elif isinstance(module, Dinov2WithRegistersLayerScale): # noqa: F821
module.lambda1.data.fill_(self.config.layerscale_value)
class Dinov2WithRegistersModel(Dinov2Model):
pass
class Dinov2WithRegistersForImageClassification(Dinov2ForImageClassification):
pass
class Dinov2WithRegistersBackbone(Dinov2Backbone):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
self.num_register_tokens = config.num_register_tokens
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
self.embeddings = Dinov2WithRegistersEmbeddings(config)
self.encoder = Dinov2WithRegistersEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> Dinov2WithRegistersPatchEmbeddings:
return self.embeddings.patch_embeddings
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-with-registers-base")
>>> model = AutoBackbone.from_pretrained(
... "facebook/dinov2-with-registers-base", out_features=["stage2", "stage5", "stage8", "stage11"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 768, 16, 16]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
if self.config.apply_layernorm:
hidden_state = self.layernorm(hidden_state)
if self.config.reshape_hidden_states:
hidden_state = hidden_state[:, self.num_register_tokens + 1 :]
# this was actually a bug in the original implementation that we copied here,
# cause normally the order is height, width
batch_size, _, height, width = pixel_values.shape
patch_size = self.config.patch_size
hidden_state = hidden_state.reshape(batch_size, height // patch_size, width // patch_size, -1)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_maps += (hidden_state,)
if not return_dict:
if output_hidden_states:
output = (feature_maps,) + outputs[1:]
else:
output = (feature_maps,) + outputs[2:]
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions if output_attentions else None,
)
__all__ = [
"Dinov2WithRegistersConfig",
"Dinov2WithRegistersPreTrainedModel",
"Dinov2WithRegistersModel",
"Dinov2WithRegistersForImageClassification",
"Dinov2WithRegistersBackbone",
]
```
|
==================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.15 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\distilbert\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_distilbert import *
from .modeling_distilbert import *
from .modeling_flax_distilbert import *
from .modeling_tf_distilbert import *
from .tokenization_distilbert import *
from .tokenization_distilbert_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==================================================================================================================================================
SOURCE CODE FILE: configuration_distilbert.py
LINES: 1
SIZE: 5.90 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\distilbert\configuration_distilbert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DistilBERT model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class DistilBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DistilBertModel`] or a [`TFDistilBertModel`]. It
is used to instantiate a DistilBERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the DistilBERT
[distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`DistilBertModel`] or [`TFDistilBertModel`].
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
sinusoidal_pos_embds (`boolean`, *optional*, defaults to `False`):
Whether to use sinusoidal positional embeddings.
n_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
n_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
dim (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
hidden_dim (`int`, *optional*, defaults to 3072):
The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
qa_dropout (`float`, *optional*, defaults to 0.1):
The dropout probabilities used in the question answering model [`DistilBertForQuestionAnswering`].
seq_classif_dropout (`float`, *optional*, defaults to 0.2):
The dropout probabilities used in the sequence classification and the multiple choice model
[`DistilBertForSequenceClassification`].
Examples:
```python
>>> from transformers import DistilBertConfig, DistilBertModel
>>> # Initializing a DistilBERT configuration
>>> configuration = DistilBertConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = DistilBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "distilbert"
attribute_map = {
"hidden_size": "dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
}
def __init__(
self,
vocab_size=30522,
max_position_embeddings=512,
sinusoidal_pos_embds=False,
n_layers=6,
n_heads=12,
dim=768,
hidden_dim=4 * 768,
dropout=0.1,
attention_dropout=0.1,
activation="gelu",
initializer_range=0.02,
qa_dropout=0.1,
seq_classif_dropout=0.2,
pad_token_id=0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.sinusoidal_pos_embds = sinusoidal_pos_embds
self.n_layers = n_layers
self.n_heads = n_heads
self.dim = dim
self.hidden_dim = hidden_dim
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation = activation
self.initializer_range = initializer_range
self.qa_dropout = qa_dropout
self.seq_classif_dropout = seq_classif_dropout
super().__init__(**kwargs, pad_token_id=pad_token_id)
class DistilBertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
__all__ = ["DistilBertConfig", "DistilBertOnnxConfig"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: modeling_distilbert.py
LINES: 1
SIZE: 58.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\distilbert\modeling_distilbert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PyTorch DistilBERT model adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) and in
part from HuggingFace PyTorch version of Google AI Bert model (https://github.com/google-research/bert)
"""
import math
from typing import Dict, List, Optional, Set, Tuple, Union
import numpy as np
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import get_activation
from ...configuration_utils import PretrainedConfig
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_or_equal_than_2_2,
prune_linear_layer,
)
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_distilbert import DistilBertConfig
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "distilbert-base-uncased"
_CONFIG_FOR_DOC = "DistilBertConfig"
# UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE #
def create_sinusoidal_embeddings(n_pos: int, dim: int, out: torch.Tensor):
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(out, modifier_rank=0):
if torch.distributed.get_rank() == 0:
_create_sinusoidal_embeddings(n_pos=n_pos, dim=dim, out=out)
else:
_create_sinusoidal_embeddings(n_pos=n_pos, dim=dim, out=out)
def _create_sinusoidal_embeddings(n_pos: int, dim: int, out: torch.Tensor):
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
out.requires_grad = False
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
class Embeddings(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim)
self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
self.dropout = nn.Dropout(config.dropout)
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(self, input_ids: torch.Tensor, input_embeds: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Parameters:
input_ids (torch.Tensor):
torch.tensor(bs, max_seq_length) The token ids to embed.
input_embeds (*optional*, torch.Tensor):
The pre-computed word embeddings. Can only be passed if the input ids are `None`.
Returns: torch.tensor(bs, max_seq_length, dim) The embedded tokens (plus position embeddings, no token_type
embeddings)
"""
if input_ids is not None:
input_embeds = self.word_embeddings(input_ids) # (bs, max_seq_length, dim)
seq_length = input_embeds.size(1)
# Setting the position-ids to the registered buffer in constructor, it helps
# when tracing the model without passing position-ids, solves
# isues similar to issue #5664
if hasattr(self, "position_ids"):
position_ids = self.position_ids[:, :seq_length]
else:
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) # (bs, max_seq_length)
position_embeddings = self.position_embeddings(position_ids) # (bs, max_seq_length, dim)
embeddings = input_embeds + position_embeddings # (bs, max_seq_length, dim)
embeddings = self.LayerNorm(embeddings) # (bs, max_seq_length, dim)
embeddings = self.dropout(embeddings) # (bs, max_seq_length, dim)
return embeddings
class MultiHeadSelfAttention(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.config = config
self.n_heads = config.n_heads
self.dim = config.dim
self.dropout = nn.Dropout(p=config.attention_dropout)
self.is_causal = False
# Have an even number of multi heads that divide the dimensions
if self.dim % self.n_heads != 0:
# Raise value errors for even multi-head attention nodes
raise ValueError(f"self.n_heads: {self.n_heads} must divide self.dim: {self.dim} evenly")
self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim)
self.pruned_heads: Set[int] = set()
self.attention_head_size = self.dim // self.n_heads
def prune_heads(self, heads: List[int]):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.q_lin = prune_linear_layer(self.q_lin, index)
self.k_lin = prune_linear_layer(self.k_lin, index)
self.v_lin = prune_linear_layer(self.v_lin, index)
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.dim = self.attention_head_size * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, ...]:
"""
Parameters:
query: torch.tensor(bs, seq_length, dim)
key: torch.tensor(bs, seq_length, dim)
value: torch.tensor(bs, seq_length, dim)
mask: torch.tensor(bs, seq_length)
Returns:
weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs,
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
"""
bs, q_length, dim = query.size()
k_length = key.size(1)
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
# assert key.size() == value.size()
dim_per_head = self.dim // self.n_heads
mask_reshp = (bs, 1, 1, k_length)
def shape(x: torch.Tensor) -> torch.Tensor:
"""separate heads"""
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
def unshape(x: torch.Tensor) -> torch.Tensor:
"""group heads"""
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head)
k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head)
v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head)
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head)
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, q_length, k_length)
mask = (mask == 0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length)
scores = scores.masked_fill(
mask, torch.tensor(torch.finfo(scores.dtype).min)
) # (bs, n_heads, q_length, k_length)
weights = nn.functional.softmax(scores, dim=-1) # (bs, n_heads, q_length, k_length)
weights = self.dropout(weights) # (bs, n_heads, q_length, k_length)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = torch.matmul(weights, v) # (bs, n_heads, q_length, dim_per_head)
context = unshape(context) # (bs, q_length, dim)
context = self.out_lin(context) # (bs, q_length, dim)
if output_attentions:
return (context, weights)
else:
return (context,)
class DistilBertFlashAttention2(MultiHeadSelfAttention):
"""
DistilBert flash attention module. This module inherits from `MultiHeadSelfAttention` as the weights of the module
stays untouched. The only required change would be on the forward pass where it needs to correctly call the public
API of flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, ...]:
"""
Parameters:
query: torch.tensor(bs, seq_length, dim)
key: torch.tensor(bs, seq_length, dim)
value: torch.tensor(bs, seq_length, dim)
mask: torch.tensor(bs, seq_length)
Returns:
weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs,
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
"""
batch_size, q_length, dim = query.size()
dim_per_head = self.dim // self.n_heads
def reshape(x: torch.Tensor) -> torch.Tensor:
"""separate heads"""
return x.view(batch_size, -1, self.n_heads, dim_per_head)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
query_states = reshape(self.q_lin(query))
key_states = reshape(self.k_lin(key))
value_states = reshape(self.v_lin(value))
attn_dropout = self.config.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
if query_states.dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_lin.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_weights = _flash_attention_forward(
query_states,
key_states,
value_states,
mask,
q_length,
dropout=attn_dropout,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_weights_reshaped = attn_weights.reshape(batch_size, q_length, self.n_heads * dim_per_head)
attn_output = self.out_lin(attn_weights_reshaped)
if output_attentions:
return (attn_output, attn_weights)
else:
return (attn_output,)
class DistilBertSdpaAttention(MultiHeadSelfAttention):
def __init__(self, config: PretrainedConfig):
super().__init__(config=config)
self.dropout_prob = config.attention_dropout
self.require_contiguous_qkv = not is_torch_greater_or_equal_than_2_2
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, ...]:
"""
Parameters:
query: torch.tensor(bs, seq_length, dim)
key: torch.tensor(bs, seq_length, dim)
value: torch.tensor(bs, seq_length, dim)
mask: torch.tensor(bs, seq_length)
Returns:
weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs,
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
"""
if output_attentions or head_mask is not None:
logger.warning_once(
"DistilBertSdpaAttention is used but `torch.nn.functional.scaled_dot_product_attention` does not support"
" `output_attentions=True` or `head_mask`. Falling back to the manual attention implementation, but specifying"
" the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be"
' removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
query,
key,
value,
mask,
head_mask,
output_attentions,
)
batch_size, _, _ = query.size()
dim_per_head = self.dim // self.n_heads
def shape(x: torch.Tensor) -> torch.Tensor:
"""separate heads"""
return x.view(batch_size, -1, self.n_heads, dim_per_head).transpose(1, 2)
def unshape(x: torch.Tensor) -> torch.Tensor:
"""group heads"""
return x.transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads * dim_per_head)
q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head)
k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head)
v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head)
# SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
# attn_mask, so we need to call `.contiguous()` here. This was fixed in torch==2.2.0.
# Reference: https://github.com/pytorch/pytorch/issues/112577
if self.require_contiguous_qkv and q.device.type == "cuda" and mask is not None:
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
attn_output = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=self.dropout_prob if self.training else 0.0,
is_causal=False,
)
attn_output = unshape(attn_output)
attn_output = self.out_lin(attn_output)
return (attn_output,)
class FFN(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.dropout = nn.Dropout(p=config.dropout)
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim)
self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim)
self.activation = get_activation(config.activation)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input)
def ff_chunk(self, input: torch.Tensor) -> torch.Tensor:
x = self.lin1(input)
x = self.activation(x)
x = self.lin2(x)
x = self.dropout(x)
return x
DISTILBERT_ATTENTION_CLASSES = {
"eager": MultiHeadSelfAttention,
"flash_attention_2": DistilBertFlashAttention2,
"sdpa": DistilBertSdpaAttention,
}
class TransformerBlock(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
# Have an even number of Configure multi-heads
if config.dim % config.n_heads != 0:
raise ValueError(f"config.n_heads {config.n_heads} must divide config.dim {config.dim} evenly")
self.attention = DISTILBERT_ATTENTION_CLASSES[config._attn_implementation](config)
self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)
self.ffn = FFN(config)
self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12)
def forward(
self,
x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, ...]:
"""
Parameters:
x: torch.tensor(bs, seq_length, dim)
attn_mask: torch.tensor(bs, seq_length)
Returns:
sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output:
torch.tensor(bs, seq_length, dim) The output of the transformer block contextualization.
"""
# Self-Attention
sa_output = self.attention(
query=x,
key=x,
value=x,
mask=attn_mask,
head_mask=head_mask,
output_attentions=output_attentions,
)
if output_attentions:
sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
else: # To handle these `output_attentions` or `output_hidden_states` cases returning tuples
if type(sa_output) is not tuple:
raise TypeError(f"sa_output must be a tuple but it is {type(sa_output)} type")
sa_output = sa_output[0]
sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim)
# Feed Forward Network
ffn_output = self.ffn(sa_output) # (bs, seq_length, dim)
ffn_output: torch.Tensor = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim)
output = (ffn_output,)
if output_attentions:
output = (sa_weights,) + output
return output
class Transformer(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.n_layers = config.n_layers
self.layer = nn.ModuleList([TransformerBlock(config) for _ in range(config.n_layers)])
self.gradient_checkpointing = False
def forward(
self,
x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: Optional[bool] = None,
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]: # docstyle-ignore
"""
Parameters:
x: torch.tensor(bs, seq_length, dim) Input sequence embedded.
attn_mask: torch.tensor(bs, seq_length) Attention mask on the sequence.
Returns:
hidden_state: torch.tensor(bs, seq_length, dim) Sequence of hidden states in the last (top)
layer all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)]
Tuple of length n_layers with the hidden states from each layer.
Optional: only if output_hidden_states=True
all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)]
Tuple of length n_layers with the attention weights from each layer
Optional: only if output_attentions=True
"""
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_state = x
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_state,
attn_mask,
head_mask[i],
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_state,
attn_mask,
head_mask[i],
output_attentions,
)
hidden_state = layer_outputs[-1]
if output_attentions:
if len(layer_outputs) != 2:
raise ValueError(f"The length of the layer_outputs should be 2, but it is {len(layer_outputs)}")
attentions = layer_outputs[0]
all_attentions = all_attentions + (attentions,)
else:
if len(layer_outputs) != 1:
raise ValueError(f"The length of the layer_outputs should be 1, but it is {len(layer_outputs)}")
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions
)
# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL #
class DistilBertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DistilBertConfig
load_tf_weights = None
base_model_prefix = "distilbert"
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module: nn.Module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, Embeddings) and self.config.sinusoidal_pos_embds:
create_sinusoidal_embeddings(
self.config.max_position_embeddings, self.config.dim, module.position_embeddings.weight
)
DISTILBERT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DISTILBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.",
DISTILBERT_START_DOCSTRING,
)
class DistilBertModel(DistilBertPreTrainedModel):
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.embeddings = Embeddings(config) # Embeddings
self.transformer = Transformer(config) # Encoder
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
# Initialize weights and apply final processing
self.post_init()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.embeddings.position_embeddings
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embedding matrix. If position embeddings are learned, increasing the size
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
the size will remove vectors from the end.
"""
num_position_embeds_diff = new_num_position_embeddings - self.config.max_position_embeddings
# no resizing needs to be done if the length stays the same
if num_position_embeds_diff == 0:
return
logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
self.config.max_position_embeddings = new_num_position_embeddings
old_position_embeddings_weight = self.embeddings.position_embeddings.weight.clone()
self.embeddings.position_embeddings = nn.Embedding(self.config.max_position_embeddings, self.config.dim)
if self.config.sinusoidal_pos_embds:
create_sinusoidal_embeddings(
n_pos=self.config.max_position_embeddings, dim=self.config.dim, out=self.position_embeddings.weight
)
else:
with torch.no_grad():
if num_position_embeds_diff > 0:
self.embeddings.position_embeddings.weight[:-num_position_embeds_diff] = nn.Parameter(
old_position_embeddings_weight
)
else:
self.embeddings.position_embeddings.weight = nn.Parameter(
old_position_embeddings_weight[:num_position_embeds_diff]
)
# move position_embeddings to correct device
self.embeddings.position_embeddings.to(self.device)
def get_input_embeddings(self) -> nn.Embedding:
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings: nn.Embedding):
self.embeddings.word_embeddings = new_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List[List[int]]]):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.transformer.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
head_mask_is_none = head_mask is None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embeddings = self.embeddings(input_ids, inputs_embeds) # (bs, seq_length, dim)
if self._use_flash_attention_2:
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device) # (bs, seq_length)
if self._use_sdpa and head_mask_is_none and not output_attentions:
attention_mask = _prepare_4d_attention_mask_for_sdpa(
attention_mask, embeddings.dtype, tgt_len=input_shape[1]
)
return self.transformer(
x=embeddings,
attn_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(
"""DistilBert Model with a `masked language modeling` head on top.""",
DISTILBERT_START_DOCSTRING,
)
class DistilBertForMaskedLM(DistilBertPreTrainedModel):
_tied_weights_keys = ["vocab_projector.weight"]
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.activation = get_activation(config.activation)
self.distilbert = DistilBertModel(config)
self.vocab_transform = nn.Linear(config.dim, config.dim)
self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12)
self.vocab_projector = nn.Linear(config.dim, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
self.mlm_loss_fct = nn.CrossEntropyLoss()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.distilbert.get_position_embeddings()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embedding matrix. If position embeddings are learned, increasing the size
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
the size will remove vectors from the end.
"""
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
def get_output_embeddings(self) -> nn.Module:
return self.vocab_projector
def set_output_embeddings(self, new_embeddings: nn.Module):
self.vocab_projector = new_embeddings
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[MaskedLMOutput, Tuple[torch.Tensor, ...]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
dlbrt_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = dlbrt_output[0] # (bs, seq_length, dim)
prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim)
prediction_logits = self.activation(prediction_logits) # (bs, seq_length, dim)
prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim)
prediction_logits = self.vocab_projector(prediction_logits) # (bs, seq_length, vocab_size)
mlm_loss = None
if labels is not None:
mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)), labels.view(-1))
if not return_dict:
output = (prediction_logits,) + dlbrt_output[1:]
return ((mlm_loss,) + output) if mlm_loss is not None else output
return MaskedLMOutput(
loss=mlm_loss,
logits=prediction_logits,
hidden_states=dlbrt_output.hidden_states,
attentions=dlbrt_output.attentions,
)
@add_start_docstrings(
"""
DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
DISTILBERT_START_DOCSTRING,
)
class DistilBertForSequenceClassification(DistilBertPreTrainedModel):
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.distilbert = DistilBertModel(config)
self.pre_classifier = nn.Linear(config.dim, config.dim)
self.classifier = nn.Linear(config.dim, config.num_labels)
self.dropout = nn.Dropout(config.seq_classif_dropout)
# Initialize weights and apply final processing
self.post_init()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.distilbert.get_position_embeddings()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embedding matrix. If position embeddings are learned, increasing the size
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
the size will remove vectors from the end.
"""
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[SequenceClassifierOutput, Tuple[torch.Tensor, ...]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
distilbert_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs, dim)
pooled_output = self.dropout(pooled_output) # (bs, dim)
logits = self.classifier(pooled_output) # (bs, num_labels)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)
@add_start_docstrings(
"""
DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
DISTILBERT_START_DOCSTRING,
)
class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.distilbert = DistilBertModel(config)
self.qa_outputs = nn.Linear(config.dim, config.num_labels)
if config.num_labels != 2:
raise ValueError(f"config.num_labels should be 2, but it is {config.num_labels}")
self.dropout = nn.Dropout(config.qa_dropout)
# Initialize weights and apply final processing
self.post_init()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.distilbert.get_position_embeddings()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embedding matrix. If position embeddings are learned, increasing the size
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
the size will remove vectors from the end.
"""
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[QuestionAnsweringModelOutput, Tuple[torch.Tensor, ...]]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
distilbert_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = distilbert_output[0] # (bs, max_query_len, dim)
hidden_states = self.dropout(hidden_states) # (bs, max_query_len, dim)
logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous() # (bs, max_query_len)
end_logits = end_logits.squeeze(-1).contiguous() # (bs, max_query_len)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + distilbert_output[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)
@add_start_docstrings(
"""
DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
DISTILBERT_START_DOCSTRING,
)
class DistilBertForTokenClassification(DistilBertPreTrainedModel):
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.distilbert = DistilBertModel(config)
self.dropout = nn.Dropout(config.dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.distilbert.get_position_embeddings()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embedding matrix. If position embeddings are learned, increasing the size
will add newly initialized vectors at the end, whereas reducing the size will remove vectors from the
end. If position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the
size will add correct vectors at the end following the position encoding algorithm, whereas reducing
the size will remove vectors from the end.
"""
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[TokenClassifierOutput, Tuple[torch.Tensor, ...]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.distilbert(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
a softmax) e.g. for RocStories/SWAG tasks.
""",
DISTILBERT_START_DOCSTRING,
)
class DistilBertForMultipleChoice(DistilBertPreTrainedModel):
def __init__(self, config: PretrainedConfig):
super().__init__(config)
self.distilbert = DistilBertModel(config)
self.pre_classifier = nn.Linear(config.dim, config.dim)
self.classifier = nn.Linear(config.dim, 1)
self.dropout = nn.Dropout(config.seq_classif_dropout)
# Initialize weights and apply final processing
self.post_init()
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings
"""
return self.distilbert.get_position_embeddings()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings of the model if `new_num_position_embeddings != config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`)
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
self.distilbert.resize_position_embeddings(new_num_position_embeddings)
@add_start_docstrings_to_model_forward(
DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@replace_return_docstrings(output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[MultipleChoiceModelOutput, Tuple[torch.Tensor, ...]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, DistilBertForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased")
>>> model = DistilBertForMultipleChoice.from_pretrained("distilbert-base-cased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([[prompt, choice0], [prompt, choice1]], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.distilbert(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim)
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim)
pooled_output = self.dropout(pooled_output) # (bs * num_choices, dim)
logits = self.classifier(pooled_output) # (bs * num_choices, 1)
reshaped_logits = logits.view(-1, num_choices) # (bs, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
```
|
==================================================================================================================================================
SOURCE CODE FILE: modeling_flax_distilbert.py
LINES: 1
SIZE: 32.15 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\distilbert\modeling_flax_distilbert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Callable, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxMaskedLMOutput,
FlaxMultipleChoiceModelOutput,
FlaxQuestionAnsweringModelOutput,
FlaxSequenceClassifierOutput,
FlaxTokenClassifierOutput,
)
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_distilbert import DistilBertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "distilbert-base-uncased"
_CONFIG_FOR_DOC = "DistilBertConfig"
FLAX_DISTILBERT_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DISTILBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def get_angles(pos, i, d_model):
angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model))
return pos * angle_rates
def positional_encoding(position, d_model):
# create the sinusoidal pattern for the positional encoding
angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model)
# apply sin to even indices in the array; 2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# apply cos to odd indices in the array; 2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return jnp.array(pos_encoding)
class FlaxEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.config.dim,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
if not self.config.sinusoidal_pos_embds:
self.position_embeddings = nn.Embed(
self.config.max_position_embeddings,
self.config.dim,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
else:
self.pos_encoding = positional_encoding(self.config.max_position_embeddings, self.config.dim)
self.LayerNorm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.dropout)
def __call__(self, input_ids, deterministic: bool = True):
# Embed
batch_size, seq_length = input_ids.shape
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
if not self.config.sinusoidal_pos_embds:
position_ids = jnp.arange(seq_length).astype("i4")
position_ids = jnp.broadcast_to(position_ids, shape=(batch_size, seq_length))
position_embeds = self.position_embeddings(position_ids.astype("i4"))
else:
position_embeds = self.pos_encoding[:, :seq_length, :]
# explicitly cast the positions here, since self.embed_positions are not registered as parameters
position_embeds = position_embeds.astype(inputs_embeds.dtype)
# Sum all embeddings
hidden_states = inputs_embeds + position_embeds
# Layer Norm
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxMultiHeadSelfAttention(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.n_heads = self.config.n_heads
self.dim = self.config.dim
self.dropout = nn.Dropout(rate=self.config.attention_dropout)
if not (self.dim % self.n_heads == 0):
raise ValueError(f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}")
self.q_lin = nn.Dense(
self.dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.k_lin = nn.Dense(
self.dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.v_lin = nn.Dense(
self.dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.out_lin = nn.Dense(
self.dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
def __call__(
self,
query,
key,
value,
mask,
deterministic: bool = True,
output_attentions: bool = False,
):
bs, q_len, dim = query.shape
k_len = key.shape[1]
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
# assert key.size() == value.size()
dim_per_head = self.dim // self.n_heads
mask_reshp = (bs, 1, 1, k_len)
def shape(x):
"""separate heads"""
return x.reshape(bs, -1, self.n_heads, dim_per_head).transpose(0, 2, 1, 3)
def unshape(x):
"""group heads"""
return x.transpose(0, 2, 1, 3).reshape(bs, -1, self.n_heads * dim_per_head)
q = shape(self.q_lin(query)) # (bs, n_heads, q_len, dim_per_head)
k = shape(self.k_lin(key)) # (bs, n_heads, k_len, dim_per_head)
v = shape(self.v_lin(value)) # (bs, n_heads, k_len, dim_per_head)
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_len, dim_per_head)
scores = jnp.matmul(q, k.transpose(0, 1, 3, 2)) # (bs, n_heads, q_len, k_len)
mask = jnp.reshape(mask, mask_reshp)
mask = mask.astype(scores.dtype)
scores = scores - 1e30 * (1.0 - mask)
weights = nn.softmax(scores, axis=-1) # (bs, n_heads, q_len, k_len)
weights = self.dropout(weights, deterministic=deterministic)
context = jnp.matmul(weights, v) # (bs, n_heads, q_len, dim_per_head)
context = unshape(context) # (bs, q_len, dim)
context = self.out_lin(context) # (bs, q_len, dim)
if output_attentions:
return (context, weights)
else:
return (context,)
class FlaxFFN(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout = nn.Dropout(rate=self.config.dropout)
self.chunk_size_feed_forward = self.config.chunk_size_feed_forward
self.seq_len_dim = 1
self.lin1 = nn.Dense(
self.config.hidden_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.lin2 = nn.Dense(
self.config.dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.activation = ACT2FN[self.config.activation]
def __call__(self, hidden_states, deterministic: bool = True):
hidden_states = self.lin1(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.lin2(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxTransformerBlock(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
assert self.config.dim % self.config.n_heads == 0, (
f"Hidden size {self.config.dim} not dividable by number of heads {self.config.n_heads}"
)
self.attention = FlaxMultiHeadSelfAttention(self.config, dtype=self.dtype)
self.sa_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype)
self.ffn = FlaxFFN(self.config, dtype=self.dtype)
self.output_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype)
def __call__(
self,
hidden_states,
attn_mask,
output_attentions: bool = False,
deterministic: bool = True,
):
# Self-Attention
sa_output = self.attention(
query=hidden_states,
key=hidden_states,
value=hidden_states,
mask=attn_mask,
output_attentions=output_attentions,
deterministic=deterministic,
)
if output_attentions:
sa_output, sa_weights = sa_output
else:
assert type(sa_output) is tuple
sa_output = sa_output[0]
sa_output = self.sa_layer_norm(sa_output + hidden_states)
# Feed Forward Network
ffn_output = self.ffn(sa_output, deterministic=deterministic)
ffn_output = self.output_layer_norm(ffn_output + sa_output)
output = (ffn_output,)
if output_attentions:
output = (sa_weights,) + output
return output
class FlaxTransformer(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxTransformerBlock(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.n_layers)
]
def __call__(
self,
hidden_states,
attention_mask,
output_attentions: bool = False,
output_hidden_states: bool = False,
deterministic: bool = True,
return_dict: bool = False,
):
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for layer_module in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states=hidden_states,
attn_mask=attention_mask,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[-1]
if output_attentions:
assert len(layer_outputs) == 2
attentions = layer_outputs[0]
all_attentions = all_attentions + (attentions,)
else:
assert len(layer_outputs) == 1
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_attentions, all_hidden_states] if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class FlaxTransformerEncoder(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layer = FlaxTransformer(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
output_attentions: bool = False,
output_hidden_states: bool = False,
deterministic: bool = True,
return_dict: bool = False,
):
return self.layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
deterministic=deterministic,
return_dict=return_dict,
)
class FlaxDistilBertLMDecoder(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
def __call__(self, inputs, kernel):
inputs = jnp.asarray(inputs, self.dtype)
kernel = jnp.asarray(kernel, self.dtype)
y = lax.dot_general(inputs, kernel, (((inputs.ndim - 1,), (0,)), ((), ())))
bias = jnp.asarray(self.bias, self.dtype)
y = y + bias
return y
class FlaxDistilBertPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DistilBertConfig
base_model_prefix = "distilbert"
module_class: nn.Module = None
def __init__(
self,
config: DistilBertConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
input_ids,
attention_mask=None,
head_mask=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
class FlaxDistilBertModule(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.embeddings = FlaxEmbeddings(self.config, dtype=self.dtype)
self.transformer = FlaxTransformerEncoder(self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
input_embeds = self.embeddings(input_ids, deterministic=deterministic)
return self.transformer(
hidden_states=input_embeds,
attention_mask=attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(
"The bare DistilBert Model transformer outputting raw hidden-states without any specific head on top.",
FLAX_DISTILBERT_START_DOCSTRING,
)
class FlaxDistilBertModel(FlaxDistilBertPreTrainedModel):
module_class = FlaxDistilBertModule
append_call_sample_docstring(FlaxDistilBertModel, _CHECKPOINT_FOR_DOC, None, _CONFIG_FOR_DOC)
class FlaxDistilBertForMaskedLMModule(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.distilbert = FlaxDistilBertModule(self.config, dtype=self.dtype)
self.vocab_transform = nn.Dense(
self.config.dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.vocab_layer_norm = nn.LayerNorm(epsilon=1e-12, dtype=self.dtype)
if self.config.tie_word_embeddings:
self.vocab_projector = FlaxDistilBertLMDecoder(
self.config,
dtype=self.dtype,
)
else:
self.vocab_projector = nn.Dense(
self.config.vocab_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
def __call__(
self,
input_ids,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
dlbrt_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
deterministic=deterministic,
return_dict=return_dict,
)
hidden_states = dlbrt_output[0]
prediction_logits = self.vocab_transform(hidden_states)
prediction_logits = ACT2FN[self.config.activation](prediction_logits)
prediction_logits = self.vocab_layer_norm(prediction_logits)
if self.config.tie_word_embeddings:
shared_embedding = self.distilbert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
prediction_logits = self.vocab_projector(prediction_logits, shared_embedding.T)
else:
prediction_logits = self.vocab_projector(prediction_logits)
if not return_dict:
output = (prediction_logits,) + dlbrt_output[1:]
return output
return FlaxMaskedLMOutput(
logits=prediction_logits,
hidden_states=dlbrt_output.hidden_states,
attentions=dlbrt_output.attentions,
)
@add_start_docstrings("""DistilBert Model with a `language modeling` head on top.""", FLAX_DISTILBERT_START_DOCSTRING)
class FlaxDistilBertForMaskedLM(FlaxDistilBertPreTrainedModel):
module_class = FlaxDistilBertForMaskedLMModule
append_call_sample_docstring(FlaxDistilBertForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
class FlaxDistilBertForSequenceClassificationModule(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype)
self.pre_classifier = nn.Dense(
self.config.dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.dropout = nn.Dropout(rate=self.config.seq_classif_dropout)
self.classifier = nn.Dense(
self.config.num_labels,
dtype=self.dtype,
)
def __call__(
self,
input_ids,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Model
distilbert_output = self.distilbert(
input_ids,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
pooled_output = ACT2FN["relu"](pooled_output)
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output) # (bs, dim)
if not return_dict:
return (logits,) + distilbert_output[1:]
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)
@add_start_docstrings(
"""
DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
FLAX_DISTILBERT_START_DOCSTRING,
)
class FlaxDistilBertForSequenceClassification(FlaxDistilBertPreTrainedModel):
module_class = FlaxDistilBertForSequenceClassificationModule
append_call_sample_docstring(
FlaxDistilBertForSequenceClassification,
_CHECKPOINT_FOR_DOC,
FlaxSequenceClassifierOutput,
_CONFIG_FOR_DOC,
)
class FlaxDistilBertForMultipleChoiceModule(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype)
self.pre_classifier = nn.Dense(
self.config.dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.dropout = nn.Dropout(rate=self.config.seq_classif_dropout)
self.classifier = nn.Dense(
1,
dtype=self.dtype,
)
def __call__(
self,
input_ids,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1]
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
# Model
outputs = self.distilbert(
input_ids,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_state = outputs[0]
pooled_output = hidden_state[:, 0]
pooled_output = self.pre_classifier(pooled_output)
pooled_output = ACT2FN["relu"](pooled_output)
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
if not return_dict:
return (reshaped_logits,) + outputs[2:]
return FlaxMultipleChoiceModelOutput(
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
a softmax) e.g. for RocStories/SWAG tasks.
""",
FLAX_DISTILBERT_START_DOCSTRING,
)
class FlaxDistilBertForMultipleChoice(FlaxDistilBertPreTrainedModel):
module_class = FlaxDistilBertForMultipleChoiceModule
overwrite_call_docstring(
FlaxDistilBertForMultipleChoice, DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
append_call_sample_docstring(
FlaxDistilBertForMultipleChoice,
_CHECKPOINT_FOR_DOC,
FlaxMultipleChoiceModelOutput,
_CONFIG_FOR_DOC,
)
class FlaxDistilBertForTokenClassificationModule(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.dropout)
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Model
outputs = self.distilbert(
input_ids,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.classifier(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxTokenClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
FLAX_DISTILBERT_START_DOCSTRING,
)
class FlaxDistilBertForTokenClassification(FlaxDistilBertPreTrainedModel):
module_class = FlaxDistilBertForTokenClassificationModule
append_call_sample_docstring(
FlaxDistilBertForTokenClassification,
_CHECKPOINT_FOR_DOC,
FlaxTokenClassifierOutput,
_CONFIG_FOR_DOC,
)
class FlaxDistilBertForQuestionAnsweringModule(nn.Module):
config: DistilBertConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.distilbert = FlaxDistilBertModule(config=self.config, dtype=self.dtype)
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
assert self.config.num_labels == 2
self.dropout = nn.Dropout(rate=self.config.qa_dropout)
def __call__(
self,
input_ids,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Model
distilbert_output = self.distilbert(
input_ids,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = distilbert_output[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
return (start_logits, end_logits) + distilbert_output[1:]
return FlaxQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)
@add_start_docstrings(
"""
DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FLAX_DISTILBERT_START_DOCSTRING,
)
class FlaxDistilBertForQuestionAnswering(FlaxDistilBertPreTrainedModel):
module_class = FlaxDistilBertForQuestionAnsweringModule
append_call_sample_docstring(
FlaxDistilBertForQuestionAnswering,
_CHECKPOINT_FOR_DOC,
FlaxQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
__all__ = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
```
|
================================================================================================================================================
SOURCE CODE FILE: modeling_tf_distilbert.py
LINES: 1
SIZE: 47.99 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\distilbert\modeling_tf_distilbert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
TF 2.0 DistilBERT model
"""
from __future__ import annotations
import warnings
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_distilbert import DistilBertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "distilbert-base-uncased"
_CONFIG_FOR_DOC = "DistilBertConfig"
class TFEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.dim = config.dim
self.initializer_range = config.initializer_range
self.max_position_embeddings = config.max_position_embeddings
self.LayerNorm = keras.layers.LayerNormalization(epsilon=1e-12, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.dropout)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.dim],
initializer=get_initializer(initializer_range=self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.dim],
initializer=get_initializer(initializer_range=self.initializer_range),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.dim])
def call(self, input_ids=None, position_ids=None, inputs_embeds=None, training=False):
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
assert not (input_ids is None and inputs_embeds is None)
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if position_ids is None:
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
final_embeddings = inputs_embeds + position_embeds
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
class TFMultiHeadSelfAttention(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.n_heads = config.n_heads
self.dim = config.dim
self.dropout = keras.layers.Dropout(config.attention_dropout)
self.output_attentions = config.output_attentions
assert self.dim % self.n_heads == 0, f"Hidden size {self.dim} not dividable by number of heads {self.n_heads}"
self.q_lin = keras.layers.Dense(
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="q_lin"
)
self.k_lin = keras.layers.Dense(
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="k_lin"
)
self.v_lin = keras.layers.Dense(
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="v_lin"
)
self.out_lin = keras.layers.Dense(
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="out_lin"
)
self.pruned_heads = set()
self.config = config
def prune_heads(self, heads):
raise NotImplementedError
def call(self, query, key, value, mask, head_mask, output_attentions, training=False):
"""
Parameters:
query: tf.Tensor(bs, seq_length, dim)
key: tf.Tensor(bs, seq_length, dim)
value: tf.Tensor(bs, seq_length, dim)
mask: tf.Tensor(bs, seq_length)
Returns:
weights: tf.Tensor(bs, n_heads, seq_length, seq_length) Attention weights context: tf.Tensor(bs,
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
"""
bs, q_length, dim = shape_list(query)
k_length = shape_list(key)[1]
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
# assert key.size() == value.size()
dim_per_head = int(self.dim / self.n_heads)
dim_per_head = tf.cast(dim_per_head, dtype=tf.int32)
mask_reshape = [bs, 1, 1, k_length]
def shape(x):
"""separate heads"""
return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3))
def unshape(x):
"""group heads"""
return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head))
q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head)
k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head)
v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head)
q = tf.cast(q, dtype=tf.float32)
q = tf.multiply(q, tf.math.rsqrt(tf.cast(dim_per_head, dtype=tf.float32)))
k = tf.cast(k, dtype=q.dtype)
scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, q_length, k_length)
mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen)
# scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, q_length, k_length)
mask = tf.cast(mask, dtype=scores.dtype)
scores = scores - 1e30 * (1.0 - mask)
weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen)
weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
context = unshape(context) # (bs, q_length, dim)
context = self.out_lin(context) # (bs, q_length, dim)
if output_attentions:
return (context, weights)
else:
return (context,)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "q_lin", None) is not None:
with tf.name_scope(self.q_lin.name):
self.q_lin.build([None, None, self.config.dim])
if getattr(self, "k_lin", None) is not None:
with tf.name_scope(self.k_lin.name):
self.k_lin.build([None, None, self.config.dim])
if getattr(self, "v_lin", None) is not None:
with tf.name_scope(self.v_lin.name):
self.v_lin.build([None, None, self.config.dim])
if getattr(self, "out_lin", None) is not None:
with tf.name_scope(self.out_lin.name):
self.out_lin.build([None, None, self.config.dim])
class TFFFN(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dropout = keras.layers.Dropout(config.dropout)
self.lin1 = keras.layers.Dense(
config.hidden_dim, kernel_initializer=get_initializer(config.initializer_range), name="lin1"
)
self.lin2 = keras.layers.Dense(
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="lin2"
)
self.activation = get_tf_activation(config.activation)
self.config = config
def call(self, input, training=False):
x = self.lin1(input)
x = self.activation(x)
x = self.lin2(x)
x = self.dropout(x, training=training)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "lin1", None) is not None:
with tf.name_scope(self.lin1.name):
self.lin1.build([None, None, self.config.dim])
if getattr(self, "lin2", None) is not None:
with tf.name_scope(self.lin2.name):
self.lin2.build([None, None, self.config.hidden_dim])
class TFTransformerBlock(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.n_heads = config.n_heads
self.dim = config.dim
self.hidden_dim = config.hidden_dim
self.dropout = keras.layers.Dropout(config.dropout)
self.activation = config.activation
self.output_attentions = config.output_attentions
assert config.dim % config.n_heads == 0, (
f"Hidden size {config.dim} not dividable by number of heads {config.n_heads}"
)
self.attention = TFMultiHeadSelfAttention(config, name="attention")
self.sa_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="sa_layer_norm")
self.ffn = TFFFN(config, name="ffn")
self.output_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="output_layer_norm")
self.config = config
def call(self, x, attn_mask, head_mask, output_attentions, training=False): # removed: src_enc=None, src_len=None
"""
Parameters:
x: tf.Tensor(bs, seq_length, dim)
attn_mask: tf.Tensor(bs, seq_length)
Outputs: sa_weights: tf.Tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output:
tf.Tensor(bs, seq_length, dim) The output of the transformer block contextualization.
"""
# Self-Attention
sa_output = self.attention(x, x, x, attn_mask, head_mask, output_attentions, training=training)
if output_attentions:
sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length)
else: # To handle these `output_attentions` or `output_hidden_states` cases returning tuples
# assert type(sa_output) == tuple
sa_output = sa_output[0]
sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim)
# Feed Forward Network
ffn_output = self.ffn(sa_output, training=training) # (bs, seq_length, dim)
ffn_output = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim)
output = (ffn_output,)
if output_attentions:
output = (sa_weights,) + output
return output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "sa_layer_norm", None) is not None:
with tf.name_scope(self.sa_layer_norm.name):
self.sa_layer_norm.build([None, None, self.config.dim])
if getattr(self, "ffn", None) is not None:
with tf.name_scope(self.ffn.name):
self.ffn.build(None)
if getattr(self, "output_layer_norm", None) is not None:
with tf.name_scope(self.output_layer_norm.name):
self.output_layer_norm.build([None, None, self.config.dim])
class TFTransformer(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.n_layers = config.n_layers
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.layer = [TFTransformerBlock(config, name=f"layer_._{i}") for i in range(config.n_layers)]
def call(self, x, attn_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False):
# docstyle-ignore
"""
Parameters:
x: tf.Tensor(bs, seq_length, dim) Input sequence embedded.
attn_mask: tf.Tensor(bs, seq_length) Attention mask on the sequence.
Returns:
hidden_state: tf.Tensor(bs, seq_length, dim)
Sequence of hidden states in the last (top) layer
all_hidden_states: Tuple[tf.Tensor(bs, seq_length, dim)]
Tuple of length n_layers with the hidden states from each layer.
Optional: only if output_hidden_states=True
all_attentions: Tuple[tf.Tensor(bs, n_heads, seq_length, seq_length)]
Tuple of length n_layers with the attention weights from each layer
Optional: only if output_attentions=True
"""
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_state = x
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
layer_outputs = layer_module(hidden_state, attn_mask, head_mask[i], output_attentions, training=training)
hidden_state = layer_outputs[-1]
if output_attentions:
assert len(layer_outputs) == 2
attentions = layer_outputs[0]
all_attentions = all_attentions + (attentions,)
else:
assert len(layer_outputs) == 1, f"Incorrect number of outputs {len(layer_outputs)} instead of 1"
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFDistilBertMainLayer(keras.layers.Layer):
config_class = DistilBertConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.num_hidden_layers = config.num_hidden_layers
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.embeddings = TFEmbeddings(config, name="embeddings") # Embeddings
self.transformer = TFTransformer(config, name="transformer") # Encoder
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = value.shape[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.ones(input_shape) # (bs, seq_length)
attention_mask = tf.cast(attention_mask, dtype=tf.float32)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.num_hidden_layers
embedding_output = self.embeddings(input_ids, inputs_embeds=inputs_embeds) # (bs, seq_length, dim)
tfmr_output = self.transformer(
embedding_output,
attention_mask,
head_mask,
output_attentions,
output_hidden_states,
return_dict,
training=training,
)
return tfmr_output # last-layer hidden-state, (all hidden_states), (all attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL #
class TFDistilBertPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DistilBertConfig
base_model_prefix = "distilbert"
DISTILBERT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`DistilBertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DISTILBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.",
DISTILBERT_START_DOCSTRING,
)
class TFDistilBertModel(TFDistilBertPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.distilbert = TFDistilBertMainLayer(config, name="distilbert") # Embeddings
@unpack_inputs
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "distilbert", None) is not None:
with tf.name_scope(self.distilbert.name):
self.distilbert.build(None)
class TFDistilBertLMHead(keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.config = config
self.dim = config.dim
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.input_embeddings = input_embeddings
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def get_output_embeddings(self):
return self.input_embeddings
def set_output_embeddings(self, value):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.dim])
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
@add_start_docstrings(
"""DistilBert Model with a `masked language modeling` head on top.""",
DISTILBERT_START_DOCSTRING,
)
class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel, TFMaskedLanguageModelingLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.config = config
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
self.vocab_transform = keras.layers.Dense(
config.dim, kernel_initializer=get_initializer(config.initializer_range), name="vocab_transform"
)
self.act = get_tf_activation(config.activation)
self.vocab_layer_norm = keras.layers.LayerNormalization(epsilon=1e-12, name="vocab_layer_norm")
self.vocab_projector = TFDistilBertLMHead(config, self.distilbert.embeddings, name="vocab_projector")
def get_lm_head(self):
return self.vocab_projector
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.vocab_projector.name
@unpack_inputs
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
distilbert_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = distilbert_output[0] # (bs, seq_length, dim)
prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim)
prediction_logits = self.act(prediction_logits) # (bs, seq_length, dim)
prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim)
prediction_logits = self.vocab_projector(prediction_logits)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_logits)
if not return_dict:
output = (prediction_logits,) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "distilbert", None) is not None:
with tf.name_scope(self.distilbert.name):
self.distilbert.build(None)
if getattr(self, "vocab_transform", None) is not None:
with tf.name_scope(self.vocab_transform.name):
self.vocab_transform.build([None, None, self.config.dim])
if getattr(self, "vocab_layer_norm", None) is not None:
with tf.name_scope(self.vocab_layer_norm.name):
self.vocab_layer_norm.build([None, None, self.config.dim])
if getattr(self, "vocab_projector", None) is not None:
with tf.name_scope(self.vocab_projector.name):
self.vocab_projector.build(None)
@add_start_docstrings(
"""
DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
DISTILBERT_START_DOCSTRING,
)
class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
self.pre_classifier = keras.layers.Dense(
config.dim,
kernel_initializer=get_initializer(config.initializer_range),
activation="relu",
name="pre_classifier",
)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.dropout = keras.layers.Dropout(config.seq_classif_dropout)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
distilbert_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
pooled_output = self.dropout(pooled_output, training=training) # (bs, dim)
logits = self.classifier(pooled_output) # (bs, dim)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "distilbert", None) is not None:
with tf.name_scope(self.distilbert.name):
self.distilbert.build(None)
if getattr(self, "pre_classifier", None) is not None:
with tf.name_scope(self.pre_classifier.name):
self.pre_classifier.build([None, None, self.config.dim])
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.dim])
@add_start_docstrings(
"""
DistilBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
DISTILBERT_START_DOCSTRING,
)
class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
self.dropout = keras.layers.Dropout(config.dropout)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "distilbert", None) is not None:
with tf.name_scope(self.distilbert.name):
self.distilbert.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
DistilBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
a softmax) e.g. for RocStories/SWAG tasks.
""",
DISTILBERT_START_DOCSTRING,
)
class TFDistilBertForMultipleChoice(TFDistilBertPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
self.dropout = keras.layers.Dropout(config.seq_classif_dropout)
self.pre_classifier = keras.layers.Dense(
config.dim,
kernel_initializer=get_initializer(config.initializer_range),
activation="relu",
name="pre_classifier",
)
self.classifier = keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(
DISTILBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
distilbert_output = self.distilbert(
flat_input_ids,
flat_attention_mask,
head_mask,
flat_inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_state = distilbert_output[0] # (bs, seq_len, dim)
pooled_output = hidden_state[:, 0] # (bs, dim)
pooled_output = self.pre_classifier(pooled_output) # (bs, dim)
pooled_output = self.dropout(pooled_output, training=training) # (bs, dim)
logits = self.classifier(pooled_output)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "distilbert", None) is not None:
with tf.name_scope(self.distilbert.name):
self.distilbert.build(None)
if getattr(self, "pre_classifier", None) is not None:
with tf.name_scope(self.pre_classifier.name):
self.pre_classifier.build([None, None, self.config.dim])
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.dim])
@add_start_docstrings(
"""
DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
DISTILBERT_START_DOCSTRING,
)
class TFDistilBertForQuestionAnswering(TFDistilBertPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.distilbert = TFDistilBertMainLayer(config, name="distilbert")
self.qa_outputs = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
assert config.num_labels == 2, f"Incorrect number of labels {config.num_labels} instead of 2"
self.dropout = keras.layers.Dropout(config.qa_dropout)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(DISTILBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
distilbert_output = self.distilbert(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = distilbert_output[0] # (bs, max_query_len, dim)
hidden_states = self.dropout(hidden_states, training=training) # (bs, max_query_len, dim)
logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + distilbert_output[1:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=distilbert_output.hidden_states,
attentions=distilbert_output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "distilbert", None) is not None:
with tf.name_scope(self.distilbert.name):
self.distilbert.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.dim])
__all__ = [
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
```
|
=================================================================================================================================================
SOURCE CODE FILE: tokenization_distilbert.py
LINES: 3
SIZE: 21.74 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\distilbert\tokenization_distilbert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for DistilBERT."""
import collections
import os
import unicodedata
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
# Copied from transformers.models.bert.tokenization_bert.load_vocab
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class DistilBertTokenizer(PreTrainedTokenizer):
r"""
Construct a DistilBERT tokenizer. Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
clean_up_tokenization_spaces=True,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = DistilBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size
def vocab_size(self):
return len(self.vocab)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize
def _tokenize(self, text, split_special_tokens=False):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(
text, never_split=self.all_special_tokens if not split_special_tokens else None
):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
__all__ = ["DistilBertTokenizer"]
```
|
======================================================================================================================================================
SOURCE CODE FILE: tokenization_distilbert_fast.py
LINES: 1
SIZE: 7.89 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\distilbert\tokenization_distilbert_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for DistilBERT."""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
class DistilBertTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" DistilBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = DistilBertTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
self.do_lower_case = do_lower_case
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1 is not None:
output += token_ids_1 + [self.sep_token_id]
return output
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["DistilBertTokenizerFast"]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.00 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dit\__init__.py
ENCODING: utf-8
```py
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.10 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\donut\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_donut_swin import *
from .feature_extraction_donut import *
from .image_processing_donut import *
from .modeling_donut_swin import *
from .processing_donut import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
=============================================================================================================================================
SOURCE CODE FILE: configuration_donut_swin.py
LINES: 1
SIZE: 5.65 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\donut\configuration_donut_swin.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Donut Swin Transformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class DonutSwinConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DonutSwinModel`]. It is used to instantiate a
Donut model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Donut
[naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 4):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embed_dim (`int`, *optional*, defaults to 96):
Dimensionality of patch embedding.
depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
Depth of each layer in the Transformer encoder.
num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
Number of attention heads in each layer of the Transformer encoder.
window_size (`int`, *optional*, defaults to 7):
Size of windows.
mlp_ratio (`float`, *optional*, defaults to 4.0):
Ratio of MLP hidden dimensionality to embedding dimensionality.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether or not a learnable bias should be added to the queries, keys and values.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings and encoder.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to add absolute position embeddings to the patch embeddings.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
Example:
```python
>>> from transformers import DonutSwinConfig, DonutSwinModel
>>> # Initializing a Donut naver-clova-ix/donut-base style configuration
>>> configuration = DonutSwinConfig()
>>> # Randomly initializing a model from the naver-clova-ix/donut-base style configuration
>>> model = DonutSwinModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "donut-swin"
attribute_map = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
image_size=224,
patch_size=4,
num_channels=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.0,
qkv_bias=True,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
drop_path_rate=0.1,
hidden_act="gelu",
use_absolute_embeddings=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.depths = depths
self.num_layers = len(depths)
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_absolute_embeddings = use_absolute_embeddings
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
__all__ = ["DonutSwinConfig"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: feature_extraction_donut.py
LINES: 1
SIZE: 1.19 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\donut\feature_extraction_donut.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for Donut."""
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
logger = logging.get_logger(__name__)
class DonutFeatureExtractor(DonutImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DonutImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
__all__ = ["DonutFeatureExtractor"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: image_processing_donut.py
LINES: 1
SIZE: 21.35 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\donut\image_processing_donut.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Donut."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
get_resize_output_image_size,
pad,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, logging
from ...utils.import_utils import is_vision_available
logger = logging.get_logger(__name__)
if is_vision_available():
import PIL
class DonutImageProcessor(BaseImageProcessor):
r"""
Constructs a Donut image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_thumbnail (`bool`, *optional*, defaults to `True`):
Whether to resize the image using thumbnail method.
do_align_long_axis (`bool`, *optional*, defaults to `False`):
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the image. If `random_padding` is set to `True` in `preprocess`, each image is padded with a
random amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are
padded to the largest image size in the batch.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Image standard deviation.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_thumbnail: bool = True,
do_align_long_axis: bool = False,
do_pad: bool = True,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 2560, "width": 1920}
if isinstance(size, (tuple, list)):
# The previous feature extractor size parameter was in (width, height) format
size = size[::-1]
size = get_size_dict(size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_thumbnail = do_thumbnail
self.do_align_long_axis = do_align_long_axis
self.do_pad = do_pad
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def align_long_axis(
self,
image: np.ndarray,
size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Align the long axis of the image to the longest axis of the specified size.
Args:
image (`np.ndarray`):
The image to be aligned.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to align the long axis to.
data_format (`str` or `ChannelDimension`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
Returns:
`np.ndarray`: The aligned image.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = size["height"], size["width"]
if (output_width < output_height and input_width > input_height) or (
output_width > output_height and input_width < input_height
):
image = np.rot90(image, 3)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def pad_image(
self,
image: np.ndarray,
size: Dict[str, int],
random_padding: bool = False,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad the image to the specified size.
Args:
image (`np.ndarray`):
The image to be padded.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to pad the image to.
random_padding (`bool`, *optional*, defaults to `False`):
Whether to use random padding or not.
data_format (`str` or `ChannelDimension`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
output_height, output_width = size["height"], size["width"]
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
delta_width = output_width - input_width
delta_height = output_height - input_height
if random_padding:
pad_top = np.random.randint(low=0, high=delta_height + 1)
pad_left = np.random.randint(low=0, high=delta_width + 1)
else:
pad_top = delta_height // 2
pad_left = delta_width // 2
pad_bottom = delta_height - pad_top
pad_right = delta_width - pad_left
padding = ((pad_top, pad_bottom), (pad_left, pad_right))
return pad(image, padding, data_format=data_format, input_data_format=input_data_format)
def pad(self, *args, **kwargs):
logger.info("pad is deprecated and will be removed in version 4.27. Please use pad_image instead.")
return self.pad_image(*args, **kwargs)
def thumbnail(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to make a thumbnail. The image is resized so that no dimension is larger than any
corresponding dimension of the specified size.
Args:
image (`np.ndarray`):
The image to be resized.
size (`Dict[str, int]`):
The size `{"height": h, "width": w}` to resize the image to.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
The resampling filter to use.
data_format (`Optional[Union[str, ChannelDimension]]`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = size["height"], size["width"]
# We always resize to the smallest of either the input or output size.
height = min(input_height, output_height)
width = min(input_width, output_width)
if height == input_height and width == input_width:
return image
if input_height > input_width:
width = int(input_width * height / input_height)
elif input_width > input_height:
height = int(input_height * width / input_width)
return resize(
image,
size=(height, width),
resample=resample,
reducing_gap=2.0,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size)
shortest_edge = min(size["height"], size["width"])
output_size = get_resize_output_image_size(
image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format
)
resized_image = resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return resized_image
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_thumbnail: Optional[bool] = None,
do_align_long_axis: Optional[bool] = None,
do_pad: Optional[bool] = None,
random_padding: bool = False,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to min(size["height"],
size["width"]) with the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_thumbnail (`bool`, *optional*, defaults to `self.do_thumbnail`):
Whether to resize the image using thumbnail method.
do_align_long_axis (`bool`, *optional*, defaults to `self.do_align_long_axis`):
Whether to align the long axis of the image with the long axis of `size` by rotating by 90 degrees.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the image. If `random_padding` is set to `True`, each image is padded with a random
amont of padding on each size, up to the largest image size in the batch. Otherwise, all images are
padded to the largest image size in the batch.
random_padding (`bool`, *optional*, defaults to `self.random_padding`):
Whether to use random padding when padding the image. If `True`, each image in the batch with be padded
with a random amount of padding on each side up to the size of the largest image in the batch.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image pixel values.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
if isinstance(size, (tuple, list)):
# Previous feature extractor had size in (width, height) format
size = size[::-1]
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_thumbnail = do_thumbnail if do_thumbnail is not None else self.do_thumbnail
do_align_long_axis = do_align_long_axis if do_align_long_axis is not None else self.do_align_long_axis
do_pad = do_pad if do_pad is not None else self.do_pad
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_pad=do_pad,
size_divisibility=size, # There is no pad divisibility in this processor, but pad requires the size arg.
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_align_long_axis:
images = [self.align_long_axis(image, size=size, input_data_format=input_data_format) for image in images]
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_thumbnail:
images = [self.thumbnail(image=image, size=size, input_data_format=input_data_format) for image in images]
if do_pad:
images = [
self.pad_image(
image=image, size=size, random_padding=random_padding, input_data_format=input_data_format
)
for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["DonutImageProcessor"]
```
|
========================================================================================================================================
SOURCE CODE FILE: modeling_donut_swin.py
LINES: 1
SIZE: 45.26 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\donut\modeling_donut_swin.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Donut Swin Transformer model.
This implementation is identical to a regular Swin Transformer, without final layer norm on top of the final hidden
states."""
import collections.abc
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
torch_int,
)
from .configuration_donut_swin import DonutSwinConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "DonutSwinConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "https://huggingface.co/naver-clova-ix/donut-base"
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->DonutSwin
class DonutSwinEncoderOutput(ModelOutput):
"""
DonutSwin encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->DonutSwin
class DonutSwinModelOutput(ModelOutput):
"""
DonutSwin model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
# Copied from transformers.models.swin.modeling_swin.window_partition
def window_partition(input_feature, window_size):
"""
Partitions the given input into windows.
"""
batch_size, height, width, num_channels = input_feature.shape
input_feature = input_feature.view(
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels
)
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
return windows
# Copied from transformers.models.swin.modeling_swin.window_reverse
def window_reverse(windows, window_size, height, width):
"""
Merges windows to produce higher resolution features.
"""
num_channels = windows.shape[-1]
windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels)
windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels)
return windows
# Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->DonutSwin
class DonutSwinEmbeddings(nn.Module):
"""
Construct the patch and position embeddings. Optionally, also the mask token.
"""
def __init__(self, config, use_mask_token=False):
super().__init__()
self.patch_embeddings = DonutSwinPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.patch_grid = self.patch_embeddings.grid_size
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
if config.use_absolute_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim))
else:
self.position_embeddings = None
self.norm = nn.LayerNorm(config.embed_dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.patch_size = config.patch_size
self.config = config
# Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(
self,
pixel_values: Optional[torch.FloatTensor],
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: bool = False,
) -> Tuple[torch.Tensor]:
_, num_channels, height, width = pixel_values.shape
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
embeddings = self.norm(embeddings)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
if self.position_embeddings is not None:
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings, output_dimensions
# Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings with Swin->DonutSwin
class DonutSwinPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.embed_dim
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def maybe_pad(self, pixel_values, height, width):
if width % self.patch_size[1] != 0:
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
pixel_values = nn.functional.pad(pixel_values, pad_values)
if height % self.patch_size[0] != 0:
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
pixel_values = nn.functional.pad(pixel_values, pad_values)
return pixel_values
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
_, num_channels, height, width = pixel_values.shape
# pad the input to be divisible by self.patch_size, if needed
pixel_values = self.maybe_pad(pixel_values, height, width)
embeddings = self.projection(pixel_values)
_, _, height, width = embeddings.shape
output_dimensions = (height, width)
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, output_dimensions
# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging
class DonutSwinPatchMerging(nn.Module):
"""
Patch Merging Layer.
Args:
input_resolution (`Tuple[int]`):
Resolution of input feature.
dim (`int`):
Number of input channels.
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
Normalization layer class.
"""
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def maybe_pad(self, input_feature, height, width):
should_pad = (height % 2 == 1) or (width % 2 == 1)
if should_pad:
pad_values = (0, 0, 0, width % 2, 0, height % 2)
input_feature = nn.functional.pad(input_feature, pad_values)
return input_feature
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
height, width = input_dimensions
# `dim` is height * width
batch_size, dim, num_channels = input_feature.shape
input_feature = input_feature.view(batch_size, height, width, num_channels)
# pad input to be disible by width and height, if needed
input_feature = self.maybe_pad(input_feature, height, width)
# [batch_size, height/2, width/2, num_channels]
input_feature_0 = input_feature[:, 0::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_1 = input_feature[:, 1::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_2 = input_feature[:, 0::2, 1::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_3 = input_feature[:, 1::2, 1::2, :]
# batch_size height/2 width/2 4*num_channels
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C
input_feature = self.norm(input_feature)
input_feature = self.reduction(input_feature)
return input_feature
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.swin.modeling_swin.SwinDropPath
class DonutSwinDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->DonutSwin
class DonutSwinSelfAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.window_size = (
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
)
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
batch_size, dim, num_channels = hidden_states.shape
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)]
relative_position_bias = relative_position_bias.view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in DonutSwinModel forward() function)
mask_shape = attention_mask.shape[0]
attention_scores = attention_scores.view(
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim
)
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0)
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput
class DonutSwinSelfOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, dim)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->DonutSwin
class DonutSwinAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
self.self = DonutSwinSelfAttention(config, dim, num_heads, window_size)
self.output = DonutSwinSelfOutput(config, dim)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate
class DonutSwinIntermediate(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinOutput
class DonutSwinOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinLayer with Swin->DonutSwin
class DonutSwinLayer(nn.Module):
def __init__(self, config, dim, input_resolution, num_heads, drop_path_rate=0.0, shift_size=0):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.shift_size = shift_size
self.window_size = config.window_size
self.input_resolution = input_resolution
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attention = DonutSwinAttention(config, dim, num_heads, window_size=self.window_size)
self.drop_path = DonutSwinDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.intermediate = DonutSwinIntermediate(config, dim)
self.output = DonutSwinOutput(config, dim)
def set_shift_and_window_size(self, input_resolution):
if min(input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = torch_int(0)
self.window_size = (
torch.min(torch.tensor(input_resolution)) if torch.jit.is_tracing() else min(input_resolution)
)
def get_attn_mask(self, height, width, dtype, device):
if self.shift_size > 0:
# calculate attention mask for SW-MSA
img_mask = torch.zeros((1, height, width, 1), dtype=dtype, device=device)
height_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
width_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
count = 0
for height_slice in height_slices:
for width_slice in width_slices:
img_mask[:, height_slice, width_slice, :] = count
count += 1
mask_windows = window_partition(img_mask, self.window_size)
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
return attn_mask
def maybe_pad(self, hidden_states, height, width):
pad_right = (self.window_size - width % self.window_size) % self.window_size
pad_bottom = (self.window_size - height % self.window_size) % self.window_size
pad_values = (0, 0, 0, pad_right, 0, pad_bottom)
hidden_states = nn.functional.pad(hidden_states, pad_values)
return hidden_states, pad_values
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
if not always_partition:
self.set_shift_and_window_size(input_dimensions)
else:
pass
height, width = input_dimensions
batch_size, _, channels = hidden_states.size()
shortcut = hidden_states
hidden_states = self.layernorm_before(hidden_states)
hidden_states = hidden_states.view(batch_size, height, width, channels)
# pad hidden_states to multiples of window size
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
_, height_pad, width_pad, _ = hidden_states.shape
# cyclic shift
if self.shift_size > 0:
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_hidden_states = hidden_states
# partition windows
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
attn_mask = self.get_attn_mask(
height_pad, width_pad, dtype=hidden_states.dtype, device=hidden_states_windows.device
)
attention_outputs = self.attention(
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
)
attention_output = attention_outputs[0]
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad)
# reverse cyclic shift
if self.shift_size > 0:
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
attention_windows = shifted_windows
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_windows = attention_windows[:, :height, :width, :].contiguous()
attention_windows = attention_windows.view(batch_size, height * width, channels)
hidden_states = shortcut + self.drop_path(attention_windows)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = hidden_states + self.output(layer_output)
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
return layer_outputs
# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->DonutSwin
class DonutSwinStage(nn.Module):
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample):
super().__init__()
self.config = config
self.dim = dim
self.blocks = nn.ModuleList(
[
DonutSwinLayer(
config=config,
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
drop_path_rate=drop_path[i],
shift_size=0 if (i % 2 == 0) else config.window_size // 2,
)
for i in range(depth)
]
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
else:
self.downsample = None
self.pointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
height, width = input_dimensions
for i, layer_module in enumerate(self.blocks):
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
output_dimensions = (height, width, height_downsampled, width_downsampled)
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions)
else:
output_dimensions = (height, width, height, width)
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
# Copied from transformers.models.swin.modeling_swin.SwinEncoder with Swin->DonutSwin
class DonutSwinEncoder(nn.Module):
def __init__(self, config, grid_size):
super().__init__()
self.num_layers = len(config.depths)
self.config = config
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
self.layers = nn.ModuleList(
[
DonutSwinStage(
config=config,
dim=int(config.embed_dim * 2**i_layer),
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
depth=config.depths[i_layer],
num_heads=config.num_heads[i_layer],
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
downsample=DonutSwinPatchMerging if (i_layer < self.num_layers - 1) else None,
)
for i_layer in range(self.num_layers)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
output_hidden_states_before_downsampling: Optional[bool] = False,
always_partition: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, DonutSwinEncoderOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
input_dimensions,
layer_head_mask,
output_attentions,
always_partition,
)
else:
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = layer_outputs[1]
output_dimensions = layer_outputs[2]
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
if output_hidden_states and output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
# rearrange b (h w) c -> b c h w
# here we use the original (not downsampled) height and width
reshaped_hidden_state = hidden_states_before_downsampling.view(
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[3:]
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return DonutSwinEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->DonutSwin
class DonutSwinPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DonutSwinConfig
base_model_prefix = "swin"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["DonutSwinStage"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, DonutSwinEmbeddings):
if module.mask_token is not None:
module.mask_token.data.zero_()
if module.position_embeddings is not None:
module.position_embeddings.data.zero_()
elif isinstance(module, DonutSwinSelfAttention):
module.relative_position_bias_table.data.zero_()
SWIN_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`DonutSwinConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SWIN_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`DonutImageProcessor.__call__`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Donut Swin Model transformer outputting raw hidden-states without any specific head on top.",
SWIN_START_DOCSTRING,
)
class DonutSwinModel(DonutSwinPreTrainedModel):
def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
super().__init__(config)
self.config = config
self.num_layers = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
self.embeddings = DonutSwinEmbeddings(config, use_mask_token=use_mask_token)
self.encoder = DonutSwinEncoder(config, self.embeddings.patch_grid)
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=DonutSwinModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, DonutSwinModelOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, len(self.config.depths))
embedding_output, input_dimensions = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
)
encoder_outputs = self.encoder(
embedding_output,
input_dimensions,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output.transpose(1, 2))
pooled_output = torch.flatten(pooled_output, 1)
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return DonutSwinModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
__all__ = ["DonutSwinModel", "DonutSwinPreTrainedModel"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: processing_donut.py
LINES: 1
SIZE: 8.77 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\donut\processing_donut.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Donut.
"""
import re
import warnings
from contextlib import contextmanager
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
class DonutProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {}
logger = logging.get_logger(__name__)
class DonutProcessor(ProcessorMixin):
r"""
Constructs a Donut processor which wraps a Donut image processor and an XLMRoBERTa tokenizer into a single
processor.
[`DonutProcessor`] offers all the functionalities of [`DonutImageProcessor`] and
[`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`]. See the [`~DonutProcessor.__call__`] and
[`~DonutProcessor.decode`] for more information.
Args:
image_processor ([`DonutImageProcessor`], *optional*):
An instance of [`DonutImageProcessor`]. The image processor is a required input.
tokenizer ([`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`], *optional*):
An instance of [`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
self._in_target_context_manager = False
def __call__(
self,
images: ImageInput = None,
text: Optional[Union[str, List[str], TextInput, PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[DonutProcessorKwargs],
):
"""
When used in normal mode, this method forwards all its arguments to AutoImageProcessor's
[`~AutoImageProcessor.__call__`] and returns its output. If used in the context
[`~DonutProcessor.as_target_processor`] this method forwards all its arguments to DonutTokenizer's
[`~DonutTokenizer.__call__`]. Please refer to the docstring of the above two methods for more information.
"""
if self._in_target_context_manager:
return self.current_processor(images, text, **kwargs)
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process.")
output_kwargs = self._merge_kwargs(
DonutProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
if text is not None:
if images is not None:
output_kwargs["text_kwargs"].setdefault("add_special_tokens", False)
encodings = self.tokenizer(text, **output_kwargs["text_kwargs"])
if text is None:
return inputs
elif images is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"] # for BC
inputs["input_ids"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to DonutTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to DonutTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@contextmanager
def as_target_processor(self):
"""
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning TrOCR.
"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your images inputs, or in a separate call."
)
self._in_target_context_manager = True
self.current_processor = self.tokenizer
yield
self.current_processor = self.image_processor
self._in_target_context_manager = False
def token2json(self, tokens, is_inner_value=False, added_vocab=None):
"""
Convert a (generated) token sequence into an ordered JSON format.
"""
if added_vocab is None:
added_vocab = self.tokenizer.get_added_vocab()
output = {}
while tokens:
start_token = re.search(r"<s_(.*?)>", tokens, re.IGNORECASE)
if start_token is None:
break
key = start_token.group(1)
key_escaped = re.escape(key)
end_token = re.search(rf"</s_{key_escaped}>", tokens, re.IGNORECASE)
start_token = start_token.group()
if end_token is None:
tokens = tokens.replace(start_token, "")
else:
end_token = end_token.group()
start_token_escaped = re.escape(start_token)
end_token_escaped = re.escape(end_token)
content = re.search(
f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE | re.DOTALL
)
if content is not None:
content = content.group(1).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
value = self.token2json(content, is_inner_value=True, added_vocab=added_vocab)
if value:
if len(value) == 1:
value = value[0]
output[key] = value
else: # leaf nodes
output[key] = []
for leaf in content.split(r"<sep/>"):
leaf = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
leaf = leaf[1:-2] # for categorical special tokens
output[key].append(leaf)
if len(output[key]) == 1:
output[key] = output[key][0]
tokens = tokens[tokens.find(end_token) + len(end_token) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.token2json(tokens[6:], is_inner_value=True, added_vocab=added_vocab)
if len(output):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
__all__ = ["DonutProcessor"]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.07 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dpr\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_dpr import *
from .modeling_dpr import *
from .modeling_tf_dpr import *
from .tokenization_dpr import *
from .tokenization_dpr_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_dpr.py
LINES: 1
SIZE: 6.27 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dpr\configuration_dpr.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2010, DPR authors, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DPR model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class DPRConfig(PretrainedConfig):
r"""
[`DPRConfig`] is the configuration class to store the configuration of a *DPRModel*.
This is the configuration class to store the configuration of a [`DPRContextEncoder`], [`DPRQuestionEncoder`], or a
[`DPRReader`]. It is used to instantiate the components of the DPR model according to the specified arguments,
defining the model component architectures. Instantiating a configuration with the defaults will yield a similar
configuration to that of the DPRContextEncoder
[facebook/dpr-ctx_encoder-single-nq-base](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base)
architecture.
This class is a subclass of [`BertConfig`]. Please check the superclass for the documentation of all kwargs.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the DPR model. Defines the different tokens that can be represented by the *inputs_ids*
passed to the forward method of [`BertModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the *token_type_ids* passed into [`BertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
projection_dim (`int`, *optional*, defaults to 0):
Dimension of the projection for the context and question encoders. If it is set to zero (default), then no
projection is done.
Example:
```python
>>> from transformers import DPRConfig, DPRContextEncoder
>>> # Initializing a DPR facebook/dpr-ctx_encoder-single-nq-base style configuration
>>> configuration = DPRConfig()
>>> # Initializing a model (with random weights) from the facebook/dpr-ctx_encoder-single-nq-base style configuration
>>> model = DPRContextEncoder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "dpr"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
projection_dim: int = 0,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.projection_dim = projection_dim
self.position_embedding_type = position_embedding_type
__all__ = ["DPRConfig"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_dpr.py
LINES: 1
SIZE: 27.89 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dpr\modeling_dpr.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 DPR Authors, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DPR model for Open Domain Question Answering."""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from torch import Tensor, nn
from ...modeling_outputs import BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..bert.modeling_bert import BertModel
from .configuration_dpr import DPRConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DPRConfig"
_CHECKPOINT_FOR_DOC = "facebook/dpr-ctx_encoder-single-nq-base"
##########
# Outputs
##########
@dataclass
class DPRContextEncoderOutput(ModelOutput):
"""
Class for outputs of [`DPRQuestionEncoder`].
Args:
pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`):
The DPR encoder outputs the *pooler_output* that corresponds to the context representation. Last layer
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
This output is to be used to embed contexts for nearest neighbors queries with questions embeddings.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
pooler_output: torch.FloatTensor
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class DPRQuestionEncoderOutput(ModelOutput):
"""
Class for outputs of [`DPRQuestionEncoder`].
Args:
pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`):
The DPR encoder outputs the *pooler_output* that corresponds to the question representation. Last layer
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
This output is to be used to embed questions for nearest neighbors queries with context embeddings.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
pooler_output: torch.FloatTensor
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class DPRReaderOutput(ModelOutput):
"""
Class for outputs of [`DPRQuestionEncoder`].
Args:
start_logits (`torch.FloatTensor` of shape `(n_passages, sequence_length)`):
Logits of the start index of the span for each passage.
end_logits (`torch.FloatTensor` of shape `(n_passages, sequence_length)`):
Logits of the end index of the span for each passage.
relevance_logits (`torch.FloatTensor` of shape `(n_passages, )`):
Outputs of the QA classifier of the DPRReader that corresponds to the scores of each passage to answer the
question, compared to all the other passages.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
start_logits: torch.FloatTensor
end_logits: Optional[torch.FloatTensor] = None
relevance_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class DPRPreTrainedModel(PreTrainedModel):
_supports_sdpa = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class DPREncoder(DPRPreTrainedModel):
base_model_prefix = "bert_model"
def __init__(self, config: DPRConfig):
super().__init__(config)
self.bert_model = BertModel(config, add_pooling_layer=False)
if self.bert_model.config.hidden_size <= 0:
raise ValueError("Encoder hidden_size can't be zero")
self.projection_dim = config.projection_dim
if self.projection_dim > 0:
self.encode_proj = nn.Linear(self.bert_model.config.hidden_size, config.projection_dim)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Tensor,
attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
) -> Union[BaseModelOutputWithPooling, Tuple[Tensor, ...]]:
outputs = self.bert_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
pooled_output = sequence_output[:, 0, :]
if self.projection_dim > 0:
pooled_output = self.encode_proj(pooled_output)
if not return_dict:
return (sequence_output, pooled_output) + outputs[2:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@property
def embeddings_size(self) -> int:
if self.projection_dim > 0:
return self.encode_proj.out_features
return self.bert_model.config.hidden_size
class DPRSpanPredictor(DPRPreTrainedModel):
base_model_prefix = "encoder"
def __init__(self, config: DPRConfig):
super().__init__(config)
self.encoder = DPREncoder(config)
self.qa_outputs = nn.Linear(self.encoder.embeddings_size, 2)
self.qa_classifier = nn.Linear(self.encoder.embeddings_size, 1)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Tensor,
attention_mask: Tensor,
inputs_embeds: Optional[Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]:
# notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length
n_passages, sequence_length = input_ids.size() if input_ids is not None else inputs_embeds.size()[:2]
# feed encoder
outputs = self.encoder(
input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# compute logits
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
relevance_logits = self.qa_classifier(sequence_output[:, 0, :])
# resize
start_logits = start_logits.view(n_passages, sequence_length)
end_logits = end_logits.view(n_passages, sequence_length)
relevance_logits = relevance_logits.view(n_passages)
if not return_dict:
return (start_logits, end_logits, relevance_logits) + outputs[2:]
return DPRReaderOutput(
start_logits=start_logits,
end_logits=end_logits,
relevance_logits=relevance_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
##################
# PreTrainedModel
##################
class DPRPretrainedContextEncoder(DPRPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DPRConfig
load_tf_weights = None
base_model_prefix = "ctx_encoder"
class DPRPretrainedQuestionEncoder(DPRPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DPRConfig
load_tf_weights = None
base_model_prefix = "question_encoder"
class DPRPretrainedReader(DPRPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DPRConfig
load_tf_weights = None
base_model_prefix = "span_predictor"
###############
# Actual Models
###############
DPR_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DPRConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DPR_ENCODERS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. To match pretraining, DPR input sequence should be
formatted with [CLS] and [SEP] tokens as follows:
(a) For sequence pairs (for a pair title+text for example):
```
tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
```
(b) For single sequences (for a question for example):
```
tokens: [CLS] the dog is hairy . [SEP]
token_type_ids: 0 0 0 0 0 0 0
```
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
DPR_READER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Tuple[torch.LongTensor]` of shapes `(n_passages, sequence_length)`):
Indices of input sequence tokens in the vocabulary. It has to be a sequence triplet with 1) the question
and 2) the passages titles and 3) the passages texts To match pretraining, DPR `input_ids` sequence should
be formatted with [CLS] and [SEP] with the format:
`[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>`
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
Indices can be obtained using [`DPRReaderTokenizer`]. See this class documentation for more details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(n_passages, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
inputs_embeds (`torch.FloatTensor` of shape `(n_passages, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DPRContextEncoder transformer outputting pooler outputs as context representations.",
DPR_START_DOCSTRING,
)
class DPRContextEncoder(DPRPretrainedContextEncoder):
def __init__(self, config: DPRConfig):
super().__init__(config)
self.config = config
self.ctx_encoder = DPREncoder(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DPR_ENCODERS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DPRContextEncoderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[DPRContextEncoderOutput, Tuple[Tensor, ...]]:
r"""
Return:
Examples:
```python
>>> from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
>>> tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
>>> model = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="pt")["input_ids"]
>>> embeddings = model(input_ids).pooler_output
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = (
torch.ones(input_shape, device=device)
if input_ids is None
else (input_ids != self.config.pad_token_id)
)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
outputs = self.ctx_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return outputs[1:]
return DPRContextEncoderOutput(
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"The bare DPRQuestionEncoder transformer outputting pooler outputs as question representations.",
DPR_START_DOCSTRING,
)
class DPRQuestionEncoder(DPRPretrainedQuestionEncoder):
def __init__(self, config: DPRConfig):
super().__init__(config)
self.config = config
self.question_encoder = DPREncoder(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DPR_ENCODERS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DPRQuestionEncoderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[DPRQuestionEncoderOutput, Tuple[Tensor, ...]]:
r"""
Return:
Examples:
```python
>>> from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer
>>> tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
>>> model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="pt")["input_ids"]
>>> embeddings = model(input_ids).pooler_output
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = (
torch.ones(input_shape, device=device)
if input_ids is None
else (input_ids != self.config.pad_token_id)
)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
outputs = self.question_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return outputs[1:]
return DPRQuestionEncoderOutput(
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"The bare DPRReader transformer outputting span predictions.",
DPR_START_DOCSTRING,
)
class DPRReader(DPRPretrainedReader):
def __init__(self, config: DPRConfig):
super().__init__(config)
self.config = config
self.span_predictor = DPRSpanPredictor(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DPR_READER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DPRReaderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]:
r"""
Return:
Examples:
```python
>>> from transformers import DPRReader, DPRReaderTokenizer
>>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base")
>>> model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base")
>>> encoded_inputs = tokenizer(
... questions=["What is love ?"],
... titles=["Haddaway"],
... texts=["'What Is Love' is a song recorded by the artist Haddaway"],
... return_tensors="pt",
... )
>>> outputs = model(**encoded_inputs)
>>> start_logits = outputs.start_logits
>>> end_logits = outputs.end_logits
>>> relevance_logits = outputs.relevance_logits
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
return self.span_predictor(
input_ids,
attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
__all__ = [
"DPRContextEncoder",
"DPRPretrainedContextEncoder",
"DPRPreTrainedModel",
"DPRPretrainedQuestionEncoder",
"DPRPretrainedReader",
"DPRQuestionEncoder",
"DPRReader",
]
```
|
==================================================================================================================================
SOURCE CODE FILE: modeling_tf_dpr.py
LINES: 1
SIZE: 33.16 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dpr\modeling_tf_dpr.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 DPR Authors, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TensorFlow DPR model for Open Domain Question Answering."""
from __future__ import annotations
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...modeling_tf_outputs import TFBaseModelOutputWithPooling
from ...modeling_tf_utils import TFModelInputType, TFPreTrainedModel, get_initializer, keras, shape_list, unpack_inputs
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..bert.modeling_tf_bert import TFBertMainLayer
from .configuration_dpr import DPRConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DPRConfig"
##########
# Outputs
##########
@dataclass
class TFDPRContextEncoderOutput(ModelOutput):
r"""
Class for outputs of [`TFDPRContextEncoder`].
Args:
pooler_output (`tf.Tensor` of shape `(batch_size, embeddings_size)`):
The DPR encoder outputs the *pooler_output* that corresponds to the context representation. Last layer
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
This output is to be used to embed contexts for nearest neighbors queries with questions embeddings.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
pooler_output: Optional[tf.Tensor] = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFDPRQuestionEncoderOutput(ModelOutput):
"""
Class for outputs of [`TFDPRQuestionEncoder`].
Args:
pooler_output (`tf.Tensor` of shape `(batch_size, embeddings_size)`):
The DPR encoder outputs the *pooler_output* that corresponds to the question representation. Last layer
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
This output is to be used to embed questions for nearest neighbors queries with context embeddings.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
pooler_output: Optional[tf.Tensor] = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFDPRReaderOutput(ModelOutput):
"""
Class for outputs of [`TFDPRReaderEncoder`].
Args:
start_logits (`tf.Tensor` of shape `(n_passages, sequence_length)`):
Logits of the start index of the span for each passage.
end_logits (`tf.Tensor` of shape `(n_passages, sequence_length)`):
Logits of the end index of the span for each passage.
relevance_logits (`tf.Tensor` of shape `(n_passages, )`):
Outputs of the QA classifier of the DPRReader that corresponds to the scores of each passage to answer the
question, compared to all the other passages.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
start_logits: Optional[tf.Tensor] = None
end_logits: Optional[tf.Tensor] = None
relevance_logits: Optional[tf.Tensor] = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
class TFDPREncoderLayer(keras.layers.Layer):
base_model_prefix = "bert_model"
def __init__(self, config: DPRConfig, **kwargs):
super().__init__(**kwargs)
# resolve name conflict with TFBertMainLayer instead of TFBertModel
self.bert_model = TFBertMainLayer(config, add_pooling_layer=False, name="bert_model")
self.config = config
if self.config.hidden_size <= 0:
raise ValueError("Encoder hidden_size can't be zero")
self.projection_dim = config.projection_dim
if self.projection_dim > 0:
self.encode_proj = keras.layers.Dense(
config.projection_dim, kernel_initializer=get_initializer(config.initializer_range), name="encode_proj"
)
@unpack_inputs
def call(
self,
input_ids: Optional[tf.Tensor] = None,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]:
outputs = self.bert_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
pooled_output = sequence_output[:, 0, :]
if self.projection_dim > 0:
pooled_output = self.encode_proj(pooled_output)
if not return_dict:
return (sequence_output, pooled_output) + outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@property
def embeddings_size(self) -> int:
if self.projection_dim > 0:
return self.projection_dim
return self.bert_model.config.hidden_size
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bert_model", None) is not None:
with tf.name_scope(self.bert_model.name):
self.bert_model.build(None)
if getattr(self, "encode_proj", None) is not None:
with tf.name_scope(self.encode_proj.name):
self.encode_proj.build(None)
class TFDPRSpanPredictorLayer(keras.layers.Layer):
base_model_prefix = "encoder"
def __init__(self, config: DPRConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.encoder = TFDPREncoderLayer(config, name="encoder")
self.qa_outputs = keras.layers.Dense(
2, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.qa_classifier = keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="qa_classifier"
)
@unpack_inputs
def call(
self,
input_ids: Optional[tf.Tensor] = None,
attention_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
training: bool = False,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
# notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length
n_passages, sequence_length = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:2]
# feed encoder
outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
# compute logits
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
relevance_logits = self.qa_classifier(sequence_output[:, 0, :])
# resize
start_logits = tf.reshape(start_logits, [n_passages, sequence_length])
end_logits = tf.reshape(end_logits, [n_passages, sequence_length])
relevance_logits = tf.reshape(relevance_logits, [n_passages])
if not return_dict:
return (start_logits, end_logits, relevance_logits) + outputs[2:]
return TFDPRReaderOutput(
start_logits=start_logits,
end_logits=end_logits,
relevance_logits=relevance_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.encoder.embeddings_size])
if getattr(self, "qa_classifier", None) is not None:
with tf.name_scope(self.qa_classifier.name):
self.qa_classifier.build([None, None, self.encoder.embeddings_size])
class TFDPRSpanPredictor(TFPreTrainedModel):
base_model_prefix = "encoder"
def __init__(self, config: DPRConfig, **kwargs):
super().__init__(config, **kwargs)
self.encoder = TFDPRSpanPredictorLayer(config)
@unpack_inputs
def call(
self,
input_ids: Optional[tf.Tensor] = None,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
training: bool = False,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
class TFDPREncoder(TFPreTrainedModel):
base_model_prefix = "encoder"
def __init__(self, config: DPRConfig, **kwargs):
super().__init__(config, **kwargs)
self.encoder = TFDPREncoderLayer(config)
@unpack_inputs
def call(
self,
input_ids: Optional[tf.Tensor] = None,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
training: bool = False,
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
##################
# PreTrainedModel
##################
class TFDPRPretrainedContextEncoder(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DPRConfig
base_model_prefix = "ctx_encoder"
class TFDPRPretrainedQuestionEncoder(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DPRConfig
base_model_prefix = "question_encoder"
class TFDPRPretrainedReader(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DPRConfig
base_model_prefix = "reader"
###############
# Actual Models
###############
TF_DPR_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Tensorflow [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to
general usage and behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`DPRConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
TF_DPR_ENCODERS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. To match pretraining, DPR input sequence should be
formatted with [CLS] and [SEP] tokens as follows:
(a) For sequence pairs (for a pair title+text for example):
```
tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
```
(b) For single sequences (for a question for example):
```
tokens: [CLS] the dog is hairy . [SEP]
token_type_ids: 0 0 0 0 0 0 0
```
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
inputs_embeds (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
TF_DPR_READER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shapes `(n_passages, sequence_length)`):
Indices of input sequence tokens in the vocabulary. It has to be a sequence triplet with 1) the question
and 2) the passages titles and 3) the passages texts To match pretraining, DPR `input_ids` sequence should
be formatted with [CLS] and [SEP] with the format:
`[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>`
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
Indices can be obtained using [`DPRReaderTokenizer`]. See this class documentation for more details.
attention_mask (`Numpy array` or `tf.Tensor` of shape `(n_passages, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
inputs_embeds (`Numpy array` or `tf.Tensor` of shape `(n_passages, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare DPRContextEncoder transformer outputting pooler outputs as context representations.",
TF_DPR_START_DOCSTRING,
)
class TFDPRContextEncoder(TFDPRPretrainedContextEncoder):
def __init__(self, config: DPRConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.ctx_encoder = TFDPREncoderLayer(config, name="ctx_encoder")
def get_input_embeddings(self):
try:
return self.ctx_encoder.bert_model.get_input_embeddings()
except AttributeError:
self.build()
return self.ctx_encoder.bert_model.get_input_embeddings()
@unpack_inputs
@add_start_docstrings_to_model_forward(TF_DPR_ENCODERS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFDPRContextEncoderOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> TFDPRContextEncoderOutput | Tuple[tf.Tensor, ...]:
r"""
Return:
Examples:
```python
>>> from transformers import TFDPRContextEncoder, DPRContextEncoderTokenizer
>>> tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
>>> model = TFDPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", from_pt=True)
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="tf")["input_ids"]
>>> embeddings = model(input_ids).pooler_output
```
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = (
tf.ones(input_shape, dtype=tf.dtypes.int32)
if input_ids is None
else (input_ids != self.config.pad_token_id)
)
if token_type_ids is None:
token_type_ids = tf.zeros(input_shape, dtype=tf.dtypes.int32)
outputs = self.ctx_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return outputs[1:]
return TFDPRContextEncoderOutput(
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "ctx_encoder", None) is not None:
with tf.name_scope(self.ctx_encoder.name):
self.ctx_encoder.build(None)
@add_start_docstrings(
"The bare DPRQuestionEncoder transformer outputting pooler outputs as question representations.",
TF_DPR_START_DOCSTRING,
)
class TFDPRQuestionEncoder(TFDPRPretrainedQuestionEncoder):
def __init__(self, config: DPRConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.question_encoder = TFDPREncoderLayer(config, name="question_encoder")
def get_input_embeddings(self):
try:
return self.question_encoder.bert_model.get_input_embeddings()
except AttributeError:
self.build()
return self.question_encoder.bert_model.get_input_embeddings()
@unpack_inputs
@add_start_docstrings_to_model_forward(TF_DPR_ENCODERS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFDPRQuestionEncoderOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
token_type_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> TFDPRQuestionEncoderOutput | Tuple[tf.Tensor, ...]:
r"""
Return:
Examples:
```python
>>> from transformers import TFDPRQuestionEncoder, DPRQuestionEncoderTokenizer
>>> tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
>>> model = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base", from_pt=True)
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="tf")["input_ids"]
>>> embeddings = model(input_ids).pooler_output
```
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = (
tf.ones(input_shape, dtype=tf.dtypes.int32)
if input_ids is None
else (input_ids != self.config.pad_token_id)
)
if token_type_ids is None:
token_type_ids = tf.zeros(input_shape, dtype=tf.dtypes.int32)
outputs = self.question_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return outputs[1:]
return TFDPRQuestionEncoderOutput(
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "question_encoder", None) is not None:
with tf.name_scope(self.question_encoder.name):
self.question_encoder.build(None)
@add_start_docstrings(
"The bare DPRReader transformer outputting span predictions.",
TF_DPR_START_DOCSTRING,
)
class TFDPRReader(TFDPRPretrainedReader):
def __init__(self, config: DPRConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.span_predictor = TFDPRSpanPredictorLayer(config, name="span_predictor")
def get_input_embeddings(self):
try:
return self.span_predictor.encoder.bert_model.get_input_embeddings()
except AttributeError:
self.build()
return self.span_predictor.encoder.bert_model.get_input_embeddings()
@unpack_inputs
@add_start_docstrings_to_model_forward(TF_DPR_READER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFDPRReaderOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
) -> TFDPRReaderOutput | Tuple[tf.Tensor, ...]:
r"""
Return:
Examples:
```python
>>> from transformers import TFDPRReader, DPRReaderTokenizer
>>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base")
>>> model = TFDPRReader.from_pretrained("facebook/dpr-reader-single-nq-base", from_pt=True)
>>> encoded_inputs = tokenizer(
... questions=["What is love ?"],
... titles=["Haddaway"],
... texts=["'What Is Love' is a song recorded by the artist Haddaway"],
... return_tensors="tf",
... )
>>> outputs = model(encoded_inputs)
>>> start_logits = outputs.start_logits
>>> end_logits = outputs.end_logits
>>> relevance_logits = outputs.relevance_logits
```
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.ones(input_shape, dtype=tf.dtypes.int32)
return self.span_predictor(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "span_predictor", None) is not None:
with tf.name_scope(self.span_predictor.name):
self.span_predictor.build(None)
__all__ = [
"TFDPRContextEncoder",
"TFDPRPretrainedContextEncoder",
"TFDPRPretrainedQuestionEncoder",
"TFDPRPretrainedReader",
"TFDPRQuestionEncoder",
"TFDPRReader",
]
```
|
===================================================================================================================================
SOURCE CODE FILE: tokenization_dpr.py
LINES: 1
SIZE: 15.47 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dpr\tokenization_dpr.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for DPR."""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
class DPRContextEncoderTokenizer(BertTokenizer):
r"""
Construct a DPRContextEncoder tokenizer.
[`DPRContextEncoderTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation
splitting and wordpiece.
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
class DPRQuestionEncoderTokenizer(BertTokenizer):
r"""
Constructs a DPRQuestionEncoder tokenizer.
[`DPRQuestionEncoderTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation
splitting and wordpiece.
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
DPRSpanPrediction = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
DPRReaderOutput = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
CUSTOM_DPR_READER_DOCSTRING = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
```
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
```
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Returns:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(CUSTOM_DPR_READER_DOCSTRING)
class CustomDPRReaderTokenizerMixin:
def __call__(
self,
questions,
titles: Optional[str] = None,
texts: Optional[str] = None,
padding: Union[bool, str] = False,
truncation: Union[bool, str] = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = None,
**kwargs,
) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
questions,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
return_attention_mask=return_attention_mask,
**kwargs,
)
elif titles is None or texts is None:
text_pair = titles if texts is None else texts
return super().__call__(
questions,
text_pair,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
return_attention_mask=return_attention_mask,
**kwargs,
)
titles = titles if not isinstance(titles, str) else [titles]
texts = texts if not isinstance(texts, str) else [texts]
n_passages = len(titles)
questions = questions if not isinstance(questions, str) else [questions] * n_passages
if len(titles) != len(texts):
raise ValueError(
f"There should be as many titles than texts but got {len(titles)} titles and {len(texts)} texts."
)
encoded_question_and_titles = super().__call__(questions, titles, padding=False, truncation=False)["input_ids"]
encoded_texts = super().__call__(texts, add_special_tokens=False, padding=False, truncation=False)["input_ids"]
encoded_inputs = {
"input_ids": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(encoded_question_and_titles, encoded_texts)
]
}
if return_attention_mask is not False:
attention_mask = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
encoded_inputs["attention_mask"] = attention_mask
return self.pad(encoded_inputs, padding=padding, max_length=max_length, return_tensors=return_tensors)
def decode_best_spans(
self,
reader_input: BatchEncoding,
reader_output: DPRReaderOutput,
num_spans: int = 16,
max_answer_length: int = 64,
num_spans_per_passage: int = 4,
) -> List[DPRSpanPrediction]:
"""
Get the span predictions for the extractive Q&A model.
Returns: *List* of *DPRReaderOutput* sorted by descending *(relevance_score, span_score)*. Each
*DPRReaderOutput* is a *Tuple* with:
- **span_score**: `float` that corresponds to the score given by the reader for this span compared to other
spans in the same passage. It corresponds to the sum of the start and end logits of the span.
- **relevance_score**: `float` that corresponds to the score of the each passage to answer the question,
compared to all the other passages. It corresponds to the output of the QA classifier of the DPRReader.
- **doc_id**: `int` the id of the passage. - **start_index**: `int` the start index of the span
(inclusive). - **end_index**: `int` the end index of the span (inclusive).
Examples:
```python
>>> from transformers import DPRReader, DPRReaderTokenizer
>>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base")
>>> model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base")
>>> encoded_inputs = tokenizer(
... questions=["What is love ?"],
... titles=["Haddaway"],
... texts=["'What Is Love' is a song recorded by the artist Haddaway"],
... return_tensors="pt",
... )
>>> outputs = model(**encoded_inputs)
>>> predicted_spans = tokenizer.decode_best_spans(encoded_inputs, outputs)
>>> print(predicted_spans[0].text) # best span
a song
```"""
input_ids = reader_input["input_ids"]
start_logits, end_logits, relevance_logits = reader_output[:3]
n_passages = len(relevance_logits)
sorted_docs = sorted(range(n_passages), reverse=True, key=relevance_logits.__getitem__)
nbest_spans_predictions: List[DPRReaderOutput] = []
for doc_id in sorted_docs:
sequence_ids = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
passage_offset = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
sequence_len = sequence_ids.index(self.pad_token_id)
else:
sequence_len = len(sequence_ids)
best_spans = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len],
end_logits=end_logits[doc_id][passage_offset:sequence_len],
max_answer_length=max_answer_length,
top_spans=num_spans_per_passage,
)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index],
relevance_score=relevance_logits[doc_id],
doc_id=doc_id,
start_index=start_index,
end_index=end_index,
text=self.decode(sequence_ids[start_index : end_index + 1]),
)
)
if len(nbest_spans_predictions) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def _get_best_spans(
self,
start_logits: List[int],
end_logits: List[int],
max_answer_length: int,
top_spans: int,
) -> List[DPRSpanPrediction]:
"""
Finds the best answer span for the extractive Q&A model for one passage. It returns the best span by descending
`span_score` order and keeping max `top_spans` spans. Spans longer that `max_answer_length` are ignored.
"""
scores = []
for start_index, start_score in enumerate(start_logits):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
scores = sorted(scores, key=lambda x: x[1], reverse=True)
chosen_span_intervals = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]")
length = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(f"Span is too long: {length} > {max_answer_length}")
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals
):
continue
chosen_span_intervals.append((start_index, end_index))
if len(chosen_span_intervals) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(CUSTOM_DPR_READER_DOCSTRING)
class DPRReaderTokenizer(CustomDPRReaderTokenizerMixin, BertTokenizer):
r"""
Construct a DPRReader tokenizer.
[`DPRReaderTokenizer`] is almost identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation
splitting and wordpiece. The difference is that is has three inputs strings: question, titles and texts that are
combined to be fed to the [`DPRReader`] model.
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
__all__ = ["DPRContextEncoderTokenizer", "DPRQuestionEncoderTokenizer", "DPRReaderOutput", "DPRReaderTokenizer"]
```
|
========================================================================================================================================
SOURCE CODE FILE: tokenization_dpr_fast.py
LINES: 1
SIZE: 15.84 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dpr\tokenization_dpr_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for DPR."""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
class DPRContextEncoderTokenizerFast(BertTokenizerFast):
r"""
Construct a "fast" DPRContextEncoder tokenizer (backed by HuggingFace's *tokenizers* library).
[`DPRContextEncoderTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization:
punctuation splitting and wordpiece.
Refer to superclass [`BertTokenizerFast`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = DPRContextEncoderTokenizer
class DPRQuestionEncoderTokenizerFast(BertTokenizerFast):
r"""
Constructs a "fast" DPRQuestionEncoder tokenizer (backed by HuggingFace's *tokenizers* library).
[`DPRQuestionEncoderTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization:
punctuation splitting and wordpiece.
Refer to superclass [`BertTokenizerFast`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = DPRQuestionEncoderTokenizer
DPRSpanPrediction = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
DPRReaderOutput = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
CUSTOM_DPR_READER_DOCSTRING = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(CUSTOM_DPR_READER_DOCSTRING)
class CustomDPRReaderTokenizerMixin:
def __call__(
self,
questions,
titles: Optional[str] = None,
texts: Optional[str] = None,
padding: Union[bool, str] = False,
truncation: Union[bool, str] = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = None,
**kwargs,
) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
questions,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
return_attention_mask=return_attention_mask,
**kwargs,
)
elif titles is None or texts is None:
text_pair = titles if texts is None else texts
return super().__call__(
questions,
text_pair,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
return_attention_mask=return_attention_mask,
**kwargs,
)
titles = titles if not isinstance(titles, str) else [titles]
texts = texts if not isinstance(texts, str) else [texts]
n_passages = len(titles)
questions = questions if not isinstance(questions, str) else [questions] * n_passages
assert len(titles) == len(texts), (
f"There should be as many titles than texts but got {len(titles)} titles and {len(texts)} texts."
)
encoded_question_and_titles = super().__call__(questions, titles, padding=False, truncation=False)["input_ids"]
encoded_texts = super().__call__(texts, add_special_tokens=False, padding=False, truncation=False)["input_ids"]
encoded_inputs = {
"input_ids": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(encoded_question_and_titles, encoded_texts)
]
}
if return_attention_mask is not False:
attention_mask = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
encoded_inputs["attention_mask"] = attention_mask
return self.pad(encoded_inputs, padding=padding, max_length=max_length, return_tensors=return_tensors)
def decode_best_spans(
self,
reader_input: BatchEncoding,
reader_output: DPRReaderOutput,
num_spans: int = 16,
max_answer_length: int = 64,
num_spans_per_passage: int = 4,
) -> List[DPRSpanPrediction]:
"""
Get the span predictions for the extractive Q&A model.
Returns: *List* of *DPRReaderOutput* sorted by descending *(relevance_score, span_score)*. Each
*DPRReaderOutput* is a *Tuple* with:
- **span_score**: `float` that corresponds to the score given by the reader for this span compared to other
spans in the same passage. It corresponds to the sum of the start and end logits of the span.
- **relevance_score**: `float` that corresponds to the score of the each passage to answer the question,
compared to all the other passages. It corresponds to the output of the QA classifier of the DPRReader.
- **doc_id**: `int` the id of the passage. - ***start_index**: `int` the start index of the span
(inclusive). - **end_index**: `int` the end index of the span (inclusive).
Examples:
```python
>>> from transformers import DPRReader, DPRReaderTokenizer
>>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base")
>>> model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base")
>>> encoded_inputs = tokenizer(
... questions=["What is love ?"],
... titles=["Haddaway"],
... texts=["'What Is Love' is a song recorded by the artist Haddaway"],
... return_tensors="pt",
... )
>>> outputs = model(**encoded_inputs)
>>> predicted_spans = tokenizer.decode_best_spans(encoded_inputs, outputs)
>>> print(predicted_spans[0].text) # best span
a song
```"""
input_ids = reader_input["input_ids"]
start_logits, end_logits, relevance_logits = reader_output[:3]
n_passages = len(relevance_logits)
sorted_docs = sorted(range(n_passages), reverse=True, key=relevance_logits.__getitem__)
nbest_spans_predictions: List[DPRReaderOutput] = []
for doc_id in sorted_docs:
sequence_ids = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
passage_offset = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
sequence_len = sequence_ids.index(self.pad_token_id)
else:
sequence_len = len(sequence_ids)
best_spans = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len],
end_logits=end_logits[doc_id][passage_offset:sequence_len],
max_answer_length=max_answer_length,
top_spans=num_spans_per_passage,
)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index],
relevance_score=relevance_logits[doc_id],
doc_id=doc_id,
start_index=start_index,
end_index=end_index,
text=self.decode(sequence_ids[start_index : end_index + 1]),
)
)
if len(nbest_spans_predictions) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def _get_best_spans(
self,
start_logits: List[int],
end_logits: List[int],
max_answer_length: int,
top_spans: int,
) -> List[DPRSpanPrediction]:
"""
Finds the best answer span for the extractive Q&A model for one passage. It returns the best span by descending
`span_score` order and keeping max `top_spans` spans. Spans longer that `max_answer_length` are ignored.
"""
scores = []
for start_index, start_score in enumerate(start_logits):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
scores = sorted(scores, key=lambda x: x[1], reverse=True)
chosen_span_intervals = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]"
length = end_index - start_index + 1
assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}"
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals
):
continue
chosen_span_intervals.append((start_index, end_index))
if len(chosen_span_intervals) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(CUSTOM_DPR_READER_DOCSTRING)
class DPRReaderTokenizerFast(CustomDPRReaderTokenizerMixin, BertTokenizerFast):
r"""
Constructs a "fast" DPRReader tokenizer (backed by HuggingFace's *tokenizers* library).
[`DPRReaderTokenizerFast`] is almost identical to [`BertTokenizerFast`] and runs end-to-end tokenization:
punctuation splitting and wordpiece. The difference is that is has three inputs strings: question, titles and texts
that are combined to be fed to the [`DPRReader`] model.
Refer to superclass [`BertTokenizerFast`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = DPRReaderTokenizer
__all__ = ["DPRContextEncoderTokenizerFast", "DPRQuestionEncoderTokenizerFast", "DPRReaderTokenizerFast"]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.04 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dpt\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_dpt import *
from .feature_extraction_dpt import *
from .image_processing_dpt import *
from .modeling_dpt import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_dpt.py
LINES: 1
SIZE: 14.50 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dpt\configuration_dpt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DPT model configuration"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import verify_backbone_config_arguments
from ..auto.configuration_auto import CONFIG_MAPPING
from ..bit import BitConfig
logger = logging.get_logger(__name__)
class DPTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DPTModel`]. It is used to instantiate an DPT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the DPT
[Intel/dpt-large](https://huggingface.co/Intel/dpt-large) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 384):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
is_hybrid (`bool`, *optional*, defaults to `False`):
Whether to use a hybrid backbone. Useful in the context of loading DPT-Hybrid models.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
backbone_out_indices (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`):
Indices of the intermediate hidden states to use from backbone.
readout_type (`str`, *optional*, defaults to `"project"`):
The readout type to use when processing the readout token (CLS token) of the intermediate hidden states of
the ViT backbone. Can be one of [`"ignore"`, `"add"`, `"project"`].
- "ignore" simply ignores the CLS token.
- "add" passes the information from the CLS token to all other tokens by adding the representations.
- "project" passes information to the other tokens by concatenating the readout to all other tokens before
projecting the
representation to the original feature dimension D using a linear layer followed by a GELU non-linearity.
reassemble_factors (`List[int]`, *optional*, defaults to `[4, 2, 1, 0.5]`):
The up/downsampling factors of the reassemble layers.
neck_hidden_sizes (`List[str]`, *optional*, defaults to `[96, 192, 384, 768]`):
The hidden sizes to project to for the feature maps of the backbone.
fusion_hidden_size (`int`, *optional*, defaults to 256):
The number of channels before fusion.
head_in_index (`int`, *optional*, defaults to -1):
The index of the features to use in the heads.
use_batch_norm_in_fusion_residual (`bool`, *optional*, defaults to `False`):
Whether to use batch normalization in the pre-activate residual units of the fusion blocks.
use_bias_in_fusion_residual (`bool`, *optional*, defaults to `True`):
Whether to use bias in the pre-activate residual units of the fusion blocks.
add_projection (`bool`, *optional*, defaults to `False`):
Whether to add a projection layer before the depth estimation head.
use_auxiliary_head (`bool`, *optional*, defaults to `True`):
Whether to use an auxiliary head during training.
auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
Weight of the cross-entropy loss of the auxiliary head.
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
The index that is ignored by the loss function of the semantic segmentation model.
semantic_classifier_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the semantic classification head.
backbone_featmap_shape (`List[int]`, *optional*, defaults to `[1, 1024, 24, 24]`):
Used only for the `hybrid` embedding type. The shape of the feature maps of the backbone.
neck_ignore_stages (`List[int]`, *optional*, defaults to `[0, 1]`):
Used only for the `hybrid` embedding type. The stages of the readout layers to ignore.
backbone_config (`Union[Dict[str, Any], PretrainedConfig]`, *optional*):
The configuration of the backbone model. Only used in case `is_hybrid` is `True` or in case you want to
leverage the [`AutoBackbone`] API.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use pretrained weights for the backbone.
use_timm_backbone (`bool`, *optional*, defaults to `False`):
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
library.
backbone_kwargs (`dict`, *optional*):
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
pooler_output_size (`int`, *optional*):
Dimensionality of the pooler layer. If None, defaults to `hidden_size`.
pooler_act (`str`, *optional*, defaults to `"tanh"`):
The activation function to be used by the pooler. Keys of ACT2FN are supported for Flax and
Pytorch, and elements of https://www.tensorflow.org/api_docs/python/tf/keras/activations are
supported for Tensorflow.
Example:
```python
>>> from transformers import DPTModel, DPTConfig
>>> # Initializing a DPT dpt-large style configuration
>>> configuration = DPTConfig()
>>> # Initializing a model from the dpt-large style configuration
>>> model = DPTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "dpt"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
image_size=384,
patch_size=16,
num_channels=3,
is_hybrid=False,
qkv_bias=True,
backbone_out_indices=[2, 5, 8, 11],
readout_type="project",
reassemble_factors=[4, 2, 1, 0.5],
neck_hidden_sizes=[96, 192, 384, 768],
fusion_hidden_size=256,
head_in_index=-1,
use_batch_norm_in_fusion_residual=False,
use_bias_in_fusion_residual=None,
add_projection=False,
use_auxiliary_head=True,
auxiliary_loss_weight=0.4,
semantic_loss_ignore_index=255,
semantic_classifier_dropout=0.1,
backbone_featmap_shape=[1, 1024, 24, 24],
neck_ignore_stages=[0, 1],
backbone_config=None,
backbone=None,
use_pretrained_backbone=False,
use_timm_backbone=False,
backbone_kwargs=None,
pooler_output_size=None,
pooler_act="tanh",
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.is_hybrid = is_hybrid
use_autobackbone = False
if self.is_hybrid:
if backbone_config is None:
backbone_config = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
}
if isinstance(backbone_config, dict):
logger.info("Initializing the config with a `BiT` backbone.")
backbone_config = BitConfig(**backbone_config)
elif isinstance(backbone_config, PretrainedConfig):
backbone_config = backbone_config
else:
raise ValueError(
f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}."
)
self.backbone_config = backbone_config
self.backbone_featmap_shape = backbone_featmap_shape
self.neck_ignore_stages = neck_ignore_stages
if readout_type != "project":
raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode.")
elif backbone is not None or backbone_config is not None:
use_autobackbone = True
if isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
self.backbone_config = backbone_config
self.backbone_featmap_shape = None
self.neck_ignore_stages = []
# We only use load_backbone when config.is_hydrid is False
verify_backbone_config_arguments(
use_timm_backbone=use_timm_backbone,
use_pretrained_backbone=use_pretrained_backbone,
backbone=backbone,
backbone_config=backbone_config,
backbone_kwargs=backbone_kwargs,
)
else:
self.backbone_config = None
self.backbone_featmap_shape = None
self.neck_ignore_stages = []
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.use_timm_backbone = use_timm_backbone
self.backbone_kwargs = backbone_kwargs
# ViT parameters used if not using a hybrid backbone
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.use_autobackbone = use_autobackbone
self.backbone_out_indices = None if use_autobackbone else backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']")
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.readout_type = readout_type
self.reassemble_factors = reassemble_factors
self.neck_hidden_sizes = neck_hidden_sizes
self.fusion_hidden_size = fusion_hidden_size
self.head_in_index = head_in_index
self.use_batch_norm_in_fusion_residual = use_batch_norm_in_fusion_residual
self.use_bias_in_fusion_residual = use_bias_in_fusion_residual
self.add_projection = add_projection
# auxiliary head attributes (semantic segmentation)
self.use_auxiliary_head = use_auxiliary_head
self.auxiliary_loss_weight = auxiliary_loss_weight
self.semantic_loss_ignore_index = semantic_loss_ignore_index
self.semantic_classifier_dropout = semantic_classifier_dropout
self.pooler_output_size = pooler_output_size if pooler_output_size else hidden_size
self.pooler_act = pooler_act
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
if output["backbone_config"] is not None:
output["backbone_config"] = self.backbone_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
@property
def sub_configs(self):
return {"backbone_config": type(self.backbone_config)} if self.backbone_config is not None else {}
__all__ = ["DPTConfig"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: feature_extraction_dpt.py
LINES: 1
SIZE: 1.17 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dpt\feature_extraction_dpt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for DPT."""
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
logger = logging.get_logger(__name__)
class DPTFeatureExtractor(DPTImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DPTImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
__all__ = ["DPTFeatureExtractor"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: image_processing_dpt.py
LINES: 1
SIZE: 30.99 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dpt\image_processing_dpt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for DPT."""
import math
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Union
if TYPE_CHECKING:
from ...modeling_outputs import DepthEstimatorOutput
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import pad, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import (
TensorType,
filter_out_non_signature_kwargs,
is_vision_available,
logging,
requires_backends,
)
if is_torch_available():
import torch
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
def get_resize_output_image_size(
input_image: np.ndarray,
output_size: Union[int, Iterable[int]],
keep_aspect_ratio: bool,
multiple: int,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
def constrain_to_multiple_of(val, multiple, min_val=0, max_val=None):
x = round(val / multiple) * multiple
if max_val is not None and x > max_val:
x = math.floor(val / multiple) * multiple
if x < min_val:
x = math.ceil(val / multiple) * multiple
return x
output_size = (output_size, output_size) if isinstance(output_size, int) else output_size
input_height, input_width = get_image_size(input_image, input_data_format)
output_height, output_width = output_size
# determine new height and width
scale_height = output_height / input_height
scale_width = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
new_height = constrain_to_multiple_of(scale_height * input_height, multiple=multiple)
new_width = constrain_to_multiple_of(scale_width * input_width, multiple=multiple)
return (new_height, new_width)
class DPTImageProcessor(BaseImageProcessor):
r"""
Constructs a DPT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions. Can be overidden by `do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 384, "width": 384}`):
Size of the image after resizing. Can be overidden by `size` in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Defines the resampling filter to use if resizing the image. Can be overidden by `resample` in `preprocess`.
keep_aspect_ratio (`bool`, *optional*, defaults to `False`):
If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. Can
be overidden by `keep_aspect_ratio` in `preprocess`.
ensure_multiple_of (`int`, *optional*, defaults to 1):
If `do_resize` is `True`, the image is resized to a size that is a multiple of this value. Can be overidden
by `ensure_multiple_of` in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overidden by `do_rescale` in
`preprocess`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overidden by `rescale_factor` in `preprocess`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_pad (`bool`, *optional*, defaults to `False`):
Whether to apply center padding. This was introduced in the DINOv2 paper, which uses the model in
combination with DPT.
size_divisor (`int`, *optional*):
If `do_pad` is `True`, pads the image dimensions to be divisible by this value. This was introduced in the
DINOv2 paper, which uses the model in combination with DPT.
do_reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is
used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The
background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
keep_aspect_ratio: bool = False,
ensure_multiple_of: int = 1,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: bool = False,
size_divisor: Optional[int] = None,
do_reduce_labels: bool = False,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 384, "width": 384}
size = get_size_dict(size)
self.do_resize = do_resize
self.size = size
self.keep_aspect_ratio = keep_aspect_ratio
self.ensure_multiple_of = ensure_multiple_of
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.do_pad = do_pad
self.size_divisor = size_divisor
self.do_reduce_labels = do_reduce_labels
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
keep_aspect_ratio: bool = False,
ensure_multiple_of: int = 1,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to target size `(size["height"], size["width"])`. If `keep_aspect_ratio` is `True`, the image
is resized to the largest possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is
set, the image is resized to a size that is a multiple of this value.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Target size of the output image.
keep_aspect_ratio (`bool`, *optional*, defaults to `False`):
If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved.
ensure_multiple_of (`int`, *optional*, defaults to 1):
The image is resized to a size that is a multiple of this value.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Defines the resampling filter to use if resizing the image. Otherwise, the image is resized to size
specified in `size`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}")
output_size = get_resize_output_image_size(
image,
output_size=(size["height"], size["width"]),
keep_aspect_ratio=keep_aspect_ratio,
multiple=ensure_multiple_of,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def pad_image(
self,
image: np.array,
size_divisor: int,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Center pad an image to be a multiple of `multiple`.
Args:
image (`np.ndarray`):
Image to pad.
size_divisor (`int`):
The width and height of the image will be padded to a multiple of this number.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
def _get_pad(size, size_divisor):
new_size = math.ceil(size / size_divisor) * size_divisor
pad_size = new_size - size
pad_size_left = pad_size // 2
pad_size_right = pad_size - pad_size_left
return pad_size_left, pad_size_right
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
height, width = get_image_size(image, input_data_format)
pad_size_left, pad_size_right = _get_pad(height, size_divisor)
pad_size_top, pad_size_bottom = _get_pad(width, size_divisor)
return pad(image, ((pad_size_left, pad_size_right), (pad_size_top, pad_size_bottom)), data_format=data_format)
# Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.reduce_label
def reduce_label(self, label: ImageInput) -> np.ndarray:
label = to_numpy_array(label)
# Avoid using underflow conversion
label[label == 0] = 255
label = label - 1
label[label == 254] = 255
return label
def _preprocess(
self,
image: ImageInput,
do_reduce_labels: Optional[bool] = None,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
keep_aspect_ratio: Optional[bool] = None,
ensure_multiple_of: Optional[int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
size_divisor: Optional[int] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
if do_reduce_labels:
image = self.reduce_label(image)
if do_resize:
image = self.resize(
image=image,
size=size,
resample=resample,
keep_aspect_ratio=keep_aspect_ratio,
ensure_multiple_of=ensure_multiple_of,
input_data_format=input_data_format,
)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
if do_pad:
image = self.pad_image(image=image, size_divisor=size_divisor, input_data_format=input_data_format)
return image
def _preprocess_image(
self,
image: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
keep_aspect_ratio: Optional[bool] = None,
ensure_multiple_of: Optional[int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
size_divisor: Optional[int] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_rescale and is_scaled_image(image):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(image)
image = self._preprocess(
image,
do_reduce_labels=False,
do_resize=do_resize,
size=size,
resample=resample,
keep_aspect_ratio=keep_aspect_ratio,
ensure_multiple_of=ensure_multiple_of,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_pad=do_pad,
size_divisor=size_divisor,
input_data_format=input_data_format,
)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
def _preprocess_segmentation_map(
self,
segmentation_map: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
keep_aspect_ratio: Optional[bool] = None,
ensure_multiple_of: Optional[int] = None,
do_reduce_labels: Optional[bool] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""Preprocesses a single segmentation map."""
# All transformations expect numpy arrays.
segmentation_map = to_numpy_array(segmentation_map)
# Add an axis to the segmentation maps for transformations.
if segmentation_map.ndim == 2:
segmentation_map = segmentation_map[None, ...]
added_dimension = True
input_data_format = ChannelDimension.FIRST
else:
added_dimension = False
if input_data_format is None:
input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1)
segmentation_map = self._preprocess(
image=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
size=size,
resample=resample,
keep_aspect_ratio=keep_aspect_ratio,
ensure_multiple_of=ensure_multiple_of,
do_normalize=False,
do_rescale=False,
input_data_format=input_data_format,
)
# Remove extra axis if added
if added_dimension:
segmentation_map = np.squeeze(segmentation_map, axis=0)
segmentation_map = segmentation_map.astype(np.int64)
return segmentation_map
# Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.__call__
def __call__(self, images, segmentation_maps=None, **kwargs):
# Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both
# be passed in as positional arguments.
return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
segmentation_maps: Optional[ImageInput] = None,
do_resize: Optional[bool] = None,
size: Optional[int] = None,
keep_aspect_ratio: Optional[bool] = None,
ensure_multiple_of: Optional[int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
size_divisor: Optional[int] = None,
do_reduce_labels: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
segmentation_maps (`ImageInput`, *optional*):
Segmentation map to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after reszing. If `keep_aspect_ratio` is `True`, the image is resized to the largest
possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is set, the image is
resized to a size that is a multiple of this value.
keep_aspect_ratio (`bool`, *optional*, defaults to `self.keep_aspect_ratio`):
Whether to keep the aspect ratio of the image. If False, the image will be resized to (size, size). If
True, the image will be resized to keep the aspect ratio and the size will be the maximum possible.
ensure_multiple_of (`int`, *optional*, defaults to `self.ensure_multiple_of`):
Ensure that the image size is a multiple of this value.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0
is used for background, and background itself is not included in all classes of a dataset (e.g.
ADE20k). The background label will be replaced by 255.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
keep_aspect_ratio = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
ensure_multiple_of = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_pad = do_pad if do_pad is not None else self.do_pad
size_divisor = size_divisor if size_divisor is not None else self.size_divisor
do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels
images = make_list_of_images(images)
if segmentation_maps is not None:
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_pad=do_pad,
size_divisibility=size_divisor,
do_resize=do_resize,
size=size,
resample=resample,
)
images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
do_rescale=do_rescale,
do_normalize=do_normalize,
do_pad=do_pad,
size=size,
resample=resample,
keep_aspect_ratio=keep_aspect_ratio,
ensure_multiple_of=ensure_multiple_of,
rescale_factor=rescale_factor,
image_mean=image_mean,
image_std=image_std,
size_divisor=size_divisor,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data = {"pixel_values": images}
if segmentation_maps is not None:
segmentation_maps = [
self._preprocess_segmentation_map(
segmentation_map=segmentation_map,
do_reduce_labels=do_reduce_labels,
do_resize=do_resize,
size=size,
resample=resample,
keep_aspect_ratio=keep_aspect_ratio,
ensure_multiple_of=ensure_multiple_of,
input_data_format=input_data_format,
)
for segmentation_map in segmentation_maps
]
data["labels"] = segmentation_maps
return BatchFeature(data=data, tensor_type=return_tensors)
# Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->DPT
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None):
"""
Converts the output of [`DPTForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`DPTForSemanticSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple]` of length `batch_size`, *optional*):
List of tuples corresponding to the requested final size (height, width) of each prediction. If unset,
predictions will not be resized.
Returns:
semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic
segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is
specified). Each entry of each `torch.Tensor` correspond to a semantic class id.
"""
# TODO: add support for other frameworks
logits = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
if is_torch_tensor(target_sizes):
target_sizes = target_sizes.numpy()
semantic_segmentation = []
for idx in range(len(logits)):
resized_logits = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = logits.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
def post_process_depth_estimation(
self,
outputs: "DepthEstimatorOutput",
target_sizes: Optional[Union[TensorType, List[Tuple[int, int]], None]] = None,
) -> List[Dict[str, TensorType]]:
"""
Converts the raw output of [`DepthEstimatorOutput`] into final depth predictions and depth PIL images.
Only supports PyTorch.
Args:
outputs ([`DepthEstimatorOutput`]):
Raw outputs of the model.
target_sizes (`TensorType` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
(height, width) of each image in the batch. If left to None, predictions will not be resized.
Returns:
`List[Dict[str, TensorType]]`: A list of dictionaries of tensors representing the processed depth
predictions.
"""
requires_backends(self, "torch")
predicted_depth = outputs.predicted_depth
if (target_sizes is not None) and (len(predicted_depth) != len(target_sizes)):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the predicted depth"
)
results = []
target_sizes = [None] * len(predicted_depth) if target_sizes is None else target_sizes
for depth, target_size in zip(predicted_depth, target_sizes):
if target_size is not None:
depth = torch.nn.functional.interpolate(
depth.unsqueeze(0).unsqueeze(1), size=target_size, mode="bicubic", align_corners=False
).squeeze()
results.append({"predicted_depth": depth})
return results
__all__ = ["DPTImageProcessor"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_dpt.py
LINES: 1
SIZE: 57.51 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\dpt\modeling_dpt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Intel Labs, OpenMMLab and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DPT (Dense Prediction Transformers) model.
This implementation is heavily inspired by OpenMMLab's implementation, found here:
https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/dpt_head.py.
"""
import collections.abc
from dataclasses import dataclass
from typing import Callable, List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_outputs import BaseModelOutput, DepthEstimatorOutput, SemanticSegmenterOutput
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import ModelOutput, logging, torch_int
from ...utils.backbone_utils import load_backbone
from .configuration_dpt import DPTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "DPTConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "Intel/dpt-large"
_EXPECTED_OUTPUT_SHAPE = [1, 577, 1024]
@dataclass
class BaseModelOutputWithIntermediateActivations(ModelOutput):
"""
Base class for model's outputs that also contains intermediate activations that can be used at later stages. Useful
in the context of Vision models.:
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
intermediate_activations (`tuple(torch.FloatTensor)`, *optional*):
Intermediate activations that can be used to compute hidden states of the model at various layers.
"""
last_hidden_states: Optional[torch.FloatTensor] = None
intermediate_activations: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseModelOutputWithPoolingAndIntermediateActivations(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states as well as intermediate
activations that can be used by the model at later stages.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
intermediate_activations (`tuple(torch.FloatTensor)`, *optional*):
Intermediate activations that can be used to compute hidden states of the model at various layers.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
intermediate_activations: Optional[Tuple[torch.FloatTensor, ...]] = None
class DPTViTHybridEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config, feature_size=None):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.backbone = load_backbone(config)
feature_dim = self.backbone.channels[-1]
if len(self.backbone.channels) != 3:
raise ValueError(f"Expected backbone to have 3 output features, got {len(self.backbone.channels)}")
self.residual_feature_map_index = [0, 1] # Always take the output of the first and second backbone stage
if feature_size is None:
feat_map_shape = config.backbone_featmap_shape
feature_size = feat_map_shape[-2:]
feature_dim = feat_map_shape[1]
else:
feature_size = (
feature_size if isinstance(feature_size, collections.abc.Iterable) else (feature_size, feature_size)
)
feature_dim = self.backbone.channels[-1]
self.image_size = image_size
self.patch_size = patch_size[0]
self.num_channels = num_channels
self.projection = nn.Conv2d(feature_dim, hidden_size, kernel_size=1)
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1):
posemb_tok = posemb[:, :start_index]
posemb_grid = posemb[0, start_index:]
old_grid_size = torch_int(len(posemb_grid) ** 0.5)
posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2)
posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear")
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
def forward(
self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False, return_dict: bool = False
) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if not interpolate_pos_encoding:
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
position_embeddings = self._resize_pos_embed(
self.position_embeddings, height // self.patch_size, width // self.patch_size
)
backbone_output = self.backbone(pixel_values)
features = backbone_output.feature_maps[-1]
# Retrieve also the intermediate activations to use them at later stages
output_hidden_states = [backbone_output.feature_maps[index] for index in self.residual_feature_map_index]
embeddings = self.projection(features).flatten(2).transpose(1, 2)
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
embeddings = embeddings + position_embeddings
if not return_dict:
return (embeddings, output_hidden_states)
# Return hidden states and intermediate activations
return BaseModelOutputWithIntermediateActivations(
last_hidden_states=embeddings,
intermediate_activations=output_hidden_states,
)
class DPTViTEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings.
"""
def __init__(self, config):
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.patch_embeddings = DPTViTPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.config = config
def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1):
posemb_tok = posemb[:, :start_index]
posemb_grid = posemb[0, start_index:]
old_grid_size = torch_int(posemb_grid.size(0) ** 0.5)
posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2)
posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear")
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
def forward(self, pixel_values, return_dict=False):
batch_size, num_channels, height, width = pixel_values.shape
# possibly interpolate position encodings to handle varying image sizes
patch_size = self.config.patch_size
position_embeddings = self._resize_pos_embed(
self.position_embeddings, height // patch_size, width // patch_size
)
embeddings = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.size()
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
embeddings = embeddings + position_embeddings
embeddings = self.dropout(embeddings)
if not return_dict:
return (embeddings,)
return BaseModelOutputWithIntermediateActivations(last_hidden_states=embeddings)
class DPTViTPatchEmbeddings(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values):
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
return embeddings
# Copied from transformers.models.vit.modeling_vit.eager_attention_forward
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
# Take the dot product between "query" and "key" to get the raw attention scores.
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
# Normalize the attention scores to probabilities.
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
# Mask heads if we want to
if attention_mask is not None:
attn_weights = attn_weights * attention_mask
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DPT
class DPTSelfAttention(nn.Module):
def __init__(self, config: DPTConfig) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.config = config
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.dropout_prob = config.attention_probs_dropout_prob
self.scaling = self.attention_head_size**-0.5
self.is_causal = False
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(self.query(hidden_states))
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and output_attentions:
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
context_layer, attention_probs = attention_interface(
self,
query_layer,
key_layer,
value_layer,
head_mask,
is_causal=self.is_causal,
scaling=self.scaling,
dropout=0.0 if not self.training else self.dropout_prob,
)
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.reshape(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DPT
class DPTViTSelfOutput(nn.Module):
"""
The residual connection is defined in DPTLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class DPTViTAttention(nn.Module):
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.attention = DPTSelfAttention(config)
self.output = DPTViTSelfOutput(config)
self.pruned_heads = set()
# Copied from transformers.models.vit.modeling_vit.ViTAttention.prune_heads
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
# Copied from transformers.models.vit.modeling_vit.ViTAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DPT
class DPTViTIntermediate(nn.Module):
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DPT
class DPTViTOutput(nn.Module):
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
# copied from transformers.models.vit.modeling_vit.ViTLayer with ViTConfig->DPTConfig, ViTAttention->DPTViTAttention, ViTIntermediate->DPTViTIntermediate, ViTOutput->DPTViTOutput
class DPTViTLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = DPTViTAttention(config)
self.intermediate = DPTViTIntermediate(config)
self.output = DPTViTOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_states)
outputs = (layer_output,) + outputs
return outputs
# copied from transformers.models.vit.modeling_vit.ViTEncoder with ViTConfig -> DPTConfig, ViTLayer->DPTViTLayer
class DPTViTEncoder(nn.Module):
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([DPTViTLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class DPTReassembleStage(nn.Module):
"""
This class reassembles the hidden states of the backbone into image-like feature representations at various
resolutions.
This happens in 3 stages:
1. Map the N + 1 tokens to a set of N tokens, by taking into account the readout ([CLS]) token according to
`config.readout_type`.
2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`.
3. Resizing the spatial dimensions (height, width).
Args:
config (`[DPTConfig]`):
Model configuration class defining the model architecture.
"""
def __init__(self, config):
super().__init__()
self.config = config
self.layers = nn.ModuleList()
if config.is_hybrid:
self._init_reassemble_dpt_hybrid(config)
else:
self._init_reassemble_dpt(config)
self.neck_ignore_stages = config.neck_ignore_stages
def _init_reassemble_dpt_hybrid(self, config):
r""" "
For DPT-Hybrid the first 2 reassemble layers are set to `nn.Identity()`, please check the official
implementation: https://github.com/isl-org/DPT/blob/f43ef9e08d70a752195028a51be5e1aff227b913/dpt/vit.py#L438
for more details.
"""
for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors):
if i <= 1:
self.layers.append(nn.Identity())
elif i > 1:
self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor))
if config.readout_type != "project":
raise ValueError(f"Readout type {config.readout_type} is not supported for DPT-Hybrid.")
# When using DPT-Hybrid the readout type is set to "project". The sanity check is done on the config file
self.readout_projects = nn.ModuleList()
hidden_size = _get_backbone_hidden_size(config)
for i in range(len(config.neck_hidden_sizes)):
if i <= 1:
self.readout_projects.append(nn.Sequential(nn.Identity()))
elif i > 1:
self.readout_projects.append(
nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act])
)
def _init_reassemble_dpt(self, config):
for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors):
self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor))
if config.readout_type == "project":
self.readout_projects = nn.ModuleList()
hidden_size = _get_backbone_hidden_size(config)
for _ in range(len(config.neck_hidden_sizes)):
self.readout_projects.append(
nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act])
)
def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]:
"""
Args:
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`):
List of hidden states from the backbone.
"""
out = []
for i, hidden_state in enumerate(hidden_states):
if i not in self.neck_ignore_stages:
# reshape to (batch_size, num_channels, height, width)
cls_token, hidden_state = hidden_state[:, 0], hidden_state[:, 1:]
batch_size, sequence_length, num_channels = hidden_state.shape
if patch_height is not None and patch_width is not None:
hidden_state = hidden_state.reshape(batch_size, patch_height, patch_width, num_channels)
else:
size = torch_int(sequence_length**0.5)
hidden_state = hidden_state.reshape(batch_size, size, size, num_channels)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_shape = hidden_state.shape
if self.config.readout_type == "project":
# reshape to (batch_size, height*width, num_channels)
hidden_state = hidden_state.flatten(2).permute((0, 2, 1))
readout = cls_token.unsqueeze(1).expand_as(hidden_state)
# concatenate the readout token to the hidden states and project
hidden_state = self.readout_projects[i](torch.cat((hidden_state, readout), -1))
# reshape back to (batch_size, num_channels, height, width)
hidden_state = hidden_state.permute(0, 2, 1).reshape(feature_shape)
elif self.config.readout_type == "add":
hidden_state = hidden_state.flatten(2) + cls_token.unsqueeze(-1)
hidden_state = hidden_state.reshape(feature_shape)
hidden_state = self.layers[i](hidden_state)
out.append(hidden_state)
return out
def _get_backbone_hidden_size(config):
if config.backbone_config is not None and config.is_hybrid is False:
return config.backbone_config.hidden_size
else:
return config.hidden_size
class DPTReassembleLayer(nn.Module):
def __init__(self, config, channels, factor):
super().__init__()
# projection
hidden_size = _get_backbone_hidden_size(config)
self.projection = nn.Conv2d(in_channels=hidden_size, out_channels=channels, kernel_size=1)
# up/down sampling depending on factor
if factor > 1:
self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0)
elif factor == 1:
self.resize = nn.Identity()
elif factor < 1:
# so should downsample
self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=int(1 / factor), padding=1)
def forward(self, hidden_state):
hidden_state = self.projection(hidden_state)
hidden_state = self.resize(hidden_state)
return hidden_state
class DPTFeatureFusionStage(nn.Module):
def __init__(self, config):
super().__init__()
self.layers = nn.ModuleList()
for _ in range(len(config.neck_hidden_sizes)):
self.layers.append(DPTFeatureFusionLayer(config))
def forward(self, hidden_states):
# reversing the hidden_states, we start from the last
hidden_states = hidden_states[::-1]
fused_hidden_states = []
fused_hidden_state = None
for hidden_state, layer in zip(hidden_states, self.layers):
if fused_hidden_state is None:
# first layer only uses the last hidden_state
fused_hidden_state = layer(hidden_state)
else:
fused_hidden_state = layer(fused_hidden_state, hidden_state)
fused_hidden_states.append(fused_hidden_state)
return fused_hidden_states
class DPTPreActResidualLayer(nn.Module):
"""
ResidualConvUnit, pre-activate residual unit.
Args:
config (`[DPTConfig]`):
Model configuration class defining the model architecture.
"""
def __init__(self, config):
super().__init__()
self.use_batch_norm = config.use_batch_norm_in_fusion_residual
use_bias_in_fusion_residual = (
config.use_bias_in_fusion_residual
if config.use_bias_in_fusion_residual is not None
else not self.use_batch_norm
)
self.activation1 = nn.ReLU()
self.convolution1 = nn.Conv2d(
config.fusion_hidden_size,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=use_bias_in_fusion_residual,
)
self.activation2 = nn.ReLU()
self.convolution2 = nn.Conv2d(
config.fusion_hidden_size,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=use_bias_in_fusion_residual,
)
if self.use_batch_norm:
self.batch_norm1 = nn.BatchNorm2d(config.fusion_hidden_size)
self.batch_norm2 = nn.BatchNorm2d(config.fusion_hidden_size)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
residual = hidden_state
hidden_state = self.activation1(hidden_state)
hidden_state = self.convolution1(hidden_state)
if self.use_batch_norm:
hidden_state = self.batch_norm1(hidden_state)
hidden_state = self.activation2(hidden_state)
hidden_state = self.convolution2(hidden_state)
if self.use_batch_norm:
hidden_state = self.batch_norm2(hidden_state)
return hidden_state + residual
class DPTFeatureFusionLayer(nn.Module):
"""Feature fusion layer, merges feature maps from different stages.
Args:
config (`[DPTConfig]`):
Model configuration class defining the model architecture.
align_corners (`bool`, *optional*, defaults to `True`):
The align_corner setting for bilinear upsample.
"""
def __init__(self, config, align_corners=True):
super().__init__()
self.align_corners = align_corners
self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True)
self.residual_layer1 = DPTPreActResidualLayer(config)
self.residual_layer2 = DPTPreActResidualLayer(config)
def forward(self, hidden_state, residual=None):
if residual is not None:
if hidden_state.shape != residual.shape:
residual = nn.functional.interpolate(
residual, size=(hidden_state.shape[2], hidden_state.shape[3]), mode="bilinear", align_corners=False
)
hidden_state = hidden_state + self.residual_layer1(residual)
hidden_state = self.residual_layer2(hidden_state)
hidden_state = nn.functional.interpolate(
hidden_state, scale_factor=2, mode="bilinear", align_corners=self.align_corners
)
hidden_state = self.projection(hidden_state)
return hidden_state
class DPTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DPTConfig
base_model_prefix = "dpt"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_supports_sdpa = True
_supports_flash_attn_2 = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, (DPTViTEmbeddings, DPTViTHybridEmbeddings)):
module.cls_token.data.zero_()
module.position_embeddings.data.zero_()
DPT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DPT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`]
for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DPT Model transformer outputting raw hidden-states without any specific head on top.",
DPT_START_DOCSTRING,
)
class DPTModel(DPTPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
# vit encoder
if config.is_hybrid:
self.embeddings = DPTViTHybridEmbeddings(config)
else:
self.embeddings = DPTViTEmbeddings(config)
self.encoder = DPTViTEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = DPTViTPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
if self.config.is_hybrid:
return self.embeddings
else:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndIntermediateActivations,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndIntermediateActivations]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(pixel_values, return_dict=return_dict)
embedding_last_hidden_states = embedding_output[0] if not return_dict else embedding_output.last_hidden_states
encoder_outputs = self.encoder(
embedding_last_hidden_states,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
return head_outputs + encoder_outputs[1:] + embedding_output[1:]
return BaseModelOutputWithPoolingAndIntermediateActivations(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
intermediate_activations=embedding_output.intermediate_activations,
)
# Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DPT
class DPTViTPooler(nn.Module):
def __init__(self, config: DPTConfig):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.pooler_output_size)
self.activation = ACT2FN[config.pooler_act]
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class DPTNeck(nn.Module):
"""
DPTNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as
input and produces another list of tensors as output. For DPT, it includes 2 stages:
* DPTReassembleStage
* DPTFeatureFusionStage.
Args:
config (dict): config dict.
"""
def __init__(self, config):
super().__init__()
self.config = config
# postprocessing: only required in case of a non-hierarchical backbone (e.g. ViT, BEiT)
if config.backbone_config is not None and config.backbone_config.model_type in ["swinv2"]:
self.reassemble_stage = None
else:
self.reassemble_stage = DPTReassembleStage(config)
self.convs = nn.ModuleList()
for channel in config.neck_hidden_sizes:
self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False))
# fusion
self.fusion_stage = DPTFeatureFusionStage(config)
def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]:
"""
Args:
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`):
List of hidden states from the backbone.
"""
if not isinstance(hidden_states, (tuple, list)):
raise TypeError("hidden_states should be a tuple or list of tensors")
if len(hidden_states) != len(self.config.neck_hidden_sizes):
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")
# postprocess hidden states
if self.reassemble_stage is not None:
hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width)
features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)]
# fusion blocks
output = self.fusion_stage(features)
return output
class DPTDepthEstimationHead(nn.Module):
"""
Output head consisting of 3 convolutional layers. It progressively halves the feature dimension and upsamples
the predictions to the input resolution after the first convolutional layer (details can be found in the paper's
supplementary material).
"""
def __init__(self, config):
super().__init__()
self.config = config
self.projection = None
if config.add_projection:
self.projection = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
features = config.fusion_hidden_size
self.head = nn.Sequential(
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(),
)
def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor:
# use last features
hidden_states = hidden_states[self.config.head_in_index]
if self.projection is not None:
hidden_states = self.projection(hidden_states)
hidden_states = nn.ReLU()(hidden_states)
predicted_depth = self.head(hidden_states)
predicted_depth = predicted_depth.squeeze(dim=1)
return predicted_depth
@add_start_docstrings(
"""
DPT Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2.
""",
DPT_START_DOCSTRING,
)
class DPTForDepthEstimation(DPTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.backbone = None
if config.is_hybrid is False and (config.backbone_config is not None or config.backbone is not None):
self.backbone = load_backbone(config)
else:
self.dpt = DPTModel(config, add_pooling_layer=False)
# Neck
self.neck = DPTNeck(config)
# Depth estimation head
self.head = DPTDepthEstimationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
head_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth depth estimation maps for computing the loss.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, DPTForDepthEstimation
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large")
>>> model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # interpolate to original size
>>> post_processed_output = image_processor.post_process_depth_estimation(
... outputs,
... target_sizes=[(image.height, image.width)],
... )
>>> # visualize the prediction
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
>>> depth = predicted_depth * 255 / predicted_depth.max()
>>> depth = depth.detach().cpu().numpy()
>>> depth = Image.fromarray(depth.astype("uint8"))
```"""
loss = None
if labels is not None:
raise NotImplementedError("Training is not implemented yet")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
if self.backbone is not None:
outputs = self.backbone.forward_with_filtered_kwargs(
pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions
)
hidden_states = outputs.feature_maps
else:
outputs = self.dpt(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
# only keep certain features based on config.backbone_out_indices
# note that the hidden_states also include the initial embeddings
if not self.config.is_hybrid:
hidden_states = [
feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices
]
else:
backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1])
backbone_hidden_states.extend(
feature
for idx, feature in enumerate(hidden_states[1:])
if idx in self.config.backbone_out_indices[2:]
)
hidden_states = backbone_hidden_states
patch_height, patch_width = None, None
if self.config.backbone_config is not None and self.config.is_hybrid is False:
_, _, height, width = pixel_values.shape
patch_size = self.config.backbone_config.patch_size
patch_height = height // patch_size
patch_width = width // patch_size
hidden_states = self.neck(hidden_states, patch_height, patch_width)
predicted_depth = self.head(hidden_states)
if not return_dict:
if output_hidden_states:
output = (predicted_depth,) + outputs[1:]
else:
output = (predicted_depth,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return DepthEstimatorOutput(
loss=loss,
predicted_depth=predicted_depth,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
class DPTSemanticSegmentationHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
features = config.fusion_hidden_size
self.head = nn.Sequential(
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(features),
nn.ReLU(),
nn.Dropout(config.semantic_classifier_dropout),
nn.Conv2d(features, config.num_labels, kernel_size=1),
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
)
def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor:
# use last features
hidden_states = hidden_states[self.config.head_in_index]
logits = self.head(hidden_states)
return logits
class DPTAuxiliaryHead(nn.Module):
def __init__(self, config):
super().__init__()
features = config.fusion_hidden_size
self.head = nn.Sequential(
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(features),
nn.ReLU(),
nn.Dropout(0.1, False),
nn.Conv2d(features, config.num_labels, kernel_size=1),
)
def forward(self, hidden_states):
logits = self.head(hidden_states)
return logits
@add_start_docstrings(
"""
DPT Model with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
""",
DPT_START_DOCSTRING,
)
class DPTForSemanticSegmentation(DPTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.dpt = DPTModel(config, add_pooling_layer=False)
# Neck
self.neck = DPTNeck(config)
# Segmentation head(s)
self.head = DPTSemanticSegmentationHead(config)
self.auxiliary_head = DPTAuxiliaryHead(config) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, DPTForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large-ade")
>>> model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if labels is not None and self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
outputs = self.dpt(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
# only keep certain features based on config.backbone_out_indices
# note that the hidden_states also include the initial embeddings
if not self.config.is_hybrid:
hidden_states = [
feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices
]
else:
backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1])
backbone_hidden_states.extend(
feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices[2:]
)
hidden_states = backbone_hidden_states
hidden_states = self.neck(hidden_states=hidden_states)
logits = self.head(hidden_states)
auxiliary_logits = None
if self.auxiliary_head is not None:
auxiliary_logits = self.auxiliary_head(hidden_states[-1])
loss = None
if labels is not None:
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
if auxiliary_logits is not None:
upsampled_auxiliary_logits = nn.functional.interpolate(
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
# compute weighted loss
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
main_loss = loss_fct(upsampled_logits, labels)
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
__all__ = ["DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel"]
```
|
====================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.03 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\efficientnet\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_efficientnet import *
from .image_processing_efficientnet import *
from .modeling_efficientnet import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================================
SOURCE CODE FILE: configuration_efficientnet.py
LINES: 1
SIZE: 7.48 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\efficientnet\configuration_efficientnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""EfficientNet model configuration"""
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class EfficientNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`EfficientNetModel`]. It is used to instantiate an
EfficientNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the EfficientNet
[google/efficientnet-b7](https://huggingface.co/google/efficientnet-b7) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 600):
The input image size.
width_coefficient (`float`, *optional*, defaults to 2.0):
Scaling coefficient for network width at each stage.
depth_coefficient (`float`, *optional*, defaults to 3.1):
Scaling coefficient for network depth at each stage.
depth_divisor `int`, *optional*, defaults to 8):
A unit of network width.
kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`):
List of kernel sizes to be used in each block.
in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`):
List of input channel sizes to be used in each block for convolutional layers.
out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`):
List of output channel sizes to be used in each block for convolutional layers.
depthwise_padding (`List[int]`, *optional*, defaults to `[]`):
List of block indices with square padding.
strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`):
List of stride sizes to be used in each block for convolutional layers.
num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`):
List of the number of times each block is to repeated.
expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`):
List of scaling coefficient of each block.
squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25):
Squeeze expansion ratio.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
`"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported.
hiddem_dim (`int`, *optional*, defaults to 1280):
The hidden dimension of the layer before the classification head.
pooling_type (`str` or `function`, *optional*, defaults to `"mean"`):
Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`,
`"max"`]
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
batch_norm_eps (`float`, *optional*, defaults to 1e-3):
The epsilon used by the batch normalization layers.
batch_norm_momentum (`float`, *optional*, defaults to 0.99):
The momentum used by the batch normalization layers.
dropout_rate (`float`, *optional*, defaults to 0.5):
The dropout rate to be applied before final classifier layer.
drop_connect_rate (`float`, *optional*, defaults to 0.2):
The drop rate for skip connections.
Example:
```python
>>> from transformers import EfficientNetConfig, EfficientNetModel
>>> # Initializing a EfficientNet efficientnet-b7 style configuration
>>> configuration = EfficientNetConfig()
>>> # Initializing a model (with random weights) from the efficientnet-b7 style configuration
>>> model = EfficientNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "efficientnet"
def __init__(
self,
num_channels: int = 3,
image_size: int = 600,
width_coefficient: float = 2.0,
depth_coefficient: float = 3.1,
depth_divisor: int = 8,
kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3],
in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192],
out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320],
depthwise_padding: List[int] = [],
strides: List[int] = [1, 2, 2, 2, 1, 2, 1],
num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1],
expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6],
squeeze_expansion_ratio: float = 0.25,
hidden_act: str = "swish",
hidden_dim: int = 2560,
pooling_type: str = "mean",
initializer_range: float = 0.02,
batch_norm_eps: float = 0.001,
batch_norm_momentum: float = 0.99,
dropout_rate: float = 0.5,
drop_connect_rate: float = 0.2,
**kwargs,
):
super().__init__(**kwargs)
self.num_channels = num_channels
self.image_size = image_size
self.width_coefficient = width_coefficient
self.depth_coefficient = depth_coefficient
self.depth_divisor = depth_divisor
self.kernel_sizes = kernel_sizes
self.in_channels = in_channels
self.out_channels = out_channels
self.depthwise_padding = depthwise_padding
self.strides = strides
self.num_block_repeats = num_block_repeats
self.expand_ratios = expand_ratios
self.squeeze_expansion_ratio = squeeze_expansion_ratio
self.hidden_act = hidden_act
self.hidden_dim = hidden_dim
self.pooling_type = pooling_type
self.initializer_range = initializer_range
self.batch_norm_eps = batch_norm_eps
self.batch_norm_momentum = batch_norm_momentum
self.dropout_rate = dropout_rate
self.drop_connect_rate = drop_connect_rate
self.num_hidden_layers = sum(num_block_repeats) * 4
class EfficientNetOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-5
__all__ = ["EfficientNetConfig", "EfficientNetOnnxConfig"]
```
|
=========================================================================================================================================================
SOURCE CODE FILE: image_processing_efficientnet.py
LINES: 1
SIZE: 17.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\efficientnet\image_processing_efficientnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for EfficientNet."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class EfficientNetImageProcessor(BaseImageProcessor):
r"""
Constructs a EfficientNet image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 346, "width": 346}`):
Size of the image after `resize`. Can be overridden by `size` in `preprocess`.
resample (`PILImageResampling` filter, *optional*, defaults to 0):
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_center_crop (`bool`, *optional*, defaults to `False`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 289, "width": 289}`):
Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
rescale_offset (`bool`, *optional*, defaults to `False`):
Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range]. Can be
overridden by the `rescale_factor` parameter in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
include_top (`bool`, *optional*, defaults to `True`):
Whether to rescale the image again. Should be set to True if the inputs are used for image classification.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PIL.Image.NEAREST,
do_center_crop: bool = False,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
rescale_offset: bool = False,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
include_top: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 346, "width": 346}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 289, "width": 289}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.rescale_offset = rescale_offset
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.include_top = include_top
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.NEAREST
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.NEAREST,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.NEAREST`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.NEAREST`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
offset: bool = True,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
"""
Rescale an image by a scale factor.
If `offset` is `True`, the image has its values rescaled by `scale` and then offset by 1. If `scale` is
1/127.5, the image is rescaled between [-1, 1].
image = image * scale - 1
If `offset` is `False`, and `scale` is 1/255, the image is rescaled between [0, 1].
image = image * scale
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
offset (`bool`, *optional*):
Whether to scale the image in both negative and positive directions.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
rescaled_image = rescale(
image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs
)
if offset:
rescaled_image = rescaled_image - 1
return rescaled_image
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample=None,
do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
rescale_offset: Optional[bool] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
include_top: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after `resize`.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to
`True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
padded with zeros and then cropped
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
rescale_offset (`bool`, *optional*, defaults to `self.rescale_offset`):
Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range].
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
include_top (`bool`, *optional*, defaults to `self.include_top`):
Rescales the image again for image classification if set to True.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- `None`: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
rescale_offset = rescale_offset if rescale_offset is not None else self.rescale_offset
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
include_top = include_top if include_top is not None else self.include_top
size = size if size is not None else self.size
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [
self.rescale(
image=image, scale=rescale_factor, offset=rescale_offset, input_data_format=input_data_format
)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
if include_top:
images = [
self.normalize(image=image, mean=0, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["EfficientNetImageProcessor"]
```
|
=================================================================================================================================================
SOURCE CODE FILE: modeling_efficientnet.py
LINES: 1
SIZE: 23.50 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\efficientnet\modeling_efficientnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch EfficientNet model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_efficientnet import EfficientNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "EfficientNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "google/efficientnet-b7"
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/efficientnet-b7"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
EFFICIENTNET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`EfficientNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
EFFICIENTNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`AutoImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def round_filters(config: EfficientNetConfig, num_channels: int):
r"""
Round number of filters based on depth multiplier.
"""
divisor = config.depth_divisor
num_channels *= config.width_coefficient
new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_dim < 0.9 * num_channels:
new_dim += divisor
return int(new_dim)
def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True):
r"""
Utility function to get the tuple padding value for the depthwise convolution.
Args:
kernel_size (`int` or `tuple`):
Kernel size of the convolution layers.
adjust (`bool`, *optional*, defaults to `True`):
Adjusts padding value to apply to right and bottom sides of the input.
"""
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
correct = (kernel_size[0] // 2, kernel_size[1] // 2)
if adjust:
return (correct[1] - 1, correct[1], correct[0] - 1, correct[0])
else:
return (correct[1], correct[1], correct[0], correct[0])
class EfficientNetEmbeddings(nn.Module):
r"""
A module that corresponds to the stem module of the original work.
"""
def __init__(self, config: EfficientNetConfig):
super().__init__()
self.out_dim = round_filters(config, 32)
self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1))
self.convolution = nn.Conv2d(
config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False
)
self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum)
self.activation = ACT2FN[config.hidden_act]
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
features = self.padding(pixel_values)
features = self.convolution(features)
features = self.batchnorm(features)
features = self.activation(features)
return features
class EfficientNetDepthwiseConv2d(nn.Conv2d):
def __init__(
self,
in_channels,
depth_multiplier=1,
kernel_size=3,
stride=1,
padding=0,
dilation=1,
bias=True,
padding_mode="zeros",
):
out_channels = in_channels * depth_multiplier
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=in_channels,
bias=bias,
padding_mode=padding_mode,
)
class EfficientNetExpansionLayer(nn.Module):
r"""
This corresponds to the expansion phase of each block in the original implementation.
"""
def __init__(self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int):
super().__init__()
self.expand_conv = nn.Conv2d(
in_channels=in_dim,
out_channels=out_dim,
kernel_size=1,
padding="same",
bias=False,
)
self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps)
self.expand_act = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
# Expand phase
hidden_states = self.expand_conv(hidden_states)
hidden_states = self.expand_bn(hidden_states)
hidden_states = self.expand_act(hidden_states)
return hidden_states
class EfficientNetDepthwiseLayer(nn.Module):
r"""
This corresponds to the depthwise convolution phase of each block in the original implementation.
"""
def __init__(
self,
config: EfficientNetConfig,
in_dim: int,
stride: int,
kernel_size: int,
adjust_padding: bool,
):
super().__init__()
self.stride = stride
conv_pad = "valid" if self.stride == 2 else "same"
padding = correct_pad(kernel_size, adjust=adjust_padding)
self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding)
self.depthwise_conv = EfficientNetDepthwiseConv2d(
in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False
)
self.depthwise_norm = nn.BatchNorm2d(
num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.depthwise_act = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
# Depthwise convolution
if self.stride == 2:
hidden_states = self.depthwise_conv_pad(hidden_states)
hidden_states = self.depthwise_conv(hidden_states)
hidden_states = self.depthwise_norm(hidden_states)
hidden_states = self.depthwise_act(hidden_states)
return hidden_states
class EfficientNetSqueezeExciteLayer(nn.Module):
r"""
This corresponds to the Squeeze and Excitement phase of each block in the original implementation.
"""
def __init__(self, config: EfficientNetConfig, in_dim: int, expand_dim: int, expand: bool = False):
super().__init__()
self.dim = expand_dim if expand else in_dim
self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio))
self.squeeze = nn.AdaptiveAvgPool2d(output_size=1)
self.reduce = nn.Conv2d(
in_channels=self.dim,
out_channels=self.dim_se,
kernel_size=1,
padding="same",
)
self.expand = nn.Conv2d(
in_channels=self.dim_se,
out_channels=self.dim,
kernel_size=1,
padding="same",
)
self.act_reduce = ACT2FN[config.hidden_act]
self.act_expand = nn.Sigmoid()
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
inputs = hidden_states
hidden_states = self.squeeze(hidden_states)
hidden_states = self.reduce(hidden_states)
hidden_states = self.act_reduce(hidden_states)
hidden_states = self.expand(hidden_states)
hidden_states = self.act_expand(hidden_states)
hidden_states = torch.mul(inputs, hidden_states)
return hidden_states
class EfficientNetFinalBlockLayer(nn.Module):
r"""
This corresponds to the final phase of each block in the original implementation.
"""
def __init__(
self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool
):
super().__init__()
self.apply_dropout = stride == 1 and not id_skip
self.project_conv = nn.Conv2d(
in_channels=in_dim,
out_channels=out_dim,
kernel_size=1,
padding="same",
bias=False,
)
self.project_bn = nn.BatchNorm2d(
num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.dropout = nn.Dropout(p=drop_rate)
def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor:
hidden_states = self.project_conv(hidden_states)
hidden_states = self.project_bn(hidden_states)
if self.apply_dropout:
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + embeddings
return hidden_states
class EfficientNetBlock(nn.Module):
r"""
This corresponds to the expansion and depthwise convolution phase of each block in the original implementation.
Args:
config ([`EfficientNetConfig`]):
Model configuration class.
in_dim (`int`):
Number of input channels.
out_dim (`int`):
Number of output channels.
stride (`int`):
Stride size to be used in convolution layers.
expand_ratio (`int`):
Expand ratio to set the output dimensions for the expansion and squeeze-excite layers.
kernel_size (`int`):
Kernel size for the depthwise convolution layer.
drop_rate (`float`):
Dropout rate to be used in the final phase of each block.
id_skip (`bool`):
Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase
of each block. Set to `True` for the first block of each stage.
adjust_padding (`bool`):
Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution
operation, set to `True` for inputs with odd input sizes.
"""
def __init__(
self,
config: EfficientNetConfig,
in_dim: int,
out_dim: int,
stride: int,
expand_ratio: int,
kernel_size: int,
drop_rate: float,
id_skip: bool,
adjust_padding: bool,
):
super().__init__()
self.expand_ratio = expand_ratio
self.expand = True if self.expand_ratio != 1 else False
expand_in_dim = in_dim * expand_ratio
if self.expand:
self.expansion = EfficientNetExpansionLayer(
config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride
)
self.depthwise_conv = EfficientNetDepthwiseLayer(
config=config,
in_dim=expand_in_dim if self.expand else in_dim,
stride=stride,
kernel_size=kernel_size,
adjust_padding=adjust_padding,
)
self.squeeze_excite = EfficientNetSqueezeExciteLayer(
config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand
)
self.projection = EfficientNetFinalBlockLayer(
config=config,
in_dim=expand_in_dim if self.expand else in_dim,
out_dim=out_dim,
stride=stride,
drop_rate=drop_rate,
id_skip=id_skip,
)
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
embeddings = hidden_states
# Expansion and depthwise convolution phase
if self.expand_ratio != 1:
hidden_states = self.expansion(hidden_states)
hidden_states = self.depthwise_conv(hidden_states)
# Squeeze and excite phase
hidden_states = self.squeeze_excite(hidden_states)
hidden_states = self.projection(embeddings, hidden_states)
return hidden_states
class EfficientNetEncoder(nn.Module):
r"""
Forward propogates the embeddings through each EfficientNet block.
Args:
config ([`EfficientNetConfig`]):
Model configuration class.
"""
def __init__(self, config: EfficientNetConfig):
super().__init__()
self.config = config
self.depth_coefficient = config.depth_coefficient
def round_repeats(repeats):
# Round number of block repeats based on depth multiplier.
return int(math.ceil(self.depth_coefficient * repeats))
num_base_blocks = len(config.in_channels)
num_blocks = sum(round_repeats(n) for n in config.num_block_repeats)
curr_block_num = 0
blocks = []
for i in range(num_base_blocks):
in_dim = round_filters(config, config.in_channels[i])
out_dim = round_filters(config, config.out_channels[i])
stride = config.strides[i]
kernel_size = config.kernel_sizes[i]
expand_ratio = config.expand_ratios[i]
for j in range(round_repeats(config.num_block_repeats[i])):
id_skip = True if j == 0 else False
stride = 1 if j > 0 else stride
in_dim = out_dim if j > 0 else in_dim
adjust_padding = False if curr_block_num in config.depthwise_padding else True
drop_rate = config.drop_connect_rate * curr_block_num / num_blocks
block = EfficientNetBlock(
config=config,
in_dim=in_dim,
out_dim=out_dim,
stride=stride,
kernel_size=kernel_size,
expand_ratio=expand_ratio,
drop_rate=drop_rate,
id_skip=id_skip,
adjust_padding=adjust_padding,
)
blocks.append(block)
curr_block_num += 1
self.blocks = nn.ModuleList(blocks)
self.top_conv = nn.Conv2d(
in_channels=out_dim,
out_channels=round_filters(config, 1280),
kernel_size=1,
padding="same",
bias=False,
)
self.top_bn = nn.BatchNorm2d(
num_features=config.hidden_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.top_activation = ACT2FN[config.hidden_act]
def forward(
self,
hidden_states: torch.FloatTensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> BaseModelOutputWithNoAttention:
all_hidden_states = (hidden_states,) if output_hidden_states else None
for block in self.blocks:
hidden_states = block(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
hidden_states = self.top_conv(hidden_states)
hidden_states = self.top_bn(hidden_states)
hidden_states = self.top_activation(hidden_states)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
class EfficientNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EfficientNetConfig
base_model_prefix = "efficientnet"
main_input_name = "pixel_values"
_no_split_modules = []
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@add_start_docstrings(
"The bare EfficientNet model outputting raw features without any specific head on top.",
EFFICIENTNET_START_DOCSTRING,
)
class EfficientNetModel(EfficientNetPreTrainedModel):
def __init__(self, config: EfficientNetConfig):
super().__init__(config)
self.config = config
self.embeddings = EfficientNetEmbeddings(config)
self.encoder = EfficientNetEncoder(config)
# Final pooling layer
if config.pooling_type == "mean":
self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True)
elif config.pooling_type == "max":
self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True)
else:
raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}")
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Apply pooling
last_hidden_state = encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
# Reshape (batch_size, 1280, 1 , 1) -> (batch_size, 1280)
pooled_output = pooled_output.reshape(pooled_output.shape[:2])
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
EfficientNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g.
for ImageNet.
""",
EFFICIENTNET_START_DOCSTRING,
)
class EfficientNetForImageClassification(EfficientNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.efficientnet = EfficientNetModel(config)
# Classifier head
self.dropout = nn.Dropout(p=config.dropout_rate)
self.classifier = nn.Linear(config.hidden_dim, self.num_labels) if self.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.efficientnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
__all__ = ["EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel"]
```
|
===============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.13 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\electra\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_electra import *
from .modeling_electra import *
from .modeling_flax_electra import *
from .modeling_tf_electra import *
from .tokenization_electra import *
from .tokenization_electra_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
============================================================================================================================================
SOURCE CODE FILE: configuration_electra.py
LINES: 1
SIZE: 8.93 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\electra\configuration_electra.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ELECTRA model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class ElectraConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ElectraModel`] or a [`TFElectraModel`]. It is
used to instantiate a ELECTRA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the ELECTRA
[google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
embedding_size (`int`, *optional*, defaults to 128):
Dimensionality of the encoder layers and the pooler layer.
hidden_size (`int`, *optional*, defaults to 256):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 1024):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`ElectraModel`] or [`TFElectraModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
summary_type (`str`, *optional*, defaults to `"first"`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Pass `"gelu"` for a gelu activation to the output, any other value will result in no activation.
summary_last_dropout (`float`, *optional*, defaults to 0.0):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
The dropout ratio to be used after the projection and activation.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Examples:
```python
>>> from transformers import ElectraConfig, ElectraModel
>>> # Initializing a ELECTRA electra-base-uncased style configuration
>>> configuration = ElectraConfig()
>>> # Initializing a model (with random weights) from the electra-base-uncased style configuration
>>> model = ElectraModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "electra"
def __init__(
self,
vocab_size=30522,
embedding_size=128,
hidden_size=256,
num_hidden_layers=12,
num_attention_heads=4,
intermediate_size=1024,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
summary_type="first",
summary_use_proj=True,
summary_activation="gelu",
summary_last_dropout=0.1,
pad_token_id=0,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_last_dropout = summary_last_dropout
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
class ElectraOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
__all__ = ["ElectraConfig", "ElectraOnnxConfig"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: modeling_electra.py
LINES: 1
SIZE: 73.14 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\electra\modeling_electra.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ELECTRA model."""
import math
import os
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN, get_activation
from ...generation import GenerationMixin
from ...modeling_outputs import (
BaseModelOutputWithCrossAttentions,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_electra import ElectraConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
_CONFIG_FOR_DOC = "ElectraConfig"
def load_tf_weights_in_electra(model, config, tf_checkpoint_path, discriminator_or_generator="discriminator"):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
original_name: str = name
try:
if isinstance(model, ElectraForMaskedLM):
name = name.replace("electra/embeddings/", "generator/embeddings/")
if discriminator_or_generator == "generator":
name = name.replace("electra/", "discriminator/")
name = name.replace("generator/", "electra/")
name = name.replace("dense_1", "dense_prediction")
name = name.replace("generator_predictions/output_bias", "generator_lm_head/bias")
name = name.split("/")
# print(original_name, name)
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(n in ["global_step", "temperature"] for n in name):
logger.info(f"Skipping {original_name}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
pointer = getattr(pointer, scope_names[0])
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name.endswith("_embeddings"):
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
except ValueError as e:
e.args += (pointer.shape, array.shape)
raise
print(f"Initialize PyTorch weight {name}", original_name)
pointer.data = torch.from_numpy(array)
except AttributeError as e:
print(f"Skipping {original_name}", name, e)
continue
return model
class ElectraEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Electra
class ElectraSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in ElectraModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class ElectraSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
ELECTRA_SELF_ATTENTION_CLASSES = {
"eager": ElectraSelfAttention,
}
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Electra,BERT->ELECTRA
class ElectraAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = ELECTRA_SELF_ATTENTION_CLASSES[config._attn_implementation](
config, position_embedding_type=position_embedding_type
)
self.output = ElectraSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class ElectraIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class ElectraOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Electra
class ElectraLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = ElectraAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = ElectraAttention(config, position_embedding_type="absolute")
self.intermediate = ElectraIntermediate(config)
self.output = ElectraOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Electra
class ElectraEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([ElectraLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class ElectraDiscriminatorPredictions(nn.Module):
"""Prediction module for the discriminator, made up of two dense layers."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = get_activation(config.hidden_act)
self.dense_prediction = nn.Linear(config.hidden_size, 1)
self.config = config
def forward(self, discriminator_hidden_states):
hidden_states = self.dense(discriminator_hidden_states)
hidden_states = self.activation(hidden_states)
logits = self.dense_prediction(hidden_states).squeeze(-1)
return logits
class ElectraGeneratorPredictions(nn.Module):
"""Prediction module for the generator, made up of two dense layers."""
def __init__(self, config):
super().__init__()
self.activation = get_activation("gelu")
self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
self.dense = nn.Linear(config.hidden_size, config.embedding_size)
def forward(self, generator_hidden_states):
hidden_states = self.dense(generator_hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class ElectraPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ElectraConfig
load_tf_weights = load_tf_weights_in_electra
base_model_prefix = "electra"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@dataclass
class ElectraForPreTrainingOutput(ModelOutput):
"""
Output type of [`ElectraForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss of the ELECTRA objective.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the head (scores for each token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
ELECTRA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ELECTRA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
encoder_hidden_states (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
"the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
"hidden size and embedding size are different. "
""
"Both the generator and discriminator checkpoints may be loaded into this model.",
ELECTRA_START_DOCSTRING,
)
class ElectraModel(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = ElectraEmbeddings(config)
if config.embedding_size != config.hidden_size:
self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
self.encoder = ElectraEncoder(config)
self.config = config
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
hidden_states = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
if hasattr(self, "embeddings_project"):
hidden_states = self.embeddings_project(hidden_states)
hidden_states = self.encoder(
hidden_states,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return hidden_states
class ElectraClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.activation = get_activation("gelu")
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = self.activation(x) # although BERT uses tanh here, it seems Electra authors used gelu here
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForSequenceClassification(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.electra = ElectraModel(config)
self.classifier = ElectraClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-emotion",
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'joy'",
expected_loss=0.06,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
discriminator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = discriminator_hidden_states[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings(
"""
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
It is recommended to load the discriminator checkpoint into that model.
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForPreTraining(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.electra = ElectraModel(config)
self.discriminator_predictions = ElectraDiscriminatorPredictions(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=ElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], ElectraForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the ELECTRA loss. Input should be a sequence of tokens (see `input_ids` docstring)
Indices should be in `[0, 1]`:
- 0 indicates the token is an original token,
- 1 indicates the token was replaced.
Returns:
Examples:
```python
>>> from transformers import ElectraForPreTraining, AutoTokenizer
>>> import torch
>>> discriminator = ElectraForPreTraining.from_pretrained("google/electra-base-discriminator")
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-discriminator")
>>> sentence = "The quick brown fox jumps over the lazy dog"
>>> fake_sentence = "The quick brown fox fake over the lazy dog"
>>> fake_tokens = tokenizer.tokenize(fake_sentence, add_special_tokens=True)
>>> fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
>>> discriminator_outputs = discriminator(fake_inputs)
>>> predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
>>> fake_tokens
['[CLS]', 'the', 'quick', 'brown', 'fox', 'fake', 'over', 'the', 'lazy', 'dog', '[SEP]']
>>> predictions.squeeze().tolist()
[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
discriminator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
discriminator_sequence_output = discriminator_hidden_states[0]
logits = self.discriminator_predictions(discriminator_sequence_output)
loss = None
if labels is not None:
loss_fct = nn.BCEWithLogitsLoss()
if attention_mask is not None:
active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
active_labels = labels[active_loss]
loss = loss_fct(active_logits, active_labels.float())
else:
loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())
if not return_dict:
output = (logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return ElectraForPreTrainingOutput(
loss=loss,
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings(
"""
Electra model with a language modeling head on top.
Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
the two to have been trained for the masked language modeling task.
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForMaskedLM(ElectraPreTrainedModel):
_tied_weights_keys = ["generator_lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.electra = ElectraModel(config)
self.generator_predictions = ElectraGeneratorPredictions(config)
self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.generator_lm_head
def set_output_embeddings(self, word_embeddings):
self.generator_lm_head = word_embeddings
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="google/electra-small-generator",
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="[MASK]",
expected_output="'paris'",
expected_loss=1.22,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
generator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
generator_sequence_output = generator_hidden_states[0]
prediction_scores = self.generator_predictions(generator_sequence_output)
prediction_scores = self.generator_lm_head(prediction_scores)
loss = None
# Masked language modeling softmax layer
if labels is not None:
loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + generator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return MaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=generator_hidden_states.hidden_states,
attentions=generator_hidden_states.attentions,
)
@add_start_docstrings(
"""
Electra model with a token classification head on top.
Both the discriminator and generator may be loaded into this model.
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForTokenClassification(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.electra = ElectraModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english",
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']",
expected_loss=0.11,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
discriminator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
discriminator_sequence_output = discriminator_hidden_states[0]
discriminator_sequence_output = self.dropout(discriminator_sequence_output)
logits = self.classifier(discriminator_sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings(
"""
ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForQuestionAnswering(ElectraPreTrainedModel):
config_class = ElectraConfig
base_model_prefix = "electra"
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.electra = ElectraModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-squad2",
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
qa_target_start_index=11,
qa_target_end_index=12,
expected_output="'a nice puppet'",
expected_loss=2.64,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
discriminator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = discriminator_hidden_states[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + discriminator_hidden_states[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings(
"""
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ELECTRA_START_DOCSTRING,
)
class ElectraForMultipleChoice(ElectraPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.electra = ElectraModel(config)
self.sequence_summary = SequenceSummary(config)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
discriminator_hidden_states = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = discriminator_hidden_states[0]
pooled_output = self.sequence_summary(sequence_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings(
"""ELECTRA Model with a `language modeling` head on top for CLM fine-tuning.""", ELECTRA_START_DOCSTRING
)
class ElectraForCausalLM(ElectraPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["generator_lm_head.weight"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `ElectraForCausalLM` as a standalone, add `is_decoder=True.`")
self.electra = ElectraModel(config)
self.generator_predictions = ElectraGeneratorPredictions(config)
self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size)
self.init_weights()
def get_output_embeddings(self):
return self.generator_lm_head
def set_output_embeddings(self, new_embeddings):
self.generator_lm_head = new_embeddings
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ElectraForCausalLM, ElectraConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-base-generator")
>>> config = ElectraConfig.from_pretrained("google/electra-base-generator")
>>> config.is_decoder = True
>>> model = ElectraForCausalLM.from_pretrained("google/electra-base-generator", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.electra(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.generator_lm_head(self.generator_predictions(sequence_output))
lm_loss = None
if labels is not None:
lm_loss = self.loss_function(
prediction_scores,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM._reorder_cache
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"ElectraForCausalLM",
"ElectraForMaskedLM",
"ElectraForMultipleChoice",
"ElectraForPreTraining",
"ElectraForQuestionAnswering",
"ElectraForSequenceClassification",
"ElectraForTokenClassification",
"ElectraModel",
"ElectraPreTrainedModel",
"load_tf_weights_in_electra",
]
```
|
============================================================================================================================================
SOURCE CODE FILE: modeling_flax_electra.py
LINES: 1
SIZE: 61.13 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\electra\modeling_flax_electra.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen import partitioning as nn_partitioning
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxMaskedLMOutput,
FlaxMultipleChoiceModelOutput,
FlaxQuestionAnsweringModelOutput,
FlaxSequenceClassifierOutput,
FlaxTokenClassifierOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_electra import ElectraConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
_CONFIG_FOR_DOC = "ElectraConfig"
remat = nn_partitioning.remat
@flax.struct.dataclass
class FlaxElectraForPreTrainingOutput(ModelOutput):
"""
Output type of [`ElectraForPreTraining`].
Args:
logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: jnp.ndarray = None
hidden_states: Optional[Tuple[jnp.ndarray]] = None
attentions: Optional[Tuple[jnp.ndarray]] = None
ELECTRA_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ELECTRA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxElectraEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.position_embeddings = nn.Embed(
self.config.max_position_embeddings,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.token_type_embeddings = nn.Embed(
self.config.type_vocab_size,
self.config.embedding_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.__call__
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
# Embed
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
position_embeds = self.position_embeddings(position_ids.astype("i4"))
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
# Sum all embeddings
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
# Layer Norm
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->Electra
class FlaxElectraSelfAttention(nn.Module):
config: ElectraConfig
causal: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
" : {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
@nn.compact
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slightly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
):
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.query(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.key(key_value_states)
value_states = self.value(key_value_states)
else:
# self_attention
key_states = self.key(hidden_states)
value_states = self.value(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->Electra
class FlaxElectraSelfOutput(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->Electra
class FlaxElectraAttention(nn.Module):
config: ElectraConfig
causal: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self):
self.self = FlaxElectraSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
self.output = FlaxElectraSelfOutput(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states=None,
init_cache=False,
deterministic=True,
output_attentions: bool = False,
):
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
attn_outputs = self.self(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=key_value_states,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->Electra
class FlaxElectraIntermediate(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->Electra
class FlaxElectraOutput(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + attention_output)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->Electra
class FlaxElectraLayer(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxElectraAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
self.intermediate = FlaxElectraIntermediate(self.config, dtype=self.dtype)
self.output = FlaxElectraOutput(self.config, dtype=self.dtype)
if self.config.add_cross_attention:
self.crossattention = FlaxElectraAttention(self.config, causal=False, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
):
# Self Attention
attention_outputs = self.attention(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = attention_outputs[0]
# Cross-Attention Block
if encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask=encoder_attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=encoder_hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
hidden_states = self.intermediate(attention_output)
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[1],)
if encoder_hidden_states is not None:
outputs += (cross_attention_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->Electra
class FlaxElectraLayerCollection(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
if self.gradient_checkpointing:
FlaxElectraCheckpointLayer = remat(FlaxElectraLayer, static_argnums=(5, 6, 7))
self.layers = [
FlaxElectraCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
else:
self.layers = [
FlaxElectraLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
# Check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.shape[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
f" {head_mask.shape[0]}."
)
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states,
attention_mask,
head_mask[i] if head_mask is not None else None,
encoder_hidden_states,
encoder_attention_mask,
init_cache,
deterministic,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->Electra
class FlaxElectraEncoder(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.layer = FlaxElectraLayerCollection(
self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class FlaxElectraGeneratorPredictions(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype)
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class FlaxElectraDiscriminatorPredictions(nn.Module):
"""Prediction module for the discriminator, made up of two dense layers."""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
self.dense_prediction = nn.Dense(1, dtype=self.dtype)
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
hidden_states = self.dense_prediction(hidden_states).squeeze(-1)
return hidden_states
class FlaxElectraPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ElectraConfig
base_model_prefix = "electra"
module_class: nn.Module = None
def __init__(
self,
config: ElectraConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
gradient_checkpointing: bool = False,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.init_weights
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
token_type_ids = jnp.zeros_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
attention_mask = jnp.ones_like(input_ids)
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(
rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
past_key_values: dict = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# init input tensors if not passed
if token_type_ids is None:
token_type_ids = jnp.ones_like(input_ids)
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if head_mask is None:
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
if self.config.add_cross_attention:
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxElectraAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
else:
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
)
return outputs
class FlaxElectraModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.embeddings = FlaxElectraEmbeddings(self.config, dtype=self.dtype)
if self.config.embedding_size != self.config.hidden_size:
self.embeddings_project = nn.Dense(self.config.hidden_size, dtype=self.dtype)
self.encoder = FlaxElectraEncoder(
self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask: Optional[np.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
embeddings = self.embeddings(
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
)
if hasattr(self, "embeddings_project"):
embeddings = self.embeddings_project(embeddings)
return self.encoder(
embeddings,
attention_mask,
head_mask=head_mask,
deterministic=deterministic,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top.",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraModel(FlaxElectraPreTrainedModel):
module_class = FlaxElectraModule
append_call_sample_docstring(FlaxElectraModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
class FlaxElectraTiedDense(nn.Module):
embedding_size: int
dtype: jnp.dtype = jnp.float32
precision = None
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.bias = self.param("bias", self.bias_init, (self.embedding_size,))
def __call__(self, x, kernel):
x = jnp.asarray(x, self.dtype)
kernel = jnp.asarray(kernel, self.dtype)
y = lax.dot_general(
x,
kernel,
(((x.ndim - 1,), (0,)), ((), ())),
precision=self.precision,
)
bias = jnp.asarray(self.bias, self.dtype)
return y + bias
class FlaxElectraForMaskedLMModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype)
if self.config.tie_word_embeddings:
self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype)
else:
self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
prediction_scores = self.generator_predictions(hidden_states)
if self.config.tie_word_embeddings:
shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T)
else:
prediction_scores = self.generator_lm_head(prediction_scores)
if not return_dict:
return (prediction_scores,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings("""Electra Model with a `language modeling` head on top.""", ELECTRA_START_DOCSTRING)
class FlaxElectraForMaskedLM(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForMaskedLMModule
append_call_sample_docstring(FlaxElectraForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC)
class FlaxElectraForPreTrainingModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.discriminator_predictions = FlaxElectraDiscriminatorPredictions(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.discriminator_predictions(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxElectraForPreTrainingOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
It is recommended to load the discriminator checkpoint into that model.
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForPreTraining(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForPreTrainingModule
FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxElectraForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator")
>>> model = FlaxElectraForPreTraining.from_pretrained("google/electra-small-discriminator")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```
"""
overwrite_call_docstring(
FlaxElectraForPreTraining,
ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING,
)
append_replace_return_docstrings(
FlaxElectraForPreTraining, output_type=FlaxElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC
)
class FlaxElectraForTokenClassificationModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.classifier(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxTokenClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Electra model with a token classification head on top.
Both the discriminator and generator may be loaded into this model.
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForTokenClassification(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForTokenClassificationModule
append_call_sample_docstring(
FlaxElectraForTokenClassification,
_CHECKPOINT_FOR_DOC,
FlaxTokenClassifierOutput,
_CONFIG_FOR_DOC,
)
def identity(x, **kwargs):
return x
class FlaxElectraSequenceSummary(nn.Module):
r"""
Compute a single vector summary of a sequence hidden states.
Args:
config ([`PretrainedConfig`]):
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
config class of your model for the default values it uses):
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
(otherwise to `config.hidden_size`).
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
another string or `None` will add no activation.
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
"""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.summary = identity
if hasattr(self.config, "summary_use_proj") and self.config.summary_use_proj:
if (
hasattr(self.config, "summary_proj_to_labels")
and self.config.summary_proj_to_labels
and self.config.num_labels > 0
):
num_classes = self.config.num_labels
else:
num_classes = self.config.hidden_size
self.summary = nn.Dense(num_classes, dtype=self.dtype)
activation_string = getattr(self.config, "summary_activation", None)
self.activation = ACT2FN[activation_string] if activation_string else lambda x: x # noqa F407
self.first_dropout = identity
if hasattr(self.config, "summary_first_dropout") and self.config.summary_first_dropout > 0:
self.first_dropout = nn.Dropout(self.config.summary_first_dropout)
self.last_dropout = identity
if hasattr(self.config, "summary_last_dropout") and self.config.summary_last_dropout > 0:
self.last_dropout = nn.Dropout(self.config.summary_last_dropout)
def __call__(self, hidden_states, cls_index=None, deterministic: bool = True):
"""
Compute a single vector summary of a sequence hidden states.
Args:
hidden_states (`jnp.ndarray` of shape `[batch_size, seq_len, hidden_size]`):
The hidden states of the last layer.
cls_index (`jnp.ndarray` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
Returns:
`jnp.ndarray`: The summary of the sequence hidden states.
"""
# NOTE: this doest "first" type summary always
output = hidden_states[:, 0]
output = self.first_dropout(output, deterministic=deterministic)
output = self.summary(output)
output = self.activation(output)
output = self.last_dropout(output, deterministic=deterministic)
return output
class FlaxElectraForMultipleChoiceModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.sequence_summary = FlaxElectraSequenceSummary(config=self.config, dtype=self.dtype)
self.classifier = nn.Dense(1, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
num_choices = input_ids.shape[1]
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
pooled_output = self.sequence_summary(hidden_states, deterministic=deterministic)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
if not return_dict:
return (reshaped_logits,) + outputs[1:]
return FlaxMultipleChoiceModelOutput(
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForMultipleChoice(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForMultipleChoiceModule
# adapt docstring slightly for FlaxElectraForMultipleChoice
overwrite_call_docstring(
FlaxElectraForMultipleChoice, ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
append_call_sample_docstring(
FlaxElectraForMultipleChoice,
_CHECKPOINT_FOR_DOC,
FlaxMultipleChoiceModelOutput,
_CONFIG_FOR_DOC,
)
class FlaxElectraForQuestionAnsweringModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
return (start_logits, end_logits) + outputs[1:]
return FlaxQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForQuestionAnswering(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForQuestionAnsweringModule
append_call_sample_docstring(
FlaxElectraForQuestionAnswering,
_CHECKPOINT_FOR_DOC,
FlaxQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
class FlaxElectraClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(self, hidden_states, deterministic: bool = True):
x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x, deterministic=deterministic)
x = self.dense(x)
x = ACT2FN["gelu"](x) # although BERT uses tanh here, it seems Electra authors used gelu
x = self.dropout(x, deterministic=deterministic)
x = self.out_proj(x)
return x
class FlaxElectraForSequenceClassificationModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.classifier = FlaxElectraClassificationHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.classifier(hidden_states, deterministic=deterministic)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Electra Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
ELECTRA_START_DOCSTRING,
)
class FlaxElectraForSequenceClassification(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForSequenceClassificationModule
append_call_sample_docstring(
FlaxElectraForSequenceClassification,
_CHECKPOINT_FOR_DOC,
FlaxSequenceClassifierOutput,
_CONFIG_FOR_DOC,
)
class FlaxElectraForCausalLMModule(nn.Module):
config: ElectraConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.electra = FlaxElectraModule(
config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype)
if self.config.tie_word_embeddings:
self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype)
else:
self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask: Optional[jnp.ndarray] = None,
token_type_ids: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
head_mask: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.electra(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
prediction_scores = self.generator_predictions(hidden_states)
if self.config.tie_word_embeddings:
shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T)
else:
prediction_scores = self.generator_lm_head(prediction_scores)
if not return_dict:
return (prediction_scores,) + outputs[1:]
return FlaxCausalLMOutputWithCrossAttentions(
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Electra Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
autoregressive tasks.
""",
ELECTRA_START_DOCSTRING,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->Electra
class FlaxElectraForCausalLM(FlaxElectraPreTrainedModel):
module_class = FlaxElectraForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyway.
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxElectraForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
__all__ = [
"FlaxElectraForCausalLM",
"FlaxElectraForMaskedLM",
"FlaxElectraForMultipleChoice",
"FlaxElectraForPreTraining",
"FlaxElectraForQuestionAnswering",
"FlaxElectraForSequenceClassification",
"FlaxElectraForTokenClassification",
"FlaxElectraModel",
"FlaxElectraPreTrainedModel",
]
```
|
==========================================================================================================================================
SOURCE CODE FILE: modeling_tf_electra.py
LINES: 1
SIZE: 76.82 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\electra\modeling_tf_electra.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF Electra model."""
from __future__ import annotations
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutputWithPastAndCrossAttentions,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFSequenceSummary,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_electra import ElectraConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/electra-small-discriminator"
_CONFIG_FOR_DOC = "ElectraConfig"
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Electra
class TFElectraSelfAttention(keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
self.is_decoder = config.is_decoder
self.config = config
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
else:
key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in TFElectraModel call() function)
attention_scores = tf.add(attention_scores, attention_mask)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Electra
class TFElectraSelfOutput(keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Electra
class TFElectraAttention(keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFElectraSelfAttention(config, name="self")
self.dense_output = TFElectraSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor,
encoder_attention_mask: tf.Tensor,
past_key_value: Tuple[tf.Tensor],
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
# add attentions (possibly with past_key_value) if we output them
outputs = (attention_output,) + self_outputs[1:]
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attention", None) is not None:
with tf.name_scope(self.self_attention.name):
self.self_attention.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Electra
class TFElectraIntermediate(keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Electra
class TFElectraOutput(keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Electra
class TFElectraLayer(keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFElectraAttention(config, name="attention")
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = TFElectraAttention(config, name="crossattention")
self.intermediate = TFElectraIntermediate(config, name="intermediate")
self.bert_output = TFElectraOutput(config, name="output")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_value: Tuple[tf.Tensor] | None,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
input_tensor=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=self_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
input_tensor=attention_output,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
intermediate_output = self.intermediate(hidden_states=attention_output)
layer_output = self.bert_output(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + outputs # add attentions if we output them
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "bert_output", None) is not None:
with tf.name_scope(self.bert_output.name):
self.bert_output.build(None)
if getattr(self, "crossattention", None) is not None:
with tf.name_scope(self.crossattention.name):
self.crossattention.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Electra
class TFElectraEncoder(keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layer = [TFElectraLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None,
use_cache: Optional[bool],
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
past_key_value = past_key_values[i] if past_key_values is not None else None
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if self.config.add_cross_attention and encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Electra
class TFElectraPooler(keras.layers.Layer):
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->Electra
class TFElectraEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config: ElectraConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedding_size = config.embedding_size
self.max_position_embeddings = config.max_position_embeddings
self.initializer_range = config.initializer_range
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("token_type_embeddings"):
self.token_type_embeddings = self.add_weight(
name="embeddings",
shape=[self.config.type_vocab_size, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.embedding_size])
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
def call(
self,
input_ids: Optional[tf.Tensor] = None,
position_ids: Optional[tf.Tensor] = None,
token_type_ids: Optional[tf.Tensor] = None,
inputs_embeds: Optional[tf.Tensor] = None,
past_key_values_length=0,
training: bool = False,
) -> tf.Tensor:
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
if input_ids is None and inputs_embeds is None:
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
if position_ids is None:
position_ids = tf.expand_dims(
tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0
)
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
final_embeddings = inputs_embeds + position_embeds + token_type_embeds
final_embeddings = self.LayerNorm(inputs=final_embeddings)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
class TFElectraDiscriminatorPredictions(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(config.hidden_size, name="dense")
self.dense_prediction = keras.layers.Dense(1, name="dense_prediction")
self.config = config
def call(self, discriminator_hidden_states, training=False):
hidden_states = self.dense(discriminator_hidden_states)
hidden_states = get_tf_activation(self.config.hidden_act)(hidden_states)
logits = tf.squeeze(self.dense_prediction(hidden_states), -1)
return logits
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "dense_prediction", None) is not None:
with tf.name_scope(self.dense_prediction.name):
self.dense_prediction.build([None, None, self.config.hidden_size])
class TFElectraGeneratorPredictions(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dense = keras.layers.Dense(config.embedding_size, name="dense")
self.config = config
def call(self, generator_hidden_states, training=False):
hidden_states = self.dense(generator_hidden_states)
hidden_states = get_tf_activation("gelu")(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.embedding_size])
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFElectraPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ElectraConfig
base_model_prefix = "electra"
# When the model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"generator_lm_head.weight"]
_keys_to_ignore_on_load_missing = [r"dropout"]
@keras_serializable
class TFElectraMainLayer(keras.layers.Layer):
config_class = ElectraConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.is_decoder = config.is_decoder
self.embeddings = TFElectraEmbeddings(config, name="embeddings")
if config.embedding_size != config.hidden_size:
self.embeddings_project = keras.layers.Dense(config.hidden_size, name="embeddings_project")
self.encoder = TFElectraEncoder(config, name="encoder")
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
def get_extended_attention_mask(self, attention_mask, input_shape, dtype, past_key_values_length=0):
batch_size, seq_length = input_shape
if attention_mask is None:
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask_shape = shape_list(attention_mask)
mask_seq_length = seq_length + past_key_values_length
# Copied from `modeling_tf_t5.py`
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
if self.is_decoder:
seq_ids = tf.range(mask_seq_length)
causal_mask = tf.less_equal(
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
seq_ids[None, :, None],
)
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
extended_attention_mask = causal_mask * attention_mask[:, None, :]
attention_mask_shape = shape_list(extended_attention_mask)
extended_attention_mask = tf.reshape(
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
)
if past_key_values_length > 0:
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
else:
extended_attention_mask = tf.reshape(
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=dtype)
one_cst = tf.constant(1.0, dtype=dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
return extended_attention_mask
def get_head_mask(self, head_mask):
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
return head_mask
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_key_values_length = 0
past_key_values = [None] * len(self.encoder.layer)
else:
past_key_values_length = shape_list(past_key_values[0][0])[-2]
if attention_mask is None:
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
hidden_states = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
training=training,
)
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, input_shape, hidden_states.dtype, past_key_values_length
)
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
if self.is_decoder and encoder_attention_mask is not None:
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
if num_dims_encoder_attention_mask == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if num_dims_encoder_attention_mask == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
else:
encoder_extended_attention_mask = None
head_mask = self.get_head_mask(head_mask)
if hasattr(self, "embeddings_project"):
hidden_states = self.embeddings_project(hidden_states, training=training)
hidden_states = self.encoder(
hidden_states=hidden_states,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "embeddings_project", None) is not None:
with tf.name_scope(self.embeddings_project.name):
self.embeddings_project.build([None, None, self.config.embedding_size])
@dataclass
class TFElectraForPreTrainingOutput(ModelOutput):
"""
Output type of [`TFElectraForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`):
Total loss of the ELECTRA objective.
logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the head (scores for each token before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: Optional[tf.Tensor] = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
ELECTRA_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`ElectraConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ELECTRA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to "
"the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the "
"hidden size and embedding size are different. "
""
"Both the generator and discriminator checkpoints may be loaded into this model.",
ELECTRA_START_DOCSTRING,
)
class TFElectraModel(TFElectraPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.electra = TFElectraMainLayer(config, name="electra")
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
"""
outputs = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
@add_start_docstrings(
"""
Electra model with a binary classification head on top as used during pretraining for identifying generated tokens.
Even though both the discriminator and generator may be loaded into this model, the discriminator is the only model
of the two to have the correct classification head to be used for this model.
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForPreTraining(TFElectraPreTrainedModel):
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.electra = TFElectraMainLayer(config, name="electra")
self.discriminator_predictions = TFElectraDiscriminatorPredictions(config, name="discriminator_predictions")
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFElectraForPreTrainingOutput, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFElectraForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator")
>>> model = TFElectraForPreTraining.from_pretrained("google/electra-small-discriminator")
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
>>> outputs = model(input_ids)
>>> scores = outputs[0]
```"""
discriminator_hidden_states = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
discriminator_sequence_output = discriminator_hidden_states[0]
logits = self.discriminator_predictions(discriminator_sequence_output)
if not return_dict:
return (logits,) + discriminator_hidden_states[1:]
return TFElectraForPreTrainingOutput(
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "discriminator_predictions", None) is not None:
with tf.name_scope(self.discriminator_predictions.name):
self.discriminator_predictions.build(None)
class TFElectraMaskedLMHead(keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedding_size = config.embedding_size
self.input_embeddings = input_embeddings
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def get_output_embeddings(self):
return self.input_embeddings
def set_output_embeddings(self, value):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
@add_start_docstrings(
"""
Electra model with a language modeling head on top.
Even though both the discriminator and generator may be loaded into this model, the generator is the only model of
the two to have been trained for the masked language modeling task.
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForMaskedLM(TFElectraPreTrainedModel, TFMaskedLanguageModelingLoss):
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.config = config
self.electra = TFElectraMainLayer(config, name="electra")
self.generator_predictions = TFElectraGeneratorPredictions(config, name="generator_predictions")
if isinstance(config.hidden_act, str):
self.activation = get_tf_activation(config.hidden_act)
else:
self.activation = config.hidden_act
self.generator_lm_head = TFElectraMaskedLMHead(config, self.electra.embeddings, name="generator_lm_head")
def get_lm_head(self):
return self.generator_lm_head
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.generator_lm_head.name
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="google/electra-small-generator",
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="[MASK]",
expected_output="'paris'",
expected_loss=1.22,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
generator_hidden_states = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
generator_sequence_output = generator_hidden_states[0]
prediction_scores = self.generator_predictions(generator_sequence_output, training=training)
prediction_scores = self.generator_lm_head(prediction_scores, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + generator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=generator_hidden_states.hidden_states,
attentions=generator_hidden_states.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "generator_predictions", None) is not None:
with tf.name_scope(self.generator_predictions.name):
self.generator_predictions.build(None)
if getattr(self, "generator_lm_head", None) is not None:
with tf.name_scope(self.generator_lm_head.name):
self.generator_lm_head.build(None)
class TFElectraClassificationHead(keras.layers.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
classifier_dropout = (
config.classifhidden_dropout_probier_dropout
if config.classifier_dropout is not None
else config.hidden_dropout_prob
)
self.dropout = keras.layers.Dropout(classifier_dropout)
self.out_proj = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
)
self.config = config
def call(self, inputs, **kwargs):
x = inputs[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = get_tf_activation("gelu")(x) # although BERT uses tanh here, it seems Electra authors used gelu here
x = self.dropout(x)
x = self.out_proj(x)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForSequenceClassification(TFElectraPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.electra = TFElectraMainLayer(config, name="electra")
self.classifier = TFElectraClassificationHead(config, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-emotion",
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'joy'",
expected_loss=0.06,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
logits = self.classifier(outputs[0])
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForMultipleChoice(TFElectraPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.electra = TFElectraMainLayer(config, name="electra")
self.sequence_summary = TFSequenceSummary(
config, initializer_range=config.initializer_range, name="sequence_summary"
)
self.classifier = keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
outputs = self.electra(
input_ids=flat_input_ids,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
position_ids=flat_position_ids,
head_mask=head_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
logits = self.sequence_summary(outputs[0])
logits = self.classifier(logits)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "sequence_summary", None) is not None:
with tf.name_scope(self.sequence_summary.name):
self.sequence_summary.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Electra model with a token classification head on top.
Both the discriminator and generator may be loaded into this model.
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.electra = TFElectraMainLayer(config, name="electra")
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = keras.layers.Dropout(classifier_dropout)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-discriminator-finetuned-conll03-english",
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']",
expected_loss=0.11,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
discriminator_hidden_states = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
discriminator_sequence_output = discriminator_hidden_states[0]
discriminator_sequence_output = self.dropout(discriminator_sequence_output)
logits = self.classifier(discriminator_sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Electra Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ELECTRA_START_DOCSTRING,
)
class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.electra = TFElectraMainLayer(config, name="electra")
self.qa_outputs = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="bhadresh-savani/electra-base-squad2",
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
qa_target_start_index=11,
qa_target_end_index=12,
expected_output="'a nice puppet'",
expected_loss=2.64,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
discriminator_hidden_states = self.electra(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
discriminator_sequence_output = discriminator_hidden_states[0]
logits = self.qa_outputs(discriminator_sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (
start_logits,
end_logits,
) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "electra", None) is not None:
with tf.name_scope(self.electra.name):
self.electra.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
__all__ = [
"TFElectraForMaskedLM",
"TFElectraForMultipleChoice",
"TFElectraForPreTraining",
"TFElectraForQuestionAnswering",
"TFElectraForSequenceClassification",
"TFElectraForTokenClassification",
"TFElectraModel",
"TFElectraPreTrainedModel",
]
```
|
===========================================================================================================================================
SOURCE CODE FILE: tokenization_electra.py
LINES: 3
SIZE: 20.76 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\electra\tokenization_electra.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
import unicodedata
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
# Copied from transformers.models.bert.tokenization_bert.load_vocab
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with Bert->Electra,BERT->Electra
class ElectraTokenizer(PreTrainedTokenizer):
r"""
Construct a Electra tokenizer. Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original Electra).
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
clean_up_tokenization_spaces=True,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = ElectraTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text, split_special_tokens=False):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(
text, never_split=self.all_special_tokens if not split_special_tokens else None
):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A Electra sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Electra sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
__all__ = ["ElectraTokenizer"]
```
|
================================================================================================================================================
SOURCE CODE FILE: tokenization_electra_fast.py
LINES: 1
SIZE: 7.54 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\electra\tokenization_electra_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with Bert->Electra , BERT->ELECTRA
class ElectraTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" ELECTRA tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original ELECTRA).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = ElectraTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
self.do_lower_case = do_lower_case
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A ELECTRA sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1 is not None:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ELECTRA sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["ElectraTokenizerFast"]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.04 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\emu3\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_emu3 import *
from .image_processing_emu3 import *
from .modeling_emu3 import *
from .processing_emu3 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_emu3.py
LINES: 1
SIZE: 15.69 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\emu3\configuration_emu3.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class Emu3VQVAEConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Emu3VQVAE`]. It is used to instantiate an VQ-VAE
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a configuration to the VQ model presented in Emu3 paper.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
codebook_size (`int`, *optional*, defaults to 32768):
Codebook size of the VQ model.
embed_dim (`int`, *optional*, defaults to 4):
Dimension of the quantized vector in codebook.
latent_channels (`int`, *optional*, defaults to 4):
Dimension of the output channel of encoder and the input channel of decoder
double_latent (`bool`, *optional*, defaults to `False`):
Whether double the output dim of the encoder.
in_channels (`int`, *optional*, defaults to 3):
Input channel of encoder.
out_channels (`int`, *optional*, defaults to 3):
Output channel of decoder.
temporal_downsample_factor (`int`, *optional*, defaults to 4):
Temporal downsample factor.
base_channels (`int`, *optional*, defaults to 256):
Basic channel number of the intermediate blocks.
channel_multiplier (`List[int]`, *optional*, defaults to `[1, 2, 2, 4]`):
Channel scaling factor of the intermediate blocks.
num_res_blocks (`int`, *optional*, defaults to 2):
Residual block number in each stage.
attn_resolutions (`List[int]`, *optional*, defaults to `[3]`):
Stage indices to apply attention.
hidden_size (`int`, *optional*, defaults to 1024):
Dimension of the hidden representations in the attention layer.
num_attention_heads (`int`, *optional*, defaults to 1):
Number of attention heads for each attention layer.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import Emu3VQVAE, Emu3VQVAEConfig
>>> # Initializing a video VQ model of Emu3 configuration
>>> configuration = Emu3VQVAEConfig()
>>> # Initializing a model from the Emu3 VQ model style configuration
>>> model = Emu3VQVAE(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "emu3_vqgan"
base_config_key = "vq_config"
def __init__(
self,
codebook_size: int = 32768,
embed_dim: int = 4,
latent_channels: int = 4,
double_latent: bool = False,
in_channels: int = 3,
out_channels: int = 3,
temporal_downsample_factor: int = 4,
base_channels: int = 256,
channel_multiplier: List[int] = [1, 2, 2, 4],
num_res_blocks: int = 2,
attn_resolutions: List[int] = [3],
hidden_size: int = 1024,
num_attention_heads: int = 1,
attention_dropout: float = 0.0,
**kwargs,
):
super().__init__(**kwargs)
self.codebook_size = codebook_size
self.embed_dim = embed_dim
self.latent_channels = latent_channels
self.double_latent = double_latent
self.in_channels = in_channels
self.out_channels = out_channels
self.temporal_downsample_factor = temporal_downsample_factor
self.base_channels = base_channels
self.channel_multiplier = channel_multiplier
self.num_res_blocks = num_res_blocks
self.attn_resolutions = attn_resolutions
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.attention_dropout = attention_dropout
class Emu3TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Emu3TextModel`]. It is used to instantiate a
emu3 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
[Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 184622):
Vocabulary size of the Emu3 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Emu3Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 9216):
The maximum sequence length that this model might ever be used with. Emu supports up to 9216 tokens,
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 151643):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 151849):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 151850):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
```python
>>> from transformers import Emu3Model, Emu3Config
>>> # Initializing a Emu3-community/Emu3-Chat-hf style configuration
>>> configuration = Emu3Config()
>>> # Initializing a model from the Emu3-community/Emu3-Chat-hf style configuration
>>> model = Emu3Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "emu3_text_model"
base_config_key = "text_config"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size: int = 184622,
hidden_size: int = 4096,
intermediate_size: int = 14336,
num_hidden_layers: int = 32,
num_attention_heads: int = 32,
num_key_value_heads: Optional[int] = 8,
hidden_act: str = "silu",
max_position_embeddings: int = 9216,
rms_norm_eps: float = 1e-5,
use_cache: bool = True,
pad_token_id: int = 151643,
bos_token_id: int = 151849,
eos_token_id: int = 151850,
tie_word_embeddings: bool = False,
rope_theta: float = 1000000.0,
rope_scaling: Optional = None,
mlp_bias=False,
attention_bias=False,
attention_dropout: float = 0.1,
initializer_range: float = 0.02,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.mlp_bias = mlp_bias
self.attention_bias = attention_bias
self.initializer_range = initializer_range
rope_config_validation(self)
self.attention_dropout = attention_dropout
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class Emu3Config(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`Emu3Model`]. It is used to instantiate a
emu3 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
[Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vq_config (`Union[Dict, Emu3VQVAEConfig]`, *optional*):
Emu3VQVAEConfig instance containing the configuration for the VQ-VAE model.
text_config (`Union[Dict, Emu3TextConfig]``, *optional*):
Emu3TextConfig instance containing the configuration for the language model.
vocabulary_map (`dict`, *optional*):
A dictionary containing the vocabulary map from the tokenizer. Used to obtain tokens from the image inputs.
"""
model_type = "emu3"
keys_to_ignore_at_inference = ["past_key_values"]
sub_configs = {"text_config": Emu3TextConfig, "vq_config": Emu3VQVAEConfig}
def __init__(
self,
vq_config: Union[Dict, Emu3VQVAEConfig] = None,
text_config: Union[Dict, Emu3TextConfig] = None,
vocabulary_map: Dict[int, int] = None,
**kwargs,
):
if vq_config is None:
vq_config = Emu3VQVAEConfig()
elif isinstance(vq_config, dict):
vq_config = Emu3VQVAEConfig(**vq_config)
if text_config is None:
text_config = Emu3TextConfig()
elif isinstance(text_config, dict):
text_config = Emu3TextConfig(**text_config)
self.vq_config = vq_config
self.text_config = text_config
self.vocabulary_map = vocabulary_map
super().__init__(**kwargs)
__all__ = ["Emu3Config", "Emu3TextConfig", "Emu3VQVAEConfig"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: image_processing_emu3.py
LINES: 1
SIZE: 27.31 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\emu3\image_processing_emu3.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
VideoInput,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
is_valid_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
from PIL import Image
logger = logging.get_logger(__name__)
def make_batched_images(images) -> List[List[ImageInput]]:
"""
Accepts images in list or nested list format, and makes a list of images for preprocessing.
Args:
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
The input image.
Returns:
list: A list of images.
"""
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
return [img for img_list in images for img in img_list]
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
return images
elif is_valid_image(images):
return [images]
raise ValueError(f"Could not make batched images from {images}")
def smart_resize(
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
):
"""Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if height < factor or width < factor:
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
elif max(height, width) / min(height, width) > 200:
raise ValueError(
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
)
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = math.floor(height / beta / factor) * factor
w_bar = math.floor(width / beta / factor) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
class Emu3ImageProcessor(BaseImageProcessor):
r"""
Constructs a Emu3 image processor that dynamically resizes images based on the original images.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
number of patches in the batch. Padding will be applied to the bottom and right with zeros.
min_pixels (`int`, *optional*, defaults to `512 * 512`):
The min pixels of the image to resize the image.
max_pixels (`int`, *optional*, defaults to `1024 * 1024`):
The max pixels of the image to resize the image.
spatial_factor (`int`, *optional*, defaults to 8):
The spatial downsample factor the image will be downsampled in feature extracting phase
"""
model_input_names = ["pixel_values", "image_sizes"]
def __init__(
self,
do_resize: bool = True,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
do_pad: bool = True,
min_pixels: int = 512 * 512,
max_pixels: int = 1024 * 1024,
spatial_factor: int = 8,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_resize = do_resize
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.min_pixels = min_pixels
self.max_pixels = max_pixels
self.spatial_factor = spatial_factor
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
self.do_convert_rgb = do_convert_rgb
def _preprocess(
self,
images: Union[ImageInput, VideoInput],
do_resize: Optional[bool] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: Optional[bool] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
vision_info (`List[Dict]`, *optional*):
Optional list of dictionaries containing additional information about vision inputs.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
images = make_list_of_images(images)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
height, width = get_image_size(images[0], channel_dim=input_data_format)
resized_height, resized_width = height, width
processed_images = []
for image in images:
if do_resize:
resized_height, resized_width = smart_resize(
height,
width,
factor=self.spatial_factor,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
image = resize(
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
)
if do_rescale:
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
processed_images.append(image)
images = np.array(processed_images)
return images
def _pad_for_batching(
self,
pixel_values: List[np.ndarray],
image_sizes: List[List[int]],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
Args:
pixel_values (`List[np.ndarray]`):
An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`)
image_sizes (`List[List[int]]`):
A list of sizes for each image in `pixel_values` in (height, width) format.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
List[`np.ndarray`]: The padded images.
"""
max_shape = (
max([size[0] for size in image_sizes]),
max([size[1] for size in image_sizes]),
)
pixel_values = [
pad(
image,
padding=((0, max_shape[0] - size[0]), (0, max_shape[1] - size[1])),
data_format=data_format,
input_data_format=input_data_format,
)
for image, size in zip(pixel_values, image_sizes)
]
return pixel_values
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: Optional[bool] = None,
do_pad: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest
number of patches in the batch. Padding will be applied to the bottom and right with zeros.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
do_pad = do_pad if do_pad is not None else self.do_pad
if images is not None:
images = make_batched_images(images)
if images is not None and not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
pixel_values = []
for image in images:
image = self._preprocess(
image,
do_resize=do_resize,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
)
pixel_values.extend(image)
image_sizes = [image.shape[-2:] for image in pixel_values]
if do_pad:
pixel_values = self._pad_for_batching(pixel_values, image_sizes)
pixel_values = np.array(pixel_values)
return BatchFeature(
data={"pixel_values": pixel_values, "image_sizes": image_sizes}, tensor_type=return_tensors
)
def postprocess(
self,
images: ImageInput,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Union[str, TensorType] = "PIL.Image.Image",
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Postprocess an image or batch of images tensor. Postprocess is the reverse process of preprocess.
The parameters should be same as in preprocess.
Args:
images (`ImageInput`):
Image to postprocess. Expects a single or batch of images with pixel values ranging from -1 to 1.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = 1.0 / self.rescale_factor if rescale_factor is None else rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
if isinstance(images[0], Image.Image):
return images if len(images) > 1 else images[0]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
pixel_values = []
for image in images:
image = to_numpy_array(image)
if do_normalize:
image = self.unnormalize(
image=image, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format
)
if do_rescale:
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
image = image.clip(0, 255).astype(np.uint8)
if do_normalize and do_rescale and return_tensors == "PIL.Image.Image":
image = to_channel_dimension_format(image, ChannelDimension.LAST, input_channel_dim=input_data_format)
pixel_values.append(Image.fromarray(image))
else:
pixel_values.extend(image)
data = {"pixel_values": pixel_values}
return_tensors = return_tensors if return_tensors != "PIL.Image.Image" else None
return BatchFeature(data=data, tensor_type=return_tensors)
def unnormalize(
self,
image: np.array,
image_mean: Union[float, Iterable[float]],
image_std: Union[float, Iterable[float]],
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.array:
"""
Unnormalizes `image` using the mean and standard deviation specified by `mean` and `std`.
image = (image * image_std) + image_mean
Args:
image (`torch.Tensor` of shape `(batch_size, num_channels, image_size, image_size)` or `(num_channels, image_size, image_size)`):
Batch of pixel values to postprocess.
image_mean (`float` or `Iterable[float]`):
The mean to use for unnormalization.
image_std (`float` or `Iterable[float]`):
The standard deviation to use for unnormalization.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
num_channels = 3
if isinstance(image_mean, Iterable):
if len(image_mean) != num_channels:
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(image_mean)}")
else:
image_mean = [image_mean] * num_channels
if isinstance(image_std, Iterable):
if len(image_std) != num_channels:
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(image_std)}")
else:
image_std = [image_std] * num_channels
rev_image_mean = tuple(-mean / std for mean, std in zip(image_mean, image_std))
rev_image_std = tuple(1 / std for std in image_std)
image = self.normalize(
image=image, mean=rev_image_mean, std=rev_image_std, input_data_format=input_data_format
)
return image
__all__ = ["Emu3ImageProcessor"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_emu3.py
LINES: 1
SIZE: 83.69 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\emu3\modeling_emu3.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/emu3/modular_emu3.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_emu3.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from functools import cached_property, partial
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_emu3 import Emu3Config, Emu3TextConfig, Emu3VQVAEConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Emu3Config"
class Emu3RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Emu3RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Emu3MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Emu3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Emu3Config, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Emu3DecoderLayer(nn.Module):
def __init__(self, config: Emu3Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Emu3Attention(config=config, layer_idx=layer_idx)
self.mlp = Emu3MLP(config)
self.input_layernorm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.dropout = nn.Dropout(config.attention_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + self.dropout(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Emu3VQVAEVectorQuantizer(nn.Module):
"""
A module for vector quantization using learned embedding vectors.
This module implements the quantization process similar to te one described in
the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous
input vectors into discrete codebook vectors, which are learned during training.
Current implementation improves over previous ones by avoiding costly matrix multiplications
and allowing for post-hoc remapping of indices.
"""
def __init__(self, config: Emu3VQVAEConfig):
super().__init__()
self.embedding = nn.Embedding(config.codebook_size, config.embed_dim)
self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size)
def forward(self, hidden_state: torch.Tensor):
batch_size, temporal, channels, height, width = hidden_state.shape
hidden_state = hidden_state.permute(0, 1, 3, 4, 2).contiguous()
hidden_state_flattened = hidden_state.view(-1, channels)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
hidden_state_sum = torch.sum(hidden_state_flattened**2, dim=1, keepdim=True)
embedding_sum = torch.sum(self.embedding.weight**2, dim=1)
# "bd,dn->bn",
distances = 2 * torch.matmul(hidden_state_flattened, self.embedding.weight.transpose(0, 1))
distances = hidden_state_sum + embedding_sum - distances
min_encoding_indices = torch.argmin(distances, dim=1)
min_encoding_indices = min_encoding_indices.view(batch_size, temporal, height, width)
return min_encoding_indices
class Emu3VQVAEEncoderConvDownsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, hidden_states):
# no asymmetric padding in torch conv, must do it ourselves
hidden_states = F.pad(hidden_states, pad=(0, 1, 0, 1), mode="constant", value=0)
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAEEncoderConvUpsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, hidden_states):
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAEConv3d(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
kernel_size: Tuple[int],
stride: Tuple[int],
):
super().__init__()
padding_sizes = [one_kernel - one_stride for one_kernel, one_stride in zip(kernel_size[1:], stride[1:])]
self.padding = ()
for pad_size in padding_sizes[::-1]:
self.padding += (pad_size // 2 + pad_size % 2, pad_size // 2)
self.padding += (2, 0)
self.conv = nn.Conv3d(
in_channel,
out_channel,
kernel_size,
stride=stride,
)
def forward(self, hidden_states: torch.Tensor):
hidden_states = F.pad(hidden_states, self.padding)
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAESpatialNorm(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
):
super().__init__()
self.norm_layer = nn.GroupNorm(
num_channels=out_channels,
num_groups=32,
eps=1e-6,
affine=True,
)
self.conv_y = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
self.conv_b = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
quant_states = F.interpolate(quant_states, size=hidden_states.shape[-2:], mode="nearest")
hidden_states = self.norm_layer(hidden_states)
hidden_states = hidden_states * self.conv_y(quant_states) + self.conv_b(quant_states)
return hidden_states
class Emu3VQVAETemporalUpsample(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
):
super().__init__()
self.conv = Emu3VQVAEConv3d(
in_channel,
out_channel,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
def forward(self, hidden_states: torch.Tensor):
batch_size, channels, temporal, height, width = hidden_states.shape
hidden_states = hidden_states.permute(0, 1, 3, 4, 2).contiguous().view(batch_size, -1, temporal)
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
hidden_states = hidden_states.view(batch_size, channels, height, width, -1).permute(0, 1, 4, 2, 3).contiguous()
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAETemporalDownsample(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
):
super().__init__()
self.conv = Emu3VQVAEConv3d(
in_channel,
out_channel,
kernel_size=(4, 3, 3),
stride=(2, 1, 1),
)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAETemporalResnetBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels=None,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.norm1 = nn.BatchNorm3d(in_channels)
self.conv1 = Emu3VQVAEConv3d(
in_channels,
out_channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
self.norm2 = nn.BatchNorm3d(out_channels)
self.conv2 = Emu3VQVAEConv3d(
out_channels,
out_channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv3d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
residual = self.nin_shortcut(residual)
return residual + hidden_states
class Emu3VQVAEResnetBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
quant_channels: Optional[int] = None,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.quant_channels = quant_channels
if quant_channels is None:
self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=32, eps=1e-6, affine=True)
else:
self.norm1 = Emu3VQVAESpatialNorm(quant_channels, in_channels)
self.norm2 = Emu3VQVAESpatialNorm(quant_channels, out_channels)
self.conv1 = nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.conv2 = nn.Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states: torch.Tensor, quant_channels: Optional[torch.Tensor] = None):
norm_args = () if self.quant_channels is None else (quant_channels,)
residual = hidden_states
hidden_states = self.norm1(hidden_states, *norm_args)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states, *norm_args)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
residual = self.nin_shortcut(residual)
return residual + hidden_states
class Emu3VQVAEAttentionBlock(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Emu3VQVAEConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.is_causal = False
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
# for compatibility with the attention interface
self.num_key_value_groups = 1
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
queries = self.q_proj(hidden_states)
keys = self.k_proj(hidden_states)
values = self.v_proj(hidden_states)
queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and output_attentions:
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
queries,
keys,
values,
attention_mask,
is_causal=self.is_causal,
scaling=self.scale,
dropout=0.0 if not self.training else self.dropout,
)
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class Emu3VQVAEGroupNorm(nn.GroupNorm):
"""
Same as the torch GroupNorm with the only difference that this ones accepts
an optional kwarg `quant_states` which is not used. This class makes it easier to
use SpatialNorm or GroupNorm without conditionals
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def forward(self, input, quant_states=None):
return F.group_norm(input, self.num_groups, self.weight, self.bias, self.eps)
class Emu3VQVAEMiddleBlock(nn.Module):
def __init__(self, config, in_channels, quant_channels=None):
super().__init__()
self.block_1 = Emu3VQVAEResnetBlock(
in_channels=in_channels,
out_channels=in_channels,
quant_channels=quant_channels,
)
self.attn_1 = Emu3VQVAEAttentionBlock(config)
if quant_channels is None:
self.attn_norm = Emu3VQVAEGroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
else:
self.attn_norm = Emu3VQVAESpatialNorm(quant_channels, in_channels)
self.block_2 = Emu3VQVAEResnetBlock(
in_channels=in_channels,
out_channels=in_channels,
quant_channels=quant_channels,
)
def forward(self, hidden_states: torch.FloatTensor, quant_states: Optional[torch.FloatTensor] = None):
hidden_states = self.block_1(hidden_states, quant_states)
residual = hidden_states
hidden_states = self.attn_norm(hidden_states, quant_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = self.attn_1(hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
hidden_states = self.block_2(hidden_states, quant_states)
return hidden_states
class Emu3VQVAEDownBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_resolutions = len(config.channel_multiplier)
self.num_res_blocks = config.num_res_blocks
base_channels = config.base_channels
channel_multiplier = config.channel_multiplier
in_channel_multiplier = (1,) + tuple(channel_multiplier)
self.in_channel_multiplier = in_channel_multiplier
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
attn_norms = nn.ModuleList()
block_in = base_channels * in_channel_multiplier[i_level]
block_out = base_channels * channel_multiplier[i_level]
for i_block in range(self.num_res_blocks):
block.append(
Emu3VQVAEResnetBlock(
in_channels=block_in,
out_channels=block_out,
)
)
block_in = block_out
if config.attn_resolutions is not None and i_level in config.attn_resolutions:
attn.append(Emu3VQVAEAttentionBlock(config))
attn_norms.append(nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True))
down = nn.Module()
down.block = block
down.attn = attn
down.attn_norms = attn_norms
if i_level != self.num_resolutions - 1:
down.downsample = Emu3VQVAEEncoderConvDownsample(block_in)
self.down.append(down)
def forward(self, hidden_states: torch.FloatTensor):
for i_level, blocks in enumerate(self.down):
for i_block in range(self.num_res_blocks):
hidden_states = blocks.block[i_block](hidden_states)
if len(blocks.attn) > 0:
residual = hidden_states
hidden_states = blocks.attn_norms[i_block](hidden_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = blocks.attn[i_block](hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
if i_level != self.num_resolutions - 1:
hidden_states = blocks.downsample(hidden_states)
return hidden_states
class Emu3VQVAEUpBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_resolutions = len(config.channel_multiplier)
self.num_res_blocks = config.num_res_blocks
quant_channels = config.embed_dim
block_in = config.base_channels * config.channel_multiplier[-1]
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
attn_norms = nn.ModuleList()
block_out = config.base_channels * config.channel_multiplier[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
Emu3VQVAEResnetBlock(
in_channels=block_in,
out_channels=block_out,
quant_channels=quant_channels,
)
)
block_in = block_out
if i_level in config.attn_resolutions:
attn.append(Emu3VQVAEAttentionBlock(config))
attn_norms.append(Emu3VQVAESpatialNorm(quant_channels, block_in))
up = nn.Module()
up.block = block
up.attn = attn
up.attn_norms = attn_norms
if i_level != 0:
up.upsample = Emu3VQVAEEncoderConvUpsample(block_in)
self.up.insert(0, up)
def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor):
for i_level, blocks in enumerate(self.up[::-1]):
for i_block in range(self.num_res_blocks + 1):
hidden_states = blocks.block[i_block](hidden_states, quant_states)
if len(blocks.attn) > 0:
residual = hidden_states
hidden_states = blocks.attn_norms[i_block](hidden_states, quant_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = blocks.attn[i_block](hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
if i_level != len(self.up) - 1:
hidden_states = blocks.upsample(hidden_states)
return hidden_states
class Emu3VQVAEEncoder(nn.Module):
def __init__(self, config):
super().__init__()
base_channels = config.base_channels
in_channels = config.in_channels
double_latent = config.double_latent
latent_channels = config.latent_channels
channel_multiplier = config.channel_multiplier
out_channels = 2 * latent_channels if double_latent else latent_channels
block_in = base_channels * channel_multiplier[-1]
self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1)
self.down_block = Emu3VQVAEDownBlock(config)
self.middle_block = Emu3VQVAEMiddleBlock(config, block_in)
self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = torch.nn.Conv2d(
block_in,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
temporal_down_blocks = int(math.log2(config.temporal_downsample_factor))
self.time_conv = nn.ModuleList()
self.time_res_stack = nn.ModuleList()
for i in range(temporal_down_blocks):
conv = Emu3VQVAETemporalDownsample(out_channels, out_channels)
self.time_conv.append(conv)
for _ in range(config.num_res_blocks):
time_res_conv = Emu3VQVAETemporalResnetBlock(
in_channels=out_channels,
out_channels=out_channels,
)
self.time_res_stack.append(time_res_conv)
def forward(self, pixel_values: torch.LongTensor):
temporal_dim = pixel_values.shape[1]
pixel_values = pixel_values.reshape(-1, *pixel_values.shape[2:])
# downsampling & middle
hidden_states = self.conv_in(pixel_values)
hidden_states = self.down_block(hidden_states)
hidden_states = self.middle_block(hidden_states)
# end
hidden_states = self.norm_out(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv_out(hidden_states)
hidden_states = hidden_states.reshape(-1, temporal_dim, *hidden_states.shape[1:])
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
# temporal convs
for conv in self.time_conv:
hidden_states = conv(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
for layer in self.time_res_stack:
hidden_states = layer(hidden_states)
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
return hidden_states
class Emu3VQVAEDecoder(nn.Module):
def __init__(self, config: Emu3VQVAEConfig):
super().__init__()
quant_channels = config.embed_dim
block_in = config.base_channels * config.channel_multiplier[-1]
self.time_res_stack = nn.ModuleList()
for _ in range(config.num_res_blocks):
time_res_conv = Emu3VQVAETemporalResnetBlock(
in_channels=config.latent_channels, out_channels=config.latent_channels
)
self.time_res_stack.append(time_res_conv)
temp_upsample_block_num = int(math.log2(config.temporal_downsample_factor))
self.time_conv = nn.ModuleList()
for i in range(temp_upsample_block_num):
conv = Emu3VQVAETemporalUpsample(config.latent_channels, config.latent_channels)
self.time_conv.append(conv)
self.conv_in = nn.Conv2d(
config.latent_channels,
block_in,
kernel_size=3,
stride=1,
padding=1,
)
self.middle_block = Emu3VQVAEMiddleBlock(config, block_in, quant_channels=quant_channels)
self.up_block = Emu3VQVAEUpBlock(config)
block_in = config.base_channels * config.channel_multiplier[0]
self.norm_out = Emu3VQVAESpatialNorm(quant_channels, block_in)
self.conv_out = nn.Conv2d(
block_in,
config.out_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
hidden_quant_states = torch.cat((hidden_states, quant_states), dim=0)
hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
# temporal convs
for layer in self.time_res_stack:
hidden_quant_states = layer(hidden_quant_states)
for layer in self.time_conv:
hidden_quant_states = layer(hidden_quant_states)
hidden_quant_states *= torch.sigmoid(hidden_quant_states)
hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
hidden_states, quant_states = torch.chunk(hidden_quant_states, 2, dim=0)
hidden_states = hidden_states.reshape(-1, *hidden_states.shape[2:])
quant_states = quant_states.reshape(-1, *quant_states.shape[2:])
hidden_states = self.conv_in(hidden_states)
# middle & upsampling
hidden_states = self.middle_block(hidden_states, quant_states)
hidden_states = self.up_block(hidden_states, quant_states)
hidden_states = self.norm_out(hidden_states, quant_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
EMU3_VQ_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Emu3VQVAEConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"""The VQ-VAE model used in Emu3 for encoding/decoding images into discrete tokens.
This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from
[ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman](https://arxiv.org/abs/2203.13131).
""",
EMU3_VQ_START_DOCSTRING,
)
class Emu3VQVAE(PreTrainedModel):
config_class = Emu3VQVAEConfig
base_model_prefix = "emuvideovq"
main_input_name = "pixel_values"
_supports_sdpa = True
_supports_flash_attn_2 = True
_supports_flex_attn = True
_no_split_modules = [
"Emu3VQVAETemporalResnetBlock",
"Emu3VQVAEAttentionBlock",
"Emu3VQVAEResnetBlock",
"Emu3VQVAEVectorQuantizer",
]
def _init_weights(self, module):
if isinstance(module, (nn.Conv2d, nn.Conv3d)):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
def __init__(self, config: Emu3VQVAEConfig):
super().__init__(config)
self.config = config
self.encoder = Emu3VQVAEEncoder(config)
self.decoder = Emu3VQVAEDecoder(config)
self.quantize = Emu3VQVAEVectorQuantizer(config)
self.vision_spatial_factor = 2 ** (len(config.channel_multiplier) - 1)
self.quant_conv = Emu3VQVAEConv3d(
config.latent_channels, config.embed_dim, kernel_size=(3, 1, 1), stride=(1, 1, 1)
)
self.post_quant_conv = Emu3VQVAEConv3d(
config.embed_dim, config.latent_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1)
)
self.spatial_scale_factor = 2 ** (len(config.channel_multiplier) - 1)
self.eval() # Emu3's VQ model is frozen
self.post_init()
def encode(self, pixel_values: torch.Tensor, image_sizes: torch.Tensor):
is_image = pixel_values.ndim == 4
if is_image:
temporal = self.config.temporal_downsample_factor
batch_size, channels, height, width = pixel_values.shape
pixel_values = pixel_values.unsqueeze(1).repeat(1, temporal, 1, 1, 1)
else:
batch_size, temporal, channels, height, width = pixel_values.shape
hidden_states = self.encoder(pixel_values)
# b t c h w -> b c t h w
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
hidden_states = self.quant_conv(hidden_states)
# b c t h w -> b t c h w
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
codes = self.quantize(hidden_states)
image_tokens = codes.squeeze(1) if is_image else codes
image_tokens = [
single_image[: int(size[0] / self.vision_spatial_factor), : int(size[1] / self.vision_spatial_factor)]
for single_image, size in zip(image_tokens, image_sizes)
]
return image_tokens
def decode(self, hidden_states: torch.Tensor):
is_image = hidden_states.ndim == 3
if is_image:
hidden_states = hidden_states.unsqueeze(1)
batch_size, temporal, height, width = hidden_states.shape
quant = self.quantize.embedding(hidden_states.flatten())
channels = quant.shape[-1]
quant = quant.view(batch_size, temporal, height, width, channels).permute(0, 4, 1, 2, 3).contiguous()
post_quant = self.post_quant_conv(quant)
quant = quant.permute(0, 2, 1, 3, 4)
post_quant = post_quant.permute(0, 2, 1, 3, 4)
video = self.decoder(post_quant, quant)
video = video.reshape(
batch_size,
temporal * self.config.temporal_downsample_factor,
self.config.out_channels,
height * self.spatial_scale_factor,
width * self.spatial_scale_factor,
)
return video[:, 0] if is_image else video
class Emu3ImageVocabularyMapping:
"""
A class for mapping discrete image tokens from VQGAN to BPE tokens.
"""
def __init__(self, vocab_map):
self.vocab_map = vocab_map
self.eol_token_id = vocab_map.get("<|extra_200|>")
self.image_token_id = vocab_map.get("<image>")
@cached_property
def image_tokens(self):
return sorted([val for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
@cached_property
def image_tokens_str(self):
return sorted([name for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
@cached_property
def img2bpe(self):
return {int(token[-8:-2]): self.vocab_map[token] for token in self.image_tokens_str}
@cached_property
def bpe2img(self):
return {v: k for k, v in self.img2bpe.items()}
@cached_property
def bpe2img_mapping_tensor(self):
mapping = torch.zeros(max(self.bpe2img.keys()) + 1, dtype=torch.int)
for k, v in self.bpe2img.items():
mapping[k] = v
return mapping
@cached_property
def img2bpe_mapping_tensor(self):
mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int)
for k, v in self.img2bpe.items():
mapping[k] = v
return mapping
def convert_img2bpe(self, img_batch: List[torch.Tensor]) -> torch.Tensor:
device = img_batch.device
eol_row = torch.ones((img_batch.shape[0], 1), dtype=torch.int) * self.eol_token_id
img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")]
img_tokens = torch.cat([img_tokens, eol_row], dim=-1)
return img_tokens.to(device)
def convert_bpe2img(self, img_batch: torch.Tensor) -> torch.Tensor:
device = img_batch.device
img_batch = img_batch[..., :-1] # remove last row of EOL tokens
img_tokens = self.bpe2img_mapping_tensor[img_batch.to("cpu")]
return img_tokens.to(device)
EMU3_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Emu3Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare emu3 Model outputting raw hidden-states without any specific head on top.",
EMU3_START_DOCSTRING,
)
class Emu3PreTrainedModel(PreTrainedModel):
config_class = Emu3Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = [
"Emu3DecoderLayer",
]
_skip_keys_device_placement = ["past_key_values", "causal_mask"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_quantized_cache = True
_supports_cache_class = True
_supports_static_cache = True
_supports_param_buffer_assignment = False
_supports_flex_attn = True
def _init_weights(self, module):
std = self.config.get_text_config().initializer_range
if isinstance(module, Emu3VQVAE):
module.apply(module._init_weights)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class Emu3RotaryEmbedding(nn.Module):
def __init__(self, config: Emu3Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
EMU3_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Has to be an instance of [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
The model will output the same cache type that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Emu3Text Model outputting raw hidden-states without any specific head on top.",
EMU3_START_DOCSTRING,
)
class Emu3TextModel(Emu3PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Emu3TextDecoderLayer`]
Args:
config: Emu3TextConfig
"""
def __init__(self, config: Emu3Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Emu3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Emu3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Emu3RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(EMU3_TEXT_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class Emu3ForCausalLM(Emu3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
config_class = Emu3TextConfig
def __init__(self, config):
super().__init__(config)
self.model = Emu3TextModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(EMU3_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="Emu3TextConfig")
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
>>> import torch
>>> import requests
>>> from PIL import Image
>>> model = Emu3ForCausalLM.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
>>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
>>> inputs = processor(text=["Can you write me a poem about winter."], return_tensors="pt").to(model.device)
>>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
>>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
EMU3_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, max_num_images, max_num_tiles, channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses
[`Emu3ImageProcessor`] for processing images).
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`):
The sizes of the images in the batch, being (height, width) for each image. Image sizes can be obtained using
[`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses
[`Emu3ImageProcessor`] for processing images).
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Has to be an instance of [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
class Emu3ForConditionalGeneration(Emu3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["text_model.lm_head.weight"]
_supports_static_cache = False # `get_image_tokens()`, called when `pixel_values` is passed, is not compileable
def __init__(self, config):
super().__init__(config)
self.text_model = Emu3ForCausalLM._from_config(config.text_config)
self.vqmodel = Emu3VQVAE(config.vq_config)
self.vocabulary_mapping = Emu3ImageVocabularyMapping(config.vocabulary_map)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.text_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.text_model.set_input_embeddings(value)
def get_image_tokens(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor):
"""
Tokenizes images into discrete tokens with VQGAN module. Converts
obtained image tokens into BPE tokens and wraps with "boi" and "eoi"
special tokens.
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
The tensors corresponding to the input images.
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`):
The sizes of the images in the batch, being (height, width) for each image.
"""
image_tokens_list = self.vqmodel.encode(pixel_values, image_sizes)
bpe_tokens_list = [self.vocabulary_mapping.convert_img2bpe(tokens).flatten() for tokens in image_tokens_list]
bpe_tokens = torch.cat(bpe_tokens_list)
return bpe_tokens
@torch.no_grad
def decode_image_tokens(self, image_tokens: torch.LongTensor, height: int, width: int):
"""
Decodes generated image tokens from language model to continuous pixel values
with VQGAN module via upsampling.
Args:
image_tokens (`torch.LongTensor` of shape `(batch_size, num_of_tokens)`):
The tensors corresponding to the input images.
height (`int`):
Height of the generated image before upsampling.
width (`int`):
Width of the generated image before upsampling.
"""
sequences = image_tokens[:, :-3].view(-1, height, width + 1)
image_tokens = self.vocabulary_mapping.convert_bpe2img(sequences)
image = self.vqmodel.decode(image_tokens)
return image
@can_return_tuple
@add_start_docstrings_to_model_forward(EMU3_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
>>> import torch
>>> import requests
>>> from PIL import Image
>>> model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
>>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
>>> conversation = [
... {
... "role": "system",
... "content": [
... {"type": "text", "text": "You are a helpful assistant."},
... ],
... },
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "Please describe the image."},
... ],
... },
... ]
>>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
>>> image = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw)
>>> inputs = processor(images=[image], text=[prompt], return_tensors="pt").to(model.device, torch.bfloat16)
>>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
>>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if pixel_values is not None:
image_tokens = self.get_image_tokens(pixel_values, image_sizes)
special_image_mask = input_ids == self.vocabulary_mapping.image_token_id
image_tokens = image_tokens.to(input_ids.device, input_ids.dtype)
input_ids = input_ids.masked_scatter(special_image_mask, image_tokens)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
pixel_values=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
pixel_values=pixel_values,
use_cache=use_cache,
**kwargs,
)
if cache_position[0] != 0:
model_inputs["pixel_values"] = None
return model_inputs
__all__ = ["Emu3ForConditionalGeneration", "Emu3ForCausalLM", "Emu3TextModel", "Emu3PreTrainedModel", "Emu3VQVAE"]
```
|
================================================================================================================================
SOURCE CODE FILE: modular_emu3.py
LINES: 1
SIZE: 54.09 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\emu3\modular_emu3.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from functools import cached_property
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from ...cache_utils import Cache
from ...generation import GenerationMixin
from ...modeling_outputs import (
CausalLMOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ..chameleon.modeling_chameleon import (
ChameleonPreTrainedModel,
ChameleonVQVAEEncoderConvDownsample,
)
from ..llama.modeling_llama import (
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaModel,
)
from ..siglip.modeling_siglip import SiglipAttention
from .configuration_emu3 import Emu3Config, Emu3TextConfig, Emu3VQVAEConfig
_CONFIG_FOR_DOC = "Emu3Config"
_CHECKPOINT_FOR_DOC = "BAAI/Emu3-Chat-hf"
logger = logging.get_logger(__name__)
# Has extra dropout which no other model in the library has
class Emu3DecoderLayer(LlamaDecoderLayer):
def __init__(self, config: Emu3Config, layer_idx: int):
super().__init__(config, layer_idx)
self.dropout = nn.Dropout(config.attention_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + self.dropout(hidden_states)
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.dropout(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Emu3VQVAEVectorQuantizer(nn.Module):
"""
A module for vector quantization using learned embedding vectors.
This module implements the quantization process similar to te one described in
the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous
input vectors into discrete codebook vectors, which are learned during training.
Current implementation improves over previous ones by avoiding costly matrix multiplications
and allowing for post-hoc remapping of indices.
"""
def __init__(self, config: Emu3VQVAEConfig):
super().__init__()
self.embedding = nn.Embedding(config.codebook_size, config.embed_dim)
self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size)
def forward(self, hidden_state: torch.Tensor):
batch_size, temporal, channels, height, width = hidden_state.shape
hidden_state = hidden_state.permute(0, 1, 3, 4, 2).contiguous()
hidden_state_flattened = hidden_state.view(-1, channels)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
hidden_state_sum = torch.sum(hidden_state_flattened**2, dim=1, keepdim=True)
embedding_sum = torch.sum(self.embedding.weight**2, dim=1)
# "bd,dn->bn",
distances = 2 * torch.matmul(hidden_state_flattened, self.embedding.weight.transpose(0, 1))
distances = hidden_state_sum + embedding_sum - distances
min_encoding_indices = torch.argmin(distances, dim=1)
min_encoding_indices = min_encoding_indices.view(batch_size, temporal, height, width)
return min_encoding_indices
class Emu3VQVAEEncoderConvDownsample(ChameleonVQVAEEncoderConvDownsample):
pass
class Emu3VQVAEEncoderConvUpsample(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, hidden_states):
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAEConv3d(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
kernel_size: Tuple[int],
stride: Tuple[int],
):
super().__init__()
padding_sizes = [one_kernel - one_stride for one_kernel, one_stride in zip(kernel_size[1:], stride[1:])]
self.padding = ()
for pad_size in padding_sizes[::-1]:
self.padding += (pad_size // 2 + pad_size % 2, pad_size // 2)
self.padding += (2, 0)
self.conv = nn.Conv3d(
in_channel,
out_channel,
kernel_size,
stride=stride,
)
def forward(self, hidden_states: torch.Tensor):
hidden_states = F.pad(hidden_states, self.padding)
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAESpatialNorm(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
):
super().__init__()
self.norm_layer = nn.GroupNorm(
num_channels=out_channels,
num_groups=32,
eps=1e-6,
affine=True,
)
self.conv_y = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
self.conv_b = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
quant_states = F.interpolate(quant_states, size=hidden_states.shape[-2:], mode="nearest")
hidden_states = self.norm_layer(hidden_states)
hidden_states = hidden_states * self.conv_y(quant_states) + self.conv_b(quant_states)
return hidden_states
class Emu3VQVAETemporalUpsample(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
):
super().__init__()
self.conv = Emu3VQVAEConv3d(
in_channel,
out_channel,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
def forward(self, hidden_states: torch.Tensor):
batch_size, channels, temporal, height, width = hidden_states.shape
hidden_states = hidden_states.permute(0, 1, 3, 4, 2).contiguous().view(batch_size, -1, temporal)
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
hidden_states = hidden_states.view(batch_size, channels, height, width, -1).permute(0, 1, 4, 2, 3).contiguous()
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAETemporalDownsample(nn.Module):
def __init__(
self,
in_channel: int,
out_channel: int,
):
super().__init__()
self.conv = Emu3VQVAEConv3d(
in_channel,
out_channel,
kernel_size=(4, 3, 3),
stride=(2, 1, 1),
)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.conv(hidden_states)
return hidden_states
class Emu3VQVAETemporalResnetBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels=None,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.norm1 = nn.BatchNorm3d(in_channels)
self.conv1 = Emu3VQVAEConv3d(
in_channels,
out_channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
self.norm2 = nn.BatchNorm3d(out_channels)
self.conv2 = Emu3VQVAEConv3d(
out_channels,
out_channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv3d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
residual = self.nin_shortcut(residual)
return residual + hidden_states
class Emu3VQVAEResnetBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
quant_channels: Optional[int] = None,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.quant_channels = quant_channels
if quant_channels is None:
self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=32, eps=1e-6, affine=True)
else:
self.norm1 = Emu3VQVAESpatialNorm(quant_channels, in_channels)
self.norm2 = Emu3VQVAESpatialNorm(quant_channels, out_channels)
self.conv1 = nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.conv2 = nn.Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, hidden_states: torch.Tensor, quant_channels: Optional[torch.Tensor] = None):
norm_args = () if self.quant_channels is None else (quant_channels,)
residual = hidden_states
hidden_states = self.norm1(hidden_states, *norm_args)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states, *norm_args)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
residual = self.nin_shortcut(residual)
return residual + hidden_states
class Emu3VQVAEAttentionBlock(SiglipAttention):
def __init__(self, config: Emu3VQVAEConfig):
super().__init__(config)
# for compatibility with the attention interface
self.num_key_value_groups = 1
class Emu3VQVAEGroupNorm(nn.GroupNorm):
"""
Same as the torch GroupNorm with the only difference that this ones accepts
an optional kwarg `quant_states` which is not used. This class makes it easier to
use SpatialNorm or GroupNorm without conditionals
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def forward(self, input, quant_states=None):
return F.group_norm(input, self.num_groups, self.weight, self.bias, self.eps)
class Emu3VQVAEMiddleBlock(nn.Module):
def __init__(self, config, in_channels, quant_channels=None):
super().__init__()
self.block_1 = Emu3VQVAEResnetBlock(
in_channels=in_channels,
out_channels=in_channels,
quant_channels=quant_channels,
)
self.attn_1 = Emu3VQVAEAttentionBlock(config)
if quant_channels is None:
self.attn_norm = Emu3VQVAEGroupNorm(num_channels=in_channels, num_groups=32, eps=1e-6, affine=True)
else:
self.attn_norm = Emu3VQVAESpatialNorm(quant_channels, in_channels)
self.block_2 = Emu3VQVAEResnetBlock(
in_channels=in_channels,
out_channels=in_channels,
quant_channels=quant_channels,
)
def forward(self, hidden_states: torch.FloatTensor, quant_states: Optional[torch.FloatTensor] = None):
hidden_states = self.block_1(hidden_states, quant_states)
residual = hidden_states
hidden_states = self.attn_norm(hidden_states, quant_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = self.attn_1(hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
hidden_states = self.block_2(hidden_states, quant_states)
return hidden_states
class Emu3VQVAEDownBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_resolutions = len(config.channel_multiplier)
self.num_res_blocks = config.num_res_blocks
base_channels = config.base_channels
channel_multiplier = config.channel_multiplier
in_channel_multiplier = (1,) + tuple(channel_multiplier)
self.in_channel_multiplier = in_channel_multiplier
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
attn_norms = nn.ModuleList()
block_in = base_channels * in_channel_multiplier[i_level]
block_out = base_channels * channel_multiplier[i_level]
for i_block in range(self.num_res_blocks):
block.append(
Emu3VQVAEResnetBlock(
in_channels=block_in,
out_channels=block_out,
)
)
block_in = block_out
if config.attn_resolutions is not None and i_level in config.attn_resolutions:
attn.append(Emu3VQVAEAttentionBlock(config))
attn_norms.append(nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True))
down = nn.Module()
down.block = block
down.attn = attn
down.attn_norms = attn_norms
if i_level != self.num_resolutions - 1:
down.downsample = Emu3VQVAEEncoderConvDownsample(block_in)
self.down.append(down)
def forward(self, hidden_states: torch.FloatTensor):
for i_level, blocks in enumerate(self.down):
for i_block in range(self.num_res_blocks):
hidden_states = blocks.block[i_block](hidden_states)
if len(blocks.attn) > 0:
residual = hidden_states
hidden_states = blocks.attn_norms[i_block](hidden_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = blocks.attn[i_block](hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
if i_level != self.num_resolutions - 1:
hidden_states = blocks.downsample(hidden_states)
return hidden_states
class Emu3VQVAEUpBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_resolutions = len(config.channel_multiplier)
self.num_res_blocks = config.num_res_blocks
quant_channels = config.embed_dim
block_in = config.base_channels * config.channel_multiplier[-1]
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
attn_norms = nn.ModuleList()
block_out = config.base_channels * config.channel_multiplier[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
Emu3VQVAEResnetBlock(
in_channels=block_in,
out_channels=block_out,
quant_channels=quant_channels,
)
)
block_in = block_out
if i_level in config.attn_resolutions:
attn.append(Emu3VQVAEAttentionBlock(config))
attn_norms.append(Emu3VQVAESpatialNorm(quant_channels, block_in))
up = nn.Module()
up.block = block
up.attn = attn
up.attn_norms = attn_norms
if i_level != 0:
up.upsample = Emu3VQVAEEncoderConvUpsample(block_in)
self.up.insert(0, up)
def forward(self, hidden_states: torch.FloatTensor, quant_states: torch.FloatTensor):
for i_level, blocks in enumerate(self.up[::-1]):
for i_block in range(self.num_res_blocks + 1):
hidden_states = blocks.block[i_block](hidden_states, quant_states)
if len(blocks.attn) > 0:
residual = hidden_states
hidden_states = blocks.attn_norms[i_block](hidden_states, quant_states)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channels, height * width).transpose(1, 2)
hidden_states = blocks.attn[i_block](hidden_states)[0]
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = residual + hidden_states
if i_level != len(self.up) - 1:
hidden_states = blocks.upsample(hidden_states)
return hidden_states
class Emu3VQVAEEncoder(nn.Module):
def __init__(self, config):
super().__init__()
base_channels = config.base_channels
in_channels = config.in_channels
double_latent = config.double_latent
latent_channels = config.latent_channels
channel_multiplier = config.channel_multiplier
out_channels = 2 * latent_channels if double_latent else latent_channels
block_in = base_channels * channel_multiplier[-1]
self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1)
self.down_block = Emu3VQVAEDownBlock(config)
self.middle_block = Emu3VQVAEMiddleBlock(config, block_in)
self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = torch.nn.Conv2d(
block_in,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
temporal_down_blocks = int(math.log2(config.temporal_downsample_factor))
self.time_conv = nn.ModuleList()
self.time_res_stack = nn.ModuleList()
for i in range(temporal_down_blocks):
conv = Emu3VQVAETemporalDownsample(out_channels, out_channels)
self.time_conv.append(conv)
for _ in range(config.num_res_blocks):
time_res_conv = Emu3VQVAETemporalResnetBlock(
in_channels=out_channels,
out_channels=out_channels,
)
self.time_res_stack.append(time_res_conv)
def forward(self, pixel_values: torch.LongTensor):
temporal_dim = pixel_values.shape[1]
pixel_values = pixel_values.reshape(-1, *pixel_values.shape[2:])
# downsampling & middle
hidden_states = self.conv_in(pixel_values)
hidden_states = self.down_block(hidden_states)
hidden_states = self.middle_block(hidden_states)
# end
hidden_states = self.norm_out(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv_out(hidden_states)
hidden_states = hidden_states.reshape(-1, temporal_dim, *hidden_states.shape[1:])
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
# temporal convs
for conv in self.time_conv:
hidden_states = conv(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
for layer in self.time_res_stack:
hidden_states = layer(hidden_states)
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
return hidden_states
class Emu3VQVAEDecoder(nn.Module):
def __init__(self, config: Emu3VQVAEConfig):
super().__init__()
quant_channels = config.embed_dim
block_in = config.base_channels * config.channel_multiplier[-1]
self.time_res_stack = nn.ModuleList()
for _ in range(config.num_res_blocks):
time_res_conv = Emu3VQVAETemporalResnetBlock(
in_channels=config.latent_channels, out_channels=config.latent_channels
)
self.time_res_stack.append(time_res_conv)
temp_upsample_block_num = int(math.log2(config.temporal_downsample_factor))
self.time_conv = nn.ModuleList()
for i in range(temp_upsample_block_num):
conv = Emu3VQVAETemporalUpsample(config.latent_channels, config.latent_channels)
self.time_conv.append(conv)
self.conv_in = nn.Conv2d(
config.latent_channels,
block_in,
kernel_size=3,
stride=1,
padding=1,
)
self.middle_block = Emu3VQVAEMiddleBlock(config, block_in, quant_channels=quant_channels)
self.up_block = Emu3VQVAEUpBlock(config)
block_in = config.base_channels * config.channel_multiplier[0]
self.norm_out = Emu3VQVAESpatialNorm(quant_channels, block_in)
self.conv_out = nn.Conv2d(
block_in,
config.out_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, hidden_states: torch.Tensor, quant_states: torch.Tensor):
hidden_quant_states = torch.cat((hidden_states, quant_states), dim=0)
hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
# temporal convs
for layer in self.time_res_stack:
hidden_quant_states = layer(hidden_quant_states)
for layer in self.time_conv:
hidden_quant_states = layer(hidden_quant_states)
hidden_quant_states *= torch.sigmoid(hidden_quant_states)
hidden_quant_states = hidden_quant_states.permute(0, 2, 1, 3, 4)
hidden_states, quant_states = torch.chunk(hidden_quant_states, 2, dim=0)
hidden_states = hidden_states.reshape(-1, *hidden_states.shape[2:])
quant_states = quant_states.reshape(-1, *quant_states.shape[2:])
hidden_states = self.conv_in(hidden_states)
# middle & upsampling
hidden_states = self.middle_block(hidden_states, quant_states)
hidden_states = self.up_block(hidden_states, quant_states)
hidden_states = self.norm_out(hidden_states, quant_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
EMU3_VQ_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Emu3VQVAEConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"""The VQ-VAE model used in Emu3 for encoding/decoding images into discrete tokens.
This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from
[ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman](https://arxiv.org/abs/2203.13131).
""",
EMU3_VQ_START_DOCSTRING,
)
class Emu3VQVAE(PreTrainedModel):
config_class = Emu3VQVAEConfig
base_model_prefix = "emuvideovq"
main_input_name = "pixel_values"
_supports_sdpa = True
_supports_flash_attn_2 = True
_supports_flex_attn = True
_no_split_modules = [
"Emu3VQVAETemporalResnetBlock",
"Emu3VQVAEAttentionBlock",
"Emu3VQVAEResnetBlock",
"Emu3VQVAEVectorQuantizer",
]
def _init_weights(self, module):
if isinstance(module, (nn.Conv2d, nn.Conv3d)):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
def __init__(self, config: Emu3VQVAEConfig):
super().__init__(config)
self.config = config
self.encoder = Emu3VQVAEEncoder(config)
self.decoder = Emu3VQVAEDecoder(config)
self.quantize = Emu3VQVAEVectorQuantizer(config)
self.vision_spatial_factor = 2 ** (len(config.channel_multiplier) - 1)
self.quant_conv = Emu3VQVAEConv3d(
config.latent_channels, config.embed_dim, kernel_size=(3, 1, 1), stride=(1, 1, 1)
)
self.post_quant_conv = Emu3VQVAEConv3d(
config.embed_dim, config.latent_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1)
)
self.spatial_scale_factor = 2 ** (len(config.channel_multiplier) - 1)
self.eval() # Emu3's VQ model is frozen
self.post_init()
def encode(self, pixel_values: torch.Tensor, image_sizes: torch.Tensor):
is_image = pixel_values.ndim == 4
if is_image:
temporal = self.config.temporal_downsample_factor
batch_size, channels, height, width = pixel_values.shape
pixel_values = pixel_values.unsqueeze(1).repeat(1, temporal, 1, 1, 1)
else:
batch_size, temporal, channels, height, width = pixel_values.shape
hidden_states = self.encoder(pixel_values)
# b t c h w -> b c t h w
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
hidden_states = self.quant_conv(hidden_states)
# b c t h w -> b t c h w
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
codes = self.quantize(hidden_states)
image_tokens = codes.squeeze(1) if is_image else codes
image_tokens = [
single_image[: int(size[0] / self.vision_spatial_factor), : int(size[1] / self.vision_spatial_factor)]
for single_image, size in zip(image_tokens, image_sizes)
]
return image_tokens
def decode(self, hidden_states: torch.Tensor):
is_image = hidden_states.ndim == 3
if is_image:
hidden_states = hidden_states.unsqueeze(1)
batch_size, temporal, height, width = hidden_states.shape
quant = self.quantize.embedding(hidden_states.flatten())
channels = quant.shape[-1]
quant = quant.view(batch_size, temporal, height, width, channels).permute(0, 4, 1, 2, 3).contiguous()
post_quant = self.post_quant_conv(quant)
quant = quant.permute(0, 2, 1, 3, 4)
post_quant = post_quant.permute(0, 2, 1, 3, 4)
video = self.decoder(post_quant, quant)
video = video.reshape(
batch_size,
temporal * self.config.temporal_downsample_factor,
self.config.out_channels,
height * self.spatial_scale_factor,
width * self.spatial_scale_factor,
)
return video[:, 0] if is_image else video
class Emu3ImageVocabularyMapping:
"""
A class for mapping discrete image tokens from VQGAN to BPE tokens.
"""
def __init__(self, vocab_map):
self.vocab_map = vocab_map
self.eol_token_id = vocab_map.get("<|extra_200|>")
self.image_token_id = vocab_map.get("<image>")
@cached_property
def image_tokens(self):
return sorted([val for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
@cached_property
def image_tokens_str(self):
return sorted([name for name, val in self.vocab_map.items() if name.startswith("<|visual token")])
@cached_property
def img2bpe(self):
return {int(token[-8:-2]): self.vocab_map[token] for token in self.image_tokens_str}
@cached_property
def bpe2img(self):
return {v: k for k, v in self.img2bpe.items()}
@cached_property
def bpe2img_mapping_tensor(self):
mapping = torch.zeros(max(self.bpe2img.keys()) + 1, dtype=torch.int)
for k, v in self.bpe2img.items():
mapping[k] = v
return mapping
@cached_property
def img2bpe_mapping_tensor(self):
mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int)
for k, v in self.img2bpe.items():
mapping[k] = v
return mapping
def convert_img2bpe(self, img_batch: List[torch.Tensor]) -> torch.Tensor:
device = img_batch.device
eol_row = torch.ones((img_batch.shape[0], 1), dtype=torch.int) * self.eol_token_id
img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")]
img_tokens = torch.cat([img_tokens, eol_row], dim=-1)
return img_tokens.to(device)
def convert_bpe2img(self, img_batch: torch.Tensor) -> torch.Tensor:
device = img_batch.device
img_batch = img_batch[..., :-1] # remove last row of EOL tokens
img_tokens = self.bpe2img_mapping_tensor[img_batch.to("cpu")]
return img_tokens.to(device)
class Emu3PreTrainedModel(ChameleonPreTrainedModel, Emu3VQVAE):
_no_split_modules = [
"Emu3DecoderLayer",
]
_supports_flex_attn = True
def _init_weights(self, module):
std = self.config.get_text_config().initializer_range
if isinstance(module, Emu3VQVAE):
module.apply(module._init_weights)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
EMU3_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Has to be an instance of [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
The model will output the same cache type that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
EMU3_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, max_num_images, max_num_tiles, channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses
[`Emu3ImageProcessor`] for processing images).
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`):
The sizes of the images in the batch, being (height, width) for each image. Image sizes can be obtained using
[`AutoImageProcessor`]. See [`Emu3ImageProcessor.__call__`] for details ([]`Emu3Processor`] uses
[`Emu3ImageProcessor`] for processing images).
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Has to be an instance of [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
class Emu3TextModel(LlamaModel, Emu3PreTrainedModel):
def __init__(self, config: Emu3Config):
super().__init__(config)
self.layers = nn.ModuleList(
[Emu3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
@can_return_tuple
@add_start_docstrings_to_model_forward(EMU3_TEXT_INPUTS_DOCSTRING)
def forward(self, **super_kwargs):
super().forward(**super_kwargs)
class Emu3ForCausalLM(LlamaForCausalLM, Emu3PreTrainedModel, GenerationMixin):
config_class = Emu3TextConfig
def __init__(self, config):
super().__init__(config)
self.model = Emu3TextModel(config)
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(EMU3_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="Emu3TextConfig")
def forward(**super_kwargs):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
>>> import torch
>>> import requests
>>> from PIL import Image
>>> model = Emu3ForCausalLM.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
>>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
>>> inputs = processor(text=["Can you write me a poem about winter."], return_tensors="pt").to(model.device)
>>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
>>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```"""
super().forward()
class Emu3ForConditionalGeneration(Emu3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["text_model.lm_head.weight"]
_supports_static_cache = False # `get_image_tokens()`, called when `pixel_values` is passed, is not compileable
def __init__(self, config):
super().__init__(config)
self.text_model = Emu3ForCausalLM._from_config(config.text_config)
self.vqmodel = Emu3VQVAE(config.vq_config)
self.vocabulary_mapping = Emu3ImageVocabularyMapping(config.vocabulary_map)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.text_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.text_model.set_input_embeddings(value)
def get_image_tokens(self, pixel_values: torch.FloatTensor, image_sizes: torch.LongTensor):
"""
Tokenizes images into discrete tokens with VQGAN module. Converts
obtained image tokens into BPE tokens and wraps with "boi" and "eoi"
special tokens.
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
The tensors corresponding to the input images.
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`):
The sizes of the images in the batch, being (height, width) for each image.
"""
image_tokens_list = self.vqmodel.encode(pixel_values, image_sizes)
bpe_tokens_list = [self.vocabulary_mapping.convert_img2bpe(tokens).flatten() for tokens in image_tokens_list]
bpe_tokens = torch.cat(bpe_tokens_list)
return bpe_tokens
@torch.no_grad
def decode_image_tokens(self, image_tokens: torch.LongTensor, height: int, width: int):
"""
Decodes generated image tokens from language model to continuous pixel values
with VQGAN module via upsampling.
Args:
image_tokens (`torch.LongTensor` of shape `(batch_size, num_of_tokens)`):
The tensors corresponding to the input images.
height (`int`):
Height of the generated image before upsampling.
width (`int`):
Width of the generated image before upsampling.
"""
sequences = image_tokens[:, :-3].view(-1, height, width + 1)
image_tokens = self.vocabulary_mapping.convert_bpe2img(sequences)
image = self.vqmodel.decode(image_tokens)
return image
@can_return_tuple
@add_start_docstrings_to_model_forward(EMU3_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import Emu3Processor, Emu3ForConditionalGeneration
>>> import torch
>>> import requests
>>> from PIL import Image
>>> model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", torch_dtype=torch.bfloat16)
>>> processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
>>> conversation = [
... {
... "role": "system",
... "content": [
... {"type": "text", "text": "You are a helpful assistant."},
... ],
... },
... {
... "role": "user",
... "content": [
... {"type": "image"},
... {"type": "text", "text": "Please describe the image."},
... ],
... },
... ]
>>> prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
>>> image = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw)
>>> inputs = processor(images=[image], text=[prompt], return_tensors="pt").to(model.device, torch.bfloat16)
>>> generated_ids = model.generate(**inputs, max_new_tokens=100, do_sample=False)
>>> processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if pixel_values is not None:
image_tokens = self.get_image_tokens(pixel_values, image_sizes)
special_image_mask = input_ids == self.vocabulary_mapping.image_token_id
image_tokens = image_tokens.to(input_ids.device, input_ids.dtype)
input_ids = input_ids.masked_scatter(special_image_mask, image_tokens)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
pixel_values=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
pixel_values=pixel_values,
use_cache=use_cache,
**kwargs,
)
if cache_position[0] != 0:
model_inputs["pixel_values"] = None
return model_inputs
__all__ = [
"Emu3ForConditionalGeneration",
"Emu3ForCausalLM",
"Emu3TextModel",
"Emu3PreTrainedModel",
"Emu3VQVAE",
]
```
|
===================================================================================================================================
SOURCE CODE FILE: processing_emu3.py
LINES: 1
SIZE: 10.22 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\emu3\processing_emu3.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
class Emu3TextKwargs(TextKwargs, total=False):
return_for_image_generation: bool
class Emu3ImagesKwargs(ImagesKwargs, total=False):
ratio: str
image_area: int
class Emu3ProcessorKwargs(ProcessingKwargs, total=False):
text_kwargs: Emu3TextKwargs
images_kwargs: Emu3ImagesKwargs
_defaults = {
"text_kwargs": {
"return_for_image_generation": False,
},
"images_kwargs": {
"ratio": "1:1",
"image_area": 518400,
},
}
class Emu3Processor(ProcessorMixin):
r"""
Constructs a Emu3 processor which wraps a Emu3 image processor and a GPT2 tokenizer into a single
processor.
[`Emu3Processor`] offers all the functionalities of [`Emu3ImageProcessor`] and [`GPT2TokenizerFast`].
See the [`~Emu3Processor.__call__`] and [`~Emu3Processor.decode`] for more information.
Args:
image_processor ([`Emu3ImageProcessor`]):
The image processor is a required input.
tokenizer ([`Emu3TokenizerFast`]):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
tokenizer_class = ("GPT2Tokenizer", "GPT2TokenizerFast")
image_processor_class = "Emu3ImageProcessor"
def __init__(
self,
image_processor,
tokenizer,
chat_template=None,
**kwargs,
):
self.image_token = tokenizer.image_token # image_token as placeholder to be replaced by vq-vae tokens
self.image_start_token = tokenizer.boi_token # "<|image start|>" fixed tokens for start and end of image
self.image_end_token = tokenizer.eoi_token # "<|image end|>"
self.fake_token_around_image = tokenizer.image_wrapper_token # "<|image token|>" every image starts with it
self.eof_token = tokenizer.eof_token # "<|extra_201|>"
self.bos_token = tokenizer.bos_token
self.downsample_ratio = 8
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[Emu3ProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Emu3TokenizerFast's [`~Emu3TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
# check if images and text inputs are reversed for BC
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise TypeError("Invalid input text. Please provide a string, or a list of strings")
output_kwargs = self._merge_kwargs(
Emu3ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
return_for_image_generation = output_kwargs["text_kwargs"].pop("return_for_image_generation", False)
ratio = output_kwargs["images_kwargs"].pop("ratio", None)
image_area = output_kwargs["images_kwargs"].pop("image_area", None)
if return_for_image_generation and images is not None:
raise ValueError("You should not provide `images` when `return_for_image_generation=True`")
if not return_for_image_generation and text is None and images is None:
raise ValueError("You must provide either text or images when `return_for_image_generation=False`")
image_features = {}
image_start_tokens = f"{self.image_start_token}"
image_end_tokens = f"{self.eof_token}{self.image_end_token}"
# generate text from image + text input, so we add placeholders for image tokens
if not return_for_image_generation and images is not None:
image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
image_sizes = iter(image_features.image_sizes)
prompt_strings = []
for sample in text:
while self.image_token in sample:
image_size = next(image_sizes)
height, width = image_size
height = height // self.downsample_ratio
width = width // self.downsample_ratio
image_seq_length = height * (width + 1) # +1 for extra row when converting to BPE in modeling code
image_placeholder = f"{image_start_tokens}{height}*{width}{self.fake_token_around_image}{'<placeholder>' * image_seq_length}{image_end_tokens}"
sample = sample.replace(self.image_token, image_placeholder, 1)
sample = f"{self.bos_token}{sample}" # add BOS because PT tokenizer doesn't add it
prompt_strings.append(sample)
text = [sample.replace("<placeholder>", self.image_token) for sample in prompt_strings]
# generate image from text input, so we add begin-of-image tokens from where image generation starts
elif return_for_image_generation:
height, width = self.calculate_generate_size(ratio, image_area, self.downsample_ratio)
image_prompt = f"{image_start_tokens}{height}*{width}{self.fake_token_around_image}"
text = [f"{self.bos_token}{sample}{image_prompt}" for sample in text]
image_features["image_sizes"] = [[height, width]] * len(text)
# else just generate from text-only input, and we do no special treatment for text
data = self.tokenizer(text, **output_kwargs["text_kwargs"])
data.update(**image_features)
return BatchFeature(data=data, tensor_type=output_kwargs["common_kwargs"].pop("return_tensors", None))
def calculate_generate_size(self, ratio, image_area, spatial_factor):
width, height = map(int, ratio.split(":"))
current_area = width * height
target_ratio = (image_area / current_area) ** 0.5
token_height = int(round(height * target_ratio / spatial_factor))
token_width = int(round(width * target_ratio / spatial_factor))
return token_height, token_width
def postprocess(self, images: ImageInput, **kwargs):
return self.image_processor.postprocess(images, **kwargs)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Emu3TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Emu3TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["Emu3Processor"]
```
|
===============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.02 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\encodec\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_encodec import *
from .feature_extraction_encodec import *
from .modeling_encodec import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
============================================================================================================================================
SOURCE CODE FILE: configuration_encodec.py
LINES: 1
SIZE: 8.33 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\encodec\configuration_encodec.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Meta Platforms, Inc. and affiliates, and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""EnCodec model configuration"""
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class EncodecConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`EncodecModel`]. It is used to instantiate a
Encodec model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[facebook/encodec_24khz](https://huggingface.co/facebook/encodec_24khz) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
target_bandwidths (`List[float]`, *optional*, defaults to `[1.5, 3.0, 6.0, 12.0, 24.0]`):
The range of diffent bandwiths the model can encode audio with.
sampling_rate (`int`, *optional*, defaults to 24000):
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
audio_channels (`int`, *optional*, defaults to 1):
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
normalize (`bool`, *optional*, defaults to `False`):
Whether the audio shall be normalized when passed.
chunk_length_s (`float`, *optional*):
If defined the audio is pre-processed into chunks of lengths `chunk_length_s` and then encoded.
overlap (`float`, *optional*):
Defines the overlap between each chunk. It is used to compute the `chunk_stride` using the following
formulae : `int((1.0 - self.overlap) * self.chunk_length)`.
hidden_size (`int`, *optional*, defaults to 128):
Intermediate representation dimension.
num_filters (`int`, *optional*, defaults to 32):
Number of convolution kernels of first `EncodecConv1d` down sampling layer.
num_residual_layers (`int`, *optional*, defaults to 1):
Number of residual layers.
upsampling_ratios (`Sequence[int]` , *optional*, defaults to `[8, 5, 4, 2]`):
Kernel size and stride ratios. The encoder uses downsampling ratios instead of upsampling ratios, hence it
will use the ratios in the reverse order to the ones specified here that must match the decoder order.
norm_type (`str`, *optional*, defaults to `"weight_norm"`):
Normalization method. Should be in `["weight_norm", "time_group_norm"]`
kernel_size (`int`, *optional*, defaults to 7):
Kernel size for the initial convolution.
last_kernel_size (`int`, *optional*, defaults to 7):
Kernel size for the last convolution layer.
residual_kernel_size (`int`, *optional*, defaults to 3):
Kernel size for the residual layers.
dilation_growth_rate (`int`, *optional*, defaults to 2):
How much to increase the dilation with each layer.
use_causal_conv (`bool`, *optional*, defaults to `True`):
Whether to use fully causal convolution.
pad_mode (`str`, *optional*, defaults to `"reflect"`):
Padding mode for the convolutions.
compress (`int`, *optional*, defaults to 2):
Reduced dimensionality in residual branches (from Demucs v3).
num_lstm_layers (`int`, *optional*, defaults to 2):
Number of LSTM layers at the end of the encoder.
trim_right_ratio (`float`, *optional*, defaults to 1.0):
Ratio for trimming at the right of the transposed convolution under the `use_causal_conv = True` setup. If
equal to 1.0, it means that all the trimming is done at the right.
codebook_size (`int`, *optional*, defaults to 1024):
Number of discret codes that make up VQVAE.
codebook_dim (`int`, *optional*):
Dimension of the codebook vectors. If not defined, uses `hidden_size`.
use_conv_shortcut (`bool`, *optional*, defaults to `True`):
Whether to use a convolutional layer as the 'skip' connection in the `EncodecResnetBlock` block. If False,
an identity function will be used, giving a generic residual connection.
Example:
```python
>>> from transformers import EncodecModel, EncodecConfig
>>> # Initializing a "facebook/encodec_24khz" style configuration
>>> configuration = EncodecConfig()
>>> # Initializing a model (with random weights) from the "facebook/encodec_24khz" style configuration
>>> model = EncodecModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "encodec"
def __init__(
self,
target_bandwidths=[1.5, 3.0, 6.0, 12.0, 24.0],
sampling_rate=24_000,
audio_channels=1,
normalize=False,
chunk_length_s=None,
overlap=None,
hidden_size=128,
num_filters=32,
num_residual_layers=1,
upsampling_ratios=[8, 5, 4, 2],
norm_type="weight_norm",
kernel_size=7,
last_kernel_size=7,
residual_kernel_size=3,
dilation_growth_rate=2,
use_causal_conv=True,
pad_mode="reflect",
compress=2,
num_lstm_layers=2,
trim_right_ratio=1.0,
codebook_size=1024,
codebook_dim=None,
use_conv_shortcut=True,
**kwargs,
):
self.target_bandwidths = target_bandwidths
self.sampling_rate = sampling_rate
self.audio_channels = audio_channels
self.normalize = normalize
self.chunk_length_s = chunk_length_s
self.overlap = overlap
self.hidden_size = hidden_size
self.num_filters = num_filters
self.num_residual_layers = num_residual_layers
self.upsampling_ratios = upsampling_ratios
self.norm_type = norm_type
self.kernel_size = kernel_size
self.last_kernel_size = last_kernel_size
self.residual_kernel_size = residual_kernel_size
self.dilation_growth_rate = dilation_growth_rate
self.use_causal_conv = use_causal_conv
self.pad_mode = pad_mode
self.compress = compress
self.num_lstm_layers = num_lstm_layers
self.trim_right_ratio = trim_right_ratio
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim if codebook_dim is not None else hidden_size
self.use_conv_shortcut = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}'
)
super().__init__(**kwargs)
# This is a property because you might want to change the chunk_length_s on the fly
@property
def chunk_length(self) -> Optional[int]:
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate)
# This is a property because you might want to change the chunk_length_s on the fly
@property
def chunk_stride(self) -> Optional[int]:
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1, int((1.0 - self.overlap) * self.chunk_length))
@property
def frame_rate(self) -> int:
hop_length = np.prod(self.upsampling_ratios)
return math.ceil(self.sampling_rate / hop_length)
@property
def num_quantizers(self) -> int:
return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10))
__all__ = ["EncodecConfig"]
```
|
=================================================================================================================================================
SOURCE CODE FILE: feature_extraction_encodec.py
LINES: 1
SIZE: 9.72 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\encodec\feature_extraction_encodec.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for EnCodec."""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
logger = logging.get_logger(__name__)
class EncodecFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs an EnCodec feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
Instantiating a feature extractor with the defaults will yield a similar configuration to that of the
[facebook/encodec_24khz](https://huggingface.co/facebook/encodec_24khz) architecture.
Args:
feature_size (`int`, *optional*, defaults to 1):
The feature dimension of the extracted features. Use 1 for mono, 2 for stereo.
sampling_rate (`int`, *optional*, defaults to 24000):
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
padding_value (`float`, *optional*, defaults to 0.0):
The value that is used to fill the padding values.
chunk_length_s (`float`, *optional*):
If defined the audio is pre-processed into chunks of lengths `chunk_length_s` and then encoded.
overlap (`float`, *optional*):
Defines the overlap between each chunk. It is used to compute the `chunk_stride` using the following
formulae : `int((1.0 - self.overlap) * self.chunk_length)`.
"""
model_input_names = ["input_values", "padding_mask"]
def __init__(
self,
feature_size: int = 1,
sampling_rate: int = 24000,
padding_value: float = 0.0,
chunk_length_s: Optional[float] = None,
overlap: Optional[float] = None,
**kwargs,
):
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
self.chunk_length_s = chunk_length_s
self.overlap = overlap
# This is a property because you might want to change the chunk_length_s on the fly
@property
def chunk_length(self) -> Optional[int]:
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate)
# This is a property because you might want to change the chunk_length_s on the fly
@property
def chunk_stride(self) -> Optional[int]:
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1, int((1.0 - self.overlap) * self.chunk_length))
def __call__(
self,
raw_audio: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
padding: Optional[Union[bool, str, PaddingStrategy]] = None,
truncation: Optional[bool] = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
sampling_rate: Optional[int] = None,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s).
Args:
raw_audio (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be processed. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. The numpy array must be of shape
`(num_samples,)` for mono audio (`feature_size = 1`), or `(2, num_samples)` for stereo audio
(`feature_size = 2`).
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, *optional*, defaults to `False`):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
sampling_rate (`int`, *optional*):
The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"
f" {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
f"It is strongly recommended to pass the `sampling_rate` argument to `{self.__class__.__name__}()`. "
"Failing to do so can result in silent errors that might be hard to debug."
)
if padding and truncation:
raise ValueError("Both padding and truncation were set. Make sure you only set one.")
elif padding is None:
# by default let's pad the inputs
padding = True
is_batched = bool(
isinstance(raw_audio, (list, tuple)) and (isinstance(raw_audio[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_audio = [np.asarray(audio, dtype=np.float32).T for audio in raw_audio]
elif not is_batched and not isinstance(raw_audio, np.ndarray):
raw_audio = np.asarray(raw_audio, dtype=np.float32)
elif isinstance(raw_audio, np.ndarray) and raw_audio.dtype is np.dtype(np.float64):
raw_audio = raw_audio.astype(np.float32)
# always return batch
if not is_batched:
raw_audio = [np.asarray(raw_audio).T]
# verify inputs are valid
for idx, example in enumerate(raw_audio):
if example.ndim > 2:
raise ValueError(f"Expected input shape (channels, length) but got shape {example.shape}")
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f"Expected mono audio but example has {example.shape[-1]} channels")
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f"Expected stereo audio but example has {example.shape[-1]} channels")
padded_inputs = None
input_values = BatchFeature({"input_values": raw_audio})
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
max_length = min(array.shape[0] for array in raw_audio)
nb_step = int(np.floor(max_length / self.chunk_stride))
max_length = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
max_length = max(array.shape[0] for array in raw_audio)
nb_step = int(np.ceil(max_length / self.chunk_stride))
max_length = (nb_step - 1) * self.chunk_stride + self.chunk_length
padding = "max_length"
else:
padded_inputs = input_values
# normal padding on batch
if padded_inputs is None:
padded_inputs = self.pad(
input_values,
max_length=max_length,
truncation=truncation,
padding=padding,
return_attention_mask=padding,
)
if padding:
padded_inputs["padding_mask"] = padded_inputs.pop("attention_mask")
input_values = []
for example in padded_inputs.pop("input_values"):
if self.feature_size == 1:
example = example[..., None]
input_values.append(example.T)
padded_inputs["input_values"] = input_values
if return_tensors is not None:
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
__all__ = ["EncodecFeatureExtractor"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: modeling_encodec.py
LINES: 1
SIZE: 33.06 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\encodec\modeling_encodec.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Meta Platforms, Inc. and affiliates, and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch EnCodec model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_encodec import EncodecConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "EncodecConfig"
@dataclass
class EncodecOutput(ModelOutput):
"""
Args:
audio_codes (`torch.LongTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
audio_values (`torch.FlaotTensor` of shape `(batch_size, sequence_length)`, *optional*)
Decoded audio values, obtained using the decoder part of Encodec.
"""
audio_codes: Optional[torch.LongTensor] = None
audio_values: Optional[torch.FloatTensor] = None
@dataclass
class EncodecEncoderOutput(ModelOutput):
"""
Args:
audio_codes (`torch.LongTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
audio_scales (`torch.Tensor` of shape `(batch_size, nb_chunks)`, *optional*):
Scaling factor for each `audio_codes` input. This is used to unscale each chunk of audio when decoding.
"""
audio_codes: Optional[torch.LongTensor] = None
audio_scales: Optional[torch.FloatTensor] = None
@dataclass
class EncodecDecoderOutput(ModelOutput):
"""
Args:
audio_values (`torch.FloatTensor` of shape `(batch_size, segment_length)`, *optional*):
Decoded audio values, obtained using the decoder part of Encodec.
"""
audio_values: Optional[torch.FloatTensor] = None
class EncodecConv1d(nn.Module):
"""Conv1d with asymmetric or causal padding and normalization."""
def __init__(
self, config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, dilation: int = 1
):
super().__init__()
self.causal = config.use_causal_conv
self.pad_mode = config.pad_mode
self.norm_type = config.norm_type
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}'
)
# warn user on unusual setup between dilation and stride
if stride > 1 and dilation > 1:
logger.warning(
"EncodecConv1d has been initialized with stride > 1 and dilation > 1"
f" (kernel_size={kernel_size} stride={stride}, dilation={dilation})."
)
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, dilation=dilation)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if self.norm_type == "weight_norm":
self.conv = weight_norm(self.conv)
elif self.norm_type == "time_group_norm":
self.norm = nn.GroupNorm(1, out_channels)
kernel_size = self.conv.kernel_size[0]
stride = torch.tensor(self.conv.stride[0], dtype=torch.int64)
dilation = self.conv.dilation[0]
# Effective kernel size with dilations.
kernel_size = torch.tensor((kernel_size - 1) * dilation + 1, dtype=torch.int64)
self.register_buffer("stride", stride, persistent=False)
self.register_buffer("kernel_size", kernel_size, persistent=False)
self.register_buffer("padding_total", kernel_size - stride, persistent=False)
def _get_extra_padding_for_conv1d(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
"""See `pad_for_conv1d`."""
length = hidden_states.shape[-1]
n_frames = (length - self.kernel_size + self.padding_total) / self.stride + 1
n_frames = torch.ceil(n_frames).to(torch.int64) - 1
ideal_length = n_frames * self.stride + self.kernel_size - self.padding_total
return ideal_length - length
@staticmethod
def _pad1d(hidden_states: torch.Tensor, paddings: Tuple[int, int], mode: str = "zero", value: float = 0.0):
"""Tiny wrapper around torch.nn.functional.pad, just to allow for reflect padding on small input.
If this is the case, we insert extra 0 padding to the right before the reflection happens.
"""
length = hidden_states.shape[-1]
padding_left, padding_right = paddings
if not mode == "reflect":
return nn.functional.pad(hidden_states, paddings, mode, value)
max_pad = max(padding_left, padding_right)
extra_pad = 0
if length <= max_pad:
extra_pad = max_pad - length + 1
hidden_states = nn.functional.pad(hidden_states, (0, extra_pad))
padded = nn.functional.pad(hidden_states, paddings, mode, value)
end = padded.shape[-1] - extra_pad
return padded[..., :end]
def forward(self, hidden_states):
extra_padding = self._get_extra_padding_for_conv1d(hidden_states)
if self.causal:
# Left padding for causal
hidden_states = self._pad1d(hidden_states, (self.padding_total, extra_padding), mode=self.pad_mode)
else:
# Asymmetric padding required for odd strides
padding_right = self.padding_total // 2
padding_left = self.padding_total - padding_right
hidden_states = self._pad1d(
hidden_states, (padding_left, padding_right + extra_padding), mode=self.pad_mode
)
hidden_states = self.conv(hidden_states)
if self.norm_type == "time_group_norm":
hidden_states = self.norm(hidden_states)
return hidden_states
class EncodecConvTranspose1d(nn.Module):
"""ConvTranspose1d with asymmetric or causal padding and normalization."""
def __init__(self, config, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1):
super().__init__()
self.causal = config.use_causal_conv
self.trim_right_ratio = config.trim_right_ratio
self.norm_type = config.norm_type
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}'
)
self.conv = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if config.norm_type == "weight_norm":
self.conv = weight_norm(self.conv)
elif config.norm_type == "time_group_norm":
self.norm = nn.GroupNorm(1, out_channels)
if not (self.causal or self.trim_right_ratio == 1.0):
raise ValueError("`trim_right_ratio` != 1.0 only makes sense for causal convolutions")
def forward(self, hidden_states):
kernel_size = self.conv.kernel_size[0]
stride = self.conv.stride[0]
padding_total = kernel_size - stride
hidden_states = self.conv(hidden_states)
if self.norm_type == "time_group_norm":
hidden_states = self.norm(hidden_states)
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
# removed at the very end, when keeping only the right length for the output,
# as removing it here would require also passing the length at the matching layer
# in the encoder.
if self.causal:
# Trim the padding on the right according to the specified ratio
# if trim_right_ratio = 1.0, trim everything from right
padding_right = math.ceil(padding_total * self.trim_right_ratio)
else:
# Asymmetric padding required for odd strides
padding_right = padding_total // 2
padding_left = padding_total - padding_right
# unpad
end = hidden_states.shape[-1] - padding_right
hidden_states = hidden_states[..., padding_left:end]
return hidden_states
class EncodecLSTM(nn.Module):
"""
LSTM without worrying about the hidden state, nor the layout of the data. Expects input as convolutional layout.
"""
def __init__(self, config, dimension):
super().__init__()
self.lstm = nn.LSTM(dimension, dimension, config.num_lstm_layers)
def forward(self, hidden_states):
hidden_states = hidden_states.permute(2, 0, 1)
hidden_states = self.lstm(hidden_states)[0] + hidden_states
hidden_states = hidden_states.permute(1, 2, 0)
return hidden_states
class EncodecResnetBlock(nn.Module):
"""
Residual block from SEANet model as used by EnCodec.
"""
def __init__(self, config: EncodecConfig, dim: int, dilations: List[int]):
super().__init__()
kernel_sizes = (config.residual_kernel_size, 1)
if len(kernel_sizes) != len(dilations):
raise ValueError("Number of kernel sizes should match number of dilations")
hidden = dim // config.compress
block = []
for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)):
in_chs = dim if i == 0 else hidden
out_chs = dim if i == len(kernel_sizes) - 1 else hidden
block += [nn.ELU()]
block += [EncodecConv1d(config, in_chs, out_chs, kernel_size, dilation=dilation)]
self.block = nn.ModuleList(block)
if config.use_conv_shortcut:
self.shortcut = EncodecConv1d(config, dim, dim, kernel_size=1)
else:
self.shortcut = nn.Identity()
def forward(self, hidden_states):
residual = hidden_states
for layer in self.block:
hidden_states = layer(hidden_states)
return self.shortcut(residual) + hidden_states
class EncodecEncoder(nn.Module):
"""SEANet encoder as used by EnCodec."""
def __init__(self, config: EncodecConfig):
super().__init__()
model = [EncodecConv1d(config, config.audio_channels, config.num_filters, config.kernel_size)]
scaling = 1
# Downsample to raw audio scale
for ratio in reversed(config.upsampling_ratios):
current_scale = scaling * config.num_filters
# Add residual layers
for j in range(config.num_residual_layers):
model += [EncodecResnetBlock(config, current_scale, [config.dilation_growth_rate**j, 1])]
# Add downsampling layers
model += [nn.ELU()]
model += [EncodecConv1d(config, current_scale, current_scale * 2, kernel_size=ratio * 2, stride=ratio)]
scaling *= 2
model += [EncodecLSTM(config, scaling * config.num_filters)]
model += [nn.ELU()]
model += [EncodecConv1d(config, scaling * config.num_filters, config.hidden_size, config.last_kernel_size)]
self.layers = nn.ModuleList(model)
def forward(self, hidden_states):
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
class EncodecDecoder(nn.Module):
"""SEANet decoder as used by EnCodec."""
def __init__(self, config: EncodecConfig):
super().__init__()
scaling = int(2 ** len(config.upsampling_ratios))
model = [EncodecConv1d(config, config.hidden_size, scaling * config.num_filters, config.kernel_size)]
model += [EncodecLSTM(config, scaling * config.num_filters)]
# Upsample to raw audio scale
for ratio in config.upsampling_ratios:
current_scale = scaling * config.num_filters
# Add upsampling layers
model += [nn.ELU()]
model += [
EncodecConvTranspose1d(config, current_scale, current_scale // 2, kernel_size=ratio * 2, stride=ratio)
]
# Add residual layers
for j in range(config.num_residual_layers):
model += [EncodecResnetBlock(config, current_scale // 2, (config.dilation_growth_rate**j, 1))]
scaling //= 2
# Add final layers
model += [nn.ELU()]
model += [EncodecConv1d(config, config.num_filters, config.audio_channels, config.last_kernel_size)]
self.layers = nn.ModuleList(model)
def forward(self, hidden_states):
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
class EncodecEuclideanCodebook(nn.Module):
"""Codebook with Euclidean distance."""
def __init__(self, config: EncodecConfig):
super().__init__()
embed = torch.zeros(config.codebook_size, config.codebook_dim)
self.codebook_size = config.codebook_size
self.register_buffer("inited", torch.Tensor([True]))
self.register_buffer("cluster_size", torch.zeros(config.codebook_size))
self.register_buffer("embed", embed)
self.register_buffer("embed_avg", embed.clone())
def quantize(self, hidden_states):
embed = self.embed.t()
scaled_states = hidden_states.pow(2).sum(1, keepdim=True)
dist = -(scaled_states - 2 * hidden_states @ embed + embed.pow(2).sum(0, keepdim=True))
embed_ind = dist.max(dim=-1).indices
return embed_ind
def encode(self, hidden_states):
shape = hidden_states.shape
# pre-process
hidden_states = hidden_states.reshape((-1, shape[-1]))
# quantize
embed_ind = self.quantize(hidden_states)
# post-process
embed_ind = embed_ind.view(*shape[:-1])
return embed_ind
def decode(self, embed_ind):
quantize = nn.functional.embedding(embed_ind, self.embed)
return quantize
class EncodecVectorQuantization(nn.Module):
"""
Vector quantization implementation. Currently supports only euclidean distance.
"""
def __init__(self, config: EncodecConfig):
super().__init__()
self.codebook = EncodecEuclideanCodebook(config)
def encode(self, hidden_states):
hidden_states = hidden_states.permute(0, 2, 1)
embed_in = self.codebook.encode(hidden_states)
return embed_in
def decode(self, embed_ind):
quantize = self.codebook.decode(embed_ind)
quantize = quantize.permute(0, 2, 1)
return quantize
class EncodecResidualVectorQuantizer(nn.Module):
"""Residual Vector Quantizer."""
def __init__(self, config: EncodecConfig):
super().__init__()
self.codebook_size = config.codebook_size
self.frame_rate = config.frame_rate
self.num_quantizers = config.num_quantizers
self.layers = nn.ModuleList([EncodecVectorQuantization(config) for _ in range(config.num_quantizers)])
def get_num_quantizers_for_bandwidth(self, bandwidth: Optional[float] = None) -> int:
"""Return num_quantizers based on specified target bandwidth."""
bw_per_q = math.log2(self.codebook_size) * self.frame_rate
num_quantizers = self.num_quantizers
if bandwidth is not None and bandwidth > 0.0:
num_quantizers = int(max(1, math.floor(bandwidth * 1000 / bw_per_q)))
return num_quantizers
def encode(self, embeddings: torch.Tensor, bandwidth: Optional[float] = None) -> torch.Tensor:
"""
Encode a given input tensor with the specified frame rate at the given bandwidth. The RVQ encode method sets
the appropriate number of quantizers to use and returns indices for each quantizer.
"""
num_quantizers = self.get_num_quantizers_for_bandwidth(bandwidth)
residual = embeddings
all_indices = []
for layer in self.layers[:num_quantizers]:
indices = layer.encode(residual)
quantized = layer.decode(indices)
residual = residual - quantized
all_indices.append(indices)
out_indices = torch.stack(all_indices)
return out_indices
def decode(self, codes: torch.Tensor) -> torch.Tensor:
"""Decode the given codes to the quantized representation."""
quantized_out = torch.tensor(0.0, device=codes.device)
for i, indices in enumerate(codes):
layer = self.layers[i]
quantized = layer.decode(indices)
quantized_out = quantized_out + quantized
return quantized_out
class EncodecPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EncodecConfig
base_model_prefix = "encodec"
main_input_name = "input_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LSTM):
for name, param in module.named_parameters():
if "weight" in name:
nn.init.xavier_uniform_(param)
elif "bias" in name:
nn.init.constant_(param, 0.0)
ENCODEC_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`EncodecConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ENCODEC_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, channels, sequence_length)`, *optional*):
Raw audio input converted to Float and padded to the approriate length in order to be encoded using chunks
of length self.chunk_length and a stride of `config.chunk_stride`.
padding_mask (`torch.BoolTensor` of shape `(batch_size, channels, sequence_length)`, *optional*):
Mask to avoid computing scaling factors on padding token indices (can we avoid computing conv on these+).
Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
<Tip warning={true}>
`padding_mask` should always be passed, unless the input was truncated or not padded. This is because in
order to process tensors effectively, the input audio should be padded so that `input_length % stride =
step` with `step = chunk_length-stride`. This ensures that all chunks are of the same shape
</Tip>
bandwidth (`float`, *optional*):
The target bandwidth. Must be one of `config.target_bandwidths`. If `None`, uses the smallest possible
bandwidth. bandwidth is represented as a thousandth of what it is, e.g. 6kbps bandwidth is represented as
`bandwidth == 6.0`
audio_codes (`torch.LongTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
audio_scales (`torch.Tensor` of shape `(batch_size, nb_chunks)`, *optional*):
Scaling factor for each `audio_codes` input.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The EnCodec neural audio codec model.",
ENCODEC_START_DOCSTRING,
)
class EncodecModel(EncodecPreTrainedModel):
def __init__(self, config: EncodecConfig):
super().__init__(config)
self.config = config
self.encoder = EncodecEncoder(config)
self.decoder = EncodecDecoder(config)
self.quantizer = EncodecResidualVectorQuantizer(config)
self.bits_per_codebook = int(math.log2(self.config.codebook_size))
if 2**self.bits_per_codebook != self.config.codebook_size:
raise ValueError("The codebook_size must be a power of 2.")
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _encode_frame(
self, input_values: torch.Tensor, bandwidth: float, padding_mask: int
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Encodes the given input using the underlying VQVAE. If `config.normalize` is set to `True` the input is first
normalized. The padding mask is required to compute the correct scale.
"""
length = input_values.shape[-1]
duration = length / self.config.sampling_rate
if self.config.chunk_length_s is not None and duration > 1e-5 + self.config.chunk_length_s:
raise RuntimeError(f"Duration of frame ({duration}) is longer than chunk {self.config.chunk_length_s}")
scale = None
if self.config.normalize:
# if the padding is non zero
input_values = input_values * padding_mask.unsqueeze(1)
mono = torch.sum(input_values, 1, keepdim=True) / input_values.shape[1]
scale = mono.pow(2).mean(dim=-1, keepdim=True).sqrt() + 1e-8
input_values = input_values / scale
embeddings = self.encoder(input_values)
codes = self.quantizer.encode(embeddings, bandwidth)
codes = codes.transpose(0, 1)
return codes, scale
def encode(
self,
input_values: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
bandwidth: Optional[float] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], EncodecEncoderOutput]:
"""
Encodes the input audio waveform into discrete codes.
Args:
input_values (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
Float values of the input audio waveform.
padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
Padding mask used to pad the `input_values`.
bandwidth (`float`, *optional*):
The target bandwidth. Must be one of `config.target_bandwidths`. If `None`, uses the smallest possible
bandwidth. bandwidth is represented as a thousandth of what it is, e.g. 6kbps bandwidth is represented
as bandwidth == 6.0
Returns:
A list of frames containing the discrete encoded codes for the input audio waveform, along with rescaling
factors for each chunk when `normalize` is True. Each frames is a tuple `(codebook, scale)`, with
`codebook` of shape `[batch_size, num_codebooks, frames]`.
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
if bandwidth is None:
bandwidth = self.config.target_bandwidths[0]
if bandwidth not in self.config.target_bandwidths:
raise ValueError(
f"This model doesn't support the bandwidth {bandwidth}. Select one of {self.config.target_bandwidths}."
)
_, channels, input_length = input_values.shape
if channels < 1 or channels > 2:
raise ValueError(f"Number of audio channels must be 1 or 2, but got {channels}")
chunk_length = self.config.chunk_length
if chunk_length is None:
chunk_length = input_length
stride = input_length
else:
stride = self.config.chunk_stride
if padding_mask is None:
padding_mask = torch.ones_like(input_values).bool()
encoded_frames = []
scales = []
step = chunk_length - stride
if (input_length % stride) - step != 0:
raise ValueError(
"The input length is not properly padded for batched chunked decoding. Make sure to pad the input correctly."
)
for offset in range(0, input_length - step, stride):
mask = padding_mask[..., offset : offset + chunk_length].bool()
frame = input_values[:, :, offset : offset + chunk_length]
encoded_frame, scale = self._encode_frame(frame, bandwidth, mask)
encoded_frames.append(encoded_frame)
scales.append(scale)
encoded_frames = torch.stack(encoded_frames)
if not return_dict:
return (encoded_frames, scales)
return EncodecEncoderOutput(encoded_frames, scales)
@staticmethod
def _linear_overlap_add(frames: List[torch.Tensor], stride: int):
# Generic overlap add, with linear fade-in/fade-out, supporting complex scenario
# e.g., more than 2 frames per position.
# The core idea is to use a weight function that is a triangle,
# with a maximum value at the middle of the chunk.
# We use this weighting when summing the frames, and divide by the sum of weights
# for each positions at the end. Thus:
# - if a frame is the only one to cover a position, the weighting is a no-op.
# - if 2 frames cover a position:
# ... ...
# / \/ \
# / /\ \
# S T , i.e. S offset of second frame starts, T end of first frame.
# Then the weight function for each one is: (t - S), (T - t), with `t` a given offset.
# After the final normalization, the weight of the second frame at position `t` is
# (t - S) / (t - S + (T - t)) = (t - S) / (T - S), which is exactly what we want.
#
# - if more than 2 frames overlap at a given point, we hope that by induction
# something sensible happens.
if len(frames) == 0:
raise ValueError("`frames` cannot be an empty list.")
device = frames[0].device
dtype = frames[0].dtype
shape = frames[0].shape[:-1]
total_size = stride * (len(frames) - 1) + frames[-1].shape[-1]
frame_length = frames[0].shape[-1]
time_vec = torch.linspace(0, 1, frame_length + 2, device=device, dtype=dtype)[1:-1]
weight = 0.5 - (time_vec - 0.5).abs()
sum_weight = torch.zeros(total_size, device=device, dtype=dtype)
out = torch.zeros(*shape, total_size, device=device, dtype=dtype)
offset: int = 0
for frame in frames:
frame_length = frame.shape[-1]
out[..., offset : offset + frame_length] += weight[:frame_length] * frame
sum_weight[offset : offset + frame_length] += weight[:frame_length]
offset += stride
if sum_weight.min() == 0:
raise ValueError(f"`sum_weight` minimum element must be bigger than zero: {sum_weight}`")
return out / sum_weight
def _decode_frame(self, codes: torch.Tensor, scale: Optional[torch.Tensor] = None) -> torch.Tensor:
codes = codes.transpose(0, 1)
embeddings = self.quantizer.decode(codes)
outputs = self.decoder(embeddings)
if scale is not None:
outputs = outputs * scale.view(-1, 1, 1)
return outputs
def decode(
self,
audio_codes: torch.Tensor,
audio_scales: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor, torch.Tensor], EncodecDecoderOutput]:
"""
Decodes the given frames into an output audio waveform.
Note that the output might be a bit bigger than the input. In that case, any extra steps at the end can be
trimmed.
Args:
audio_codes (`torch.LongTensor` of shape `(batch_size, nb_chunks, chunk_length)`, *optional*):
Discret code embeddings computed using `model.encode`.
audio_scales (`torch.Tensor` of shape `(batch_size, nb_chunks)`, *optional*):
Scaling factor for each `audio_codes` input.
padding_mask (`torch.Tensor` of shape `(batch_size, channels, sequence_length)`):
Padding mask used to pad the `input_values`.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
chunk_length = self.config.chunk_length
if chunk_length is None:
if len(audio_codes) != 1:
raise ValueError(f"Expected one frame, got {len(audio_codes)}")
audio_values = self._decode_frame(audio_codes[0], audio_scales[0])
else:
decoded_frames = []
for frame, scale in zip(audio_codes, audio_scales):
frames = self._decode_frame(frame, scale)
decoded_frames.append(frames)
audio_values = self._linear_overlap_add(decoded_frames, self.config.chunk_stride or 1)
# truncate based on padding mask
if padding_mask is not None and padding_mask.shape[-1] < audio_values.shape[-1]:
audio_values = audio_values[..., : padding_mask.shape[-1]]
if not return_dict:
return (audio_values,)
return EncodecDecoderOutput(audio_values)
@add_start_docstrings_to_model_forward(ENCODEC_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=EncodecOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
bandwidth: Optional[float] = None,
audio_codes: Optional[torch.Tensor] = None,
audio_scales: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor, torch.Tensor], EncodecOutput]:
r"""
Returns:
Examples:
```python
>>> from datasets import load_dataset
>>> from transformers import AutoProcessor, EncodecModel
>>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example")
>>> audio_sample = dataset["train"]["audio"][0]["array"]
>>> model_id = "facebook/encodec_24khz"
>>> model = EncodecModel.from_pretrained(model_id)
>>> processor = AutoProcessor.from_pretrained(model_id)
>>> inputs = processor(raw_audio=audio_sample, return_tensors="pt")
>>> outputs = model(**inputs)
>>> audio_codes = outputs.audio_codes
>>> audio_values = outputs.audio_values
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
if padding_mask is None:
padding_mask = torch.ones_like(input_values).bool()
if audio_codes is not None and audio_scales is None:
raise ValueError("You specified `audio_codes` but did not specify the `audio_scales`")
if audio_scales is not None and audio_codes is None:
raise ValueError("You specified `audio_scales` but did not specify the `audio_codes`")
if audio_scales is None and audio_codes is None:
audio_codes, audio_scales = self.encode(input_values, padding_mask, bandwidth, False)
audio_values = self.decode(audio_codes, audio_scales, padding_mask, return_dict=return_dict)[0]
if not return_dict:
return (audio_codes, audio_values)
return EncodecOutput(audio_codes=audio_codes, audio_values=audio_values)
__all__ = ["EncodecModel", "EncodecPreTrainedModel"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.08 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\encoder_decoder\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_encoder_decoder import *
from .modeling_encoder_decoder import *
from .modeling_flax_encoder_decoder import *
from .modeling_tf_encoder_decoder import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
============================================================================================================================================================
SOURCE CODE FILE: configuration_encoder_decoder.py
LINES: 1
SIZE: 4.48 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\encoder_decoder\configuration_encoder_decoder.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import AutoConfig
logger = logging.get_logger(__name__)
class EncoderDecoderConfig(PretrainedConfig):
r"""
[`EncoderDecoderConfig`] is the configuration class to store the configuration of a [`EncoderDecoderModel`]. It is
used to instantiate an Encoder Decoder model according to the specified arguments, defining the encoder and decoder
configs.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
kwargs (*optional*):
Dictionary of keyword arguments. Notably:
- **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
the encoder config.
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
the decoder config.
Examples:
```python
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
>>> # Initializing a BERT google-bert/bert-base-uncased style configuration
>>> config_encoder = BertConfig()
>>> config_decoder = BertConfig()
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
>>> # Initializing a Bert2Bert model (with random weights) from the google-bert/bert-base-uncased style configurations
>>> model = EncoderDecoderModel(config=config)
>>> # Accessing the model configuration
>>> config_encoder = model.config.encoder
>>> config_decoder = model.config.decoder
>>> # set decoder config to causal lm
>>> config_decoder.is_decoder = True
>>> config_decoder.add_cross_attention = True
>>> # Saving the model, including its configuration
>>> model.save_pretrained("my-model")
>>> # loading model and config from pretrained folder
>>> encoder_decoder_config = EncoderDecoderConfig.from_pretrained("my-model")
>>> model = EncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config)
```"""
model_type = "encoder-decoder"
sub_configs = {"encoder": AutoConfig, "decoder": AutoConfig}
is_composition = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
f"A configuraton of type {self.model_type} cannot be instantiated because "
f"both `encoder` and `decoder` sub-configurations were not passed, only {kwargs}"
)
encoder_config = kwargs.pop("encoder")
encoder_model_type = encoder_config.pop("model_type")
decoder_config = kwargs.pop("decoder")
decoder_model_type = decoder_config.pop("model_type")
self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config)
self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config)
self.is_encoder_decoder = True
@classmethod
def from_encoder_decoder_configs(
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
) -> PretrainedConfig:
r"""
Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and
decoder model configuration.
Returns:
[`EncoderDecoderConfig`]: An instance of a configuration object
"""
logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
__all__ = ["EncoderDecoderConfig"]
```
|
=======================================================================================================================================================
SOURCE CODE FILE: modeling_encoder_decoder.py
LINES: 1
SIZE: 34.78 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\encoder_decoder\modeling_encoder_decoder.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Classes to support Encoder-Decoder architectures"""
import gc
import inspect
import os
import tempfile
import warnings
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ...configuration_utils import PretrainedConfig
from ...generation import GenerationMixin
from ...modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_auto import AutoModel, AutoModelForCausalLM
from .configuration_encoder_decoder import EncoderDecoderConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "EncoderDecoderConfig"
DEPRECATION_WARNING = (
"Version v4.12.0 introduces a better way to train encoder-decoder models by computing the loss inside the"
" encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if"
" fine-tuning a model trained with versions anterior to 4.12.0. The decoder_input_ids are now created based on the"
" labels, no need to pass them yourself anymore."
)
ENCODER_DECODER_START_DOCSTRING = r"""
This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the
encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via
[`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`]
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
generative task, like summarization.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
Zhou, Wei Li, Peter J. Liu.
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models
(see the examples for more information).
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ENCODER_DECODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the
right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`.
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
encoder_outputs (`tuple(torch.FloatTensor)`, *optional*):
This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor
of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the
decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
- With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
"""
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
if decoder_start_token_id is None:
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING)
class EncoderDecoderModel(PreTrainedModel, GenerationMixin):
r"""
[`EncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one
of the base model classes of the library as encoder and another one as decoder when created with the
:meth*~transformers.AutoModel.from_pretrained* class method for the encoder and
:meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder.
"""
config_class = EncoderDecoderConfig
base_model_prefix = "encoder_decoder"
main_input_name = "input_ids"
supports_gradient_checkpointing = True
_supports_param_buffer_assignment = False
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(
self,
config: Optional[PretrainedConfig] = None,
encoder: Optional[PreTrainedModel] = None,
decoder: Optional[PreTrainedModel] = None,
):
if config is None and (encoder is None or decoder is None):
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
if config is None:
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
if config.decoder.cross_attention_hidden_size is not None:
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
raise ValueError(
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
" `config.encoder.hidden_size`."
)
# initialize with config
super().__init__(config)
if encoder is None:
from ..auto.modeling_auto import AutoModel
encoder = AutoModel.from_config(config.encoder)
if decoder is None:
from ..auto.modeling_auto import AutoModelForCausalLM
decoder = AutoModelForCausalLM.from_config(config.decoder)
self.encoder = encoder
self.decoder = decoder
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
logger.warning(
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
f" {self.config.encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
# update `_attn_implementation` because the attn is set in a deepcopied config within PreTrainedModel
self.config.encoder._attn_implementation = self.encoder.config._attn_implementation
self.config.decoder._attn_implementation = self.decoder.config._attn_implementation
self.encoder.config = self.config.encoder
self.decoder.config = self.config.decoder
# encoder outputs might need to be projected to different dimension for decoder
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size)
if self.encoder.get_output_embeddings() is not None:
raise ValueError(
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
)
decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys())
if "encoder_hidden_states" not in decoder_signature:
raise ValueError(
"The selected decoder is not prepared for the encoder hidden states to be passed. Please see the "
"following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350"
)
# tie encoder, decoder weights if config set accordingly
self.tie_weights()
def tie_weights(self):
self.encoder.tie_weights()
self.decoder.tie_weights()
# tie encoder & decoder if needed
if self.config.tie_encoder_decoder:
# tie encoder and decoder base model
decoder_base_model_prefix = self.decoder.base_model_prefix
tied_weights = self._tie_encoder_decoder_weights(
self.encoder,
self.decoder._modules[decoder_base_model_prefix],
self.decoder.base_model_prefix,
"encoder",
)
# Setting a dynamic variable instead of `_tied_weights_keys` because it's a class
# attributed not an instance member, therefore modifying it will modify the entire class
# Leading to issues on subsequent calls by different tests or subsequent calls.
self._dynamic_tied_weights_keys = tied_weights
def _init_weights(self, module):
if module in self.encoder.modules():
self.encoder._init_weights(module)
elif module in self.decoder.modules():
self.decoder._init_weights(module)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
return self.encoder.get_input_embeddings()
def get_output_embeddings(self):
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
return self.decoder.set_output_embeddings(new_embeddings)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Example:
```python
>>> from transformers import EncoderDecoderModel
>>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
```"""
from_tf = kwargs.pop("from_tf", False)
if from_tf:
from transformers import TFEncoderDecoderModel
# a workaround to load from tensorflow checkpoint
# Using `_tf_model` won't work, because the weight names in the encoder/decoder of `_tf_model` get
# extended before saving those components. For example, The name of `_tf_model.encoder.vit` is
# `[top model name]/encoder/vit`, but the name of `tf_model.encoder.vit` is `[top model name]/vit`. The
# [top model name] is handled (stripped) by the conversion method, and the former case gets extra `encoder`,
# which should not occur when we want to save the components alone.
# There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see
# https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245
# (the change in `src/transformers/modeling_tf_utils.py`)
_tf_model = TFEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
config = _tf_model.config
# Using `tf_model` instead
encoder = _tf_model.encoder.__class__(_tf_model.config.encoder)
decoder = _tf_model.decoder.__class__(_tf_model.config.decoder)
# Make sure models are built
encoder(encoder.dummy_inputs)
decoder(decoder.dummy_inputs)
# Get the variable correspondence between `_tf_model` and `encoder` and `decoder`
encoder_variables = {}
for v in encoder.trainable_variables + encoder.non_trainable_variables:
encoder_variables["/".join(v.name.split("/")[1:])] = v
decoder_variables = {}
for v in decoder.trainable_variables + decoder.non_trainable_variables:
decoder_variables["/".join(v.name.split("/")[1:])] = v
_encoder_variables = {}
for v in _tf_model.encoder.trainable_variables + _tf_model.encoder.non_trainable_variables:
_encoder_variables["/".join(v.name.split("/")[2:])] = v
_decoder_variables = {}
for v in _tf_model.decoder.trainable_variables + _tf_model.decoder.non_trainable_variables:
_decoder_variables["/".join(v.name.split("/")[2:])] = v
# assign weight values to `encoder` and `decoder` from `_tf_model`
for name, v in encoder_variables.items():
v.assign(_encoder_variables[name])
for name, v in decoder_variables.items():
v.assign(_decoder_variables[name])
tf_model = TFEncoderDecoderModel(encoder=encoder, decoder=decoder)
# Deal with `enc_to_dec_proj`
if hasattr(_tf_model, "enc_to_dec_proj"):
tf_model(tf_model.dummy_inputs)
tf_model.enc_to_dec_proj.kernel.assign(_tf_model.enc_to_dec_proj.kernel)
tf_model.enc_to_dec_proj.bias.assign(_tf_model.enc_to_dec_proj.bias)
with tempfile.TemporaryDirectory() as tmpdirname:
encoder_dir = os.path.join(tmpdirname, "encoder")
decoder_dir = os.path.join(tmpdirname, "decoder")
tf_model.encoder.save_pretrained(encoder_dir)
tf_model.decoder.save_pretrained(decoder_dir)
if hasattr(tf_model, "enc_to_dec_proj"):
enc_to_dec_proj_weight = torch.transpose(
torch.from_numpy(tf_model.enc_to_dec_proj.kernel.numpy()), 1, 0
)
enc_to_dec_proj_bias = torch.from_numpy(tf_model.enc_to_dec_proj.bias.numpy())
del _tf_model
del tf_model
gc.collect()
model = EncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_dir, decoder_dir, encoder_from_tf=True, decoder_from_tf=True
)
# This is only for copying some specific attributes of this particular model.
model.config = config
if hasattr(model, "enc_to_dec_proj"):
model.enc_to_dec_proj.weight.data = enc_to_dec_proj_weight.contiguous()
model.enc_to_dec_proj.bias.data = enc_to_dec_proj_bias.contiguous()
return model
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
@classmethod
def from_encoder_decoder_pretrained(
cls,
encoder_pretrained_model_name_or_path: Optional[str] = None,
decoder_pretrained_model_name_or_path: Optional[str] = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
r"""
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
checkpoints.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you need to first set it back in training mode with `model.train()`.
Params:
encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the decoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (remaining positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import EncoderDecoderModel
>>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased")
>>> # saving model after fine-tuning
>>> model.save_pretrained("./bert2bert")
>>> # load fine-tuned model
>>> model = EncoderDecoderModel.from_pretrained("./bert2bert")
```"""
kwargs_encoder = {
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove encoder, decoder kwargs from kwargs
for key in kwargs_encoder.keys():
del kwargs["encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
encoder = kwargs_encoder.pop("model", None)
if encoder is None:
if encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_encoder:
encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_encoder["config"] = encoder_config
encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
)
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
)
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
# instantiate config with corresponding kwargs
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
return cls(encoder=encoder, decoder=decoder, config=config)
@add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import EncoderDecoderModel, BertTokenizer
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained(
... "google-bert/bert-base-uncased", "google-bert/bert-base-uncased"
... ) # initialize Bert2Bert from pre-trained checkpoints
>>> # training
>>> model.config.decoder_start_token_id = tokenizer.cls_token_id
>>> model.config.pad_token_id = tokenizer.pad_token_id
>>> model.config.vocab_size = model.config.decoder.vocab_size
>>> input_ids = tokenizer("This is a really long text", return_tensors="pt").input_ids
>>> labels = tokenizer("This is the corresponding summary", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss, logits = outputs.loss, outputs.logits
>>> # save and load from pretrained
>>> model.save_pretrained("bert2bert")
>>> model = EncoderDecoderModel.from_pretrained("bert2bert")
>>> # generation
>>> generated = model.generate(input_ids)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if "num_items_in_batch" in kwargs_encoder:
kwargs_decoder["num_items_in_batch"] = kwargs_encoder.pop("num_items_in_batch", None)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_encoder,
)
elif isinstance(encoder_outputs, tuple):
encoder_outputs = BaseModelOutput(*encoder_outputs)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.new_tensor(decoder_input_ids != self.config.pad_token_id)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
# Compute loss independent from decoder (as some shift the logits inside them)
loss = None
if labels is not None:
warnings.warn(DEPRECATION_WARNING, FutureWarning)
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1))
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
def resize_token_embeddings(self, *args, **kwargs):
raise NotImplementedError(
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the"
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
" model.decoder.resize_token_embeddings(...))"
)
def _reorder_cache(self, past_key_values, beam_idx):
# apply decoder cache reordering here
return self.decoder._reorder_cache(past_key_values, beam_idx)
__all__ = ["EncoderDecoderModel"]
```
|
============================================================================================================================================================
SOURCE CODE FILE: modeling_flax_encoder_decoder.py
LINES: 1
SIZE: 42.55 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\encoder_decoder\modeling_flax_encoder_decoder.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Classes to support Flax Encoder-Decoder architectures"""
import os
from typing import Optional, Tuple, Union
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput
from ...modeling_flax_utils import FlaxPreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_flax_auto import FlaxAutoModel, FlaxAutoModelForCausalLM
from .configuration_encoder_decoder import EncoderDecoderConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "EncoderDecoderConfig"
ENCODER_DECODER_START_DOCSTRING = r"""
This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the
encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via
[`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`]
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
generative task, like summarization.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
Zhou, Wei Li, Peter J. Liu.
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models
(see the examples for more information).
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Parameters:
config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
ENCODER_DECODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
For sequence to sequence training, `decoder_input_ids` should be provided. `decoder_input_ids` should be
created outside of the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id`
and prepending them with the `decoder_start_token_id`.
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.encoder.max_position_embeddings - 1]`.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.decoder.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
If set to `True`, the model will return a [`~utils.FlaxSeq2SeqLMOutput`] instead of a plain tuple.
"""
ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.encoder.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
If set to `True`, the model will return a [`~utils.FlaxBaseModelOutput`] instead of a plain tuple.
"""
ENCODER_DECODER_DECODE_INPUTS_DOCSTRING = r"""
Args:
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
For sequence to sequence training, `decoder_input_ids` should be provided. `decoder_input_ids` should be
created outside of the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id`
and prepending them with the `decoder_start_token_id`.
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.decoder.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
If set to `True`, the model will return a [`~utils.FlaxCausalLMOutputWithCrossAttentions`] instead of a
plain tuple.
"""
class FlaxEncoderDecoderModule(nn.Module):
config: EncoderDecoderConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
encoder_config = self.config.encoder
decoder_config = self.config.decoder
# Copied from `modeling_hybrid_clip.py` with modifications.
from ...models.auto.modeling_flax_auto import FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_MAPPING
encoder_module = FLAX_MODEL_MAPPING[encoder_config.__class__].module_class
decoder_module = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING[decoder_config.__class__].module_class
self.encoder = encoder_module(encoder_config, dtype=self.dtype)
self.decoder = decoder_module(decoder_config, dtype=self.dtype)
# encoder outputs might need to be projected to different dimension for decoder
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
self.enc_to_dec_proj = nn.Dense(
self.decoder.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.decoder.config.initializer_range),
dtype=self.dtype,
)
else:
self.enc_to_dec_proj = None
def _get_encoder_module(self):
return self.encoder
def _get_projection_module(self):
return self.enc_to_dec_proj
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if self.enc_to_dec_proj is not None:
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqLMOutput(
logits=decoder_outputs.logits,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING)
class FlaxEncoderDecoderModel(FlaxPreTrainedModel):
r"""
[`FlaxEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with
the module (flax.nn.Module) of one of the base model classes of the library as encoder module and another one as
decoder module when created with the :meth*~transformers.FlaxAutoModel.from_pretrained* class method for the
encoder and :meth*~transformers.FlaxAutoModelForCausalLM.from_pretrained* class method for the decoder.
"""
config_class = EncoderDecoderConfig
base_model_prefix = "encoder_decoder"
module_class = FlaxEncoderDecoderModule
def __init__(
self,
config: EncoderDecoderConfig,
input_shape: Optional[Tuple] = None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
if input_shape is None:
input_shape = ((1, 1), (1, 1))
if not _do_init:
raise ValueError(
"`FlaxEncoderDecoderModel` cannot be created without initializing, `_do_init` must be `True`."
)
if config.decoder.cross_attention_hidden_size is not None:
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
raise ValueError(
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
" `config.encoder.hidden_size`."
)
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
encoder_input_shape, decoder_input_shape = input_shape
# init input tensors
input_ids = jnp.zeros(encoder_input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
decoder_input_ids = jnp.zeros(decoder_input_shape, dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
decoder_batch_size, decoder_sequence_length = decoder_input_ids.shape
if not decoder_batch_size == batch_size:
raise ValueError(
f"The inputs of encoder and decoder should have the same batch size, but got {batch_size} for encoder"
f" and {decoder_batch_size} for decoder."
)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(decoder_sequence_length)[None, :], (decoder_batch_size, decoder_sequence_length)
)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings(ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=_CONFIG_FOR_DOC)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import FlaxEncoderDecoderModel, BertTokenizer
>>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
>>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2")
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> text = "My friends are cool but they eat too many carbs."
>>> input_ids = tokenizer.encode(text, return_tensors="np")
>>> encoder_outputs = model.encode(input_ids)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
outputs = self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
if return_dict:
outputs = FlaxBaseModelOutput(
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
return outputs
@add_start_docstrings(ENCODER_DECODER_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import FlaxEncoderDecoderModel, BertTokenizer
>>> import jax.numpy as jnp
>>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
>>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2")
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> text = "My friends are cool but they eat too many carbs."
>>> input_ids = tokenizer.encode(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(input_ids)
>>> decoder_start_token_id = model.config.decoder.bos_token_id
>>> decoder_input_ids = jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxBartAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(
module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states, **kwargs
):
projection_module = module._get_projection_module()
decoder_module = module._get_decoder_module()
# optionally project encoder_hidden_states
if projection_module is not None:
encoder_hidden_states = projection_module(encoder_hidden_states)
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
encoder_hidden_states=encoder_hidden_states,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
@add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Examples:
```python
>>> from transformers import FlaxEncoderDecoderModel, BertTokenizer, GPT2Tokenizer
>>> # load a fine-tuned bert2gpt2 model
>>> model = FlaxEncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16")
>>> # load input & output tokenizer
>>> tokenizer_input = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> tokenizer_output = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
>>> article = '''Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members
>>> singing a racist chant. SAE's national chapter suspended the students,
>>> but University of Oklahoma President David Boren took it a step further,
>>> saying the university's affiliation with the fraternity is permanently done.'''
>>> input_ids = tokenizer_input(article, add_special_tokens=True, return_tensors="np").input_ids
>>> # use GPT2's eos_token as the pad as well as eos token
>>> model.config.eos_token_id = model.config.decoder.eos_token_id
>>> model.config.pad_token_id = model.config.eos_token_id
>>> sequences = model.generate(input_ids, num_beams=4, max_length=12).sequences
>>> summary = tokenizer_output.batch_decode(sequences, skip_special_tokens=True)[0]
>>> assert summary == "SAS Alpha Epsilon suspended Sigma Alpha Epsilon members"
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# prepare decoder inputs
if decoder_input_ids is None:
raise ValueError(
"`decoder_input_ids` cannot be `None`. For sequence to sequence training, `decoder_position_ids` must"
" be specified as an input argument."
)
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
if decoder_position_ids is None:
batch_size, sequence_length = decoder_input_ids.shape
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jax.Array] = None,
decoder_attention_mask: Optional[jax.Array] = None,
encoder_outputs=None,
**kwargs,
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if decoder_attention_mask is not None:
decoder_position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
else:
decoder_position_ids = jnp.broadcast_to(
jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
)
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
"decoder_position_ids": decoder_position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
return model_kwargs
@classmethod
def from_encoder_decoder_pretrained(
cls,
encoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
decoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
*model_args,
**kwargs,
) -> FlaxPreTrainedModel:
r"""
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
checkpoints.
Params:
encoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*):
Information necessary to initiate the encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
decoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*, defaults to `None`):
Information necessary to initiate the decoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
model_args (remaining positional arguments, *optional*):
All remaning positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import FlaxEncoderDecoderModel
>>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
>>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2")
>>> # saving model after fine-tuning
>>> model.save_pretrained("./bert2gpt2")
>>> # load fine-tuned model
>>> model = FlaxEncoderDecoderModel.from_pretrained("./bert2gpt2")
```"""
kwargs_encoder = {
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove encoder, decoder kwargs from kwargs
for key in kwargs_encoder.keys():
del kwargs["encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
encoder = kwargs_encoder.pop("model", None)
if encoder is None:
if encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_encoder:
encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_encoder["config"] = encoder_config
encoder = FlaxAutoModel.from_pretrained(
encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder
)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
)
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
)
decoder = FlaxAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
# instantiate config with corresponding kwargs
dtype = kwargs.pop("dtype", jnp.float32)
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
# init model
model = cls(config, dtype=dtype)
model.params["encoder"] = encoder.params
model.params["decoder"] = decoder.params
return model
__all__ = ["FlaxEncoderDecoderModel"]
```
|
==========================================================================================================================================================
SOURCE CODE FILE: modeling_tf_encoder_decoder.py
LINES: 1
SIZE: 33.56 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\encoder_decoder\modeling_tf_encoder_decoder.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Classes to support TF Encoder-Decoder architectures"""
from __future__ import annotations
import inspect
import re
import warnings
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...configuration_utils import PretrainedConfig
from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
get_initializer,
keras,
unpack_inputs,
)
from ...tf_utils import shape_list
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM
from .configuration_encoder_decoder import EncoderDecoderConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "EncoderDecoderConfig"
DEPRECATION_WARNING = (
"Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the"
" encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if"
" fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the"
" labels, no need to pass them yourself anymore."
)
ENCODER_DECODER_START_DOCSTRING = r"""
This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the
encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via
[`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`]
function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream
generative task, like summarization.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation
tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation
Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi
Zhou, Wei Li, Peter J. Liu.
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models
(see the examples for more information).
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
Parameters:
config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
ENCODER_DECODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
Provide for sequence to sequence training to the decoder. Indices can be obtained using
[`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
details.
decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*):
This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output
of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `({0})`.
inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert `decoder_input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0,
..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
- With a *decoder_* prefix which will be input as `**decoder_kwargs`` for the decoder forward function.
"""
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
if pad_token_id is None:
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
if decoder_start_token_id is None:
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id)
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
@add_start_docstrings(ENCODER_DECODER_START_DOCSTRING)
class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
r"""
[`TFEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one
of the base model classes of the library as encoder and another one as decoder when created with the
[`~TFAutoModel.from_pretrained`] class method for the encoder and [`~TFAutoModelForCausalLM.from_pretrained`] class
method for the decoder.
"""
config_class = EncoderDecoderConfig
base_model_prefix = "encoder_decoder"
load_weight_prefix = "tf_encoder_decoder_model"
def __init__(
self,
config: Optional[PretrainedConfig] = None,
encoder: Optional[TFPreTrainedModel] = None,
decoder: Optional[TFPreTrainedModel] = None,
):
if config is None and (encoder is None or decoder is None):
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
if config is None:
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"config: {config} has to be of type {self.config_class}")
if config.decoder.cross_attention_hidden_size is not None:
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
raise ValueError(
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
" `config.encoder.hidden_size`."
)
# initialize with config
super().__init__(config)
if encoder is None:
encoder = TFAutoModel.from_config(config.encoder, name="encoder")
if decoder is None:
decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder")
self.encoder = encoder
self.decoder = decoder
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
logger.warning(
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
f" {self.config.encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.encoder.config = self.config.encoder
self.decoder.config = self.config.decoder
# encoder outputs might need to be projected to different dimension for decoder
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
self.enc_to_dec_proj = keras.layers.Dense(
units=self.decoder.config.hidden_size,
kernel_initializer=get_initializer(config.encoder.initializer_range),
name="enc_to_dec_proj",
)
if self.encoder.get_output_embeddings() is not None:
raise ValueError(
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
)
decoder_signature = set(inspect.signature(self.decoder.call).parameters.keys())
if "encoder_hidden_states" not in decoder_signature:
raise ValueError(
"The selected decoder is not prepared for the encoder hidden states to be passed. Please see the "
"following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350"
)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_input_embeddings(self):
return self.encoder.get_input_embeddings()
def get_output_embeddings(self):
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
return self.decoder.set_output_embeddings(new_embeddings)
def tf_to_pt_weight_rename(self, tf_weight):
# Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models
# (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal.
# However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption
# here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's
# not the case, and I wasn't sure how else to go from the config to the correct MainLayer name!
# This override is only needed in the case where we're crossloading weights from PT. However, since weights are
# often safetensors now, we don't know if we're going to be crossloading until we sniff the weights file.
# Therefore, we specify tf_to_pt_weight_rename anyway, and let the super method figure out if it needs it
# or not.
encoder_model_type = self.config.encoder.model_type
if "encoder" in tf_weight and "decoder" not in tf_weight:
return (re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight),)
else:
return (tf_weight,)
@classmethod
def from_encoder_decoder_pretrained(
cls,
encoder_pretrained_model_name_or_path: Optional[str] = None,
decoder_pretrained_model_name_or_path: Optional[str] = None,
*model_args,
**kwargs,
) -> TFPreTrainedModel:
r"""
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
checkpoints.
Params:
encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case,
`encoder_from_pt` should be set to `True`.
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the decoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case,
`decoder_from_pt` should be set to `True`.
model_args (remaining positional arguments, *optional*):
All remaning positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import TFEncoderDecoderModel
>>> # initialize a bert2gpt2 from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized
>>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "openai-community/gpt2")
>>> # saving model after fine-tuning
>>> model.save_pretrained("./bert2gpt2")
>>> # load fine-tuned model
>>> model = TFEncoderDecoderModel.from_pretrained("./bert2gpt2")
```"""
kwargs_encoder = {
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# remove encoder, decoder kwargs from kwargs
for key in kwargs_encoder.keys():
del kwargs["encoder_" + key]
for key in kwargs_decoder.keys():
del kwargs["decoder_" + key]
# Load and initialize the encoder and decoder
# The distinction between encoder and decoder at the model level is made
# by the value of the flag `is_decoder` that we need to set correctly.
encoder = kwargs_encoder.pop("model", None)
if encoder is None:
if encoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_encoder:
encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
logger.info(
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
"from a decoder model. Cross-attention and casual mask are disabled."
)
encoder_config.is_decoder = False
encoder_config.add_cross_attention = False
kwargs_encoder["config"] = encoder_config
kwargs_encoder["name"] = "encoder"
kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix
encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
decoder = kwargs_decoder.pop("model", None)
if decoder is None:
if decoder_pretrained_model_name_or_path is None:
raise ValueError(
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
"to be defined."
)
if "config" not in kwargs_decoder:
decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path)
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
logger.info(
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
kwargs_decoder["config"] = decoder_config
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
logger.warning(
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
)
kwargs_decoder["name"] = "decoder"
kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix
decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
# Make sure these 2 `keras.Model` have fixed names so `from_pretrained` could load model weights correctly.
if encoder.name != "encoder":
raise ValueError("encoder model must be created with the name `encoder`.")
if decoder.name != "decoder":
raise ValueError("decoder model must be created with the name `decoder`.")
# instantiate config with corresponding kwargs
config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
return cls(encoder=encoder, decoder=decoder, config=config)
@unpack_inputs
@add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: np.ndarray | tf.Tensor | None = None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
r"""
Returns:
Examples:
```python
>>> from transformers import TFEncoderDecoderModel, BertTokenizer
>>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
>>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2")
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> # forward
>>> input_ids = tokenizer.encode(
... "Hello, my dog is cute", add_special_tokens=True, return_tensors="tf"
... ) # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids)
>>> # training
>>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=input_ids)
>>> loss, logits = outputs.loss, outputs.logits
>>> # save and load from pretrained
>>> model.save_pretrained("bert2gpt2")
>>> model = TFEncoderDecoderModel.from_pretrained("bert2gpt2")
>>> # generation
>>> generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.bos_token_id)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
# Let the user be responsible for the expected format.
if encoder_outputs is not None:
if return_dict and not isinstance(encoder_outputs, ModelOutput):
raise ValueError(
"If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of "
f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`."
)
if encoder_outputs is None:
encoder_inputs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"inputs_embeds": inputs_embeds,
"output_attentions": output_attentions,
"output_hidden_states": output_hidden_states,
"return_dict": return_dict,
"training": training,
}
# Add arguments to encoder from `kwargs_encoder`
encoder_inputs.update(kwargs_encoder)
# Handle the case where the inputs are passed as a single dict which contains `labels`.
# The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this
# parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`).
if "labels" in encoder_inputs:
labels = encoder_inputs.pop("labels")
# handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`.
if "decoder_input_ids" in encoder_inputs:
decoder_input_ids = encoder_inputs.pop("decoder_input_ids")
# handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`.
if "decoder_attention_mask" in encoder_inputs:
decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask")
encoder_outputs = self.encoder(**encoder_inputs)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
decoder_inputs = {
"input_ids": decoder_input_ids,
"attention_mask": decoder_attention_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": attention_mask,
"inputs_embeds": decoder_inputs_embeds,
"output_attentions": output_attentions,
"output_hidden_states": output_hidden_states,
"use_cache": use_cache,
"past_key_values": past_key_values,
"return_dict": return_dict,
"training": training,
}
# Add arguments to decoder from `kwargs_decoder`
decoder_inputs.update(kwargs_decoder)
decoder_outputs = self.decoder(**decoder_inputs)
logits = decoder_outputs[0]
# Compute loss independent from decoder (as some shift the logits inside them)
loss = None
if labels is not None:
warnings.warn(DEPRECATION_WARNING, FutureWarning)
loss = self.hf_compute_loss(labels, logits)
if not return_dict:
past_key_values = None
if use_cache:
past_key_values = decoder_outputs[1]
# The starting index of the remaining elements in `decoder_outputs`
start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)])
if not isinstance(encoder_outputs, tuple):
encoder_outputs = encoder_outputs.to_tuple()
output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs
output = tuple([x for x in output if x is not None])
return output
return TFSeq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
):
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None
past_key_values = decoder_inputs.get("past_key_values")
if past_key_values is None:
past_key_values = decoder_inputs.get("past") # e.g. on TF GPT2
input_dict = {
"input_ids": None, # needs to be passed to make Keras.layer.__call__ happy
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"decoder_input_ids": decoder_inputs["input_ids"],
# TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete
"encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]),
"past_key_values": past_key_values,
"use_cache": use_cache,
}
return input_dict
def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
def resize_token_embeddings(self, *args, **kwargs):
raise NotImplementedError(
"Resizing the embedding layers via the TFEncoderDecoderModel directly is not supported.Please use the"
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
" model.decoder.resize_token_embeddings(...))"
)
def _reorder_cache(self, past, beam_idx):
# apply decoder cache reordering here
return self.decoder._reorder_cache(past, beam_idx)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "enc_to_dec_proj", None) is not None:
with tf.name_scope(self.enc_to_dec_proj.name):
self.enc_to_dec_proj.build([None, None, self.encoder.config.hidden_size])
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
__all__ = ["TFEncoderDecoderModel"]
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\ernie\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_ernie import *
from .modeling_ernie import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================
SOURCE CODE FILE: configuration_ernie.py
LINES: 1
SIZE: 7.51 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\ernie\configuration_ernie.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ERNIE model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class ErnieConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ErnieModel`] or a [`TFErnieModel`]. It is used to
instantiate a ERNIE model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the ERNIE
[nghuyong/ernie-3.0-base-zh](https://huggingface.co/nghuyong/ernie-3.0-base-zh) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the ERNIE model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
task_type_vocab_size (`int`, *optional*, defaults to 3):
The vocabulary size of the `task_type_ids` for ERNIE2.0/ERNIE3.0 model
use_task_id (`bool`, *optional*, defaults to `False`):
Whether or not the model support `task_type_ids`
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Examples:
```python
>>> from transformers import ErnieConfig, ErnieModel
>>> # Initializing a ERNIE nghuyong/ernie-3.0-base-zh style configuration
>>> configuration = ErnieConfig()
>>> # Initializing a model (with random weights) from the nghuyong/ernie-3.0-base-zh style configuration
>>> model = ErnieModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "ernie"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
task_type_vocab_size=3,
use_task_id=False,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.task_type_vocab_size = task_type_vocab_size
self.use_task_id = use_task_id
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
class ErnieOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
("task_type_ids", dynamic_axis),
]
)
__all__ = ["ErnieConfig", "ErnieOnnxConfig"]
```
|
===================================================================================================================================
SOURCE CODE FILE: modeling_ernie.py
LINES: 1
SIZE: 81.54 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\ernie\modeling_ernie.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ERNIE model."""
import math
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
NextSentencePredictorOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_ernie import ErnieConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "nghuyong/ernie-1.0-base-zh"
_CONFIG_FOR_DOC = "ErnieConfig"
class ErnieEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.use_task_id = config.use_task_id
if config.use_task_id:
self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
task_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
# add `task_type_id` for ERNIE model
if self.use_task_id:
if task_type_ids is None:
task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
task_type_embeddings = self.task_type_embeddings(task_type_ids)
embeddings += task_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Ernie
class ErnieSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in ErnieModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Ernie
class ErnieSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
ERNIE_SELF_ATTENTION_CLASSES = {
"eager": ErnieSelfAttention,
}
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Ernie,BERT->ERNIE
class ErnieAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = ERNIE_SELF_ATTENTION_CLASSES[config._attn_implementation](
config, position_embedding_type=position_embedding_type
)
self.output = ErnieSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Ernie
class ErnieIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Ernie
class ErnieOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Ernie
class ErnieLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = ErnieAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = ErnieAttention(config, position_embedding_type="absolute")
self.intermediate = ErnieIntermediate(config)
self.output = ErnieOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Ernie
class ErnieEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([ErnieLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Ernie
class ErniePooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Ernie
class ErniePredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Ernie
class ErnieLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = ErniePredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Ernie
class ErnieOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = ErnieLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->Ernie
class ErnieOnlyNSPHead(nn.Module):
def __init__(self, config):
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->Ernie
class ErniePreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = ErnieLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class ErniePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ErnieConfig
base_model_prefix = "ernie"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@dataclass
# Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->Ernie
class ErnieForPreTrainingOutput(ModelOutput):
"""
Output type of [`ErnieForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
prediction_logits: Optional[torch.FloatTensor] = None
seq_relationship_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
ERNIE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`ErnieConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ERNIE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
task_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Task type embedding is a special embedding to represent the characteristic of different tasks, such as
word-aware pre-training task, structure-aware pre-training task and semantic-aware pre-training task. We
assign a `task_type_id` to each task and the `task_type_id` is in the range `[0,
config.task_type_vocab_size-1]
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Ernie Model transformer outputting raw hidden-states without any specific head on top.",
ERNIE_START_DOCSTRING,
)
class ErnieModel(ErniePreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
# Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->Ernie
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = ErnieEmbeddings(config)
self.encoder = ErnieEncoder(config)
self.pooler = ErniePooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.bert.modeling_bert.BertModel.get_input_embeddings
def get_input_embeddings(self):
return self.embeddings.word_embeddings
# Copied from transformers.models.bert.modeling_bert.BertModel.set_input_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
# Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"""
Ernie Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
sentence prediction (classification)` head.
""",
ERNIE_START_DOCSTRING,
)
class ErnieForPreTraining(ErniePreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
# Copied from transformers.models.bert.modeling_bert.BertForPreTraining.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.ernie = ErnieModel(config)
self.cls = ErniePreTrainingHeads(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.bert.modeling_bert.BertForPreTraining.get_output_embeddings
def get_output_embeddings(self):
return self.cls.predictions.decoder
# Copied from transformers.models.bert.modeling_bert.BertForPreTraining.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=ErnieForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
next_sentence_label: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], ErnieForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ErnieForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
total_loss = None
if labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
if not return_dict:
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return ErnieForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""Ernie Model with a `language modeling` head on top for CLM fine-tuning.""", ERNIE_START_DOCSTRING
)
class ErnieForCausalLM(ErniePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.__init__ with BertLMHeadModel->ErnieForCausalLM,Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `ErnieForCausalLM` as a standalone, add `is_decoder=True.`")
self.ernie = ErnieModel(config, add_pooling_layer=False)
self.cls = ErnieOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.get_output_embeddings
def get_output_embeddings(self):
return self.cls.predictions.decoder
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
lm_loss = None
if labels is not None:
lm_loss = self.loss_function(
prediction_scores,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel._reorder_cache
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings("""Ernie Model with a `language modeling` head on top.""", ERNIE_START_DOCSTRING)
class ErnieForMaskedLM(ErniePreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `ErnieForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.ernie = ErnieModel(config, add_pooling_layer=False)
self.cls = ErnieOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.get_output_embeddings
def get_output_embeddings(self):
return self.cls.predictions.decoder
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'paris'",
expected_loss=0.88,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.prepare_inputs_for_generation
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
if self.config.pad_token_id is None:
raise ValueError("The PAD token should be defined for generation")
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
dummy_token = torch.full(
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@classmethod
def can_generate(cls) -> bool:
"""
Legacy correction: ErnieForMaskedLM can't call `generate()` from GenerationMixin.
Remove after v4.50, when we stop making `PreTrainedModel` inherit from `GenerationMixin`.
"""
return False
@add_start_docstrings(
"""Ernie Model with a `next sentence prediction (classification)` head on top.""",
ERNIE_START_DOCSTRING,
)
class ErnieForNextSentencePrediction(ErniePreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertForNextSentencePrediction.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.ernie = ErnieModel(config)
self.cls = ErnieOnlyNSPHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see `input_ids` docstring). Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
```
"""
if "next_sentence_label" in kwargs:
warnings.warn(
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
" `labels` instead.",
FutureWarning,
)
labels = kwargs.pop("next_sentence_label")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
seq_relationship_scores = self.cls(pooled_output)
next_sentence_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
if not return_dict:
output = (seq_relationship_scores,) + outputs[2:]
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
return NextSentencePredictorOutput(
loss=next_sentence_loss,
logits=seq_relationship_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Ernie Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
ERNIE_START_DOCSTRING,
)
class ErnieForSequenceClassification(ErniePreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.ernie = ErnieModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Ernie Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
ERNIE_START_DOCSTRING,
)
class ErnieForMultipleChoice(ErniePreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.ernie = ErnieModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Ernie Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
ERNIE_START_DOCSTRING,
)
class ErnieForTokenClassification(ErniePreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.ernie = ErnieModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Ernie Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
ERNIE_START_DOCSTRING,
)
class ErnieForQuestionAnswering(ErniePreTrainedModel):
# Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->Ernie,bert->ernie
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.ernie = ErnieModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
task_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.ernie(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
task_type_ids=task_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.07 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_esm import *
from .modeling_esm import *
from .modeling_esmfold import *
from .modeling_tf_esm import *
from .tokenization_esm import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_esm.py
LINES: 1
SIZE: 14.08 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\configuration_esm.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ESM model configuration"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
# TODO Update this
class EsmConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the ESM
[facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*):
Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ESMModel`].
mask_token_id (`int`, *optional*):
The index of the mask token in the vocabulary. This must be included in the config because of the
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
pad_token_id (`int`, *optional*):
The index of the padding token in the vocabulary. This must be included in the config because certain parts
of the ESM code use this instead of the attention mask.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 1026):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`.
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
emb_layer_norm_before (`bool`, *optional*):
Whether to apply layer normalization after embeddings but before the main stem of the network.
token_dropout (`bool`, defaults to `False`):
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
Examples:
```python
>>> from transformers import EsmModel, EsmConfig
>>> # Initializing a ESM facebook/esm-1b style configuration
>>> configuration = EsmConfig(vocab_size=33)
>>> # Initializing a model from the configuration
>>> model = EsmModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "esm"
def __init__(
self,
vocab_size=None,
mask_token_id=None,
pad_token_id=None,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=1026,
initializer_range=0.02,
layer_norm_eps=1e-12,
position_embedding_type="absolute",
use_cache=True,
emb_layer_norm_before=None,
token_dropout=False,
is_folding_model=False,
esmfold_config=None,
vocab_list=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.emb_layer_norm_before = emb_layer_norm_before
self.token_dropout = token_dropout
self.is_folding_model = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info("No esmfold_config supplied for folding model, using default values.")
esmfold_config = EsmFoldConfig()
elif isinstance(esmfold_config, dict):
esmfold_config = EsmFoldConfig(**esmfold_config)
self.esmfold_config = esmfold_config
if vocab_list is None:
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!")
self.vocab_list = get_default_vocab_list()
else:
self.vocab_list = vocab_list
else:
self.esmfold_config = None
self.vocab_list = None
if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", False):
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!")
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = super().to_dict()
if isinstance(self.esmfold_config, EsmFoldConfig):
output["esmfold_config"] = self.esmfold_config.to_dict()
return output
@dataclass
class EsmFoldConfig:
esm_type: Optional[str] = None
fp16_esm: bool = True
use_esm_attn_map: bool = False
esm_ablate_pairwise: bool = False
esm_ablate_sequence: bool = False
esm_input_dropout: float = 0
embed_aa: bool = True
bypass_lm: bool = False
lddt_head_hid_dim: int = 128
trunk: "TrunkConfig" = None
def __post_init__(self):
if self.trunk is None:
self.trunk = TrunkConfig()
elif isinstance(self.trunk, dict):
self.trunk = TrunkConfig(**self.trunk)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = asdict(self)
output["trunk"] = self.trunk.to_dict()
return output
@dataclass
class TrunkConfig:
num_blocks: int = 48
sequence_state_dim: int = 1024
pairwise_state_dim: int = 128
sequence_head_width: int = 32
pairwise_head_width: int = 32
position_bins: int = 32
dropout: float = 0
layer_drop: float = 0
cpu_grad_checkpoint: bool = False
max_recycles: int = 4
chunk_size: Optional[int] = 128
structure_module: "StructureModuleConfig" = None
def __post_init__(self):
if self.structure_module is None:
self.structure_module = StructureModuleConfig()
elif isinstance(self.structure_module, dict):
self.structure_module = StructureModuleConfig(**self.structure_module)
if self.max_recycles <= 0:
raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}.")
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
f" {self.sequence_state_dim} and {self.sequence_state_dim}."
)
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
f" {self.pairwise_state_dim} and {self.pairwise_state_dim}."
)
sequence_num_heads = self.sequence_state_dim // self.sequence_head_width
pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}."
)
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}."
)
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.")
if self.dropout >= 0.4:
raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}.")
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = asdict(self)
output["structure_module"] = self.structure_module.to_dict()
return output
@dataclass
class StructureModuleConfig:
"""
Args:
sequence_dim:
Single representation channel dimension
pairwise_dim:
Pair representation channel dimension
ipa_dim:
IPA hidden channel dimension
resnet_dim:
Angle resnet (Alg. 23 lines 11-14) hidden channel dimension
num_heads_ipa:
Number of IPA heads
num_qk_points:
Number of query/key points to generate during IPA
num_v_points:
Number of value points to generate during IPA
dropout_rate:
Dropout rate used throughout the layer
num_blocks:
Number of structure module blocks
num_transition_layers:
Number of layers in the single representation transition (Alg. 23 lines 8-9)
num_resnet_blocks:
Number of blocks in the angle resnet
num_angles:
Number of angles to generate in the angle resnet
trans_scale_factor:
Scale of single representation transition hidden dimension
epsilon:
Small number used in angle resnet normalization
inf:
Large number used for attention masking
"""
sequence_dim: int = 384
pairwise_dim: int = 128
ipa_dim: int = 16
resnet_dim: int = 128
num_heads_ipa: int = 12
num_qk_points: int = 4
num_v_points: int = 8
dropout_rate: float = 0.1
num_blocks: int = 8
num_transition_layers: int = 1
num_resnet_blocks: int = 2
num_angles: int = 7
trans_scale_factor: int = 10
epsilon: float = 1e-8
inf: float = 1e5
def to_dict(self):
return asdict(self)
def get_default_vocab_list():
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
__all__ = ["EsmConfig"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_esm.py
LINES: 1
SIZE: 54.53 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\modeling_esm.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ESM model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
MaskedLMOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import logging
from .configuration_esm import EsmConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
_CONFIG_FOR_DOC = "EsmConfig"
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(x, cos, sin):
cos = cos[:, :, : x.shape[-2], :]
sin = sin[:, :, : x.shape[-2], :]
return (x * cos) + (rotate_half(x) * sin)
def gelu(x):
"""
This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results.
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def symmetrize(x):
"Make layer symmetric in final two dimensions, used for contact prediction."
return x + x.transpose(-1, -2)
def average_product_correct(x):
"Perform average product correct, used for contact prediction."
a1 = x.sum(-1, keepdims=True)
a2 = x.sum(-2, keepdims=True)
a12 = x.sum((-1, -2), keepdims=True)
avg = a1 * a2
avg.div_(a12) # in-place to reduce memory
normalized = x - avg
return normalized
class RotaryEmbedding(torch.nn.Module):
"""
Rotary position embeddings based on those in
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
matrices which depend on their relative positions.
"""
def __init__(self, dim: int):
super().__init__()
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
inv_freq = inv_freq
self.register_buffer("inv_freq", inv_freq)
self._seq_len_cached = None
self._cos_cached = None
self._sin_cached = None
def _update_cos_sin_tables(self, x, seq_dimension=2):
seq_len = x.shape[seq_dimension]
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
self._seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self._cos_cached = emb.cos()[None, None, :, :]
self._sin_cached = emb.sin()[None, None, :, :]
return self._cos_cached, self._sin_cached
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)
return (
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
)
class EsmContactPredictionHead(nn.Module):
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
def __init__(
self,
in_features: int,
bias=True,
eos_idx: int = 2,
):
super().__init__()
self.in_features = in_features
self.eos_idx = eos_idx
self.regression = nn.Linear(in_features, 1, bias)
self.activation = nn.Sigmoid()
def forward(self, tokens, attentions):
# remove eos token attentions
eos_mask = tokens.ne(self.eos_idx).to(attentions)
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
attentions = attentions * eos_mask[:, None, None, :, :]
attentions = attentions[..., :-1, :-1]
# remove cls token attentions
attentions = attentions[..., 1:, 1:]
batch_size, layers, heads, seqlen, _ = attentions.size()
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
# features: batch x channels x tokens x tokens (symmetric)
attentions = attentions.to(
self.regression.weight.device
) # attentions always float32, may need to convert to float16
attentions = average_product_correct(symmetrize(attentions))
attentions = attentions.permute(0, 2, 3, 1)
return self.activation(self.regression(attentions).squeeze(3))
class EsmEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
if config.emb_layer_norm_before:
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
else:
self.layer_norm = None
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
self.token_dropout = config.token_dropout
self.mask_token_id = config.mask_token_id
def forward(
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
# embedding_scale factor here.
embeddings = inputs_embeds
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
# masked tokens are treated as if they were selected for input dropout and zeroed out.
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
if self.token_dropout:
embeddings = embeddings.masked_fill((input_ids == self.mask_token_id).unsqueeze(-1), 0.0)
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
src_lengths = attention_mask.sum(-1)
mask_ratio_observed = (input_ids == self.mask_token_id).sum(-1).float() / src_lengths
embeddings = (embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]).to(
embeddings.dtype
)
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings = embeddings + position_embeddings
if self.layer_norm is not None:
embeddings = self.layer_norm(embeddings)
if attention_mask is not None:
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype)
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
# embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
class EsmSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
self.rotary_embeddings = None
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
elif self.position_embedding_type == "rotary":
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
# ESM code and fix rotary embeddings.
query_layer = query_layer * self.attention_head_size**-0.5
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
if self.position_embedding_type == "rotary":
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs.to(value_layer.dtype), value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
class EsmSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class EsmAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = EsmSelfAttention(config)
self.output = EsmSelfOutput(config)
self.pruned_heads = set()
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
hidden_states_ln = self.LayerNorm(hidden_states)
self_outputs = self.self(
hidden_states_ln,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class EsmIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = gelu(hidden_states)
return hidden_states
class EsmOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class EsmLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = EsmAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = EsmAttention(config)
self.intermediate = EsmIntermediate(config)
self.output = EsmOutput(config)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise AttributeError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
" with cross-attention layers by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = self.feed_forward_chunk(attention_output)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
attention_output_ln = self.LayerNorm(attention_output)
intermediate_output = self.intermediate(attention_output_ln)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class EsmEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)])
self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
"`use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = next_decoder_cache + (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if self.emb_layer_norm_after:
hidden_states = self.emb_layer_norm_after(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler
class EsmPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class EsmPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EsmConfig
base_model_prefix = "esm"
supports_gradient_checkpointing = True
_no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock", "EsmEmbeddings"]
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights with BertLMPredictionHead->EsmLMHead
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, EsmLMHead):
module.bias.data.zero_()
ESM_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`EsmConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ESM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
ESM_START_DOCSTRING,
)
class EsmModel(EsmPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = EsmEmbeddings(config)
self.encoder = EsmEncoder(config)
self.pooler = EsmPooler(config) if add_pooling_layer else None
self.contact_head = EsmContactPredictionHead(
in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def predict_contacts(self, tokens, attention_mask):
attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
attns = torch.stack(attns, dim=1) # Matches the original model layout
# In the original model, attentions for padding tokens are completely zeroed out.
# This makes no difference most of the time because the other tokens won't attend to them,
# but it does for the contact prediction task, which takes attentions as input,
# so we have to mimic that here.
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
return self.contact_head(tokens, attns)
@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
class EsmForMaskedLM(EsmPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.esm = EsmModel(config, add_pooling_layer=False)
self.lm_head = EsmLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(prediction_scores.device)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def predict_contacts(self, tokens, attention_mask):
return self.esm.predict_contacts(tokens, attention_mask=attention_mask)
class EsmLMHead(nn.Module):
"""ESM Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x) + self.bias
return x
@add_start_docstrings(
"""
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
ESM_START_DOCSTRING,
)
class EsmForSequenceClassification(EsmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.esm = EsmModel(config, add_pooling_layer=False)
self.classifier = EsmClassificationHead(config)
self.init_weights()
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
ESM_START_DOCSTRING,
)
class EsmForTokenClassification(EsmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.esm = EsmModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(logits.device)
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class EsmClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
__all__ = [
"EsmForMaskedLM",
"EsmForSequenceClassification",
"EsmForTokenClassification",
"EsmModel",
"EsmPreTrainedModel",
]
```
|
===================================================================================================================================
SOURCE CODE FILE: modeling_esmfold.py
LINES: 1
SIZE: 85.16 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\modeling_esmfold.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
from dataclasses import dataclass
from functools import partial
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from torch.nn import LayerNorm
from ...integrations.deepspeed import is_deepspeed_available
from ...modeling_outputs import ModelOutput
from ...utils import (
ContextManagers,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_scipy_available,
logging,
replace_return_docstrings,
)
from .configuration_esm import EsmConfig
from .modeling_esm import ESM_START_DOCSTRING, EsmModel, EsmPreTrainedModel
from .openfold_utils import (
OFProtein,
Rigid,
Rotation,
atom14_to_atom37,
chunk_layer,
compute_predicted_aligned_error,
compute_tm,
frames_and_literature_positions_to_atom14_pos,
make_atom14_masks,
residue_constants,
to_pdb,
torsion_angles_to_frames,
)
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/esmfold_v1"
_CONFIG_FOR_DOC = "EsmConfig"
@dataclass
class EsmForProteinFoldingOutput(ModelOutput):
"""
Output type of [`EsmForProteinFoldingOutput`].
Args:
frames (`torch.FloatTensor`):
Output frames.
sidechain_frames (`torch.FloatTensor`):
Output sidechain frames.
unnormalized_angles (`torch.FloatTensor`):
Predicted unnormalized backbone and side chain torsion angles.
angles (`torch.FloatTensor`):
Predicted backbone and side chain torsion angles.
positions (`torch.FloatTensor`):
Predicted positions of the backbone and side chain atoms.
states (`torch.FloatTensor`):
Hidden states from the protein folding trunk.
s_s (`torch.FloatTensor`):
Per-residue embeddings derived by concatenating the hidden states of each layer of the ESM-2 LM stem.
s_z (`torch.FloatTensor`):
Pairwise residue embeddings.
distogram_logits (`torch.FloatTensor`):
Input logits to the distogram used to compute residue distances.
lm_logits (`torch.FloatTensor`):
Logits output by the ESM-2 protein language model stem.
aatype (`torch.FloatTensor`):
Input amino acids (AlphaFold2 indices).
atom14_atom_exists (`torch.FloatTensor`):
Whether each atom exists in the atom14 representation.
residx_atom14_to_atom37 (`torch.FloatTensor`):
Mapping between atoms in the atom14 and atom37 representations.
residx_atom37_to_atom14 (`torch.FloatTensor`):
Mapping between atoms in the atom37 and atom14 representations.
atom37_atom_exists (`torch.FloatTensor`):
Whether each atom exists in the atom37 representation.
residue_index (`torch.FloatTensor`):
The index of each residue in the protein chain. Unless internal padding tokens are used, this will just be
a sequence of integers from 0 to `sequence_length`.
lddt_head (`torch.FloatTensor`):
Raw outputs from the lddt head used to compute plddt.
plddt (`torch.FloatTensor`):
Per-residue confidence scores. Regions of low confidence may indicate areas where the model's prediction is
uncertain, or where the protein structure is disordered.
ptm_logits (`torch.FloatTensor`):
Raw logits used for computing ptm.
ptm (`torch.FloatTensor`):
TM-score output representing the model's high-level confidence in the overall structure.
aligned_confidence_probs (`torch.FloatTensor`):
Per-residue confidence scores for the aligned structure.
predicted_aligned_error (`torch.FloatTensor`):
Predicted error between the model's prediction and the ground truth.
max_predicted_aligned_error (`torch.FloatTensor`):
Per-sample maximum predicted error.
"""
frames: Optional[torch.FloatTensor] = None
sidechain_frames: Optional[torch.FloatTensor] = None
unnormalized_angles: Optional[torch.FloatTensor] = None
angles: Optional[torch.FloatTensor] = None
positions: Optional[torch.FloatTensor] = None
states: Optional[torch.FloatTensor] = None
s_s: Optional[torch.FloatTensor] = None
s_z: Optional[torch.FloatTensor] = None
distogram_logits: Optional[torch.FloatTensor] = None
lm_logits: Optional[torch.FloatTensor] = None
aatype: Optional[torch.FloatTensor] = None
atom14_atom_exists: Optional[torch.FloatTensor] = None
residx_atom14_to_atom37: Optional[torch.FloatTensor] = None
residx_atom37_to_atom14: Optional[torch.FloatTensor] = None
atom37_atom_exists: Optional[torch.FloatTensor] = None
residue_index: Optional[torch.FloatTensor] = None
lddt_head: Optional[torch.FloatTensor] = None
plddt: Optional[torch.FloatTensor] = None
ptm_logits: Optional[torch.FloatTensor] = None
ptm: Optional[torch.FloatTensor] = None
aligned_confidence_probs: Optional[torch.FloatTensor] = None
predicted_aligned_error: Optional[torch.FloatTensor] = None
max_predicted_aligned_error: Optional[torch.FloatTensor] = None
ESMFOLD_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
masking_pattern (`torch.LongTensor` of shape `({0})`, *optional*):
Locations of tokens to mask during training as a form of regularization. Mask values selected in `[0, 1]`.
num_recycles (`int`, *optional*, defaults to `None`):
Number of times to recycle the input sequence. If `None`, defaults to `config.num_recycles`. "Recycling"
consists of passing the output of the folding trunk back in as input to the trunk. During training, the
number of recycles should vary with each batch, to ensure that the model learns to output valid predictions
after each recycle. During inference, num_recycles should be set to the highest value that the model was
trained with for maximum accuracy. Accordingly, when this value is set to `None`, config.max_recycles is
used.
"""
def is_fp16_enabled():
# Autocast world
fp16_enabled = torch.get_autocast_gpu_dtype() == torch.float16
fp16_enabled = fp16_enabled and torch.is_autocast_enabled()
return fp16_enabled
def is_deepspeed_initialized():
if is_deepspeed_available():
return False
else:
try:
import deepspeed
# This is not available in all DeepSpeed versions.
return deepspeed.utils.is_initialized()
except Exception:
return False
def collate_dense_tensors(samples: List[torch.Tensor], pad_v: float = 0) -> torch.Tensor:
"""
Takes a list of tensors with the following dimensions:
[(d_11, ..., d_1K),
(d_21, ..., d_2K), ..., (d_N1, ..., d_NK)]
and stack + pads them into a single tensor of:
(N, max_i=1,N { d_i1 }, ..., max_i=1,N {diK})
"""
if len(samples) == 0:
return torch.Tensor()
if len({x.dim() for x in samples}) != 1:
raise RuntimeError(f"Samples has varying dimensions: {[x.dim() for x in samples]}")
(device,) = tuple({x.device for x in samples}) # assumes all on same device
max_shape = [max(lst) for lst in zip(*[x.shape for x in samples])]
result = torch.empty(len(samples), *max_shape, dtype=samples[0].dtype, device=device)
result.fill_(pad_v)
for i in range(len(samples)):
result_i = result[i]
t = samples[i]
result_i[tuple(slice(0, k) for k in t.shape)] = t
return result
def flatten_final_dims(t: torch.Tensor, no_dims: int):
return t.reshape(t.shape[:-no_dims] + (-1,))
def permute_final_dims(tensor: torch.Tensor, inds: List[int]):
zero_index = -1 * len(inds)
first_inds = list(range(len(tensor.shape[:zero_index])))
return tensor.permute(first_inds + [zero_index + i for i in inds])
def dict_multimap(fn, dicts):
first = dicts[0]
new_dict = {}
for k, v in first.items():
all_v = [d[k] for d in dicts]
if isinstance(v, dict):
new_dict[k] = dict_multimap(fn, all_v)
else:
new_dict[k] = fn(all_v)
return new_dict
def trunc_normal_init_(weights, scale=1.0, fan="fan_in"):
shape = weights.shape
scale = scale / max(1, shape[1])
if not is_scipy_available():
logger.warning(
"This init requires scipy, but scipy was not found, default to an approximation that might not be"
" equivalent."
)
std = math.sqrt(scale)
torch.nn.init.normal_(weights, std=std).clamp(min=0.0, max=2.0 * std)
else:
from scipy.stats import truncnorm
std = math.sqrt(scale) / truncnorm.std(a=-2, b=2, loc=0, scale=1)
samples = truncnorm.rvs(a=-2, b=2, loc=0, scale=std, size=weights.numel())
samples = np.reshape(samples, shape)
weights.copy_(torch.tensor(samples, device=weights.device))
def ipa_point_weights_init_(weights):
with torch.no_grad():
softplus_inverse_1 = 0.541324854612918
weights.fill_(softplus_inverse_1)
class EsmFoldLinear(nn.Linear):
"""
A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear.
Implements the initializers in 1.11.4, plus some additional ones found in the code.
"""
def __init__(
self,
in_dim: int,
out_dim: int,
bias: bool = True,
init: str = "default",
init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None,
):
"""
Args:
in_dim:
The final dimension of inputs to the layer
out_dim:
The final dimension of layer outputs
bias:
Whether to learn an additive bias. True by default
init:
The initializer to use. Choose from:
"default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal
distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal":
Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0
Overridden by init_fn if the latter is not None.
init_fn:
A custom initializer taking weight and bias as inputs. Overrides init if not None.
"""
super().__init__(in_dim, out_dim, bias=bias)
if bias:
with torch.no_grad():
self.bias.fill_(0)
self.init = init
self.init_fn = init_fn
if init not in ["default", "relu", "glorot", "gating", "normal", "final"]:
raise ValueError("Invalid init string.")
class EsmFoldLayerNorm(nn.Module):
def __init__(self, c_in, eps=1e-5):
super().__init__()
self.c_in = (c_in,)
self.eps = eps
self.weight = nn.Parameter(torch.ones(c_in))
self.bias = nn.Parameter(torch.zeros(c_in))
def forward(self, x):
d = x.dtype
if d is torch.bfloat16 and not is_deepspeed_initialized():
with torch.cuda.amp.autocast(enabled=False):
out = nn.functional.layer_norm(x, self.c_in, self.weight.to(dtype=d), self.bias.to(dtype=d), self.eps)
else:
out = nn.functional.layer_norm(x, self.c_in, self.weight, self.bias, self.eps)
return out
@torch.jit.ignore
def softmax_no_cast(t: torch.Tensor, dim: int = -1) -> torch.Tensor:
"""
Softmax, but without automatic casting to fp32 when the input is of type bfloat16
"""
d = t.dtype
if d is torch.bfloat16 and not is_deepspeed_initialized():
with torch.cuda.amp.autocast(enabled=False):
s = torch.nn.functional.softmax(t, dim=dim)
else:
s = torch.nn.functional.softmax(t, dim=dim)
return s
class EsmFoldAttention(nn.Module):
"""
Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors.
"""
def __init__(
self,
c_q: int,
c_k: int,
c_v: int,
c_hidden: int,
no_heads: int,
gating: bool = True,
):
"""
Args:
c_q:
Input dimension of query data
c_k:
Input dimension of key data
c_v:
Input dimension of value data
c_hidden:
Per-head hidden dimension
no_heads:
Number of attention heads
gating:
Whether the output should be gated using query data
"""
super().__init__()
self.c_q = c_q
self.c_k = c_k
self.c_v = c_v
self.c_hidden = c_hidden
self.no_heads = no_heads
self.gating = gating
# DISCREPANCY: c_hidden is not the per-head channel dimension, as
# stated in the supplement, but the overall channel dimension.
self.linear_q = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_k = EsmFoldLinear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_v = EsmFoldLinear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_o = EsmFoldLinear(self.c_hidden * self.no_heads, self.c_q, init="final")
self.linear_g = None
if self.gating:
self.linear_g = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, init="gating")
self.sigmoid = nn.Sigmoid()
def _prep_qkv(self, q_x: torch.Tensor, kv_x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# [*, Q/K/V, H * C_hidden]
q = self.linear_q(q_x)
k = self.linear_k(kv_x)
v = self.linear_v(kv_x)
# [*, Q/K, H, C_hidden]
q = q.view(q.shape[:-1] + (self.no_heads, -1))
k = k.view(k.shape[:-1] + (self.no_heads, -1))
v = v.view(v.shape[:-1] + (self.no_heads, -1))
# [*, H, Q/K, C_hidden]
q = q.transpose(-2, -3)
k = k.transpose(-2, -3)
v = v.transpose(-2, -3)
q /= math.sqrt(self.c_hidden)
return q, k, v
def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor:
if self.linear_g is not None:
g = self.sigmoid(self.linear_g(q_x))
# [*, Q, H, C_hidden]
g = g.view(g.shape[:-1] + (self.no_heads, -1))
o = o * g
# [*, Q, H * C_hidden]
o = flatten_final_dims(o, 2)
# [*, Q, C_q]
o = self.linear_o(o)
return o
def forward(
self,
q_x: torch.Tensor,
kv_x: torch.Tensor,
biases: Optional[List[torch.Tensor]] = None,
use_memory_efficient_kernel: bool = False,
use_lma: bool = False,
lma_q_chunk_size: int = 1024,
lma_kv_chunk_size: int = 4096,
use_flash: bool = False,
flash_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Args:
q_x:
[*, Q, C_q] query data
kv_x:
[*, K, C_k] key data
biases:
List of biases that broadcast to [*, H, Q, K]
use_memory_efficient_kernel:
Whether to use a custom memory-efficient attention kernel. This should be the default choice for most.
If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead
use_lma:
Whether to use low-memory attention (Staats & Rabe 2021). If none of the "use_<...>" flags are True, a
stock PyTorch implementation is used instead
lma_q_chunk_size:
Query chunk size (for LMA)
lma_kv_chunk_size:
Key/Value chunk size (for LMA)
Returns
[*, Q, C_q] attention update
"""
if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None):
raise ValueError("If use_lma is specified, lma_q_chunk_size and lma_kv_chunk_size must be provided")
if use_flash and biases is not None:
raise ValueError("use_flash is incompatible with the bias option. For masking, use flash_mask instead")
attn_options = [use_memory_efficient_kernel, use_lma, use_flash]
if sum(attn_options) > 1:
raise ValueError("Choose at most one alternative attention algorithm")
if biases is None:
biases = []
# [*, H, Q/K, C_hidden]
query, key, value = self._prep_qkv(q_x, kv_x)
key = permute_final_dims(key, (1, 0))
# [*, H, Q, K]
output = torch.matmul(query, key)
for b in biases:
output += b
output = softmax_no_cast(output, -1)
# [*, H, Q, C_hidden]
output = torch.matmul(output, value)
output = output.transpose(-2, -3)
output = self._wrap_up(output, q_x)
return output
class EsmFoldTriangleAttention(nn.Module):
def __init__(self, c_in, c_hidden, no_heads, starting=True, inf=1e9):
"""
Args:
c_in:
Input channel dimension
c_hidden:
Overall hidden channel dimension (not per-head)
no_heads:
Number of attention heads
"""
super().__init__()
self.c_in = c_in
self.c_hidden = c_hidden
self.no_heads = no_heads
self.starting = starting
self.inf = inf
self.layer_norm = LayerNorm(self.c_in)
self.linear = EsmFoldLinear(c_in, self.no_heads, bias=False, init="normal")
self.mha = EsmFoldAttention(self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads)
@torch.jit.ignore
def _chunk(
self,
x: torch.Tensor,
biases: List[torch.Tensor],
chunk_size: int,
use_memory_efficient_kernel: bool = False,
use_lma: bool = False,
inplace_safe: bool = False,
) -> torch.Tensor:
"triangle! triangle!"
mha_inputs = {
"q_x": x,
"kv_x": x,
"biases": biases,
}
return chunk_layer(
partial(self.mha, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma),
mha_inputs,
chunk_size=chunk_size,
no_batch_dims=len(x.shape[:-2]),
_out=x if inplace_safe else None,
)
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
chunk_size: Optional[int] = None,
use_memory_efficient_kernel: bool = False,
use_lma: bool = False,
inplace_safe: bool = False,
) -> torch.Tensor:
"""
Args:
x:
[*, I, J, C_in] input tensor (e.g. the pair representation)
Returns:
[*, I, J, C_in] output tensor
"""
if mask is None:
# [*, I, J]
mask = x.new_ones(
x.shape[:-1],
)
if not self.starting:
x = x.transpose(-2, -3)
mask = mask.transpose(-1, -2)
# [*, I, J, C_in]
x = self.layer_norm(x)
# [*, I, 1, 1, J]
mask_bias = (self.inf * (mask - 1))[..., :, None, None, :]
# [*, H, I, J]
triangle_bias = permute_final_dims(self.linear(x), (2, 0, 1))
# [*, 1, H, I, J]
triangle_bias = triangle_bias.unsqueeze(-4)
biases = [mask_bias, triangle_bias]
if chunk_size is not None:
x = self._chunk(
x,
biases,
chunk_size,
use_memory_efficient_kernel=use_memory_efficient_kernel,
use_lma=use_lma,
inplace_safe=inplace_safe,
)
else:
x = self.mha(
q_x=x, kv_x=x, biases=biases, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma
)
if not self.starting:
x = x.transpose(-2, -3)
return x
class EsmFoldTriangleMultiplicativeUpdate(nn.Module):
"""
Implements Algorithms 11 and 12.
"""
def __init__(self, config, _outgoing=True):
super().__init__()
c_hidden = config.pairwise_state_dim
self._outgoing = _outgoing
self.linear_a_p = EsmFoldLinear(c_hidden, c_hidden)
self.linear_a_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
self.linear_b_p = EsmFoldLinear(c_hidden, c_hidden)
self.linear_b_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
self.linear_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
self.linear_z = EsmFoldLinear(c_hidden, c_hidden, init="final")
self.layer_norm_in = LayerNorm(c_hidden)
self.layer_norm_out = LayerNorm(c_hidden)
self.sigmoid = nn.Sigmoid()
def _combine_projections(
self, a: torch.Tensor, b: torch.Tensor, _inplace_chunk_size: Optional[int] = None
) -> torch.Tensor:
if self._outgoing:
a = permute_final_dims(a, (2, 0, 1))
b = permute_final_dims(b, (2, 1, 0))
else:
a = permute_final_dims(a, (2, 1, 0))
b = permute_final_dims(b, (2, 0, 1))
if _inplace_chunk_size is not None:
# To be replaced by torch vmap
for i in range(0, a.shape[-3], _inplace_chunk_size):
a_chunk = a[..., i : i + _inplace_chunk_size, :, :]
b_chunk = b[..., i : i + _inplace_chunk_size, :, :]
a[..., i : i + _inplace_chunk_size, :, :] = torch.matmul(
a_chunk,
b_chunk,
)
p = a
else:
p = torch.matmul(a, b)
return permute_final_dims(p, (1, 2, 0))
def _inference_forward(
self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None,
inplace_chunk_size: Optional[int] = None,
with_add: bool = True,
):
"""
Args:
z:
A [*, N, N, C_z] pair representation
mask:
A [*, N, N] pair mask
inplace_chunk_size:
Size of chunks used in the main computation. Increase to trade memory for speed.
with_add:
If True, z is overwritten with (z + update). Otherwise, it is overwritten with (update).
Returns:
A reference to the overwritten z
More memory-efficient, inference-only version of the forward function. Uses in-place operations, fusion of the
addition that happens after this module in the Evoformer, a smidge of recomputation, and a cache of overwritten
values to lower peak memory consumption of this module from 5x the size of the input tensor z to 2.5x its size.
Useful for inference on extremely long sequences.
It works as follows. We will make reference to variables used in the default forward implementation below.
Naively, triangle multiplication attention requires the manifestation of 5 tensors the size of z: 1) z, the
"square" input tensor, 2) a, the first projection of z, 3) b, the second projection of b, 4) g, a z-sized mask,
and 5) a z-sized tensor for intermediate computations. For large N, this is prohibitively expensive; for
N=4000, for example, z is more than 8GB alone. To avoid this problem, we compute b, g, and all intermediate
tensors in small chunks, noting that the chunks required to compute a chunk of the output depend only on the
tensor a and corresponding vertical and horizontal chunks of z. This suggests an algorithm that loops over
pairs of chunks of z: hereafter "columns" and "rows" of z, even though each "column" and "row" in fact contains
inplace_chunk_size contiguous true columns and rows of z. Writing output chunks to a new tensor would bring
total memory consumption down to 3x the size of z. However, more memory can be saved by writing output chunks
directly to z in-place. WLOG, we choose to write output chunks vertically, overwriting the ith "column" of z at
the end of the ith iteration of the main loop. Despite this overwriting, the ith column is always one column
ahead of previously overwritten columns and can be recovered directly from z. After the first iteration,
however, the ith row of z is always at least partially overwritten. For this reason, we introduce the z-cache,
a tensor one-half the size of z. The z-cache initially contains the left half (2nd and 3rd quadrants) of z. For
0 < i < N/2, the missing left part of the ith row of z is recovered from this cache at the beginning of the ith
iteration. Once i exceeds n/2, the cache is "reoriented" to encompass the 3rd and 4th quadrants of z instead.
Though the 3rd quadrant of the original z is entirely overwritten at this point, it can be recovered from the
z-cache itself. Thereafter, the ith row of z can be recovered in its entirety from the reoriented z-cache.
After the final iteration, z has been completely overwritten and contains the triangular multiplicative update.
If with_add is True, it instead contains the sum of z and the triangular multiplicative update. In either case,
peak memory consumption is just 2.5x the size of z, disregarding memory used for chunks and other small
variables.
"""
if mask is None:
mask = z.new_ones(z.shape[:-1])
mask = mask.unsqueeze(-1)
def compute_projection_helper(pair, mask, a=True):
if a:
linear_g = self.linear_a_g
linear_p = self.linear_a_p
else:
linear_g = self.linear_b_g
linear_p = self.linear_b_p
pair = self.layer_norm_in(pair)
p = linear_g(pair)
p.sigmoid_()
p *= linear_p(pair)
p *= mask
p = permute_final_dims(p, (2, 0, 1))
return p
def compute_projection(pair, mask, a=True, chunked=True):
need_transpose = self._outgoing ^ a
if not chunked:
p = compute_projection_helper(pair, mask, a)
if need_transpose:
p = p.transpose(-1, -2)
else:
# This computation is chunked so as not to exceed our 2.5x
# budget with a large intermediate tensor
linear_g = self.linear_a_g if a else self.linear_b_g
c = linear_g.bias.shape[-1]
out_shape = pair.shape[:-3] + (c,) + pair.shape[-3:-1]
p = pair.new_zeros(out_shape)
for i in range(0, pair.shape[-3], inplace_chunk_size):
pair_chunk = pair[..., i : i + inplace_chunk_size, :, :]
pair_chunk = compute_projection_helper(
pair[..., i : i + inplace_chunk_size, :, :],
mask[..., i : i + inplace_chunk_size, :, :],
a,
)
if need_transpose:
pair_chunk = pair_chunk.transpose(-1, -2)
p[..., i : i + inplace_chunk_size] = pair_chunk
else:
p[..., i : i + inplace_chunk_size, :] = pair_chunk
del pair_chunk
return p
# We start by fully manifesting a. In addition to the input, this
# brings total memory consumption to 2x z (disregarding size of chunks)
# [*, N, N, c]
a = compute_projection(z, mask, True, chunked=True)
if inplace_chunk_size is not None:
n = a.shape[-1]
half_n = n // 2 + n % 2
row_dim = -3
col_dim = -2
b_chunk_dim = row_dim if self._outgoing else col_dim
def empty_slicer(t):
return [slice(None) for _ in t.shape]
def slice_tensor(t, start, end, dim):
# Slices start:end from the dim dimension of t
s = empty_slicer(t)
s[dim] = slice(start, end)
return t[s]
def flip_z_cache_(z_cache, z):
# "Reorient" the z_cache (see below), filling it with quadrants
# 3---recovered from the z_cache---and 4---recovered from z---
# of the input tensor z.
quadrant_3 = slice_tensor(z_cache, half_n, None, row_dim)
z_cache = z_cache.transpose(row_dim, col_dim)
# If n is odd, we need to shrink the z_cache by one row
z_cache = z_cache[..., : (n // 2), :, :]
# Move the 3rd quadrant of z into the
first_half_slicer = empty_slicer(z_cache)
first_half_slicer[col_dim] = slice(0, half_n)
z_cache[first_half_slicer] = quadrant_3
# Get the fourth quadrant of z
quadrant_4 = slice_tensor(z, half_n, None, row_dim)
quadrant_4 = slice_tensor(quadrant_4, half_n, None, col_dim)
# Insert said quadrant into the rotated z-cache
quadrant_3_slicer = empty_slicer(z_cache)
quadrant_3_slicer[col_dim] = slice(half_n, None)
z_cache[quadrant_3_slicer] = quadrant_4
return z_cache
# Initialize the z cache to the left half of z.
z_cache_shape = list(z.shape)
z_cache_shape[col_dim] = half_n
z_cache = z.new_zeros(z_cache_shape)
z_cache_slicer = empty_slicer(z_cache)
z_cache_slicer[col_dim] = slice(0, half_n)
z_cache.copy_(z[z_cache_slicer])
z_cache_rotated = False
# We need to reorient the z-cache at the halfway point, and we
# don't want a single chunk to straddle that point. We contract one
# of the chunks in the middle to address that problem.
i_range = list(range(0, half_n, inplace_chunk_size))
initial_offsets = [i_2 - i_1 for i_1, i_2 in zip(i_range, i_range[1:] + [half_n])]
after_half = list(range(half_n, n, inplace_chunk_size))
after_half_offsets = [inplace_chunk_size for _ in after_half]
combined_range_with_offsets = zip(i_range + after_half, initial_offsets + after_half_offsets)
for i, offset in combined_range_with_offsets:
if not z_cache_rotated and i >= half_n:
z_cache = flip_z_cache_(z_cache, z)
z_cache_rotated = True
z_chunk_b = slice_tensor(z, i, i + offset, b_chunk_dim)
mask_chunk = slice_tensor(mask, i, i + offset, b_chunk_dim)
z_chunk_b = z_chunk_b.clone()
if b_chunk_dim == col_dim:
z_chunk_b = slice_tensor(z, i, i + offset, col_dim)
else: # b_chunk_dim == row_dim
# In this case, the b-dimension (b_chunk_dim) is partially
# overwritten at the end of each iteration. We need to
# restore the missing component from the z-cache.
if not z_cache_rotated:
z_chunk_slicer = empty_slicer(z_chunk_b)
z_chunk_slicer[col_dim] = slice(0, half_n)
z_chunk_b[z_chunk_slicer] = slice_tensor(z_cache, i, i + offset, row_dim)
else:
z_cache_offset = i - half_n
z_chunk_b = slice_tensor(z_cache, z_cache_offset, z_cache_offset + offset, row_dim)
b_chunk = compute_projection(z_chunk_b, mask_chunk, a=False, chunked=False)
del z_chunk_b
x_chunk = torch.matmul(a, b_chunk)
x_chunk = permute_final_dims(x_chunk, (1, 2, 0))
x_chunk = self.layer_norm_out(x_chunk)
x_chunk = self.linear_z(x_chunk)
# The g dimension (col_dim) is parallel to and ahead of the
# overwrites in z. We can extract the g chunk normally.
z_chunk_g = slice_tensor(z, i, i + offset, col_dim)
g_chunk = self.linear_g(self.layer_norm_in(z_chunk_g))
g_chunk.sigmoid_()
del z_chunk_g
x_chunk *= g_chunk
# Write the columns into z in-place
z_slicer = empty_slicer(z)
z_slicer[col_dim] = slice(i, i + offset)
if with_add:
z[z_slicer] += x_chunk
else:
z[z_slicer] = x_chunk
else:
b = compute_projection(z, mask, False, False)
x = torch.matmul(a, b)
x = self.layer_norm_out(x)
x = self.linear_z(x)
g = self.linear_g(z)
g.sigmoid_()
x *= g
if with_add:
z += x
else:
z = x
return z
def forward(
self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None,
inplace_safe: bool = False,
_add_with_inplace: bool = False,
_inplace_chunk_size: Optional[int] = 256,
) -> torch.Tensor:
"""
Args:
x:
[*, N_res, N_res, C_z] input tensor
mask:
[*, N_res, N_res] input mask
Returns:
[*, N_res, N_res, C_z] output tensor
"""
if inplace_safe:
x = self._inference_forward(
z,
mask,
inplace_chunk_size=_inplace_chunk_size,
with_add=_add_with_inplace,
)
return x
if mask is None:
mask = z.new_ones(z.shape[:-1])
mask = mask.unsqueeze(-1)
z = self.layer_norm_in(z)
a = mask
a = a * self.sigmoid(self.linear_a_g(z))
a = a * self.linear_a_p(z)
b = mask
b = b * self.sigmoid(self.linear_b_g(z))
b = b * self.linear_b_p(z)
if is_fp16_enabled():
with torch.cuda.amp.autocast(enabled=False):
x = self._combine_projections(a.float(), b.float())
else:
x = self._combine_projections(a, b)
del a, b
x = self.layer_norm_out(x)
x = self.linear_z(x)
g = self.sigmoid(self.linear_g(z))
x = x * g
return x
class EsmFoldPreTrainedModel(EsmPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
# Subclass `EsMPreTrainedModel` to deal with special init
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, EsmFoldLinear):
with torch.no_grad():
if module.init_fn is not None:
module.init_fn(module.weight, module.bias)
elif module.init == "default":
trunc_normal_init_(module.weight, scale=1.0)
elif module.init == "relu":
trunc_normal_init_(module.weight, scale=2.0)
elif module.init == "glorot":
nn.init.xavier_uniform_(module.weight, gain=1)
elif module.init == "gating":
module.weight.fill_(0.0)
if module.bias:
module.bias.fill_(1.0)
elif module.init == "normal":
torch.nn.init.kaiming_normal_(module.weight, nonlinearity="linear")
elif module.init == "final":
module.weight.fill_(0.0)
elif isinstance(module, EsmFoldInvariantPointAttention):
ipa_point_weights_init_(module.head_weights)
elif isinstance(module, EsmFoldTriangularSelfAttentionBlock):
torch.nn.init.zeros_(module.tri_mul_in.linear_z.weight)
torch.nn.init.zeros_(module.tri_mul_in.linear_z.bias)
torch.nn.init.zeros_(module.tri_mul_out.linear_z.weight)
torch.nn.init.zeros_(module.tri_mul_out.linear_z.bias)
torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.weight)
torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.bias)
torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.weight)
torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.bias)
torch.nn.init.zeros_(module.sequence_to_pair.o_proj.weight)
torch.nn.init.zeros_(module.sequence_to_pair.o_proj.bias)
torch.nn.init.zeros_(module.pair_to_sequence.linear.weight)
torch.nn.init.zeros_(module.seq_attention.o_proj.weight)
torch.nn.init.zeros_(module.seq_attention.o_proj.bias)
torch.nn.init.zeros_(module.mlp_seq.mlp[-2].weight)
torch.nn.init.zeros_(module.mlp_seq.mlp[-2].bias)
torch.nn.init.zeros_(module.mlp_pair.mlp[-2].weight)
torch.nn.init.zeros_(module.mlp_pair.mlp[-2].bias)
else:
super()._init_weights(module)
class EsmFoldSelfAttention(nn.Module):
def __init__(self, embed_dim, num_heads, head_width, gated=False):
super().__init__()
assert embed_dim == num_heads * head_width
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_width = head_width
self.proj = nn.Linear(embed_dim, embed_dim * 3, bias=False)
self.o_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.gated = gated
if gated:
self.g_proj = nn.Linear(embed_dim, embed_dim)
torch.nn.init.zeros_(self.g_proj.weight)
torch.nn.init.ones_(self.g_proj.bias)
self.rescale_factor = self.head_width**-0.5
torch.nn.init.zeros_(self.o_proj.bias)
def forward(self, x, mask=None, bias=None, indices=None):
"""
Basic self attention with optional mask and external pairwise bias. To handle sequences of different lengths,
use mask.
Inputs:
x: batch of input sequences (.. x L x C) mask: batch of boolean masks where 1=valid, 0=padding position (..
x L_k) bias: batch of scalar pairwise attention biases (.. x Lq x Lk x num_heads)
Outputs:
sequence projection (B x L x embed_dim), attention maps (B x L x L x num_heads)
"""
t = self.proj(x).view(*x.shape[:2], self.num_heads, -1)
t = t.permute(0, 2, 1, 3)
q, k, v = t.chunk(3, dim=-1)
q = self.rescale_factor * q
a = torch.einsum("...qc,...kc->...qk", q, k)
# Add external attention bias.
if bias is not None:
a = a + bias.permute(0, 3, 1, 2)
# Do not attend to padding tokens.
if mask is not None:
mask = mask[:, None, None]
a = a.masked_fill(mask == False, -np.inf) # noqa: E712
a = nn.functional.softmax(a, dim=-1)
y = torch.einsum("...hqk,...hkc->...qhc", a, v)
y = y.reshape(*y.shape[:2], -1)
if self.gated:
y = self.g_proj(x).sigmoid() * y
y = self.o_proj(y)
return y, a.permute(0, 3, 1, 2)
class EsmFoldDropout(nn.Module):
"""
Implementation of dropout with the ability to share the dropout mask along a particular dimension.
"""
def __init__(self, r: float, batch_dim: Union[int, List[int]]):
super().__init__()
self.r = r
if isinstance(batch_dim, int):
batch_dim = [batch_dim]
self.batch_dim = batch_dim
self.dropout = nn.Dropout(self.r)
def forward(self, x: torch.Tensor) -> torch.Tensor:
shape = list(x.shape)
if self.batch_dim is not None:
for bd in self.batch_dim:
shape[bd] = 1
return x * self.dropout(x.new_ones(shape))
class EsmFoldSequenceToPair(nn.Module):
def __init__(self, sequence_state_dim, inner_dim, pairwise_state_dim):
super().__init__()
self.layernorm = nn.LayerNorm(sequence_state_dim)
self.proj = nn.Linear(sequence_state_dim, inner_dim * 2, bias=True)
self.o_proj = nn.Linear(2 * inner_dim, pairwise_state_dim, bias=True)
torch.nn.init.zeros_(self.proj.bias)
torch.nn.init.zeros_(self.o_proj.bias)
def forward(self, sequence_state):
"""
Inputs:
sequence_state: B x L x sequence_state_dim
Output:
pairwise_state: B x L x L x pairwise_state_dim
Intermediate state:
B x L x L x 2*inner_dim
"""
assert len(sequence_state.shape) == 3
s = self.layernorm(sequence_state)
s = self.proj(s)
q, k = s.chunk(2, dim=-1)
prod = q[:, None, :, :] * k[:, :, None, :]
diff = q[:, None, :, :] - k[:, :, None, :]
x = torch.cat([prod, diff], dim=-1)
x = self.o_proj(x)
return x
class EsmFoldPairToSequence(nn.Module):
def __init__(self, pairwise_state_dim, num_heads):
super().__init__()
self.layernorm = nn.LayerNorm(pairwise_state_dim)
self.linear = nn.Linear(pairwise_state_dim, num_heads, bias=False)
def forward(self, pairwise_state):
"""
Inputs:
pairwise_state: B x L x L x pairwise_state_dim
Output:
pairwise_bias: B x L x L x num_heads
"""
assert len(pairwise_state.shape) == 4
z = self.layernorm(pairwise_state)
pairwise_bias = self.linear(z)
return pairwise_bias
class EsmFoldResidueMLP(nn.Module):
def __init__(self, embed_dim, inner_dim, dropout=0):
super().__init__()
self.mlp = nn.Sequential(
nn.LayerNorm(embed_dim),
nn.Linear(embed_dim, inner_dim),
nn.ReLU(),
nn.Linear(inner_dim, embed_dim),
nn.Dropout(dropout),
)
def forward(self, x):
return x + self.mlp(x)
class EsmFoldTriangularSelfAttentionBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
sequence_state_dim = config.sequence_state_dim
pairwise_state_dim = config.pairwise_state_dim
sequence_num_heads = sequence_state_dim // config.sequence_head_width
pairwise_num_heads = pairwise_state_dim // config.pairwise_head_width
self.layernorm_1 = nn.LayerNorm(sequence_state_dim)
self.sequence_to_pair = EsmFoldSequenceToPair(sequence_state_dim, pairwise_state_dim // 2, pairwise_state_dim)
self.pair_to_sequence = EsmFoldPairToSequence(pairwise_state_dim, sequence_num_heads)
self.seq_attention = EsmFoldSelfAttention(
sequence_state_dim, sequence_num_heads, config.sequence_head_width, gated=True
)
self.tri_mul_out = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=True)
self.tri_mul_in = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=False)
self.tri_att_start = EsmFoldTriangleAttention(
pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=True
)
self.tri_att_end = EsmFoldTriangleAttention(
pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=False
)
self.mlp_seq = EsmFoldResidueMLP(sequence_state_dim, 4 * sequence_state_dim, dropout=config.dropout)
self.mlp_pair = EsmFoldResidueMLP(pairwise_state_dim, 4 * pairwise_state_dim, dropout=config.dropout)
self.drop = nn.Dropout(config.dropout)
self.row_drop = EsmFoldDropout(config.dropout * 2, 2)
self.col_drop = EsmFoldDropout(config.dropout * 2, 1)
def forward(self, sequence_state, pairwise_state, mask=None, chunk_size=None, **__kwargs):
"""
Inputs:
sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim mask: B x L boolean
tensor of valid positions
Output:
sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim
"""
if len(sequence_state.shape) != 3:
raise ValueError(f"`sequence_state` should be a 3d-tensor, got {len(sequence_state.shape)} dims.")
if len(pairwise_state.shape) != 4:
raise ValueError(f"`pairwise_state` should be a 4d-tensor, got {len(pairwise_state.shape)} dims.")
if mask is not None and len(mask.shape) != 2:
raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.")
batch_dim, seq_dim, sequence_state_dim = sequence_state.shape
pairwise_state_dim = pairwise_state.shape[3]
if sequence_state_dim != self.config.sequence_state_dim:
raise ValueError(
"`sequence_state` last dimension should be equal to `self.sequence_state_dim`. Got "
f"{sequence_state_dim} != {self.config.sequence_state_dim}."
)
if pairwise_state_dim != self.config.pairwise_state_dim:
raise ValueError(
"`pairwise_state` last dimension should be equal to `self.pairwise_state_dim`. Got "
f"{pairwise_state_dim} != {self.config.pairwise_state_dim}."
)
if batch_dim != pairwise_state.shape[0]:
raise ValueError(
f"`sequence_state` and `pairwise_state` have inconsistent batch size: {batch_dim} != "
f"{pairwise_state.shape[0]}."
)
if seq_dim != pairwise_state.shape[1] or seq_dim != pairwise_state.shape[2]:
raise ValueError(
f"`sequence_state` and `pairwise_state` have inconsistent sequence length: {seq_dim} != "
f"{pairwise_state.shape[1]} or {pairwise_state.shape[2]}."
)
# Update sequence state
bias = self.pair_to_sequence(pairwise_state)
# Self attention with bias + mlp.
y = self.layernorm_1(sequence_state)
y, _ = self.seq_attention(y, mask=mask, bias=bias)
sequence_state = sequence_state + self.drop(y)
sequence_state = self.mlp_seq(sequence_state)
# Update pairwise state
pairwise_state = pairwise_state + self.sequence_to_pair(sequence_state)
# Axial attention with triangular bias.
tri_mask = mask.unsqueeze(2) * mask.unsqueeze(1) if mask is not None else None
pairwise_state = pairwise_state + self.row_drop(self.tri_mul_out(pairwise_state, mask=tri_mask))
pairwise_state = pairwise_state + self.col_drop(self.tri_mul_in(pairwise_state, mask=tri_mask))
pairwise_state = pairwise_state + self.row_drop(
self.tri_att_start(pairwise_state, mask=tri_mask, chunk_size=chunk_size)
)
pairwise_state = pairwise_state + self.col_drop(
self.tri_att_end(pairwise_state, mask=tri_mask, chunk_size=chunk_size)
)
# MLP over pairs.
pairwise_state = self.mlp_pair(pairwise_state)
return sequence_state, pairwise_state
class EsmCategoricalMixture:
def __init__(self, param, bins=50, start=0, end=1):
# All tensors are of shape ..., bins.
self.logits = param
bins = torch.linspace(start, end, bins + 1, device=self.logits.device, dtype=self.logits.dtype)
self.v_bins = (bins[:-1] + bins[1:]) / 2
def log_prob(self, true):
# Shapes are:
# self.probs: ... x bins
# true : ...
true_index = (true.unsqueeze(-1) - self.v_bins[[None] * true.ndim]).abs().argmin(-1)
nll = self.logits.log_softmax(-1)
return torch.take_along_dim(nll, true_index.unsqueeze(-1), dim=-1).squeeze(-1)
def mean(self):
return (self.logits.softmax(-1) @ self.v_bins.unsqueeze(1)).squeeze(-1)
def categorical_lddt(logits, bins=50):
# Logits are ..., 37, bins.
return EsmCategoricalMixture(logits, bins=bins).mean()
def get_axial_mask(mask):
"""
Helper to convert B x L mask of valid positions to axial mask used in row column attentions.
Input:
mask: B x L tensor of booleans
Output:
mask: B x L x L tensor of booleans
"""
if mask is None:
return None
if len(mask.shape) != 2:
raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.")
batch_dim, seq_dim = mask.shape
m = mask.unsqueeze(1).expand(batch_dim, seq_dim, seq_dim)
m = m.reshape(batch_dim * seq_dim, seq_dim)
return m
class EsmFoldRelativePosition(nn.Module):
def __init__(self, config):
super().__init__()
self.bins = config.position_bins
# Note an additional offset is used so that the 0th position
# is reserved for masked pairs.
self.embedding = torch.nn.Embedding(2 * self.bins + 2, config.pairwise_state_dim)
def forward(self, residue_index, mask=None):
"""
Input:
residue_index: B x L tensor of indices (dtype=torch.long) mask: B x L tensor of booleans
Output:
pairwise_state: B x L x L x pairwise_state_dim tensor of embeddings
"""
if residue_index.dtype != torch.long:
raise ValueError(f"`residue_index` has dtype {residue_index.dtype}, it should be `torch.long`.")
if mask is not None and residue_index.shape != mask.shape:
raise ValueError(
f"`residue_index` and `mask` have inconsistent shapes: {residue_index.shape} != {mask.shape}."
)
diff = residue_index[:, None, :] - residue_index[:, :, None]
diff = diff.clamp(-self.bins, self.bins)
diff = diff + self.bins + 1 # Add 1 to adjust for padding index.
if mask is not None:
mask = mask[:, None, :] * mask[:, :, None]
diff[mask == False] = 0 # noqa: E712
output = self.embedding(diff)
return output
class EsmFoldAngleResnetBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.linear_1 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="relu")
self.linear_2 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="final")
self.relu = nn.ReLU()
def forward(self, a: torch.Tensor) -> torch.Tensor:
s_initial = a
a = self.relu(a)
a = self.linear_1(a)
a = self.relu(a)
a = self.linear_2(a)
return a + s_initial
class EsmFoldAngleResnet(nn.Module):
"""
Implements Algorithm 20, lines 11-14
"""
def __init__(self, config):
super().__init__()
self.config = config
self.linear_in = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
self.linear_initial = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
self.layers = nn.ModuleList()
for _ in range(config.num_resnet_blocks):
layer = EsmFoldAngleResnetBlock(config)
self.layers.append(layer)
self.linear_out = EsmFoldLinear(config.resnet_dim, config.num_angles * 2)
self.relu = nn.ReLU()
def forward(self, s: torch.Tensor, s_initial: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
s:
[*, C_hidden] single embedding
s_initial:
[*, C_hidden] single embedding as of the start of the StructureModule
Returns:
[*, no_angles, 2] predicted angles
"""
# NOTE: The ReLU's applied to the inputs are absent from the supplement
# pseudocode but present in the source. For maximal compatibility with
# the pretrained weights, I'm going with the source.
# [*, C_hidden]
s_initial = self.relu(s_initial)
s_initial = self.linear_initial(s_initial)
s = self.relu(s)
s = self.linear_in(s)
s = s + s_initial
for l in self.layers:
s = l(s)
s = self.relu(s)
# [*, no_angles * 2]
s = self.linear_out(s)
# [*, no_angles, 2]
s = s.view(s.shape[:-1] + (-1, 2))
unnormalized_s = s
norm_denom = torch.sqrt(
torch.clamp(
torch.sum(s**2, dim=-1, keepdim=True),
min=self.config.epsilon,
)
)
s = s / norm_denom
return unnormalized_s, s
class EsmFoldInvariantPointAttention(nn.Module):
"""
Implements Algorithm 22.
"""
def __init__(self, config):
super().__init__()
self.config = config
c_s = config.sequence_dim
c_z = config.pairwise_dim
self.hidden_dim = config.ipa_dim
self.num_heads = config.num_heads_ipa
self.num_qk_points = config.num_qk_points
self.num_v_points = config.num_v_points
# These linear layers differ from their specifications in the
# supplement. There, they lack bias and use Glorot initialization.
# Here as in the official source, they have bias and use the default
# Lecun initialization.
hc = config.ipa_dim * config.num_heads_ipa
self.linear_q = EsmFoldLinear(c_s, hc)
self.linear_kv = EsmFoldLinear(c_s, 2 * hc)
hpq = config.num_heads_ipa * config.num_qk_points * 3
self.linear_q_points = EsmFoldLinear(c_s, hpq)
hpkv = config.num_heads_ipa * (config.num_qk_points + config.num_v_points) * 3
self.linear_kv_points = EsmFoldLinear(c_s, hpkv)
self.linear_b = EsmFoldLinear(c_z, config.num_heads_ipa)
self.head_weights = nn.Parameter(torch.zeros((config.num_heads_ipa)))
concat_out_dim = config.num_heads_ipa * (c_z + config.ipa_dim + config.num_v_points * 4)
self.linear_out = EsmFoldLinear(concat_out_dim, c_s, init="final")
self.softmax = nn.Softmax(dim=-1)
self.softplus = nn.Softplus()
def forward(
self,
s: torch.Tensor,
z: Optional[torch.Tensor],
r: Rigid,
mask: torch.Tensor,
_offload_inference: bool = False,
_z_reference_list: Optional[Sequence[torch.Tensor]] = None,
) -> torch.Tensor:
"""
Args:
s:
[*, N_res, C_s] single representation
z:
[*, N_res, N_res, C_z] pair representation
r:
[*, N_res] transformation object
mask:
[*, N_res] mask
Returns:
[*, N_res, C_s] single representation update
"""
z = [z]
#######################################
# Generate scalar and point activations
#######################################
# [*, N_res, H * C_hidden]
q = self.linear_q(s)
kv = self.linear_kv(s)
# [*, N_res, H, C_hidden]
q = q.view(q.shape[:-1] + (self.num_heads, -1))
# [*, N_res, H, 2 * C_hidden]
kv = kv.view(kv.shape[:-1] + (self.num_heads, -1))
# [*, N_res, H, C_hidden]
k, v = torch.split(kv, self.hidden_dim, dim=-1)
# [*, N_res, H * P_q * 3]
q_pts = self.linear_q_points(s)
# This is kind of clunky, but it's how the original does it
# [*, N_res, H * P_q, 3]
q_pts = torch.split(q_pts, q_pts.shape[-1] // 3, dim=-1)
q_pts = torch.stack(q_pts, dim=-1)
q_pts = r[..., None].apply(q_pts)
# [*, N_res, H, P_q, 3]
q_pts = q_pts.view(q_pts.shape[:-2] + (self.num_heads, self.num_qk_points, 3))
# [*, N_res, H * (P_q + P_v) * 3]
kv_pts = self.linear_kv_points(s)
# [*, N_res, H * (P_q + P_v), 3]
kv_pts = torch.split(kv_pts, kv_pts.shape[-1] // 3, dim=-1)
kv_pts = torch.stack(kv_pts, dim=-1)
kv_pts = r[..., None].apply(kv_pts)
# [*, N_res, H, (P_q + P_v), 3]
kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.num_heads, -1, 3))
# [*, N_res, H, P_q/P_v, 3]
k_pts, v_pts = torch.split(kv_pts, [self.num_qk_points, self.num_v_points], dim=-2)
##########################
# Compute attention scores
##########################
# [*, N_res, N_res, H]
b = self.linear_b(z[0])
if _offload_inference:
assert sys.getrefcount(z[0]) == 2
z[0] = z[0].cpu()
# [*, H, N_res, N_res]
if is_fp16_enabled():
with torch.cuda.amp.autocast(enabled=False):
a = torch.matmul(
permute_final_dims(q.float(), (1, 0, 2)), # [*, H, N_res, C_hidden]
permute_final_dims(k.float(), (1, 2, 0)), # [*, H, C_hidden, N_res]
)
else:
a = torch.matmul(
permute_final_dims(q, (1, 0, 2)), # [*, H, N_res, C_hidden]
permute_final_dims(k, (1, 2, 0)), # [*, H, C_hidden, N_res]
)
a *= math.sqrt(1.0 / (3 * self.hidden_dim))
a += math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1))
# [*, N_res, N_res, H, P_q, 3]
pt_att = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5)
pt_att = pt_att**2
# [*, N_res, N_res, H, P_q]
pt_att = sum(torch.unbind(pt_att, dim=-1))
head_weights = self.softplus(self.head_weights).view(*((1,) * len(pt_att.shape[:-2]) + (-1, 1)))
head_weights = head_weights * math.sqrt(1.0 / (3 * (self.num_qk_points * 9.0 / 2)))
pt_att = pt_att * head_weights
# [*, N_res, N_res, H]
pt_att = torch.sum(pt_att, dim=-1) * (-0.5)
# [*, N_res, N_res]
square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2)
square_mask = self.config.inf * (square_mask - 1)
# [*, H, N_res, N_res]
pt_att = permute_final_dims(pt_att, (2, 0, 1))
a = a + pt_att
a = a + square_mask.unsqueeze(-3)
a = self.softmax(a)
################
# Compute output
################
# [*, N_res, H, C_hidden]
o = torch.matmul(a, v.transpose(-2, -3).to(dtype=a.dtype)).transpose(-2, -3)
# [*, N_res, H * C_hidden]
o = flatten_final_dims(o, 2)
# [*, H, 3, N_res, P_v]
o_pt = torch.sum(
(a[..., None, :, :, None] * permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :]),
dim=-2,
)
# [*, N_res, H, P_v, 3]
o_pt = permute_final_dims(o_pt, (2, 0, 3, 1))
o_pt = r[..., None, None].invert_apply(o_pt)
# [*, N_res, H * P_v]
o_pt_norm = flatten_final_dims(torch.sqrt(torch.sum(o_pt**2, dim=-1) + self.config.epsilon), 2)
# [*, N_res, H * P_v, 3]
o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3)
if _offload_inference:
z[0] = z[0].to(o_pt.device)
# [*, N_res, H, C_z]
o_pair = torch.matmul(a.transpose(-2, -3), z[0].to(dtype=a.dtype))
# [*, N_res, H * C_z]
o_pair = flatten_final_dims(o_pair, 2)
# [*, N_res, C_s]
s = self.linear_out(
torch.cat((o, *torch.unbind(o_pt, dim=-1), o_pt_norm, o_pair), dim=-1).to(dtype=z[0].dtype)
)
return s
class EsmFoldBackboneUpdate(nn.Module):
"""
Implements part of Algorithm 23.
"""
def __init__(self, config):
super().__init__()
self.linear = EsmFoldLinear(config.sequence_dim, 6, init="final")
def forward(self, s: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
[*, N_res, C_s] single representation
Returns:
[*, N_res, 6] update vector
"""
# [*, 6]
update = self.linear(s)
return update
class EsmFoldStructureModuleTransitionLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.linear_1 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu")
self.linear_2 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu")
self.linear_3 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="final")
self.relu = nn.ReLU()
def forward(self, s):
s_initial = s
s = self.linear_1(s)
s = self.relu(s)
s = self.linear_2(s)
s = self.relu(s)
s = self.linear_3(s)
s = s + s_initial
return s
class EsmFoldStructureModuleTransition(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layers = nn.ModuleList()
for _ in range(config.num_transition_layers):
l = EsmFoldStructureModuleTransitionLayer(config)
self.layers.append(l)
self.dropout = nn.Dropout(config.dropout_rate)
self.layer_norm = LayerNorm(config.sequence_dim)
def forward(self, s):
for l in self.layers:
s = l(s)
s = self.dropout(s)
s = self.layer_norm(s)
return s
class EsmFoldStructureModule(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# Buffers to be lazily initialized later
# self.default_frames
# self.group_idx
# self.atom_mask
# self.lit_positions
self.layer_norm_s = LayerNorm(config.sequence_dim)
self.layer_norm_z = LayerNorm(config.pairwise_dim)
self.linear_in = EsmFoldLinear(config.sequence_dim, config.sequence_dim)
self.ipa = EsmFoldInvariantPointAttention(config)
self.ipa_dropout = nn.Dropout(config.dropout_rate)
self.layer_norm_ipa = LayerNorm(config.sequence_dim)
self.transition = EsmFoldStructureModuleTransition(config)
self.bb_update = EsmFoldBackboneUpdate(config)
self.angle_resnet = EsmFoldAngleResnet(config)
def forward(
self,
evoformer_output_dict,
aatype,
mask=None,
_offload_inference=False,
):
"""
Args:
evoformer_output_dict:
Dictionary containing:
"single":
[*, N_res, C_s] single representation
"pair":
[*, N_res, N_res, C_z] pair representation
aatype:
[*, N_res] amino acid indices
mask:
Optional [*, N_res] sequence mask
Returns:
A dictionary of outputs
"""
s = evoformer_output_dict["single"]
if mask is None:
# [*, N]
mask = s.new_ones(s.shape[:-1])
# [*, N, C_s]
s = self.layer_norm_s(s)
# [*, N, N, C_z]
z = self.layer_norm_z(evoformer_output_dict["pair"])
z_reference_list = None
if _offload_inference:
assert sys.getrefcount(evoformer_output_dict["pair"]) == 2
evoformer_output_dict["pair"] = evoformer_output_dict["pair"].cpu()
z_reference_list = [z]
z = None
# [*, N, C_s]
s_initial = s
s = self.linear_in(s)
# [*, N]
rigids = Rigid.identity(
s.shape[:-1],
s.dtype,
s.device,
self.training,
fmt="quat",
)
outputs = []
for i in range(self.config.num_blocks):
# [*, N, C_s]
s = s + self.ipa(
s,
z,
rigids,
mask,
_offload_inference=_offload_inference,
_z_reference_list=z_reference_list,
)
s = self.ipa_dropout(s)
s = self.layer_norm_ipa(s)
s = self.transition(s)
# [*, N]
rigids = rigids.compose_q_update_vec(self.bb_update(s))
# To hew as closely as possible to AlphaFold, we convert our
# quaternion-based transformations to rotation-matrix ones
# here
backb_to_global = Rigid(
Rotation(rot_mats=rigids.get_rots().get_rot_mats(), quats=None),
rigids.get_trans(),
)
backb_to_global = backb_to_global.scale_translation(self.config.trans_scale_factor)
# [*, N, 7, 2]
unnormalized_angles, angles = self.angle_resnet(s, s_initial)
all_frames_to_global = self.torsion_angles_to_frames(backb_to_global, angles, aatype)
pred_xyz = self.frames_and_literature_positions_to_atom14_pos(all_frames_to_global, aatype)
scaled_rigids = rigids.scale_translation(self.config.trans_scale_factor)
preds = {
"frames": scaled_rigids.to_tensor_7(),
"sidechain_frames": all_frames_to_global.to_tensor_4x4(),
"unnormalized_angles": unnormalized_angles,
"angles": angles,
"positions": pred_xyz,
"states": s,
}
outputs.append(preds)
rigids = rigids.stop_rot_gradient()
del z, z_reference_list
if _offload_inference:
evoformer_output_dict["pair"] = evoformer_output_dict["pair"].to(s.device)
outputs = dict_multimap(torch.stack, outputs)
outputs["single"] = s
return outputs
def _init_residue_constants(self, float_dtype, device):
if not hasattr(self, "default_frames"):
self.register_buffer(
"default_frames",
torch.tensor(
residue_constants.restype_rigid_group_default_frame,
dtype=float_dtype,
device=device,
requires_grad=False,
),
persistent=False,
)
if not hasattr(self, "group_idx"):
self.register_buffer(
"group_idx",
torch.tensor(
residue_constants.restype_atom14_to_rigid_group,
device=device,
requires_grad=False,
),
persistent=False,
)
if not hasattr(self, "atom_mask"):
self.register_buffer(
"atom_mask",
torch.tensor(
residue_constants.restype_atom14_mask,
dtype=float_dtype,
device=device,
requires_grad=False,
),
persistent=False,
)
if not hasattr(self, "lit_positions"):
self.register_buffer(
"lit_positions",
torch.tensor(
residue_constants.restype_atom14_rigid_group_positions,
dtype=float_dtype,
device=device,
requires_grad=False,
),
persistent=False,
)
def torsion_angles_to_frames(self, r, alpha, f):
# Lazily initialize the residue constants on the correct device
self._init_residue_constants(alpha.dtype, alpha.device)
# Separated purely to make testing less annoying
return torsion_angles_to_frames(r, alpha, f, self.default_frames)
def frames_and_literature_positions_to_atom14_pos(self, r, f): # [*, N, 8] # [*, N]
# Lazily initialize the residue constants on the correct device
self._init_residue_constants(r.get_rots().dtype, r.get_rots().device)
return frames_and_literature_positions_to_atom14_pos(
r,
f,
self.default_frames,
self.group_idx,
self.atom_mask,
self.lit_positions,
)
class EsmFoldingTrunk(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
c_s = config.sequence_state_dim
c_z = config.pairwise_state_dim
self.pairwise_positional_embedding = EsmFoldRelativePosition(config)
self.blocks = nn.ModuleList([EsmFoldTriangularSelfAttentionBlock(config) for _ in range(config.num_blocks)])
self.recycle_bins = 15
self.recycle_s_norm = nn.LayerNorm(c_s)
self.recycle_z_norm = nn.LayerNorm(c_z)
self.recycle_disto = nn.Embedding(self.recycle_bins, c_z)
self.recycle_disto.weight[0].detach().zero_()
self.structure_module = EsmFoldStructureModule(config.structure_module)
self.trunk2sm_s = nn.Linear(c_s, config.structure_module.sequence_dim)
self.trunk2sm_z = nn.Linear(c_z, config.structure_module.pairwise_dim)
self.chunk_size = config.chunk_size
def set_chunk_size(self, chunk_size):
# This parameter means the axial attention will be computed
# in a chunked manner. This should make the memory used more or less O(L) instead of O(L^2).
# It's equivalent to running a for loop over chunks of the dimension we're iterative over,
# where the chunk_size is the size of the chunks, so 128 would mean to parse 128-length chunks.
self.chunk_size = chunk_size
def forward(self, seq_feats, pair_feats, true_aa, residx, mask, no_recycles):
"""
Inputs:
seq_feats: B x L x C tensor of sequence features pair_feats: B x L x L x C tensor of pair features residx: B
x L long tensor giving the position in the sequence mask: B x L boolean tensor indicating valid residues
Output:
predicted_structure: B x L x (num_atoms_per_residue * 3) tensor wrapped in a Coordinates object
"""
device = seq_feats.device
s_s_0 = seq_feats
s_z_0 = pair_feats
if no_recycles is None:
no_recycles = self.config.max_recycles
else:
if no_recycles < 0:
raise ValueError("Number of recycles must not be negative.")
no_recycles += 1 # First 'recycle' is just the standard forward pass through the model.
def trunk_iter(s, z, residx, mask):
z = z + self.pairwise_positional_embedding(residx, mask=mask)
for block in self.blocks:
s, z = block(s, z, mask=mask, residue_index=residx, chunk_size=self.chunk_size)
return s, z
s_s = s_s_0
s_z = s_z_0
recycle_s = torch.zeros_like(s_s)
recycle_z = torch.zeros_like(s_z)
recycle_bins = torch.zeros(*s_z.shape[:-1], device=device, dtype=torch.int64)
for recycle_idx in range(no_recycles):
with ContextManagers([] if recycle_idx == no_recycles - 1 else [torch.no_grad()]):
# === Recycling ===
recycle_s = self.recycle_s_norm(recycle_s.detach()).to(device)
recycle_z = self.recycle_z_norm(recycle_z.detach()).to(device)
recycle_z += self.recycle_disto(recycle_bins.detach()).to(device)
s_s, s_z = trunk_iter(s_s_0 + recycle_s, s_z_0 + recycle_z, residx, mask)
# === Structure module ===
structure = self.structure_module(
{"single": self.trunk2sm_s(s_s), "pair": self.trunk2sm_z(s_z)},
true_aa,
mask.float(),
)
recycle_s = s_s
recycle_z = s_z
# Distogram needs the N, CA, C coordinates, and bin constants same as alphafold.
recycle_bins = EsmFoldingTrunk.distogram(
structure["positions"][-1][:, :, :3],
3.375,
21.375,
self.recycle_bins,
)
structure["s_s"] = s_s
structure["s_z"] = s_z
return structure
@staticmethod
def distogram(coords, min_bin, max_bin, num_bins):
# Coords are [... L x 3 x 3], where it's [N, CA, C] x 3 coordinates.
boundaries = torch.linspace(
min_bin,
max_bin,
num_bins - 1,
device=coords.device,
)
boundaries = boundaries**2
N, CA, C = [x.squeeze(-2) for x in coords.chunk(3, dim=-2)]
# Infer CB coordinates.
b = CA - N
c = C - CA
a = b.cross(c, dim=-1)
CB = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + CA
dists = (CB[..., None, :, :] - CB[..., :, None, :]).pow(2).sum(dim=-1, keepdims=True)
bins = torch.sum(dists > boundaries, dim=-1) # [..., L, L]
return bins
# TODO Add information to the docstring about any methods that convert to PDB format, or otherwise prepare
# the outputs for downstream use.
@add_start_docstrings(
"""
ESMForProteinFolding is the HuggingFace port of the original ESMFold model. It consists of an ESM-2 "stem" followed
by a protein folding "head", although unlike most other output heads, this "head" is similar in size and runtime to
the rest of the model combined! It outputs a dictionary containing predicted structural information about the input
protein(s).
""",
ESM_START_DOCSTRING,
)
class EsmForProteinFolding(EsmPreTrainedModel):
_no_split_modules = ["EsmFoldStructureModule", "EsmFoldTriangularSelfAttentionBlock"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.distogram_bins = 64
self.esm = EsmModel(config, add_pooling_layer=False)
self.esm.requires_grad_(False)
if self.config.esmfold_config.fp16_esm:
self.esm.half()
self.esm_feats = self.config.hidden_size
self.esm_attns = self.config.num_hidden_layers * self.config.num_attention_heads
self.esm_layers = self.config.num_hidden_layers
self.register_buffer("af2_to_esm", self._af2_to_esm_from_vocab_list(config.vocab_list))
self.esm_s_combine = nn.Parameter(torch.zeros(self.esm_layers + 1))
trunk_config = self.config.esmfold_config.trunk
c_s = trunk_config.sequence_state_dim
c_z = trunk_config.pairwise_state_dim
self.esm_s_mlp = nn.Sequential(
LayerNorm(self.esm_feats),
nn.Linear(self.esm_feats, c_s),
nn.ReLU(),
nn.Linear(c_s, c_s),
)
# 0 is padding, N is unknown residues, N + 1 is mask.
self.n_tokens_embed = residue_constants.restype_num + 3
self.pad_idx = 0
self.unk_idx = self.n_tokens_embed - 2
self.mask_idx = self.n_tokens_embed - 1
self.esm_dict_cls_idx = self.config.vocab_list.index("<cls>")
self.esm_dict_mask_idx = self.config.vocab_list.index("<mask>")
self.esm_dict_eos_idx = self.config.vocab_list.index("<eos>")
self.esm_dict_padding_idx = self.config.vocab_list.index("<pad>")
if self.config.esmfold_config.embed_aa:
self.embedding = nn.Embedding(self.n_tokens_embed, c_s, padding_idx=0)
self.trunk = EsmFoldingTrunk(trunk_config)
self.distogram_head = nn.Linear(c_z, self.distogram_bins)
self.ptm_head = nn.Linear(c_z, self.distogram_bins)
self.lm_head = nn.Linear(c_s, self.n_tokens_embed)
self.lddt_bins = 50
structure_module_config = trunk_config.structure_module
self.lddt_head = nn.Sequential(
nn.LayerNorm(structure_module_config.sequence_dim),
nn.Linear(structure_module_config.sequence_dim, self.config.esmfold_config.lddt_head_hid_dim),
nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, self.config.esmfold_config.lddt_head_hid_dim),
nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, 37 * self.lddt_bins),
)
@staticmethod
def _af2_to_esm_from_vocab_list(vocab_list: List[str]) -> torch.Tensor:
# Remember that t is shifted from residue_constants by 1 (0 is padding).
esm_reorder = [vocab_list.index("<pad>")] + [vocab_list.index(v) for v in residue_constants.restypes_with_x]
return torch.tensor(esm_reorder)
@add_start_docstrings_to_model_forward(ESMFOLD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=EsmForProteinFoldingOutput, config_class=EsmConfig)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
masking_pattern: Optional[torch.Tensor] = None,
num_recycles: Optional[int] = None,
) -> EsmForProteinFoldingOutput:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, EsmForProteinFolding
>>> model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
>>> inputs = tokenizer(["MLKNVQVQLV"], return_tensors="pt", add_special_tokens=False) # A tiny random peptide
>>> outputs = model(**inputs)
>>> folded_positions = outputs.positions
```
"""
cfg = self.config.esmfold_config
aa = input_ids # B x L
B = aa.shape[0]
L = aa.shape[1]
device = input_ids.device
if attention_mask is None:
attention_mask = torch.ones_like(aa, device=device)
if position_ids is None:
position_ids = torch.arange(L, device=device).expand_as(input_ids)
# === ESM ===
esmaa = self.af2_idx_to_esm_idx(aa, attention_mask)
if masking_pattern is not None:
masked_aa, esmaa, mlm_targets = self.bert_mask(aa, esmaa, attention_mask, masking_pattern)
else:
masked_aa = aa
mlm_targets = None
# We get sequence and pair representations from whatever version of ESM /
# configuration we are using. The sequence representation esm_s is always
# present. The pair embedding esm_z may be present depending on the
# configuration of the model. If esm_z is not used by the model then it
# is returned as None here.
esm_s = self.compute_language_model_representations(esmaa)
# Convert esm_s and esm_z, if present, to the precision used by the trunk and
# the structure module. These tensors may be a lower precision if, for example,
# we're running the language model in fp16 precision.
esm_s = esm_s.to(self.esm_s_combine.dtype)
if cfg.esm_ablate_sequence:
esm_s = esm_s * 0
esm_s = esm_s.detach()
# === preprocessing ===
esm_s = (self.esm_s_combine.softmax(0).unsqueeze(0) @ esm_s).squeeze(2)
s_s_0 = self.esm_s_mlp(esm_s)
s_z_0 = s_s_0.new_zeros(B, L, L, cfg.trunk.pairwise_state_dim)
if self.config.esmfold_config.embed_aa:
s_s_0 += self.embedding(masked_aa)
structure: dict = self.trunk(s_s_0, s_z_0, aa, position_ids, attention_mask, no_recycles=num_recycles)
# Documenting what we expect:
structure = {
k: v
for k, v in structure.items()
if k
in [
"s_z",
"s_s",
"frames",
"sidechain_frames",
"unnormalized_angles",
"angles",
"positions",
"states",
]
}
# Add BERT mask for the loss to use, if available.
if mlm_targets:
structure["mlm_targets"] = mlm_targets
disto_logits = self.distogram_head(structure["s_z"])
disto_logits = (disto_logits + disto_logits.transpose(1, 2)) / 2
structure["distogram_logits"] = disto_logits
lm_logits = self.lm_head(structure["s_s"])
structure["lm_logits"] = lm_logits
structure["aatype"] = aa
make_atom14_masks(structure)
# Of course, this doesn't respect the true mask because it doesn't know about it...
# We're not going to properly mask change of index tensors:
# "residx_atom14_to_atom37",
# "residx_atom37_to_atom14",
for k in [
"atom14_atom_exists",
"atom37_atom_exists",
]:
structure[k] *= attention_mask.unsqueeze(-1)
structure["residue_index"] = position_ids
lddt_head = self.lddt_head(structure["states"]).reshape(structure["states"].shape[0], B, L, -1, self.lddt_bins)
structure["lddt_head"] = lddt_head
plddt = categorical_lddt(lddt_head[-1], bins=self.lddt_bins)
structure["plddt"] = plddt
ptm_logits = self.ptm_head(structure["s_z"])
structure["ptm_logits"] = ptm_logits
structure["ptm"] = compute_tm(ptm_logits, max_bin=31, no_bins=self.distogram_bins)
structure.update(compute_predicted_aligned_error(ptm_logits, max_bin=31, no_bins=self.distogram_bins))
return EsmForProteinFoldingOutput(**structure)
def af2_idx_to_esm_idx(self, aa, mask):
# avoid indexing on different devices
if self.af2_to_esm.device != aa.device:
self.af2_to_esm = self.af2_to_esm.to(aa.device)
aa = (aa + 1).masked_fill(mask != 1, 0)
return self.af2_to_esm[aa]
def compute_language_model_representations(self, esmaa: torch.Tensor) -> torch.Tensor:
device = next(self.parameters()).device
B, L = esmaa.shape # B = batch size, L = sequence length.
if self.config.esmfold_config.bypass_lm:
esm_s = torch.zeros(B, L, self.esm_s_combine.size[0], -1, self.esm_feats, device=device)
return esm_s
bosi, eosi = self.esm_dict_cls_idx, self.esm_dict_eos_idx
bos = esmaa.new_full((B, 1), bosi)
eos = esmaa.new_full((B, 1), self.esm_dict_padding_idx)
esmaa = torch.cat([bos, esmaa, eos], dim=1)
# Use the first padding index as eos during inference.
esmaa[range(B), (esmaa != 1).sum(1)] = eosi
# _, esm_z, esm_s = self.esm(esmaa, return_pairs=self.config.esmfold_config.use_esm_attn_map)
# Because we do not support use_esm_attn_map in the HF port as it is not used in any public models,
# esm_z is always None
esm_hidden_states = self.esm(esmaa, attention_mask=esmaa != 1, output_hidden_states=True)["hidden_states"]
esm_s = torch.stack(esm_hidden_states, dim=2)
esm_s = esm_s[:, 1:-1] # B, L, nLayers, C
return esm_s
def bert_mask(self, aa, esmaa, mask, pattern):
new_aa = aa.clone()
target = aa.clone()
new_esmaa = esmaa.clone()
new_aa[pattern == 1] = self.mask_idx
target[pattern != 1] = 0
new_esmaa[pattern == 1] = self.esm_dict_mask_idx
return new_aa, new_esmaa, target
@torch.no_grad()
def infer(
self,
seqs: Union[str, List[str]],
position_ids=None,
):
if isinstance(seqs, str):
lst = [seqs]
else:
lst = seqs
# Returns the raw outputs of the model given an input sequence.
device = next(self.parameters()).device
aatype = collate_dense_tensors(
[
torch.from_numpy(
residue_constants.sequence_to_onehot(
sequence=seq,
mapping=residue_constants.restype_order_with_x,
map_unknown_to_x=True,
)
)
.to(device)
.argmax(dim=1)
for seq in lst
]
) # B=1 x L
mask = collate_dense_tensors([aatype.new_ones(len(seq)) for seq in lst])
position_ids = (
torch.arange(aatype.shape[1], device=device).expand(len(lst), -1)
if position_ids is None
else position_ids.to(device)
)
if position_ids.ndim == 1:
position_ids = position_ids.unsqueeze(0)
return self.forward(
aatype,
mask,
position_ids=position_ids,
)
@staticmethod
def output_to_pdb(output: Dict) -> List[str]:
"""Returns the pbd (file) string from the model given the model output."""
output = {k: v.to("cpu").numpy() for k, v in output.items()}
pdbs = []
final_atom_positions = atom14_to_atom37(output["positions"][-1], output)
final_atom_mask = output["atom37_atom_exists"]
for i in range(output["aatype"].shape[0]):
aa = output["aatype"][i]
pred_pos = final_atom_positions[i]
mask = final_atom_mask[i]
resid = output["residue_index"][i] + 1
pred = OFProtein(
aatype=aa,
atom_positions=pred_pos,
atom_mask=mask,
residue_index=resid,
b_factors=output["plddt"][i],
)
pdbs.append(to_pdb(pred))
return pdbs
def infer_pdb(self, seqs, *args, **kwargs) -> str:
"""Returns the pdb (file) string from the model given an input sequence."""
assert isinstance(seqs, str)
output = self.infer(seqs, *args, **kwargs)
return self.output_to_pdb(output)[0]
def infer_pdbs(self, seqs: List[str], *args, **kwargs) -> List[str]:
"""Returns the pdb (file) string from the model given an input sequence."""
output = self.infer(seqs, *args, **kwargs)
return self.output_to_pdb(output)
__all__ = ["EsmForProteinFolding", "EsmFoldPreTrainedModel"]
```
|
==================================================================================================================================
SOURCE CODE FILE: modeling_tf_esm.py
LINES: 1
SIZE: 67.50 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\modeling_tf_esm.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ESM model."""
from __future__ import annotations
import os
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithPastAndCrossAttentions,
TFBaseModelOutputWithPoolingAndCrossAttentions,
TFMaskedLMOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras,
shape_list,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, stable_softmax
from ...utils import logging
from .configuration_esm import EsmConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
_CONFIG_FOR_DOC = "EsmConfig"
def rotate_half(x):
x1, x2 = tf.split(x, 2, axis=-1)
return tf.concat((-x2, x1), axis=-1)
def apply_rotary_pos_emb(x, cos, sin):
cos = cos[:, :, : tf.shape(x)[-2], :]
sin = sin[:, :, : tf.shape(x)[-2], :]
return (x * cos) + (rotate_half(x) * sin)
def symmetrize(x):
"Make layer symmetric in final two dimensions, used for contact prediction."
return x + tf.linalg.matrix_transpose(x) # Transposes last two dimensions only
def average_product_correct(x):
"Perform average product correct, used for contact prediction."
a1 = tf.reduce_sum(x, -1, keepdims=True)
a2 = tf.reduce_sum(x, -2, keepdims=True)
a12 = tf.reduce_sum(x, (-1, -2), keepdims=True)
avg = a1 * a2
avg = avg / a12
normalized = x - avg
return normalized
class TFRotaryEmbedding(keras.layers.Layer):
"""
Rotary position embeddings based on those in
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
matrices which depend on their relative positions.
"""
def __init__(self, dim: int, name=None):
super().__init__(name=name)
# Matt: The PyTorch version of this layer does a lot of work to cache values, but we just rely on TF compilation
# and/or XLA to sort out constants like that. It actually may not seem like this layer needs to be stateful at
# all when we benefit from TF compilation, but it does. The reason is that self.inv_freq is a buffer in the
# original implementation, but all the shared ESM checkpoints were trained with fp16 params. This means that
# the inv_freq tensor was stored as a float16, and we need to replicate those lower-precision values or our
# models give different outputs from the original.
self.dim = dim
def build(self, input_shape):
super().build(input_shape)
self.inv_freq = self.add_weight(
"inv_freq", shape=(self.dim // 2,), dtype=tf.float32, initializer=get_initializer(1.0), trainable=False
)
self.inv_freq.assign(
1.0 / (10000 ** (tf.range(start=0, limit=self.dim, delta=2, dtype=tf.float32) / self.dim))
)
def _compute_cos_sin(self, x, seq_dimension=2):
seq_len = tf.shape(x)[seq_dimension]
t = tf.range(seq_len, dtype=self.inv_freq.dtype)
freqs = tf.einsum("i, j -> ij", t, self.inv_freq) # Outer multiplication
emb = tf.concat((freqs, freqs), axis=-1)[None, None, :, :]
return tf.cos(emb), tf.sin(emb)
def call(self, q: tf.Tensor, k: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
cos_emb, sin_emb = self._compute_cos_sin(k, seq_dimension=-2)
return (
apply_rotary_pos_emb(q, cos_emb, sin_emb),
apply_rotary_pos_emb(k, cos_emb, sin_emb),
)
class TFEsmContactPredictionHead(keras.layers.Layer):
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
def __init__(
self,
in_features: int,
bias=True,
eos_idx: int = 2,
name=None,
):
super().__init__(name=name)
self.eos_idx = eos_idx
self.in_features = in_features
self.regression = keras.layers.Dense(1, use_bias=bias, activation="sigmoid", name="regression")
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "regression", None) is not None:
with tf.name_scope(self.regression.name):
self.regression.build((None, self.in_features))
def call(self, tokens, attentions):
# remove eos token attentions
eos_mask = tf.cast(tokens != self.eos_idx, attentions.dtype)
eos_mask = tf.expand_dims(eos_mask, 1) * tf.expand_dims(eos_mask, 2)
attentions = attentions * eos_mask[:, None, None, :, :]
attentions = attentions[..., :-1, :-1]
# remove cls token attentions
attentions = attentions[..., 1:, 1:]
batch_size, layers, heads, seqlen, _ = shape_list(attentions)
attentions = tf.reshape(attentions, (batch_size, layers * heads, seqlen, seqlen))
# features: batch x channels x tokens x tokens (symmetric)
attentions = average_product_correct(symmetrize(attentions))
attentions = tf.transpose(attentions, perm=(0, 2, 3, 1))
return tf.squeeze(self.regression(attentions), 3)
class TFEsmEmbeddings(keras.layers.Layer):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config, name=None):
super().__init__(name=name)
self.word_embeddings = keras.layers.Embedding(
config.vocab_size,
config.hidden_size,
embeddings_initializer=get_initializer(config.initializer_range),
name="word_embeddings",
)
self.position_embeddings = keras.layers.Embedding(
config.max_position_embeddings,
config.hidden_size,
embeddings_initializer=get_initializer(config.initializer_range),
name="position_embeddings",
)
if config.emb_layer_norm_before:
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
else:
self.layer_norm = None
# Matt: I think this line was copied incorrectly from BERT, disabling for now
# self.dropout = Dropout(config.hidden_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.position_ids = tf.range(config.max_position_embeddings)[None, :]
self.padding_idx = config.pad_token_id
self.token_dropout = config.token_dropout
self.mask_token_id = config.mask_token_id
self.config = config
def call(
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = self.word_embeddings(input_ids)
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
# embedding_scale factor here.
embeddings = inputs_embeds
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
# masked tokens are treated as if they were selected for input dropout and zeroed out.
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
if self.token_dropout:
embeddings = tf.where((input_ids == self.mask_token_id)[:, :, None], 0.0, embeddings)
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
src_lengths = tf.cast(tf.reduce_sum(attention_mask, axis=-1), tf.float32)
masked_tokens = input_ids == self.mask_token_id
mask_ratio_observed = tf.math.count_nonzero(masked_tokens, dtype=tf.float32, axis=-1) / src_lengths
embeddings = embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
if self.layer_norm is not None:
embeddings = self.layer_norm(embeddings)
if attention_mask is not None:
embeddings = embeddings * tf.cast(tf.expand_dims(attention_mask, -1), embeddings.dtype)
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
# embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: tf.Tensor
Returns: tf.Tensor
"""
input_shape = shape_list(inputs_embeds)[:-1]
sequence_length = input_shape[1]
position_ids = tf.range(
start=self.padding_idx + 1, limit=sequence_length + self.padding_idx + 1, dtype=tf.int64
)
return tf.broadcast_to(tf.expand_dims(position_ids, 0), input_shape)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "word_embeddings", None) is not None:
with tf.name_scope(self.word_embeddings.name):
self.word_embeddings.build(None)
if getattr(self, "position_embeddings", None) is not None:
with tf.name_scope(self.position_embeddings.name):
self.position_embeddings.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
class TFEsmSelfAttention(keras.layers.Layer):
def __init__(self, config, position_embedding_type=None, name=None):
super().__init__(name=name)
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
self.rotary_embeddings = None
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = keras.layers.Embedding(
2 * config.max_position_embeddings - 1,
self.attention_head_size,
embeddings_initializer=get_initializer(config.initializer_range),
)
elif self.position_embedding_type == "rotary":
self.rotary_embeddings = TFRotaryEmbedding(dim=self.attention_head_size, name="rotary_embeddings")
self.is_decoder = config.is_decoder
self.config = config
def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor:
new_x_shape = shape_list(x)[:-1] + [self.num_attention_heads, self.attention_head_size]
x = tf.reshape(x, new_x_shape)
return tf.transpose(x, perm=(0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
encoder_hidden_states: tf.Tensor | None = None,
encoder_attention_mask: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
output_attentions: Optional[bool] = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
# ESM code and fix rotary embeddings.
query_layer = query_layer * self.attention_head_size**-0.5
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
if self.position_embedding_type == "rotary":
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = shape_list(hidden_states)[1]
position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), -1)
position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), 0)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = attention_probs @ value_layer
context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3))
new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size]
context_layer = tf.reshape(context_layer, new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
if getattr(self, "rotary_embeddings", None) is not None:
with tf.name_scope(self.rotary_embeddings.name):
self.rotary_embeddings.build(None)
class TFEsmSelfOutput(keras.layers.Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states, input_tensor, training=False):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states += input_tensor
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFEsmAttention(keras.layers.Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.self = TFEsmSelfAttention(config, name="self")
self.output_layer = TFEsmSelfOutput(config, name="output")
self.pruned_heads = set()
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.config = config
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
training=False,
):
hidden_states_ln = self.LayerNorm(hidden_states)
self_outputs = self.self(
hidden_states_ln,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
training,
)
attention_output = self.output_layer(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self", None) is not None:
with tf.name_scope(self.self.name):
self.self.build(None)
if getattr(self, "output_layer", None) is not None:
with tf.name_scope(self.output_layer.name):
self.output_layer.build(None)
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
class TFEsmIntermediate(keras.layers.Layer):
def __init__(self, config: EsmConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size,
kernel_initializer=get_initializer(config.initializer_range),
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = tf.nn.gelu(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFEsmOutput(keras.layers.Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states, input_tensor, training=False):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states += input_tensor
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
class TFEsmLayer(keras.layers.Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = TFEsmAttention(config, name="attention")
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = TFEsmAttention(config)
self.intermediate = TFEsmIntermediate(config, name="intermediate")
self.output_layer = TFEsmOutput(config, name="output")
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.config = config
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
training=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
training=training,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise AttributeError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
" with cross-attention layers by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
training=training,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layernorm_output = self.LayerNorm(attention_output)
intermediate_output = self.intermediate(hidden_states=layernorm_output)
layer_output = self.output_layer(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + outputs # add attentions if we output them
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "output_layer", None) is not None:
with tf.name_scope(self.output_layer.name):
self.output_layer.build(None)
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
class TFEsmEncoder(keras.layers.Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.config = config
self.layer = [TFEsmLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
self.emb_layer_norm_after = keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="emb_layer_norm_after"
)
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
training=False,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if self.emb_layer_norm_after:
hidden_states = self.emb_layer_norm_after(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "emb_layer_norm_after", None) is not None:
with tf.name_scope(self.emb_layer_norm_after.name):
self.emb_layer_norm_after.build([None, None, self.config.hidden_size])
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Esm
class TFEsmPooler(keras.layers.Layer):
def __init__(self, config: EsmConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFEsmPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EsmConfig
base_model_prefix = "esm"
ESM_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Keras [Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a
regular Keras model and refer to the TF/Keras documentation for all matters related to general usage and behavior.
Parameters:
config ([`EsmConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
ESM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
ESM_START_DOCSTRING,
)
class TFEsmMainLayer(keras.layers.Layer):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config, add_pooling_layer=True, name=None, **kwargs):
super().__init__(name=name, **kwargs)
self.config = config
self.is_decoder = config.is_decoder
self.embeddings = TFEsmEmbeddings(config, name="embeddings")
self.encoder = TFEsmEncoder(config, name="encoder")
self.pooler = TFEsmPooler(config, name="pooler") if add_pooling_layer else None
self.contact_head = TFEsmContactPredictionHead(
in_features=self.config.num_hidden_layers * self.config.num_attention_heads, bias=True, name="contact_head"
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
if getattr(self, "contact_head", None) is not None:
with tf.name_scope(self.contact_head.name):
self.contact_head.build(None)
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.word_embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_key_values_length = 0
past_key_values = [None] * len(self.encoder.layer)
else:
past_key_values_length = shape_list(past_key_values[0][0])[-2]
if attention_mask is None:
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
embedding_output = self.embeddings(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
training=training,
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask_shape = shape_list(attention_mask)
mask_seq_length = seq_length + past_key_values_length
# Copied from `modeling_tf_t5.py`
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
if self.is_decoder:
seq_ids = tf.range(mask_seq_length)
causal_mask = tf.less_equal(
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
seq_ids[None, :, None],
)
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
extended_attention_mask = causal_mask * attention_mask[:, None, :]
attention_mask_shape = shape_list(extended_attention_mask)
extended_attention_mask = tf.reshape(
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
)
if past_key_values[0] is not None:
# attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
else:
extended_attention_mask = tf.reshape(
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
if self.is_decoder and encoder_attention_mask is not None:
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
if num_dims_encoder_attention_mask == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if num_dims_encoder_attention_mask == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def predict_contacts(self, tokens, attention_mask):
attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
attns = tf.stack(attns, axis=1) # Matches the original model layout
# In the original model, attentions for padding tokens are completely zeroed out.
# This makes no difference most of the time because the other tokens won't attend to them,
# but it does for the contact prediction task, which takes attentions as input,
# so we have to mimic that here.
attention_mask = tf.cast(attention_mask, attns.dtype)
attns *= attention_mask[:, None, None, None]
attns *= attention_mask[:, None, None, :, None]
return self.contact_head(tokens, attns)
@add_start_docstrings(
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
ESM_START_DOCSTRING,
)
class TFEsmModel(TFEsmPreTrainedModel):
def __init__(self, config: EsmConfig, add_pooling_layer=True, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.esm = TFEsmMainLayer(config, add_pooling_layer=add_pooling_layer, name="esm")
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
"""
outputs = self.esm(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def predict_contacts(self, tokens, attention_mask):
return self.esm.predict_contacts(tokens, attention_mask)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "esm", None) is not None:
with tf.name_scope(self.esm.name):
self.esm.build(None)
@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
class TFEsmForMaskedLM(TFEsmPreTrainedModel, TFMaskedLanguageModelingLoss):
_keys_to_ignore_on_load_missing = [r"position_ids"]
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
self.lm_head = TFEsmLMHead(config, name="lm_head")
if config.tie_word_embeddings:
# Ensure word embeddings are built so that we actually have something to tie
with tf.name_scope(os.path.join(self._name_scope(), "esm", "embeddings", "word_embeddings")):
self.esm.embeddings.word_embeddings.build((None, None))
self.lm_head.decoder = self.esm.embeddings.word_embeddings.weights[0]
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
def get_lm_head(self):
return self.lm_head
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
masked_lm_loss = self.hf_compute_loss(labels=labels, logits=prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return TFMaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def predict_contacts(self, tokens, attention_mask):
return self.esm.predict_contacts(tokens, attention_mask)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "esm", None) is not None:
with tf.name_scope(self.esm.name):
self.esm.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
class TFEsmLMHead(keras.layers.Layer):
"""ESM Head for masked language modeling."""
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
if config.tie_word_embeddings:
self.decoder = None
else:
self.decoder = keras.layers.Dense(
config.vocab_size,
kernel_initializer=get_initializer(config.initializer_range),
name="decoder",
use_bias=False,
)
self.config = config
def build(self, input_shape=None):
# Separate bias to match the PT model and allow weight cross-loading to work
# Put it in the build so it gets the right name when adding it as a weight
if self.built:
return
self.built = True
self.bias = self.add_weight("bias", shape=(self.config.vocab_size,), initializer="zeros", trainable=True)
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "decoder", None) is not None and not self.config.tie_word_embeddings:
with tf.name_scope(self.decoder.name):
self.decoder.build([None, None, self.config.hidden_size])
def get_bias(self):
return {"bias": self.bias}
def call(self, features):
x = self.dense(features)
x = tf.nn.gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
if self.config.tie_word_embeddings:
x = tf.matmul(x, self.decoder, transpose_b=True) + self.bias
else:
x = self.decoder(x) + self.bias
return x
@add_start_docstrings(
"""
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
ESM_START_DOCSTRING,
)
class TFEsmForSequenceClassification(TFEsmPreTrainedModel, TFSequenceClassificationLoss):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
self.classifier = TFEsmClassificationHead(config, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "esm", None) is not None:
with tf.name_scope(self.esm.name):
self.esm.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
ESM_START_DOCSTRING,
)
class TFEsmForTokenClassification(TFEsmPreTrainedModel, TFTokenClassificationLoss):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(config.num_labels, name="classifier")
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "esm", None) is not None:
with tf.name_scope(self.esm.name):
self.esm.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
class TFEsmClassificationHead(keras.layers.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.out_proj = keras.layers.Dense(
config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
activation="linear",
name="out_proj",
)
self.config = config
def call(self, features, training=False):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x, training=training)
x = self.dense(x)
x = self.dropout(x, training=training)
x = self.out_proj(x)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.config.hidden_size])
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: tf.Tensor x:
Returns: tf.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = tf.cast(input_ids != padding_idx, tf.int64)
incremental_indices = (tf.cumsum(mask, axis=1) + past_key_values_length) * mask
return incremental_indices + padding_idx
__all__ = [
"TFEsmForMaskedLM",
"TFEsmForSequenceClassification",
"TFEsmForTokenClassification",
"TFEsmModel",
"TFEsmPreTrainedModel",
]
```
|
==========================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.44 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\openfold_utils\__init__.py
ENCODING: utf-8
```py
from .chunk_utils import chunk_layer
from .data_transforms import make_atom14_masks
from .feats import atom14_to_atom37, frames_and_literature_positions_to_atom14_pos, torsion_angles_to_frames
from .loss import compute_predicted_aligned_error, compute_tm
from .protein import Protein as OFProtein
from .protein import to_pdb
from .rigid_utils import Rigid, Rotation
from .tensor_utils import dict_multimap, flatten_final_dims, permute_final_dims
```
|
=============================================================================================================================================
SOURCE CODE FILE: chunk_utils.py
LINES: 1
SIZE: 14.05 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\openfold_utils\chunk_utils.py
ENCODING: utf-8
```py
# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import torch
from .tensor_utils import tensor_tree_map, tree_map
def _fetch_dims(tree: Union[dict, list, tuple, torch.Tensor]) -> List[Tuple[int, ...]]:
shapes = []
if isinstance(tree, dict):
for v in tree.values():
shapes.extend(_fetch_dims(v))
elif isinstance(tree, (list, tuple)):
for t in tree:
shapes.extend(_fetch_dims(t))
elif isinstance(tree, torch.Tensor):
shapes.append(tree.shape)
else:
raise TypeError("Not supported")
return shapes
@torch.jit.ignore
def _flat_idx_to_idx(flat_idx: int, dims: Tuple[int, ...]) -> Tuple[int, ...]:
idx = []
for d in reversed(dims):
idx.append(flat_idx % d)
flat_idx = flat_idx // d
return tuple(reversed(idx))
@torch.jit.ignore
def _get_minimal_slice_set(
start: Sequence[int],
end: Sequence[int],
dims: Sequence[int],
start_edges: Optional[Sequence[bool]] = None,
end_edges: Optional[Sequence[bool]] = None,
) -> List[Tuple[slice, ...]]:
"""
Produces an ordered sequence of tensor slices that, when used in sequence on a tensor with shape dims, yields
tensors that contain every leaf in the contiguous range [start, end]. Care is taken to yield a short sequence of
slices, and perhaps even the shortest possible (I'm pretty sure it's the latter).
end is INCLUSIVE.
"""
# start_edges and end_edges both indicate whether, starting from any given
# dimension, the start/end index is at the top/bottom edge of the
# corresponding tensor, modeled as a tree
def reduce_edge_list(l: List[bool]) -> None:
tally = True
for i in range(len(l)):
reversed_idx = -1 * (i + 1)
l[reversed_idx] &= tally
tally = l[reversed_idx]
if start_edges is None:
start_edges = [s == 0 for s in start]
reduce_edge_list(start_edges)
if end_edges is None:
end_edges = [e == (d - 1) for e, d in zip(end, dims)]
reduce_edge_list(end_edges)
# Base cases. Either start/end are empty and we're done, or the final,
# one-dimensional tensor can be simply sliced
if len(start) == 0:
return [()]
elif len(start) == 1:
return [(slice(start[0], end[0] + 1),)]
slices: List[Tuple[slice, ...]] = []
path_list: List[slice] = []
# Dimensions common to start and end can be selected directly
for s, e in zip(start, end):
if s == e:
path_list.append(slice(s, s + 1))
else:
break
path: Tuple[slice, ...] = tuple(path_list)
divergence_idx = len(path)
# start == end, and we're done
if divergence_idx == len(dims):
return [path]
def upper() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
sdi = start[divergence_idx]
return tuple(
path + (slice(sdi, sdi + 1),) + s
for s in _get_minimal_slice_set(
start[divergence_idx + 1 :],
[d - 1 for d in dims[divergence_idx + 1 :]],
dims[divergence_idx + 1 :],
start_edges=start_edges[divergence_idx + 1 :],
end_edges=[True for _ in end_edges[divergence_idx + 1 :]],
)
)
def lower() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
edi = end[divergence_idx]
return tuple(
path + (slice(edi, edi + 1),) + s
for s in _get_minimal_slice_set(
[0 for _ in start[divergence_idx + 1 :]],
end[divergence_idx + 1 :],
dims[divergence_idx + 1 :],
start_edges=[True for _ in start_edges[divergence_idx + 1 :]],
end_edges=end_edges[divergence_idx + 1 :],
)
)
# If both start and end are at the edges of the subtree rooted at
# divergence_idx, we can just select the whole subtree at once
if start_edges[divergence_idx] and end_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx], end[divergence_idx] + 1),))
# If just start is at the edge, we can grab almost all of the subtree,
# treating only the ragged bottom edge as an edge case
elif start_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx], end[divergence_idx]),))
slices.extend(lower())
# Analogous to the previous case, but the top is ragged this time
elif end_edges[divergence_idx]:
slices.extend(upper())
slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] + 1),))
# If both sides of the range are ragged, we need to handle both sides
# separately. If there's contiguous meat in between them, we can index it
# in one big chunk
else:
slices.extend(upper())
middle_ground = end[divergence_idx] - start[divergence_idx]
if middle_ground > 1:
slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx]),))
slices.extend(lower())
return slices
@torch.jit.ignore
def _chunk_slice(t: torch.Tensor, flat_start: int, flat_end: int, no_batch_dims: int) -> torch.Tensor:
"""
Equivalent to
t.reshape((-1,) + t.shape[no_batch_dims:])[flat_start:flat_end]
but without the need for the initial reshape call, which can be memory-intensive in certain situations. The only
reshape operations in this function are performed on sub-tensors that scale with (flat_end - flat_start), the chunk
size.
"""
batch_dims = t.shape[:no_batch_dims]
start_idx = list(_flat_idx_to_idx(flat_start, batch_dims))
# _get_minimal_slice_set is inclusive
end_idx = list(_flat_idx_to_idx(flat_end - 1, batch_dims))
# Get an ordered list of slices to perform
slices = _get_minimal_slice_set(
start_idx,
end_idx,
batch_dims,
)
sliced_tensors = [t[s] for s in slices]
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors])
def chunk_layer(
layer: Callable,
inputs: Dict[str, Any],
chunk_size: int,
no_batch_dims: int,
low_mem: bool = False,
_out: Any = None,
_add_into_out: bool = False,
) -> Any:
"""
Implements the "chunking" procedure described in section 1.11.8.
Layer outputs and inputs are assumed to be simple "pytrees," consisting only of (arbitrarily nested) lists, tuples,
and dicts with torch.Tensor leaves.
Args:
layer:
The layer to be applied chunk-wise
inputs:
A (non-nested) dictionary of keyworded inputs. All leaves must be tensors and must share the same batch
dimensions.
chunk_size:
The number of sub-batches per chunk. If multiple batch dimensions are specified, a "sub-batch" is defined
as a single indexing of all batch dimensions simultaneously (s.t. the number of sub-batches is the product
of the batch dimensions).
no_batch_dims:
How many of the initial dimensions of each input tensor can be considered batch dimensions.
low_mem:
Avoids flattening potentially large input tensors. Unnecessary in most cases, and is ever so slightly
slower than the default setting.
Returns:
The reassembled output of the layer on the inputs.
"""
if not (len(inputs) > 0):
raise ValueError("Must provide at least one input")
initial_dims = [shape[:no_batch_dims] for shape in _fetch_dims(inputs)]
orig_batch_dims = tuple([max(s) for s in zip(*initial_dims)])
def _prep_inputs(t: torch.Tensor) -> torch.Tensor:
if not low_mem:
if not sum(t.shape[:no_batch_dims]) == no_batch_dims:
t = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
t = t.reshape(-1, *t.shape[no_batch_dims:])
else:
t = t.expand(orig_batch_dims + t.shape[no_batch_dims:])
return t
prepped_inputs: Dict[str, Any] = tensor_tree_map(_prep_inputs, inputs)
prepped_outputs = None
if _out is not None:
prepped_outputs = tensor_tree_map(lambda t: t.view([-1] + list(t.shape[no_batch_dims:])), _out)
flat_batch_dim = 1
for d in orig_batch_dims:
flat_batch_dim *= d
no_chunks = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
def _select_chunk(t: torch.Tensor) -> torch.Tensor:
return t[i : i + chunk_size] if t.shape[0] != 1 else t
i = 0
out = prepped_outputs
for _ in range(no_chunks):
# Chunk the input
if not low_mem:
select_chunk = _select_chunk
else:
select_chunk = partial(
_chunk_slice,
flat_start=i,
flat_end=min(flat_batch_dim, i + chunk_size),
no_batch_dims=len(orig_batch_dims),
)
chunks: Dict[str, Any] = tensor_tree_map(select_chunk, prepped_inputs)
# Run the layer on the chunk
output_chunk = layer(**chunks)
# Allocate space for the output
if out is None:
out = tensor_tree_map(lambda t: t.new_zeros((flat_batch_dim,) + t.shape[1:]), output_chunk)
# Put the chunk in its pre-allocated space
if isinstance(output_chunk, dict):
def assign(d1: dict, d2: dict) -> None:
for k, v in d1.items():
if isinstance(v, dict):
assign(v, d2[k])
else:
if _add_into_out:
v[i : i + chunk_size] += d2[k]
else:
v[i : i + chunk_size] = d2[k]
assign(out, output_chunk)
elif isinstance(output_chunk, tuple):
for x1, x2 in zip(out, output_chunk):
if _add_into_out:
x1[i : i + chunk_size] += x2
else:
x1[i : i + chunk_size] = x2
elif isinstance(output_chunk, torch.Tensor):
if _add_into_out:
out[i : i + chunk_size] += output_chunk
else:
out[i : i + chunk_size] = output_chunk
else:
raise TypeError("Not supported")
i += chunk_size
out = tensor_tree_map(lambda t: t.view(orig_batch_dims + t.shape[1:]), out)
return out
class ChunkSizeTuner:
def __init__(
self,
# Heuristically, runtimes for most of the modules in the network
# plateau earlier than this on all GPUs I've run the model on.
max_chunk_size: int = 512,
):
self.max_chunk_size = max_chunk_size
self.cached_chunk_size: Optional[int] = None
self.cached_arg_data: Optional[tuple] = None
def _determine_favorable_chunk_size(self, fn: Callable, args: tuple, min_chunk_size: int) -> int:
logging.info("Tuning chunk size...")
if min_chunk_size >= self.max_chunk_size:
return min_chunk_size
candidates: List[int] = [2**l for l in range(int(math.log(self.max_chunk_size, 2)) + 1)]
candidates = [c for c in candidates if c > min_chunk_size]
candidates = [min_chunk_size] + candidates
candidates[-1] += 4
def test_chunk_size(chunk_size: int) -> bool:
try:
with torch.no_grad():
fn(*args, chunk_size=chunk_size)
return True
except RuntimeError:
return False
min_viable_chunk_size_index = 0
i = len(candidates) - 1
while i > min_viable_chunk_size_index:
viable = test_chunk_size(candidates[i])
if not viable:
i = (min_viable_chunk_size_index + i) // 2
else:
min_viable_chunk_size_index = i
i = (i + len(candidates) - 1) // 2
return candidates[min_viable_chunk_size_index]
def _compare_arg_caches(self, ac1: Iterable, ac2: Iterable) -> bool:
consistent = True
for a1, a2 in zip(ac1, ac2):
assert type(ac1) is type(ac2)
if isinstance(ac1, (list, tuple)):
consistent &= self._compare_arg_caches(a1, a2)
elif isinstance(ac1, dict):
a1_items = [v for _, v in sorted(a1.items(), key=lambda x: x[0])]
a2_items = [v for _, v in sorted(a2.items(), key=lambda x: x[0])]
consistent &= self._compare_arg_caches(a1_items, a2_items)
else:
consistent &= a1 == a2
return consistent
def tune_chunk_size(
self,
representative_fn: Callable,
args: tuple,
min_chunk_size: int,
) -> int:
consistent = True
arg_data: tuple = tree_map(lambda a: a.shape if isinstance(a, torch.Tensor) else a, args, object)
if self.cached_arg_data is not None:
# If args have changed shape/value, we need to re-tune
assert len(self.cached_arg_data) == len(arg_data)
consistent = self._compare_arg_caches(self.cached_arg_data, arg_data)
else:
# Otherwise, we can reuse the precomputed value
consistent = False
if not consistent:
self.cached_chunk_size = self._determine_favorable_chunk_size(
representative_fn,
args,
min_chunk_size,
)
self.cached_arg_data = arg_data
assert self.cached_chunk_size is not None
return self.cached_chunk_size
```
|
=================================================================================================================================================
SOURCE CODE FILE: data_transforms.py
LINES: 1
SIZE: 3.68 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\openfold_utils\data_transforms.py
ENCODING: utf-8
```py
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def make_atom14_masks(protein: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Construct denser atom positions (14 dimensions instead of 37)."""
restype_atom14_to_atom37_list = []
restype_atom37_to_atom14_list = []
restype_atom14_mask_list = []
for rt in rc.restypes:
atom_names = rc.restype_name_to_atom14_names[rc.restype_1to3[rt]]
restype_atom14_to_atom37_list.append([(rc.atom_order[name] if name else 0) for name in atom_names])
atom_name_to_idx14 = {name: i for i, name in enumerate(atom_names)}
restype_atom37_to_atom14_list.append(
[(atom_name_to_idx14[name] if name in atom_name_to_idx14 else 0) for name in rc.atom_types]
)
restype_atom14_mask_list.append([(1.0 if name else 0.0) for name in atom_names])
# Add dummy mapping for restype 'UNK'
restype_atom14_to_atom37_list.append([0] * 14)
restype_atom37_to_atom14_list.append([0] * 37)
restype_atom14_mask_list.append([0.0] * 14)
restype_atom14_to_atom37 = torch.tensor(
restype_atom14_to_atom37_list,
dtype=torch.int32,
device=protein["aatype"].device,
)
restype_atom37_to_atom14 = torch.tensor(
restype_atom37_to_atom14_list,
dtype=torch.int32,
device=protein["aatype"].device,
)
restype_atom14_mask = torch.tensor(
restype_atom14_mask_list,
dtype=torch.float32,
device=protein["aatype"].device,
)
protein_aatype = protein["aatype"].to(torch.long)
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
residx_atom14_to_atom37 = restype_atom14_to_atom37[protein_aatype]
residx_atom14_mask = restype_atom14_mask[protein_aatype]
protein["atom14_atom_exists"] = residx_atom14_mask
protein["residx_atom14_to_atom37"] = residx_atom14_to_atom37.long()
# create the gather indices for mapping back
residx_atom37_to_atom14 = restype_atom37_to_atom14[protein_aatype]
protein["residx_atom37_to_atom14"] = residx_atom37_to_atom14.long()
# create the corresponding mask
restype_atom37_mask = torch.zeros([21, 37], dtype=torch.float32, device=protein["aatype"].device)
for restype, restype_letter in enumerate(rc.restypes):
restype_name = rc.restype_1to3[restype_letter]
atom_names = rc.residue_atoms[restype_name]
for atom_name in atom_names:
atom_type = rc.atom_order[atom_name]
restype_atom37_mask[restype, atom_type] = 1
residx_atom37_mask = restype_atom37_mask[protein_aatype]
protein["atom37_atom_exists"] = residx_atom37_mask
return protein
def make_atom14_masks_np(batch: Dict[str, torch.Tensor]) -> Dict[str, np.ndarray]:
batch = tree_map(lambda n: torch.tensor(n, device=batch["aatype"].device), batch, np.ndarray)
out = tensor_tree_map(lambda t: np.array(t), make_atom14_masks(batch))
return out
```
|
=======================================================================================================================================
SOURCE CODE FILE: feats.py
LINES: 1
SIZE: 8.17 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\openfold_utils\feats.py
ENCODING: utf-8
```py
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Tuple, overload
import torch
import torch.types
from torch import nn
from . import residue_constants as rc
from .rigid_utils import Rigid, Rotation
from .tensor_utils import batched_gather
@overload
def pseudo_beta_fn(aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: None) -> torch.Tensor: ...
@overload
def pseudo_beta_fn(
aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]: ...
def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks):
is_gly = aatype == rc.restype_order["G"]
ca_idx = rc.atom_order["CA"]
cb_idx = rc.atom_order["CB"]
pseudo_beta = torch.where(
is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3),
all_atom_positions[..., ca_idx, :],
all_atom_positions[..., cb_idx, :],
)
if all_atom_masks is not None:
pseudo_beta_mask = torch.where(
is_gly,
all_atom_masks[..., ca_idx],
all_atom_masks[..., cb_idx],
)
return pseudo_beta, pseudo_beta_mask
else:
return pseudo_beta
def atom14_to_atom37(atom14: torch.Tensor, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
atom37_data = batched_gather(
atom14,
batch["residx_atom37_to_atom14"],
dim=-2,
no_batch_dims=len(atom14.shape[:-2]),
)
atom37_data = atom37_data * batch["atom37_atom_exists"][..., None]
return atom37_data
def build_template_angle_feat(template_feats: Dict[str, torch.Tensor]) -> torch.Tensor:
template_aatype = template_feats["template_aatype"]
torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"]
alt_torsion_angles_sin_cos = template_feats["template_alt_torsion_angles_sin_cos"]
torsion_angles_mask = template_feats["template_torsion_angles_mask"]
template_angle_feat = torch.cat(
[
nn.functional.one_hot(template_aatype, 22),
torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14),
alt_torsion_angles_sin_cos.reshape(*alt_torsion_angles_sin_cos.shape[:-2], 14),
torsion_angles_mask,
],
dim=-1,
)
return template_angle_feat
def build_template_pair_feat(
batch: Dict[str, torch.Tensor],
min_bin: torch.types.Number,
max_bin: torch.types.Number,
no_bins: int,
use_unit_vector: bool = False,
eps: float = 1e-20,
inf: float = 1e8,
) -> torch.Tensor:
template_mask = batch["template_pseudo_beta_mask"]
template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
# Compute distogram (this seems to differ slightly from Alg. 5)
tpb = batch["template_pseudo_beta"]
dgram = torch.sum((tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True)
lower = torch.linspace(min_bin, max_bin, no_bins, device=tpb.device) ** 2
upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1)
dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype)
to_concat = [dgram, template_mask_2d[..., None]]
aatype_one_hot: torch.LongTensor = nn.functional.one_hot(
batch["template_aatype"],
rc.restype_num + 2,
)
n_res = batch["template_aatype"].shape[-1]
to_concat.append(aatype_one_hot[..., None, :, :].expand(*aatype_one_hot.shape[:-2], n_res, -1, -1))
to_concat.append(aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1))
n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]]
rigids = Rigid.make_transform_from_reference(
n_xyz=batch["template_all_atom_positions"][..., n, :],
ca_xyz=batch["template_all_atom_positions"][..., ca, :],
c_xyz=batch["template_all_atom_positions"][..., c, :],
eps=eps,
)
points = rigids.get_trans()[..., None, :, :]
rigid_vec = rigids[..., None].invert_apply(points)
inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1))
t_aa_masks = batch["template_all_atom_mask"]
template_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c]
template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
inv_distance_scalar = inv_distance_scalar * template_mask_2d
unit_vector = rigid_vec * inv_distance_scalar[..., None]
if not use_unit_vector:
unit_vector = unit_vector * 0.0
to_concat.extend(torch.unbind(unit_vector[..., None, :], dim=-1))
to_concat.append(template_mask_2d[..., None])
act = torch.cat(to_concat, dim=-1)
act = act * template_mask_2d[..., None]
return act
def build_extra_msa_feat(batch: Dict[str, torch.Tensor]) -> torch.Tensor:
msa_1hot: torch.LongTensor = nn.functional.one_hot(batch["extra_msa"], 23)
msa_feat = [
msa_1hot,
batch["extra_has_deletion"].unsqueeze(-1),
batch["extra_deletion_value"].unsqueeze(-1),
]
return torch.cat(msa_feat, dim=-1)
def torsion_angles_to_frames(
r: Rigid,
alpha: torch.Tensor,
aatype: torch.Tensor,
rrgdf: torch.Tensor,
) -> Rigid:
# [*, N, 8, 4, 4]
default_4x4 = rrgdf[aatype, ...]
# [*, N, 8] transformations, i.e.
# One [*, N, 8, 3, 3] rotation matrix and
# One [*, N, 8, 3] translation matrix
default_r = r.from_tensor_4x4(default_4x4)
bb_rot = alpha.new_zeros((*((1,) * len(alpha.shape[:-1])), 2))
bb_rot[..., 1] = 1
# [*, N, 8, 2]
alpha = torch.cat([bb_rot.expand(*alpha.shape[:-2], -1, -1), alpha], dim=-2)
# [*, N, 8, 3, 3]
# Produces rotation matrices of the form:
# [
# [1, 0 , 0 ],
# [0, a_2,-a_1],
# [0, a_1, a_2]
# ]
# This follows the original code rather than the supplement, which uses
# different indices.
all_rots = alpha.new_zeros(default_r.get_rots().get_rot_mats().shape)
all_rots[..., 0, 0] = 1
all_rots[..., 1, 1] = alpha[..., 1]
all_rots[..., 1, 2] = -alpha[..., 0]
all_rots[..., 2, 1:] = alpha
all_frames = default_r.compose(Rigid(Rotation(rot_mats=all_rots), None))
chi2_frame_to_frame = all_frames[..., 5]
chi3_frame_to_frame = all_frames[..., 6]
chi4_frame_to_frame = all_frames[..., 7]
chi1_frame_to_bb = all_frames[..., 4]
chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame)
chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame)
chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame)
all_frames_to_bb = Rigid.cat(
[
all_frames[..., :5],
chi2_frame_to_bb.unsqueeze(-1),
chi3_frame_to_bb.unsqueeze(-1),
chi4_frame_to_bb.unsqueeze(-1),
],
dim=-1,
)
all_frames_to_global = r[..., None].compose(all_frames_to_bb)
return all_frames_to_global
def frames_and_literature_positions_to_atom14_pos(
r: Rigid,
aatype: torch.Tensor,
default_frames: torch.Tensor,
group_idx: torch.Tensor,
atom_mask: torch.Tensor,
lit_positions: torch.Tensor,
) -> torch.Tensor:
# [*, N, 14]
group_mask = group_idx[aatype, ...]
# [*, N, 14, 8]
group_mask_one_hot: torch.LongTensor = nn.functional.one_hot(
group_mask,
num_classes=default_frames.shape[-3],
)
# [*, N, 14, 8]
t_atoms_to_global = r[..., None, :] * group_mask_one_hot
# [*, N, 14]
t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1))
# [*, N, 14, 1]
atom_mask = atom_mask[aatype, ...].unsqueeze(-1)
# [*, N, 14, 3]
lit_positions = lit_positions[aatype, ...]
pred_positions = t_atoms_to_global.apply(lit_positions)
pred_positions = pred_positions * atom_mask
return pred_positions
```
|
======================================================================================================================================
SOURCE CODE FILE: loss.py
LINES: 1
SIZE: 3.62 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\openfold_utils\loss.py
ENCODING: utf-8
```py
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional, Tuple
import torch
def _calculate_bin_centers(boundaries: torch.Tensor) -> torch.Tensor:
step = boundaries[1] - boundaries[0]
bin_centers = boundaries + step / 2
bin_centers = torch.cat([bin_centers, (bin_centers[-1] + step).unsqueeze(-1)], dim=0)
return bin_centers
def _calculate_expected_aligned_error(
alignment_confidence_breaks: torch.Tensor,
aligned_distance_error_probs: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
bin_centers = _calculate_bin_centers(alignment_confidence_breaks)
return (
torch.sum(aligned_distance_error_probs * bin_centers, dim=-1),
bin_centers[-1],
)
def compute_predicted_aligned_error(
logits: torch.Tensor,
max_bin: int = 31,
no_bins: int = 64,
**kwargs,
) -> Dict[str, torch.Tensor]:
"""Computes aligned confidence metrics from logits.
Args:
logits: [*, num_res, num_res, num_bins] the logits output from
PredictedAlignedErrorHead.
max_bin: Maximum bin value
no_bins: Number of bins
Returns:
aligned_confidence_probs: [*, num_res, num_res, num_bins] the predicted
aligned error probabilities over bins for each residue pair.
predicted_aligned_error: [*, num_res, num_res] the expected aligned distance
error for each pair of residues.
max_predicted_aligned_error: [*] the maximum predicted error possible.
"""
boundaries = torch.linspace(0, max_bin, steps=(no_bins - 1), device=logits.device)
aligned_confidence_probs = torch.nn.functional.softmax(logits, dim=-1)
predicted_aligned_error, max_predicted_aligned_error = _calculate_expected_aligned_error(
alignment_confidence_breaks=boundaries,
aligned_distance_error_probs=aligned_confidence_probs,
)
return {
"aligned_confidence_probs": aligned_confidence_probs,
"predicted_aligned_error": predicted_aligned_error,
"max_predicted_aligned_error": max_predicted_aligned_error,
}
def compute_tm(
logits: torch.Tensor,
residue_weights: Optional[torch.Tensor] = None,
max_bin: int = 31,
no_bins: int = 64,
eps: float = 1e-8,
**kwargs,
) -> torch.Tensor:
if residue_weights is None:
residue_weights = logits.new_ones(logits.shape[-2])
boundaries = torch.linspace(0, max_bin, steps=(no_bins - 1), device=logits.device)
bin_centers = _calculate_bin_centers(boundaries)
torch.sum(residue_weights)
n = logits.shape[-2]
clipped_n = max(n, 19)
d0 = 1.24 * (clipped_n - 15) ** (1.0 / 3) - 1.8
probs = torch.nn.functional.softmax(logits, dim=-1)
tm_per_bin = 1.0 / (1 + (bin_centers**2) / (d0**2))
predicted_tm_term = torch.sum(probs * tm_per_bin, dim=-1)
normed_residue_mask = residue_weights / (eps + residue_weights.sum())
per_alignment = torch.sum(predicted_tm_term * normed_residue_mask, dim=-1)
weighted = per_alignment * residue_weights
argmax = (weighted == torch.max(weighted)).nonzero()[0]
return per_alignment[tuple(argmax)]
```
|
=========================================================================================================================================
SOURCE CODE FILE: protein.py
LINES: 6
SIZE: 11.22 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\openfold_utils\protein.py
ENCODING: utf-8
```py
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Protein data type."""
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
FeatureDict = Mapping[str, np.ndarray]
ModelOutput = Mapping[str, Any] # Is a nested dict.
PICO_TO_ANGSTROM = 0.01
@dataclasses.dataclass(frozen=True)
class Protein:
"""Protein structure representation."""
# Cartesian coordinates of atoms in angstroms. The atom types correspond to
# residue_constants.atom_types, i.e. the first three are N, CA, CB.
atom_positions: np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
aatype: np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
atom_mask: np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
residue_index: np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
b_factors: np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
chain_index: Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
remark: Optional[str] = None
# Templates used to generate this protein (prediction-only)
parents: Optional[Sequence[str]] = None
# Chain corresponding to each parent
parents_chain_index: Optional[Sequence[int]] = None
def from_proteinnet_string(proteinnet_str: str) -> Protein:
tag_re = r"(\[[A-Z]+\]\n)"
tags: List[str] = [tag.strip() for tag in re.split(tag_re, proteinnet_str) if len(tag) > 0]
groups: Iterator[Tuple[str, List[str]]] = zip(tags[0::2], [l.split("\n") for l in tags[1::2]])
atoms: List[str] = ["N", "CA", "C"]
aatype = None
atom_positions = None
atom_mask = None
for g in groups:
if "[PRIMARY]" == g[0]:
seq = g[1][0].strip()
for i in range(len(seq)):
if seq[i] not in residue_constants.restypes:
seq[i] = "X" # FIXME: strings are immutable
aatype = np.array(
[residue_constants.restype_order.get(res_symbol, residue_constants.restype_num) for res_symbol in seq]
)
elif "[TERTIARY]" == g[0]:
tertiary: List[List[float]] = []
for axis in range(3):
tertiary.append(list(map(float, g[1][axis].split())))
tertiary_np = np.array(tertiary)
atom_positions = np.zeros((len(tertiary[0]) // 3, residue_constants.atom_type_num, 3)).astype(np.float32)
for i, atom in enumerate(atoms):
atom_positions[:, residue_constants.atom_order[atom], :] = np.transpose(tertiary_np[:, i::3])
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
mask = np.array(list(map({"-": 0, "+": 1}.get, g[1][0].strip())))
atom_mask = np.zeros(
(
len(mask),
residue_constants.atom_type_num,
)
).astype(np.float32)
for i, atom in enumerate(atoms):
atom_mask[:, residue_constants.atom_order[atom]] = 1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=atom_positions,
atom_mask=atom_mask,
aatype=aatype,
residue_index=np.arange(len(aatype)),
b_factors=None,
)
def get_pdb_headers(prot: Protein, chain_id: int = 0) -> List[str]:
pdb_headers: List[str] = []
remark = prot.remark
if remark is not None:
pdb_headers.append(f"REMARK {remark}")
parents = prot.parents
parents_chain_index = prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
parents = [p for i, p in zip(parents_chain_index, parents) if i == chain_id]
if parents is None or len(parents) == 0:
parents = ["N/A"]
pdb_headers.append(f"PARENT {' '.join(parents)}")
return pdb_headers
def add_pdb_headers(prot: Protein, pdb_str: str) -> str:
"""Add pdb headers to an existing PDB string. Useful during multi-chain
recycling
"""
out_pdb_lines: List[str] = []
lines = pdb_str.split("\n")
remark = prot.remark
if remark is not None:
out_pdb_lines.append(f"REMARK {remark}")
parents_per_chain: List[List[str]]
if prot.parents is not None and len(prot.parents) > 0:
parents_per_chain = []
if prot.parents_chain_index is not None:
parent_dict: Dict[str, List[str]] = {}
for p, i in zip(prot.parents, prot.parents_chain_index):
parent_dict.setdefault(str(i), [])
parent_dict[str(i)].append(p)
max_idx = max([int(chain_idx) for chain_idx in parent_dict])
for i in range(max_idx + 1):
chain_parents = parent_dict.get(str(i), ["N/A"])
parents_per_chain.append(chain_parents)
else:
parents_per_chain.append(list(prot.parents))
else:
parents_per_chain = [["N/A"]]
def make_parent_line(p: Sequence[str]) -> str:
return f"PARENT {' '.join(p)}"
out_pdb_lines.append(make_parent_line(parents_per_chain[0]))
chain_counter = 0
for i, l in enumerate(lines):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(l)
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(parents_per_chain):
chain_parents = parents_per_chain[chain_counter]
else:
chain_parents = ["N/A"]
out_pdb_lines.append(make_parent_line(chain_parents))
return "\n".join(out_pdb_lines)
def to_pdb(prot: Protein) -> str:
"""Converts a `Protein` instance to a PDB string.
Args:
prot: The protein to convert to PDB.
Returns:
PDB string.
"""
restypes = residue_constants.restypes + ["X"]
def res_1to3(r: int) -> str:
return residue_constants.restype_1to3.get(restypes[r], "UNK")
atom_types = residue_constants.atom_types
pdb_lines: List[str] = []
atom_mask = prot.atom_mask
aatype = prot.aatype
atom_positions = prot.atom_positions
residue_index = prot.residue_index.astype(np.int32)
b_factors = prot.b_factors
chain_index = prot.chain_index
if np.any(aatype > residue_constants.restype_num):
raise ValueError("Invalid aatypes.")
headers = get_pdb_headers(prot)
if len(headers) > 0:
pdb_lines.extend(headers)
n = aatype.shape[0]
atom_index = 1
prev_chain_index = 0
chain_tags = string.ascii_uppercase
chain_tag = None
# Add all atom sites.
for i in range(n):
res_name_3 = res_1to3(aatype[i])
for atom_name, pos, mask, b_factor in zip(atom_types, atom_positions[i], atom_mask[i], b_factors[i]):
if mask < 0.5:
continue
record_type = "ATOM"
name = atom_name if len(atom_name) == 4 else f" {atom_name}"
alt_loc = ""
insertion_code = ""
occupancy = 1.00
element = atom_name[0] # Protein supports only C, N, O, S, this works.
charge = ""
chain_tag = "A"
if chain_index is not None:
chain_tag = chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
atom_line = (
f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
f"{res_name_3:>3} {chain_tag:>1}"
f"{residue_index[i]:>4}{insertion_code:>1} "
f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
f"{occupancy:>6.2f}{b_factor:>6.2f} "
f"{element:>2}{charge:>2}"
)
pdb_lines.append(atom_line)
atom_index += 1
should_terminate = i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
should_terminate = True
prev_chain_index = chain_index[i + 1]
if should_terminate:
# Close the chain.
chain_end = "TER"
chain_termination_line = (
f"{chain_end:<6}{atom_index:>5} {res_1to3(aatype[i]):>3} {chain_tag:>1}{residue_index[i]:>4}"
)
pdb_lines.append(chain_termination_line)
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(prot, prev_chain_index))
pdb_lines.append("END")
pdb_lines.append("")
return "\n".join(pdb_lines)
def ideal_atom_mask(prot: Protein) -> np.ndarray:
"""Computes an ideal atom mask.
`Protein.atom_mask` typically is defined according to the atoms that are reported in the PDB. This function
computes a mask according to heavy atoms that should be present in the given sequence of amino acids.
Args:
prot: `Protein` whose fields are `numpy.ndarray` objects.
Returns:
An ideal atom mask.
"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def from_prediction(
features: FeatureDict,
result: ModelOutput,
b_factors: Optional[np.ndarray] = None,
chain_index: Optional[np.ndarray] = None,
remark: Optional[str] = None,
parents: Optional[Sequence[str]] = None,
parents_chain_index: Optional[Sequence[int]] = None,
) -> Protein:
"""Assembles a protein from a prediction.
Args:
features: Dictionary holding model inputs.
result: Dictionary holding model outputs.
b_factors: (Optional) B-factors to use for the protein.
chain_index: (Optional) Chain indices for multi-chain predictions
remark: (Optional) Remark about the prediction
parents: (Optional) List of template names
Returns:
A protein instance.
"""
return Protein(
aatype=features["aatype"],
atom_positions=result["final_atom_positions"],
atom_mask=result["final_atom_mask"],
residue_index=features["residue_index"] + 1,
b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"]),
chain_index=chain_index,
remark=remark,
parents=parents,
parents_chain_index=parents_chain_index,
)
```
|
===================================================================================================================================================
SOURCE CODE FILE: residue_constants.py
LINES: 1
SIZE: 37.08 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\openfold_utils\residue_constants.py
ENCODING: utf-8
```py
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Constants used in AlphaFold."""
import collections
import copy
import functools
from importlib import resources
from typing import Dict, List, Mapping, Sequence, Tuple
import numpy as np
# Internal import (35fd).
# Distance from one CA to next CA [trans configuration: omega = 180].
ca_ca = 3.80209737096
# Format: The list for each AA type contains chi1, chi2, chi3, chi4 in
# this order (or a relevant subset from chi1 onwards). ALA and GLY don't have
# chi angles so their chi angle lists are empty.
chi_angles_atoms: Dict[str, List[List[str]]] = {
"ALA": [],
# Chi5 in arginine is always 0 +- 5 degrees, so ignore it.
"ARG": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "NE"], ["CG", "CD", "NE", "CZ"]],
"ASN": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "OD1"]],
"ASP": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "OD1"]],
"CYS": [["N", "CA", "CB", "SG"]],
"GLN": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "OE1"]],
"GLU": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "OE1"]],
"GLY": [],
"HIS": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "ND1"]],
"ILE": [["N", "CA", "CB", "CG1"], ["CA", "CB", "CG1", "CD1"]],
"LEU": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
"LYS": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"], ["CB", "CG", "CD", "CE"], ["CG", "CD", "CE", "NZ"]],
"MET": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "SD"], ["CB", "CG", "SD", "CE"]],
"PHE": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
"PRO": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD"]],
"SER": [["N", "CA", "CB", "OG"]],
"THR": [["N", "CA", "CB", "OG1"]],
"TRP": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
"TYR": [["N", "CA", "CB", "CG"], ["CA", "CB", "CG", "CD1"]],
"VAL": [["N", "CA", "CB", "CG1"]],
}
# If chi angles given in fixed-length array, this matrix determines how to mask
# them for each AA type. The order is as per restype_order (see below).
chi_angles_mask: List[List[float]] = [
[0.0, 0.0, 0.0, 0.0], # ALA
[1.0, 1.0, 1.0, 1.0], # ARG
[1.0, 1.0, 0.0, 0.0], # ASN
[1.0, 1.0, 0.0, 0.0], # ASP
[1.0, 0.0, 0.0, 0.0], # CYS
[1.0, 1.0, 1.0, 0.0], # GLN
[1.0, 1.0, 1.0, 0.0], # GLU
[0.0, 0.0, 0.0, 0.0], # GLY
[1.0, 1.0, 0.0, 0.0], # HIS
[1.0, 1.0, 0.0, 0.0], # ILE
[1.0, 1.0, 0.0, 0.0], # LEU
[1.0, 1.0, 1.0, 1.0], # LYS
[1.0, 1.0, 1.0, 0.0], # MET
[1.0, 1.0, 0.0, 0.0], # PHE
[1.0, 1.0, 0.0, 0.0], # PRO
[1.0, 0.0, 0.0, 0.0], # SER
[1.0, 0.0, 0.0, 0.0], # THR
[1.0, 1.0, 0.0, 0.0], # TRP
[1.0, 1.0, 0.0, 0.0], # TYR
[1.0, 0.0, 0.0, 0.0], # VAL
]
# The following chi angles are pi periodic: they can be rotated by a multiple
# of pi without affecting the structure.
chi_pi_periodic: List[List[float]] = [
[0.0, 0.0, 0.0, 0.0], # ALA
[0.0, 0.0, 0.0, 0.0], # ARG
[0.0, 0.0, 0.0, 0.0], # ASN
[0.0, 1.0, 0.0, 0.0], # ASP
[0.0, 0.0, 0.0, 0.0], # CYS
[0.0, 0.0, 0.0, 0.0], # GLN
[0.0, 0.0, 1.0, 0.0], # GLU
[0.0, 0.0, 0.0, 0.0], # GLY
[0.0, 0.0, 0.0, 0.0], # HIS
[0.0, 0.0, 0.0, 0.0], # ILE
[0.0, 0.0, 0.0, 0.0], # LEU
[0.0, 0.0, 0.0, 0.0], # LYS
[0.0, 0.0, 0.0, 0.0], # MET
[0.0, 1.0, 0.0, 0.0], # PHE
[0.0, 0.0, 0.0, 0.0], # PRO
[0.0, 0.0, 0.0, 0.0], # SER
[0.0, 0.0, 0.0, 0.0], # THR
[0.0, 0.0, 0.0, 0.0], # TRP
[0.0, 1.0, 0.0, 0.0], # TYR
[0.0, 0.0, 0.0, 0.0], # VAL
[0.0, 0.0, 0.0, 0.0], # UNK
]
# Atoms positions relative to the 8 rigid groups, defined by the pre-omega, phi,
# psi and chi angles:
# 0: 'backbone group',
# 1: 'pre-omega-group', (empty)
# 2: 'phi-group', (currently empty, because it defines only hydrogens)
# 3: 'psi-group',
# 4,5,6,7: 'chi1,2,3,4-group'
# The atom positions are relative to the axis-end-atom of the corresponding
# rotation axis. The x-axis is in direction of the rotation axis, and the y-axis
# is defined such that the dihedral-angle-definiting atom (the last entry in
# chi_angles_atoms above) is in the xy-plane (with a positive y-coordinate).
# format: [atomname, group_idx, rel_position]
rigid_group_atom_positions: Dict[str, List[Tuple[str, int, Tuple[float, float, float]]]] = {
"ALA": [
("N", 0, (-0.525, 1.363, 0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.526, -0.000, -0.000)),
("CB", 0, (-0.529, -0.774, -1.205)),
("O", 3, (0.627, 1.062, 0.000)),
],
"ARG": [
("N", 0, (-0.524, 1.362, -0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.525, -0.000, -0.000)),
("CB", 0, (-0.524, -0.778, -1.209)),
("O", 3, (0.626, 1.062, 0.000)),
("CG", 4, (0.616, 1.390, -0.000)),
("CD", 5, (0.564, 1.414, 0.000)),
("NE", 6, (0.539, 1.357, -0.000)),
("NH1", 7, (0.206, 2.301, 0.000)),
("NH2", 7, (2.078, 0.978, -0.000)),
("CZ", 7, (0.758, 1.093, -0.000)),
],
"ASN": [
("N", 0, (-0.536, 1.357, 0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.526, -0.000, -0.000)),
("CB", 0, (-0.531, -0.787, -1.200)),
("O", 3, (0.625, 1.062, 0.000)),
("CG", 4, (0.584, 1.399, 0.000)),
("ND2", 5, (0.593, -1.188, 0.001)),
("OD1", 5, (0.633, 1.059, 0.000)),
],
"ASP": [
("N", 0, (-0.525, 1.362, -0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.527, 0.000, -0.000)),
("CB", 0, (-0.526, -0.778, -1.208)),
("O", 3, (0.626, 1.062, -0.000)),
("CG", 4, (0.593, 1.398, -0.000)),
("OD1", 5, (0.610, 1.091, 0.000)),
("OD2", 5, (0.592, -1.101, -0.003)),
],
"CYS": [
("N", 0, (-0.522, 1.362, -0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.524, 0.000, 0.000)),
("CB", 0, (-0.519, -0.773, -1.212)),
("O", 3, (0.625, 1.062, -0.000)),
("SG", 4, (0.728, 1.653, 0.000)),
],
"GLN": [
("N", 0, (-0.526, 1.361, -0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.526, 0.000, 0.000)),
("CB", 0, (-0.525, -0.779, -1.207)),
("O", 3, (0.626, 1.062, -0.000)),
("CG", 4, (0.615, 1.393, 0.000)),
("CD", 5, (0.587, 1.399, -0.000)),
("NE2", 6, (0.593, -1.189, -0.001)),
("OE1", 6, (0.634, 1.060, 0.000)),
],
"GLU": [
("N", 0, (-0.528, 1.361, 0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.526, -0.000, -0.000)),
("CB", 0, (-0.526, -0.781, -1.207)),
("O", 3, (0.626, 1.062, 0.000)),
("CG", 4, (0.615, 1.392, 0.000)),
("CD", 5, (0.600, 1.397, 0.000)),
("OE1", 6, (0.607, 1.095, -0.000)),
("OE2", 6, (0.589, -1.104, -0.001)),
],
"GLY": [
("N", 0, (-0.572, 1.337, 0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.517, -0.000, -0.000)),
("O", 3, (0.626, 1.062, -0.000)),
],
"HIS": [
("N", 0, (-0.527, 1.360, 0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.525, 0.000, 0.000)),
("CB", 0, (-0.525, -0.778, -1.208)),
("O", 3, (0.625, 1.063, 0.000)),
("CG", 4, (0.600, 1.370, -0.000)),
("CD2", 5, (0.889, -1.021, 0.003)),
("ND1", 5, (0.744, 1.160, -0.000)),
("CE1", 5, (2.030, 0.851, 0.002)),
("NE2", 5, (2.145, -0.466, 0.004)),
],
"ILE": [
("N", 0, (-0.493, 1.373, -0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.527, -0.000, -0.000)),
("CB", 0, (-0.536, -0.793, -1.213)),
("O", 3, (0.627, 1.062, -0.000)),
("CG1", 4, (0.534, 1.437, -0.000)),
("CG2", 4, (0.540, -0.785, -1.199)),
("CD1", 5, (0.619, 1.391, 0.000)),
],
"LEU": [
("N", 0, (-0.520, 1.363, 0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.525, -0.000, -0.000)),
("CB", 0, (-0.522, -0.773, -1.214)),
("O", 3, (0.625, 1.063, -0.000)),
("CG", 4, (0.678, 1.371, 0.000)),
("CD1", 5, (0.530, 1.430, -0.000)),
("CD2", 5, (0.535, -0.774, 1.200)),
],
"LYS": [
("N", 0, (-0.526, 1.362, -0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.526, 0.000, 0.000)),
("CB", 0, (-0.524, -0.778, -1.208)),
("O", 3, (0.626, 1.062, -0.000)),
("CG", 4, (0.619, 1.390, 0.000)),
("CD", 5, (0.559, 1.417, 0.000)),
("CE", 6, (0.560, 1.416, 0.000)),
("NZ", 7, (0.554, 1.387, 0.000)),
],
"MET": [
("N", 0, (-0.521, 1.364, -0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.525, 0.000, 0.000)),
("CB", 0, (-0.523, -0.776, -1.210)),
("O", 3, (0.625, 1.062, -0.000)),
("CG", 4, (0.613, 1.391, -0.000)),
("SD", 5, (0.703, 1.695, 0.000)),
("CE", 6, (0.320, 1.786, -0.000)),
],
"PHE": [
("N", 0, (-0.518, 1.363, 0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.524, 0.000, -0.000)),
("CB", 0, (-0.525, -0.776, -1.212)),
("O", 3, (0.626, 1.062, -0.000)),
("CG", 4, (0.607, 1.377, 0.000)),
("CD1", 5, (0.709, 1.195, -0.000)),
("CD2", 5, (0.706, -1.196, 0.000)),
("CE1", 5, (2.102, 1.198, -0.000)),
("CE2", 5, (2.098, -1.201, -0.000)),
("CZ", 5, (2.794, -0.003, -0.001)),
],
"PRO": [
("N", 0, (-0.566, 1.351, -0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.527, -0.000, 0.000)),
("CB", 0, (-0.546, -0.611, -1.293)),
("O", 3, (0.621, 1.066, 0.000)),
("CG", 4, (0.382, 1.445, 0.0)),
# ('CD', 5, (0.427, 1.440, 0.0)),
("CD", 5, (0.477, 1.424, 0.0)), # manually made angle 2 degrees larger
],
"SER": [
("N", 0, (-0.529, 1.360, -0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.525, -0.000, -0.000)),
("CB", 0, (-0.518, -0.777, -1.211)),
("O", 3, (0.626, 1.062, -0.000)),
("OG", 4, (0.503, 1.325, 0.000)),
],
"THR": [
("N", 0, (-0.517, 1.364, 0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.526, 0.000, -0.000)),
("CB", 0, (-0.516, -0.793, -1.215)),
("O", 3, (0.626, 1.062, 0.000)),
("CG2", 4, (0.550, -0.718, -1.228)),
("OG1", 4, (0.472, 1.353, 0.000)),
],
"TRP": [
("N", 0, (-0.521, 1.363, 0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.525, -0.000, 0.000)),
("CB", 0, (-0.523, -0.776, -1.212)),
("O", 3, (0.627, 1.062, 0.000)),
("CG", 4, (0.609, 1.370, -0.000)),
("CD1", 5, (0.824, 1.091, 0.000)),
("CD2", 5, (0.854, -1.148, -0.005)),
("CE2", 5, (2.186, -0.678, -0.007)),
("CE3", 5, (0.622, -2.530, -0.007)),
("NE1", 5, (2.140, 0.690, -0.004)),
("CH2", 5, (3.028, -2.890, -0.013)),
("CZ2", 5, (3.283, -1.543, -0.011)),
("CZ3", 5, (1.715, -3.389, -0.011)),
],
"TYR": [
("N", 0, (-0.522, 1.362, 0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.524, -0.000, -0.000)),
("CB", 0, (-0.522, -0.776, -1.213)),
("O", 3, (0.627, 1.062, -0.000)),
("CG", 4, (0.607, 1.382, -0.000)),
("CD1", 5, (0.716, 1.195, -0.000)),
("CD2", 5, (0.713, -1.194, -0.001)),
("CE1", 5, (2.107, 1.200, -0.002)),
("CE2", 5, (2.104, -1.201, -0.003)),
("OH", 5, (4.168, -0.002, -0.005)),
("CZ", 5, (2.791, -0.001, -0.003)),
],
"VAL": [
("N", 0, (-0.494, 1.373, -0.000)),
("CA", 0, (0.000, 0.000, 0.000)),
("C", 0, (1.527, -0.000, -0.000)),
("CB", 0, (-0.533, -0.795, -1.213)),
("O", 3, (0.627, 1.062, -0.000)),
("CG1", 4, (0.540, 1.429, -0.000)),
("CG2", 4, (0.533, -0.776, 1.203)),
],
}
# A list of atoms (excluding hydrogen) for each AA type. PDB naming convention.
residue_atoms: Dict[str, List[str]] = {
"ALA": ["C", "CA", "CB", "N", "O"],
"ARG": ["C", "CA", "CB", "CG", "CD", "CZ", "N", "NE", "O", "NH1", "NH2"],
"ASP": ["C", "CA", "CB", "CG", "N", "O", "OD1", "OD2"],
"ASN": ["C", "CA", "CB", "CG", "N", "ND2", "O", "OD1"],
"CYS": ["C", "CA", "CB", "N", "O", "SG"],
"GLU": ["C", "CA", "CB", "CG", "CD", "N", "O", "OE1", "OE2"],
"GLN": ["C", "CA", "CB", "CG", "CD", "N", "NE2", "O", "OE1"],
"GLY": ["C", "CA", "N", "O"],
"HIS": ["C", "CA", "CB", "CG", "CD2", "CE1", "N", "ND1", "NE2", "O"],
"ILE": ["C", "CA", "CB", "CG1", "CG2", "CD1", "N", "O"],
"LEU": ["C", "CA", "CB", "CG", "CD1", "CD2", "N", "O"],
"LYS": ["C", "CA", "CB", "CG", "CD", "CE", "N", "NZ", "O"],
"MET": ["C", "CA", "CB", "CG", "CE", "N", "O", "SD"],
"PHE": ["C", "CA", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "N", "O"],
"PRO": ["C", "CA", "CB", "CG", "CD", "N", "O"],
"SER": ["C", "CA", "CB", "N", "O", "OG"],
"THR": ["C", "CA", "CB", "CG2", "N", "O", "OG1"],
"TRP": ["C", "CA", "CB", "CG", "CD1", "CD2", "CE2", "CE3", "CZ2", "CZ3", "CH2", "N", "NE1", "O"],
"TYR": ["C", "CA", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "N", "O", "OH"],
"VAL": ["C", "CA", "CB", "CG1", "CG2", "N", "O"],
}
# Naming swaps for ambiguous atom names.
# Due to symmetries in the amino acids the naming of atoms is ambiguous in
# 4 of the 20 amino acids.
# (The LDDT paper lists 7 amino acids as ambiguous, but the naming ambiguities
# in LEU, VAL and ARG can be resolved by using the 3d constellations of
# the 'ambiguous' atoms and their neighbours)
# TODO: ^ interpret this
residue_atom_renaming_swaps: Dict[str, Dict[str, str]] = {
"ASP": {"OD1": "OD2"},
"GLU": {"OE1": "OE2"},
"PHE": {"CD1": "CD2", "CE1": "CE2"},
"TYR": {"CD1": "CD2", "CE1": "CE2"},
}
# Van der Waals radii [Angstroem] of the atoms (from Wikipedia)
van_der_waals_radius: Dict[str, float] = {
"C": 1.7,
"N": 1.55,
"O": 1.52,
"S": 1.8,
}
Bond = collections.namedtuple("Bond", ["atom1_name", "atom2_name", "length", "stddev"])
BondAngle = collections.namedtuple(
"BondAngle",
["atom1_name", "atom2_name", "atom3name", "angle_rad", "stddev"],
)
def map_structure_with_atom_order(in_list: list, first_call: bool = True) -> list:
# Maps strings in a nested list structure to their corresponding index in atom_order
if first_call:
in_list = copy.deepcopy(in_list)
for i in range(len(in_list)):
if isinstance(in_list[i], list):
in_list[i] = map_structure_with_atom_order(in_list[i], first_call=False)
elif isinstance(in_list[i], str):
in_list[i] = atom_order[in_list[i]]
else:
raise TypeError("Unexpected type when mapping nested lists!")
return in_list
@functools.lru_cache(maxsize=None)
def load_stereo_chemical_props() -> Tuple[
Mapping[str, List[Bond]],
Mapping[str, List[Bond]],
Mapping[str, List[BondAngle]],
]:
"""Load stereo_chemical_props.txt into a nice structure.
Load literature values for bond lengths and bond angles and translate bond angles into the length of the opposite
edge of the triangle ("residue_virtual_bonds").
Returns:
residue_bonds: dict that maps resname --> list of Bond tuples residue_virtual_bonds: dict that maps resname -->
list of Bond tuples residue_bond_angles: dict that maps resname --> list of BondAngle tuples
"""
# TODO: this file should be downloaded in a setup script
stereo_chemical_props = resources.read_text("openfold.resources", "stereo_chemical_props.txt")
lines_iter = iter(stereo_chemical_props.splitlines())
# Load bond lengths.
residue_bonds: Dict[str, List[Bond]] = {}
next(lines_iter) # Skip header line.
for line in lines_iter:
if line.strip() == "-":
break
bond, resname, bond_length, stddev = line.split()
atom1, atom2 = bond.split("-")
if resname not in residue_bonds:
residue_bonds[resname] = []
residue_bonds[resname].append(Bond(atom1, atom2, float(bond_length), float(stddev)))
residue_bonds["UNK"] = []
# Load bond angles.
residue_bond_angles: Dict[str, List[BondAngle]] = {}
next(lines_iter) # Skip empty line.
next(lines_iter) # Skip header line.
for line in lines_iter:
if line.strip() == "-":
break
bond, resname, angle_degree, stddev_degree = line.split()
atom1, atom2, atom3 = bond.split("-")
if resname not in residue_bond_angles:
residue_bond_angles[resname] = []
residue_bond_angles[resname].append(
BondAngle(
atom1,
atom2,
atom3,
float(angle_degree) / 180.0 * np.pi,
float(stddev_degree) / 180.0 * np.pi,
)
)
residue_bond_angles["UNK"] = []
def make_bond_key(atom1_name: str, atom2_name: str) -> str:
"""Unique key to lookup bonds."""
return "-".join(sorted([atom1_name, atom2_name]))
# Translate bond angles into distances ("virtual bonds").
residue_virtual_bonds: Dict[str, List[Bond]] = {}
for resname, bond_angles in residue_bond_angles.items():
# Create a fast lookup dict for bond lengths.
bond_cache: Dict[str, Bond] = {}
for b in residue_bonds[resname]:
bond_cache[make_bond_key(b.atom1_name, b.atom2_name)] = b
residue_virtual_bonds[resname] = []
for ba in bond_angles:
bond1 = bond_cache[make_bond_key(ba.atom1_name, ba.atom2_name)]
bond2 = bond_cache[make_bond_key(ba.atom2_name, ba.atom3name)]
# Compute distance between atom1 and atom3 using the law of cosines
# c^2 = a^2 + b^2 - 2ab*cos(gamma).
gamma = ba.angle_rad
length = np.sqrt(bond1.length**2 + bond2.length**2 - 2 * bond1.length * bond2.length * np.cos(gamma))
# Propagation of uncertainty assuming uncorrelated errors.
dl_outer = 0.5 / length
dl_dgamma = (2 * bond1.length * bond2.length * np.sin(gamma)) * dl_outer
dl_db1 = (2 * bond1.length - 2 * bond2.length * np.cos(gamma)) * dl_outer
dl_db2 = (2 * bond2.length - 2 * bond1.length * np.cos(gamma)) * dl_outer
stddev = np.sqrt(
(dl_dgamma * ba.stddev) ** 2 + (dl_db1 * bond1.stddev) ** 2 + (dl_db2 * bond2.stddev) ** 2
)
residue_virtual_bonds[resname].append(Bond(ba.atom1_name, ba.atom3name, length, stddev))
return (residue_bonds, residue_virtual_bonds, residue_bond_angles)
# Between-residue bond lengths for general bonds (first element) and for Proline
# (second element).
between_res_bond_length_c_n: Tuple[float, float] = (1.329, 1.341)
between_res_bond_length_stddev_c_n: Tuple[float, float] = (0.014, 0.016)
# Between-residue cos_angles.
between_res_cos_angles_c_n_ca: Tuple[float, float] = (-0.5203, 0.0353) # degrees: 121.352 +- 2.315
between_res_cos_angles_ca_c_n: Tuple[float, float] = (-0.4473, 0.0311) # degrees: 116.568 +- 1.995
# This mapping is used when we need to store atom data in a format that requires
# fixed atom data size for every residue (e.g. a numpy array).
atom_types: List[str] = [
"N",
"CA",
"C",
"CB",
"O",
"CG",
"CG1",
"CG2",
"OG",
"OG1",
"SG",
"CD",
"CD1",
"CD2",
"ND1",
"ND2",
"OD1",
"OD2",
"SD",
"CE",
"CE1",
"CE2",
"CE3",
"NE",
"NE1",
"NE2",
"OE1",
"OE2",
"CH2",
"NH1",
"NH2",
"OH",
"CZ",
"CZ2",
"CZ3",
"NZ",
"OXT",
]
atom_order: Dict[str, int] = {atom_type: i for i, atom_type in enumerate(atom_types)}
atom_type_num = len(atom_types) # := 37.
# A compact atom encoding with 14 columns
# pylint: disable=line-too-long
# pylint: disable=bad-whitespace
restype_name_to_atom14_names: Dict[str, List[str]] = {
"ALA": ["N", "CA", "C", "O", "CB", "", "", "", "", "", "", "", "", ""],
"ARG": ["N", "CA", "C", "O", "CB", "CG", "CD", "NE", "CZ", "NH1", "NH2", "", "", ""],
"ASN": ["N", "CA", "C", "O", "CB", "CG", "OD1", "ND2", "", "", "", "", "", ""],
"ASP": ["N", "CA", "C", "O", "CB", "CG", "OD1", "OD2", "", "", "", "", "", ""],
"CYS": ["N", "CA", "C", "O", "CB", "SG", "", "", "", "", "", "", "", ""],
"GLN": ["N", "CA", "C", "O", "CB", "CG", "CD", "OE1", "NE2", "", "", "", "", ""],
"GLU": ["N", "CA", "C", "O", "CB", "CG", "CD", "OE1", "OE2", "", "", "", "", ""],
"GLY": ["N", "CA", "C", "O", "", "", "", "", "", "", "", "", "", ""],
"HIS": ["N", "CA", "C", "O", "CB", "CG", "ND1", "CD2", "CE1", "NE2", "", "", "", ""],
"ILE": ["N", "CA", "C", "O", "CB", "CG1", "CG2", "CD1", "", "", "", "", "", ""],
"LEU": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "", "", "", "", "", ""],
"LYS": ["N", "CA", "C", "O", "CB", "CG", "CD", "CE", "NZ", "", "", "", "", ""],
"MET": ["N", "CA", "C", "O", "CB", "CG", "SD", "CE", "", "", "", "", "", ""],
"PHE": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "", "", ""],
"PRO": ["N", "CA", "C", "O", "CB", "CG", "CD", "", "", "", "", "", "", ""],
"SER": ["N", "CA", "C", "O", "CB", "OG", "", "", "", "", "", "", "", ""],
"THR": ["N", "CA", "C", "O", "CB", "OG1", "CG2", "", "", "", "", "", "", ""],
"TRP": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "NE1", "CE2", "CE3", "CZ2", "CZ3", "CH2"],
"TYR": ["N", "CA", "C", "O", "CB", "CG", "CD1", "CD2", "CE1", "CE2", "CZ", "OH", "", ""],
"VAL": ["N", "CA", "C", "O", "CB", "CG1", "CG2", "", "", "", "", "", "", ""],
"UNK": ["", "", "", "", "", "", "", "", "", "", "", "", "", ""],
}
# pylint: enable=line-too-long
# pylint: enable=bad-whitespace
# This is the standard residue order when coding AA type as a number.
# Reproduce it by taking 3-letter AA codes and sorting them alphabetically.
restypes: List[str] = [
"A",
"R",
"N",
"D",
"C",
"Q",
"E",
"G",
"H",
"I",
"L",
"K",
"M",
"F",
"P",
"S",
"T",
"W",
"Y",
"V",
]
restype_order: Dict[str, int] = {restype: i for i, restype in enumerate(restypes)}
restype_num = len(restypes) # := 20.
unk_restype_index = restype_num # Catch-all index for unknown restypes.
restypes_with_x: List[str] = restypes + ["X"]
restype_order_with_x: Dict[str, int] = {restype: i for i, restype in enumerate(restypes_with_x)}
def sequence_to_onehot(sequence: str, mapping: Mapping[str, int], map_unknown_to_x: bool = False) -> np.ndarray:
"""Maps the given sequence into a one-hot encoded matrix.
Args:
sequence: An amino acid sequence.
mapping: A dictionary mapping amino acids to integers.
map_unknown_to_x: If True, any amino acid that is not in the mapping will be
mapped to the unknown amino acid 'X'. If the mapping doesn't contain amino acid 'X', an error will be thrown.
If False, any amino acid not in the mapping will throw an error.
Returns:
A numpy array of shape (seq_len, num_unique_aas) with one-hot encoding of the sequence.
Raises:
ValueError: If the mapping doesn't contain values from 0 to
num_unique_aas - 1 without any gaps.
"""
num_entries = max(mapping.values()) + 1
if sorted(set(mapping.values())) != list(range(num_entries)):
raise ValueError(
"The mapping must have values from 0 to num_unique_aas-1 without any gaps. Got: %s"
% sorted(mapping.values())
)
one_hot_arr = np.zeros((len(sequence), num_entries), dtype=np.int32)
for aa_index, aa_type in enumerate(sequence):
if map_unknown_to_x:
if aa_type.isalpha() and aa_type.isupper():
aa_id = mapping.get(aa_type, mapping["X"])
else:
raise ValueError(f"Invalid character in the sequence: {aa_type}")
else:
aa_id = mapping[aa_type]
one_hot_arr[aa_index, aa_id] = 1
return one_hot_arr
restype_1to3: Dict[str, str] = {
"A": "ALA",
"R": "ARG",
"N": "ASN",
"D": "ASP",
"C": "CYS",
"Q": "GLN",
"E": "GLU",
"G": "GLY",
"H": "HIS",
"I": "ILE",
"L": "LEU",
"K": "LYS",
"M": "MET",
"F": "PHE",
"P": "PRO",
"S": "SER",
"T": "THR",
"W": "TRP",
"Y": "TYR",
"V": "VAL",
}
# NB: restype_3to1 differs from Bio.PDB.protein_letters_3to1 by being a simple
# 1-to-1 mapping of 3 letter names to one letter names. The latter contains
# many more, and less common, three letter names as keys and maps many of these
# to the same one letter name (including 'X' and 'U' which we don't use here).
restype_3to1: Dict[str, str] = {v: k for k, v in restype_1to3.items()}
# Define a restype name for all unknown residues.
unk_restype = "UNK"
resnames: List[str] = [restype_1to3[r] for r in restypes] + [unk_restype]
resname_to_idx: Dict[str, int] = {resname: i for i, resname in enumerate(resnames)}
# The mapping here uses hhblits convention, so that B is mapped to D, J and O
# are mapped to X, U is mapped to C, and Z is mapped to E. Other than that the
# remaining 20 amino acids are kept in alphabetical order.
# There are 2 non-amino acid codes, X (representing any amino acid) and
# "-" representing a missing amino acid in an alignment. The id for these
# codes is put at the end (20 and 21) so that they can easily be ignored if
# desired.
HHBLITS_AA_TO_ID: Dict[str, int] = {
"A": 0,
"B": 2,
"C": 1,
"D": 2,
"E": 3,
"F": 4,
"G": 5,
"H": 6,
"I": 7,
"J": 20,
"K": 8,
"L": 9,
"M": 10,
"N": 11,
"O": 20,
"P": 12,
"Q": 13,
"R": 14,
"S": 15,
"T": 16,
"U": 1,
"V": 17,
"W": 18,
"X": 20,
"Y": 19,
"Z": 3,
"-": 21,
}
# Partial inversion of HHBLITS_AA_TO_ID.
ID_TO_HHBLITS_AA: Dict[int, str] = {
0: "A",
1: "C", # Also U.
2: "D", # Also B.
3: "E", # Also Z.
4: "F",
5: "G",
6: "H",
7: "I",
8: "K",
9: "L",
10: "M",
11: "N",
12: "P",
13: "Q",
14: "R",
15: "S",
16: "T",
17: "V",
18: "W",
19: "Y",
20: "X", # Includes J and O.
21: "-",
}
restypes_with_x_and_gap: List[str] = restypes + ["X", "-"]
MAP_HHBLITS_AATYPE_TO_OUR_AATYPE: Tuple[int, ...] = tuple(
restypes_with_x_and_gap.index(ID_TO_HHBLITS_AA[i]) for i in range(len(restypes_with_x_and_gap))
)
def _make_standard_atom_mask() -> np.ndarray:
"""Returns [num_res_types, num_atom_types] mask array."""
# +1 to account for unknown (all 0s).
mask = np.zeros([restype_num + 1, atom_type_num], dtype=np.int32)
for restype, restype_letter in enumerate(restypes):
restype_name = restype_1to3[restype_letter]
atom_names = residue_atoms[restype_name]
for atom_name in atom_names:
atom_type = atom_order[atom_name]
mask[restype, atom_type] = 1
return mask
STANDARD_ATOM_MASK = _make_standard_atom_mask()
# A one hot representation for the first and second atoms defining the axis
# of rotation for each chi-angle in each residue.
def chi_angle_atom(atom_index: int) -> np.ndarray:
"""Define chi-angle rigid groups via one-hot representations."""
chi_angles_index = {}
one_hots = []
for k, v in chi_angles_atoms.items():
indices = [atom_types.index(s[atom_index]) for s in v]
indices.extend([-1] * (4 - len(indices)))
chi_angles_index[k] = indices
for r in restypes:
res3 = restype_1to3[r]
one_hot = np.eye(atom_type_num)[chi_angles_index[res3]]
one_hots.append(one_hot)
one_hots.append(np.zeros([4, atom_type_num])) # Add zeros for residue `X`.
one_hot = np.stack(one_hots, axis=0)
one_hot = np.transpose(one_hot, [0, 2, 1])
return one_hot
chi_atom_1_one_hot = chi_angle_atom(1)
chi_atom_2_one_hot = chi_angle_atom(2)
# An array like chi_angles_atoms but using indices rather than names.
chi_angles_atom_indices_list: List[List[List[str]]] = [chi_angles_atoms[restype_1to3[r]] for r in restypes]
chi_angles_atom_indices_ours: list = map_structure_with_atom_order(chi_angles_atom_indices_list)
chi_angles_atom_indices = np.array(
[chi_atoms + ([[0, 0, 0, 0]] * (4 - len(chi_atoms))) for chi_atoms in chi_angles_atom_indices_list]
)
# Mapping from (res_name, atom_name) pairs to the atom's chi group index
# and atom index within that group.
chi_groups_for_atom: Dict[Tuple[str, str], List[Tuple[int, int]]] = collections.defaultdict(list)
for res_name, chi_angle_atoms_for_res in chi_angles_atoms.items():
for chi_group_i, chi_group in enumerate(chi_angle_atoms_for_res):
for atom_i, atom in enumerate(chi_group):
chi_groups_for_atom[(res_name, atom)].append((chi_group_i, atom_i))
chi_groups_for_atom = dict(chi_groups_for_atom)
def _make_rigid_transformation_4x4(ex: np.ndarray, ey: np.ndarray, translation: np.ndarray) -> np.ndarray:
"""Create a rigid 4x4 transformation matrix from two axes and transl."""
# Normalize ex.
ex_normalized = ex / np.linalg.norm(ex)
# make ey perpendicular to ex
ey_normalized = ey - np.dot(ey, ex_normalized) * ex_normalized
ey_normalized /= np.linalg.norm(ey_normalized)
# compute ez as cross product
eznorm = np.cross(ex_normalized, ey_normalized)
m = np.stack([ex_normalized, ey_normalized, eznorm, translation]).transpose()
m = np.concatenate([m, [[0.0, 0.0, 0.0, 1.0]]], axis=0)
return m
# create an array with (restype, atomtype) --> rigid_group_idx
# and an array with (restype, atomtype, coord) for the atom positions
# and compute affine transformation matrices (4,4) from one rigid group to the
# previous group
restype_atom37_to_rigid_group = np.zeros([21, 37], dtype=int)
restype_atom37_mask = np.zeros([21, 37], dtype=np.float32)
restype_atom37_rigid_group_positions = np.zeros([21, 37, 3], dtype=np.float32)
restype_atom14_to_rigid_group = np.zeros([21, 14], dtype=int)
restype_atom14_mask = np.zeros([21, 14], dtype=np.float32)
restype_atom14_rigid_group_positions = np.zeros([21, 14, 3], dtype=np.float32)
restype_rigid_group_default_frame = np.zeros([21, 8, 4, 4], dtype=np.float32)
def _make_rigid_group_constants() -> None:
"""Fill the arrays above."""
for restype, restype_letter in enumerate(restypes):
resname = restype_1to3[restype_letter]
for atomname, group_idx, atom_position in rigid_group_atom_positions[resname]:
atomtype = atom_order[atomname]
restype_atom37_to_rigid_group[restype, atomtype] = group_idx
restype_atom37_mask[restype, atomtype] = 1
restype_atom37_rigid_group_positions[restype, atomtype, :] = atom_position
atom14idx = restype_name_to_atom14_names[resname].index(atomname)
restype_atom14_to_rigid_group[restype, atom14idx] = group_idx
restype_atom14_mask[restype, atom14idx] = 1
restype_atom14_rigid_group_positions[restype, atom14idx, :] = atom_position
for restype, restype_letter in enumerate(restypes):
resname = restype_1to3[restype_letter]
atom_positions: Dict[str, np.ndarray] = {
name: np.array(pos) for name, _, pos in rigid_group_atom_positions[resname]
}
# backbone to backbone is the identity transform
restype_rigid_group_default_frame[restype, 0, :, :] = np.eye(4)
# pre-omega-frame to backbone (currently dummy identity matrix)
restype_rigid_group_default_frame[restype, 1, :, :] = np.eye(4)
# phi-frame to backbone
mat = _make_rigid_transformation_4x4(
ex=atom_positions["N"] - atom_positions["CA"],
ey=np.array([1.0, 0.0, 0.0]),
translation=atom_positions["N"],
)
restype_rigid_group_default_frame[restype, 2, :, :] = mat
# psi-frame to backbone
mat = _make_rigid_transformation_4x4(
ex=atom_positions["C"] - atom_positions["CA"],
ey=atom_positions["CA"] - atom_positions["N"],
translation=atom_positions["C"],
)
restype_rigid_group_default_frame[restype, 3, :, :] = mat
# chi1-frame to backbone
if chi_angles_mask[restype][0]:
base_atom_names = chi_angles_atoms[resname][0]
base_atom_positions = [atom_positions[name] for name in base_atom_names]
mat = _make_rigid_transformation_4x4(
ex=base_atom_positions[2] - base_atom_positions[1],
ey=base_atom_positions[0] - base_atom_positions[1],
translation=base_atom_positions[2],
)
restype_rigid_group_default_frame[restype, 4, :, :] = mat
# chi2-frame to chi1-frame
# chi3-frame to chi2-frame
# chi4-frame to chi3-frame
# luckily all rotation axes for the next frame start at (0,0,0) of the
# previous frame
for chi_idx in range(1, 4):
if chi_angles_mask[restype][chi_idx]:
axis_end_atom_name = chi_angles_atoms[resname][chi_idx][2]
axis_end_atom_position = atom_positions[axis_end_atom_name]
mat = _make_rigid_transformation_4x4(
ex=axis_end_atom_position,
ey=np.array([-1.0, 0.0, 0.0]),
translation=axis_end_atom_position,
)
restype_rigid_group_default_frame[restype, 4 + chi_idx, :, :] = mat
_make_rigid_group_constants()
def make_atom14_dists_bounds(
overlap_tolerance: float = 1.5,
bond_length_tolerance_factor: int = 15,
) -> Dict[str, np.ndarray]:
"""compute upper and lower bounds for bonds to assess violations."""
restype_atom14_bond_lower_bound = np.zeros([21, 14, 14], np.float32)
restype_atom14_bond_upper_bound = np.zeros([21, 14, 14], np.float32)
restype_atom14_bond_stddev = np.zeros([21, 14, 14], np.float32)
residue_bonds, residue_virtual_bonds, _ = load_stereo_chemical_props()
for restype, restype_letter in enumerate(restypes):
resname = restype_1to3[restype_letter]
atom_list = restype_name_to_atom14_names[resname]
# create lower and upper bounds for clashes
for atom1_idx, atom1_name in enumerate(atom_list):
if not atom1_name:
continue
atom1_radius = van_der_waals_radius[atom1_name[0]]
for atom2_idx, atom2_name in enumerate(atom_list):
if (not atom2_name) or atom1_idx == atom2_idx:
continue
atom2_radius = van_der_waals_radius[atom2_name[0]]
lower = atom1_radius + atom2_radius - overlap_tolerance
upper = 1e10
restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower
restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower
restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper
restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper
# overwrite lower and upper bounds for bonds and angles
for b in residue_bonds[resname] + residue_virtual_bonds[resname]:
atom1_idx = atom_list.index(b.atom1_name)
atom2_idx = atom_list.index(b.atom2_name)
lower = b.length - bond_length_tolerance_factor * b.stddev
upper = b.length + bond_length_tolerance_factor * b.stddev
restype_atom14_bond_lower_bound[restype, atom1_idx, atom2_idx] = lower
restype_atom14_bond_lower_bound[restype, atom2_idx, atom1_idx] = lower
restype_atom14_bond_upper_bound[restype, atom1_idx, atom2_idx] = upper
restype_atom14_bond_upper_bound[restype, atom2_idx, atom1_idx] = upper
restype_atom14_bond_stddev[restype, atom1_idx, atom2_idx] = b.stddev
restype_atom14_bond_stddev[restype, atom2_idx, atom1_idx] = b.stddev
return {
"lower_bound": restype_atom14_bond_lower_bound, # shape (21,14,14)
"upper_bound": restype_atom14_bond_upper_bound, # shape (21,14,14)
"stddev": restype_atom14_bond_stddev, # shape (21,14,14)
}
restype_atom14_ambiguous_atoms = np.zeros((21, 14), dtype=np.float32)
restype_atom14_ambiguous_atoms_swap_idx: np.ndarray = np.tile(np.arange(14, dtype=int), (21, 1))
def _make_atom14_ambiguity_feats() -> None:
for res, pairs in residue_atom_renaming_swaps.items():
res_idx = restype_order[restype_3to1[res]]
for atom1, atom2 in pairs.items():
atom1_idx = restype_name_to_atom14_names[res].index(atom1)
atom2_idx = restype_name_to_atom14_names[res].index(atom2)
restype_atom14_ambiguous_atoms[res_idx, atom1_idx] = 1
restype_atom14_ambiguous_atoms[res_idx, atom2_idx] = 1
restype_atom14_ambiguous_atoms_swap_idx[res_idx, atom1_idx] = atom2_idx
restype_atom14_ambiguous_atoms_swap_idx[res_idx, atom2_idx] = atom1_idx
_make_atom14_ambiguity_feats()
def aatype_to_str_sequence(aatype: Sequence[int]) -> str:
return "".join([restypes_with_x[aatype[i]] for i in range(len(aatype))])
```
|
=============================================================================================================================================
SOURCE CODE FILE: rigid_utils.py
LINES: 1
SIZE: 40.17 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\openfold_utils\rigid_utils.py
ENCODING: utf-8
```py
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from functools import lru_cache
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple
import numpy as np
import torch
def rot_matmul(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
"""
Performs matrix multiplication of two rotation matrix tensors. Written out by hand to avoid AMP downcasting.
Args:
a: [*, 3, 3] left multiplicand
b: [*, 3, 3] right multiplicand
Returns:
The product ab
"""
def row_mul(i: int) -> torch.Tensor:
return torch.stack(
[
a[..., i, 0] * b[..., 0, 0] + a[..., i, 1] * b[..., 1, 0] + a[..., i, 2] * b[..., 2, 0],
a[..., i, 0] * b[..., 0, 1] + a[..., i, 1] * b[..., 1, 1] + a[..., i, 2] * b[..., 2, 1],
a[..., i, 0] * b[..., 0, 2] + a[..., i, 1] * b[..., 1, 2] + a[..., i, 2] * b[..., 2, 2],
],
dim=-1,
)
return torch.stack(
[
row_mul(0),
row_mul(1),
row_mul(2),
],
dim=-2,
)
def rot_vec_mul(r: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
"""
Applies a rotation to a vector. Written out by hand to avoid transfer to avoid AMP downcasting.
Args:
r: [*, 3, 3] rotation matrices
t: [*, 3] coordinate tensors
Returns:
[*, 3] rotated coordinates
"""
x, y, z = torch.unbind(t, dim=-1)
return torch.stack(
[
r[..., 0, 0] * x + r[..., 0, 1] * y + r[..., 0, 2] * z,
r[..., 1, 0] * x + r[..., 1, 1] * y + r[..., 1, 2] * z,
r[..., 2, 0] * x + r[..., 2, 1] * y + r[..., 2, 2] * z,
],
dim=-1,
)
@lru_cache(maxsize=None)
def identity_rot_mats(
batch_dims: Tuple[int, ...],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
) -> torch.Tensor:
rots = torch.eye(3, dtype=dtype, device=device, requires_grad=requires_grad)
rots = rots.view(*((1,) * len(batch_dims)), 3, 3)
rots = rots.expand(*batch_dims, -1, -1)
rots = rots.contiguous()
return rots
@lru_cache(maxsize=None)
def identity_trans(
batch_dims: Tuple[int, ...],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
) -> torch.Tensor:
trans = torch.zeros((*batch_dims, 3), dtype=dtype, device=device, requires_grad=requires_grad)
return trans
@lru_cache(maxsize=None)
def identity_quats(
batch_dims: Tuple[int, ...],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
) -> torch.Tensor:
quat = torch.zeros((*batch_dims, 4), dtype=dtype, device=device, requires_grad=requires_grad)
with torch.no_grad():
quat[..., 0] = 1
return quat
_quat_elements: List[str] = ["a", "b", "c", "d"]
_qtr_keys: List[str] = [l1 + l2 for l1 in _quat_elements for l2 in _quat_elements]
_qtr_ind_dict: Dict[str, int] = {key: ind for ind, key in enumerate(_qtr_keys)}
def _to_mat(pairs: List[Tuple[str, int]]) -> np.ndarray:
mat = np.zeros((4, 4))
for key, value in pairs:
ind = _qtr_ind_dict[key]
mat[ind // 4][ind % 4] = value
return mat
_QTR_MAT = np.zeros((4, 4, 3, 3))
_QTR_MAT[..., 0, 0] = _to_mat([("aa", 1), ("bb", 1), ("cc", -1), ("dd", -1)])
_QTR_MAT[..., 0, 1] = _to_mat([("bc", 2), ("ad", -2)])
_QTR_MAT[..., 0, 2] = _to_mat([("bd", 2), ("ac", 2)])
_QTR_MAT[..., 1, 0] = _to_mat([("bc", 2), ("ad", 2)])
_QTR_MAT[..., 1, 1] = _to_mat([("aa", 1), ("bb", -1), ("cc", 1), ("dd", -1)])
_QTR_MAT[..., 1, 2] = _to_mat([("cd", 2), ("ab", -2)])
_QTR_MAT[..., 2, 0] = _to_mat([("bd", 2), ("ac", -2)])
_QTR_MAT[..., 2, 1] = _to_mat([("cd", 2), ("ab", 2)])
_QTR_MAT[..., 2, 2] = _to_mat([("aa", 1), ("bb", -1), ("cc", -1), ("dd", 1)])
def quat_to_rot(quat: torch.Tensor) -> torch.Tensor:
"""
Converts a quaternion to a rotation matrix.
Args:
quat: [*, 4] quaternions
Returns:
[*, 3, 3] rotation matrices
"""
# [*, 4, 4]
quat = quat[..., None] * quat[..., None, :]
# [4, 4, 3, 3]
mat = _get_quat("_QTR_MAT", dtype=quat.dtype, device=quat.device)
# [*, 4, 4, 3, 3]
shaped_qtr_mat = mat.view((1,) * len(quat.shape[:-2]) + mat.shape)
quat = quat[..., None, None] * shaped_qtr_mat
# [*, 3, 3]
return torch.sum(quat, dim=(-3, -4))
def rot_to_quat(rot: torch.Tensor) -> torch.Tensor:
if rot.shape[-2:] != (3, 3):
raise ValueError("Input rotation is incorrectly shaped")
[[xx, xy, xz], [yx, yy, yz], [zx, zy, zz]] = [[rot[..., i, j] for j in range(3)] for i in range(3)]
k = [
[
xx + yy + zz,
zy - yz,
xz - zx,
yx - xy,
],
[
zy - yz,
xx - yy - zz,
xy + yx,
xz + zx,
],
[
xz - zx,
xy + yx,
yy - xx - zz,
yz + zy,
],
[
yx - xy,
xz + zx,
yz + zy,
zz - xx - yy,
],
]
_, vectors = torch.linalg.eigh((1.0 / 3.0) * torch.stack([torch.stack(t, dim=-1) for t in k], dim=-2))
return vectors[..., -1]
_QUAT_MULTIPLY = np.zeros((4, 4, 4))
_QUAT_MULTIPLY[:, :, 0] = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]
_QUAT_MULTIPLY[:, :, 1] = [[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, -1, 0]]
_QUAT_MULTIPLY[:, :, 2] = [[0, 0, 1, 0], [0, 0, 0, -1], [1, 0, 0, 0], [0, 1, 0, 0]]
_QUAT_MULTIPLY[:, :, 3] = [[0, 0, 0, 1], [0, 0, 1, 0], [0, -1, 0, 0], [1, 0, 0, 0]]
_QUAT_MULTIPLY_BY_VEC = _QUAT_MULTIPLY[:, 1:, :]
_CACHED_QUATS: Dict[str, np.ndarray] = {
"_QTR_MAT": _QTR_MAT,
"_QUAT_MULTIPLY": _QUAT_MULTIPLY,
"_QUAT_MULTIPLY_BY_VEC": _QUAT_MULTIPLY_BY_VEC,
}
@lru_cache(maxsize=None)
def _get_quat(quat_key: str, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
return torch.tensor(_CACHED_QUATS[quat_key], dtype=dtype, device=device)
def quat_multiply(quat1: torch.Tensor, quat2: torch.Tensor) -> torch.Tensor:
"""Multiply a quaternion by another quaternion."""
mat = _get_quat("_QUAT_MULTIPLY", dtype=quat1.dtype, device=quat1.device)
reshaped_mat = mat.view((1,) * len(quat1.shape[:-1]) + mat.shape)
return torch.sum(reshaped_mat * quat1[..., :, None, None] * quat2[..., None, :, None], dim=(-3, -2))
def quat_multiply_by_vec(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor:
"""Multiply a quaternion by a pure-vector quaternion."""
mat = _get_quat("_QUAT_MULTIPLY_BY_VEC", dtype=quat.dtype, device=quat.device)
reshaped_mat = mat.view((1,) * len(quat.shape[:-1]) + mat.shape)
return torch.sum(reshaped_mat * quat[..., :, None, None] * vec[..., None, :, None], dim=(-3, -2))
def invert_rot_mat(rot_mat: torch.Tensor) -> torch.Tensor:
return rot_mat.transpose(-1, -2)
def invert_quat(quat: torch.Tensor) -> torch.Tensor:
quat_prime = quat.clone()
quat_prime[..., 1:] *= -1
inv = quat_prime / torch.sum(quat**2, dim=-1, keepdim=True)
return inv
class Rotation:
"""
A 3D rotation. Depending on how the object is initialized, the rotation is represented by either a rotation matrix
or a quaternion, though both formats are made available by helper functions. To simplify gradient computation, the
underlying format of the rotation cannot be changed in-place. Like Rigid, the class is designed to mimic the
behavior of a torch Tensor, almost as if each Rotation object were a tensor of rotations, in one format or another.
"""
def __init__(
self,
rot_mats: Optional[torch.Tensor] = None,
quats: Optional[torch.Tensor] = None,
normalize_quats: bool = True,
):
"""
Args:
rot_mats:
A [*, 3, 3] rotation matrix tensor. Mutually exclusive with quats
quats:
A [*, 4] quaternion. Mutually exclusive with rot_mats. If normalize_quats is not True, must be a unit
quaternion
normalize_quats:
If quats is specified, whether to normalize quats
"""
if (rot_mats is None and quats is None) or (rot_mats is not None and quats is not None):
raise ValueError("Exactly one input argument must be specified")
if (rot_mats is not None and rot_mats.shape[-2:] != (3, 3)) or (quats is not None and quats.shape[-1] != 4):
raise ValueError("Incorrectly shaped rotation matrix or quaternion")
# Force full-precision
if quats is not None:
quats = quats.to(dtype=torch.float32)
if rot_mats is not None:
rot_mats = rot_mats.to(dtype=torch.float32)
if quats is not None and normalize_quats:
quats = quats / torch.linalg.norm(quats, dim=-1, keepdim=True)
self._rot_mats = rot_mats
self._quats = quats
@staticmethod
def identity(
shape,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
fmt: str = "quat",
) -> Rotation:
"""
Returns an identity Rotation.
Args:
shape:
The "shape" of the resulting Rotation object. See documentation for the shape property
dtype:
The torch dtype for the rotation
device:
The torch device for the new rotation
requires_grad:
Whether the underlying tensors in the new rotation object should require gradient computation
fmt:
One of "quat" or "rot_mat". Determines the underlying format of the new object's rotation
Returns:
A new identity rotation
"""
if fmt == "rot_mat":
rot_mats = identity_rot_mats(
shape,
dtype,
device,
requires_grad,
)
return Rotation(rot_mats=rot_mats, quats=None)
elif fmt == "quat":
quats = identity_quats(shape, dtype, device, requires_grad)
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError(f"Invalid format: f{fmt}")
# Magic methods
def __getitem__(self, index: Any) -> Rotation:
"""
Allows torch-style indexing over the virtual shape of the rotation object. See documentation for the shape
property.
Args:
index:
A torch index. E.g. (1, 3, 2), or (slice(None,))
Returns:
The indexed rotation
"""
if type(index) is not tuple:
index = (index,)
if self._rot_mats is not None:
rot_mats = self._rot_mats[index + (slice(None), slice(None))]
return Rotation(rot_mats=rot_mats)
elif self._quats is not None:
quats = self._quats[index + (slice(None),)]
return Rotation(quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def __mul__(self, right: torch.Tensor) -> Rotation:
"""
Pointwise left multiplication of the rotation with a tensor. Can be used to e.g. mask the Rotation.
Args:
right:
The tensor multiplicand
Returns:
The product
"""
if not (isinstance(right, torch.Tensor)):
raise TypeError("The other multiplicand must be a Tensor")
if self._rot_mats is not None:
rot_mats = self._rot_mats * right[..., None, None]
return Rotation(rot_mats=rot_mats, quats=None)
elif self._quats is not None:
quats = self._quats * right[..., None]
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def __rmul__(self, left: torch.Tensor) -> Rotation:
"""
Reverse pointwise multiplication of the rotation with a tensor.
Args:
left:
The left multiplicand
Returns:
The product
"""
return self.__mul__(left)
# Properties
@property
def shape(self) -> torch.Size:
"""
Returns the virtual shape of the rotation object. This shape is defined as the batch dimensions of the
underlying rotation matrix or quaternion. If the Rotation was initialized with a [10, 3, 3] rotation matrix
tensor, for example, the resulting shape would be [10].
Returns:
The virtual shape of the rotation object
"""
if self._rot_mats is not None:
return self._rot_mats.shape[:-2]
elif self._quats is not None:
return self._quats.shape[:-1]
else:
raise ValueError("Both rotations are None")
@property
def dtype(self) -> torch.dtype:
"""
Returns the dtype of the underlying rotation.
Returns:
The dtype of the underlying rotation
"""
if self._rot_mats is not None:
return self._rot_mats.dtype
elif self._quats is not None:
return self._quats.dtype
else:
raise ValueError("Both rotations are None")
@property
def device(self) -> torch.device:
"""
The device of the underlying rotation
Returns:
The device of the underlying rotation
"""
if self._rot_mats is not None:
return self._rot_mats.device
elif self._quats is not None:
return self._quats.device
else:
raise ValueError("Both rotations are None")
@property
def requires_grad(self) -> bool:
"""
Returns the requires_grad property of the underlying rotation
Returns:
The requires_grad property of the underlying tensor
"""
if self._rot_mats is not None:
return self._rot_mats.requires_grad
elif self._quats is not None:
return self._quats.requires_grad
else:
raise ValueError("Both rotations are None")
def get_rot_mats(self) -> torch.Tensor:
"""
Returns the underlying rotation as a rotation matrix tensor.
Returns:
The rotation as a rotation matrix tensor
"""
if self._rot_mats is not None:
return self._rot_mats
elif self._quats is not None:
return quat_to_rot(self._quats)
else:
raise ValueError("Both rotations are None")
def get_quats(self) -> torch.Tensor:
"""
Returns the underlying rotation as a quaternion tensor.
Depending on whether the Rotation was initialized with a quaternion, this function may call torch.linalg.eigh.
Returns:
The rotation as a quaternion tensor.
"""
if self._rot_mats is not None:
return rot_to_quat(self._rot_mats)
elif self._quats is not None:
return self._quats
else:
raise ValueError("Both rotations are None")
def get_cur_rot(self) -> torch.Tensor:
"""
Return the underlying rotation in its current form
Returns:
The stored rotation
"""
if self._rot_mats is not None:
return self._rot_mats
elif self._quats is not None:
return self._quats
else:
raise ValueError("Both rotations are None")
# Rotation functions
def compose_q_update_vec(self, q_update_vec: torch.Tensor, normalize_quats: bool = True) -> Rotation:
"""
Returns a new quaternion Rotation after updating the current object's underlying rotation with a quaternion
update, formatted as a [*, 3] tensor whose final three columns represent x, y, z such that (1, x, y, z) is the
desired (not necessarily unit) quaternion update.
Args:
q_update_vec:
A [*, 3] quaternion update tensor
normalize_quats:
Whether to normalize the output quaternion
Returns:
An updated Rotation
"""
quats = self.get_quats()
new_quats = quats + quat_multiply_by_vec(quats, q_update_vec)
return Rotation(
rot_mats=None,
quats=new_quats,
normalize_quats=normalize_quats,
)
def compose_r(self, r: Rotation) -> Rotation:
"""
Compose the rotation matrices of the current Rotation object with those of another.
Args:
r:
An update rotation object
Returns:
An updated rotation object
"""
r1 = self.get_rot_mats()
r2 = r.get_rot_mats()
new_rot_mats = rot_matmul(r1, r2)
return Rotation(rot_mats=new_rot_mats, quats=None)
def compose_q(self, r: Rotation, normalize_quats: bool = True) -> Rotation:
"""
Compose the quaternions of the current Rotation object with those of another.
Depending on whether either Rotation was initialized with quaternions, this function may call
torch.linalg.eigh.
Args:
r:
An update rotation object
Returns:
An updated rotation object
"""
q1 = self.get_quats()
q2 = r.get_quats()
new_quats = quat_multiply(q1, q2)
return Rotation(rot_mats=None, quats=new_quats, normalize_quats=normalize_quats)
def apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
Apply the current Rotation as a rotation matrix to a set of 3D coordinates.
Args:
pts:
A [*, 3] set of points
Returns:
[*, 3] rotated points
"""
rot_mats = self.get_rot_mats()
return rot_vec_mul(rot_mats, pts)
def invert_apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
The inverse of the apply() method.
Args:
pts:
A [*, 3] set of points
Returns:
[*, 3] inverse-rotated points
"""
rot_mats = self.get_rot_mats()
inv_rot_mats = invert_rot_mat(rot_mats)
return rot_vec_mul(inv_rot_mats, pts)
def invert(self) -> Rotation:
"""
Returns the inverse of the current Rotation.
Returns:
The inverse of the current Rotation
"""
if self._rot_mats is not None:
return Rotation(rot_mats=invert_rot_mat(self._rot_mats), quats=None)
elif self._quats is not None:
return Rotation(
rot_mats=None,
quats=invert_quat(self._quats),
normalize_quats=False,
)
else:
raise ValueError("Both rotations are None")
# "Tensor" stuff
def unsqueeze(self, dim: int) -> Rotation:
"""
Analogous to torch.unsqueeze. The dimension is relative to the shape of the Rotation object.
Args:
dim: A positive or negative dimension index.
Returns:
The unsqueezed Rotation.
"""
if dim >= len(self.shape):
raise ValueError("Invalid dimension")
if self._rot_mats is not None:
rot_mats = self._rot_mats.unsqueeze(dim if dim >= 0 else dim - 2)
return Rotation(rot_mats=rot_mats, quats=None)
elif self._quats is not None:
quats = self._quats.unsqueeze(dim if dim >= 0 else dim - 1)
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
@staticmethod
def cat(rs: Sequence[Rotation], dim: int) -> Rotation:
"""
Concatenates rotations along one of the batch dimensions. Analogous to torch.cat().
Note that the output of this operation is always a rotation matrix, regardless of the format of input
rotations.
Args:
rs:
A list of rotation objects
dim:
The dimension along which the rotations should be concatenated
Returns:
A concatenated Rotation object in rotation matrix format
"""
rot_mats = torch.cat(
[r.get_rot_mats() for r in rs],
dim=dim if dim >= 0 else dim - 2,
)
return Rotation(rot_mats=rot_mats, quats=None)
def map_tensor_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rotation:
"""
Apply a Tensor -> Tensor function to underlying rotation tensors, mapping over the rotation dimension(s). Can
be used e.g. to sum out a one-hot batch dimension.
Args:
fn:
A Tensor -> Tensor function to be mapped over the Rotation
Returns:
The transformed Rotation object
"""
if self._rot_mats is not None:
rot_mats = self._rot_mats.view(self._rot_mats.shape[:-2] + (9,))
rot_mats = torch.stack(list(map(fn, torch.unbind(rot_mats, dim=-1))), dim=-1)
rot_mats = rot_mats.view(rot_mats.shape[:-1] + (3, 3))
return Rotation(rot_mats=rot_mats, quats=None)
elif self._quats is not None:
quats = torch.stack(list(map(fn, torch.unbind(self._quats, dim=-1))), dim=-1)
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def cuda(self) -> Rotation:
"""
Analogous to the cuda() method of torch Tensors
Returns:
A copy of the Rotation in CUDA memory
"""
if self._rot_mats is not None:
return Rotation(rot_mats=self._rot_mats.cuda(), quats=None)
elif self._quats is not None:
return Rotation(rot_mats=None, quats=self._quats.cuda(), normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def to(self, device: Optional[torch.device], dtype: Optional[torch.dtype]) -> Rotation:
"""
Analogous to the to() method of torch Tensors
Args:
device:
A torch device
dtype:
A torch dtype
Returns:
A copy of the Rotation using the new device and dtype
"""
if self._rot_mats is not None:
return Rotation(
rot_mats=self._rot_mats.to(device=device, dtype=dtype),
quats=None,
)
elif self._quats is not None:
return Rotation(
rot_mats=None,
quats=self._quats.to(device=device, dtype=dtype),
normalize_quats=False,
)
else:
raise ValueError("Both rotations are None")
def detach(self) -> Rotation:
"""
Returns a copy of the Rotation whose underlying Tensor has been detached from its torch graph.
Returns:
A copy of the Rotation whose underlying Tensor has been detached from its torch graph
"""
if self._rot_mats is not None:
return Rotation(rot_mats=self._rot_mats.detach(), quats=None)
elif self._quats is not None:
return Rotation(
rot_mats=None,
quats=self._quats.detach(),
normalize_quats=False,
)
else:
raise ValueError("Both rotations are None")
class Rigid:
"""
A class representing a rigid transformation. Little more than a wrapper around two objects: a Rotation object and a
[*, 3] translation Designed to behave approximately like a single torch tensor with the shape of the shared batch
dimensions of its component parts.
"""
def __init__(self, rots: Optional[Rotation], trans: Optional[torch.Tensor]):
"""
Args:
rots: A [*, 3, 3] rotation tensor
trans: A corresponding [*, 3] translation tensor
"""
# (we need device, dtype, etc. from at least one input)
batch_dims, dtype, device, requires_grad = None, None, None, None
if trans is not None:
batch_dims = trans.shape[:-1]
dtype = trans.dtype
device = trans.device
requires_grad = trans.requires_grad
elif rots is not None:
batch_dims = rots.shape
dtype = rots.dtype
device = rots.device
requires_grad = rots.requires_grad
else:
raise ValueError("At least one input argument must be specified")
if rots is None:
rots = Rotation.identity(
batch_dims,
dtype,
device,
requires_grad,
)
elif trans is None:
trans = identity_trans(
batch_dims,
dtype,
device,
requires_grad,
)
assert rots is not None
assert trans is not None
if (rots.shape != trans.shape[:-1]) or (rots.device != trans.device):
raise ValueError("Rots and trans incompatible")
# Force full precision. Happens to the rotations automatically.
trans = trans.to(dtype=torch.float32)
self._rots = rots
self._trans = trans
@staticmethod
def identity(
shape: Tuple[int, ...],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
fmt: str = "quat",
) -> Rigid:
"""
Constructs an identity transformation.
Args:
shape:
The desired shape
dtype:
The dtype of both internal tensors
device:
The device of both internal tensors
requires_grad:
Whether grad should be enabled for the internal tensors
Returns:
The identity transformation
"""
return Rigid(
Rotation.identity(shape, dtype, device, requires_grad, fmt=fmt),
identity_trans(shape, dtype, device, requires_grad),
)
def __getitem__(self, index: Any) -> Rigid:
"""
Indexes the affine transformation with PyTorch-style indices. The index is applied to the shared dimensions of
both the rotation and the translation.
E.g.::
r = Rotation(rot_mats=torch.rand(10, 10, 3, 3), quats=None) t = Rigid(r, torch.rand(10, 10, 3)) indexed =
t[3, 4:6] assert(indexed.shape == (2,)) assert(indexed.get_rots().shape == (2,))
assert(indexed.get_trans().shape == (2, 3))
Args:
index: A standard torch tensor index. E.g. 8, (10, None, 3),
or (3, slice(0, 1, None))
Returns:
The indexed tensor
"""
if type(index) is not tuple:
index = (index,)
return Rigid(
self._rots[index],
self._trans[index + (slice(None),)],
)
def __mul__(self, right: torch.Tensor) -> Rigid:
"""
Pointwise left multiplication of the transformation with a tensor. Can be used to e.g. mask the Rigid.
Args:
right:
The tensor multiplicand
Returns:
The product
"""
if not (isinstance(right, torch.Tensor)):
raise TypeError("The other multiplicand must be a Tensor")
new_rots = self._rots * right
new_trans = self._trans * right[..., None]
return Rigid(new_rots, new_trans)
def __rmul__(self, left: torch.Tensor) -> Rigid:
"""
Reverse pointwise multiplication of the transformation with a tensor.
Args:
left:
The left multiplicand
Returns:
The product
"""
return self.__mul__(left)
@property
def shape(self) -> torch.Size:
"""
Returns the shape of the shared dimensions of the rotation and the translation.
Returns:
The shape of the transformation
"""
return self._trans.shape[:-1]
@property
def device(self) -> torch.device:
"""
Returns the device on which the Rigid's tensors are located.
Returns:
The device on which the Rigid's tensors are located
"""
return self._trans.device
def get_rots(self) -> Rotation:
"""
Getter for the rotation.
Returns:
The rotation object
"""
return self._rots
def get_trans(self) -> torch.Tensor:
"""
Getter for the translation.
Returns:
The stored translation
"""
return self._trans
def compose_q_update_vec(self, q_update_vec: torch.Tensor) -> Rigid:
"""
Composes the transformation with a quaternion update vector of shape [*, 6], where the final 6 columns
represent the x, y, and z values of a quaternion of form (1, x, y, z) followed by a 3D translation.
Args:
q_vec: The quaternion update vector.
Returns:
The composed transformation.
"""
q_vec, t_vec = q_update_vec[..., :3], q_update_vec[..., 3:]
new_rots = self._rots.compose_q_update_vec(q_vec)
trans_update = self._rots.apply(t_vec)
new_translation = self._trans + trans_update
return Rigid(new_rots, new_translation)
def compose(self, r: Rigid) -> Rigid:
"""
Composes the current rigid object with another.
Args:
r:
Another Rigid object
Returns:
The composition of the two transformations
"""
new_rot = self._rots.compose_r(r._rots)
new_trans = self._rots.apply(r._trans) + self._trans
return Rigid(new_rot, new_trans)
def apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
Applies the transformation to a coordinate tensor.
Args:
pts: A [*, 3] coordinate tensor.
Returns:
The transformed points.
"""
rotated = self._rots.apply(pts)
return rotated + self._trans
def invert_apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
Applies the inverse of the transformation to a coordinate tensor.
Args:
pts: A [*, 3] coordinate tensor
Returns:
The transformed points.
"""
pts = pts - self._trans
return self._rots.invert_apply(pts)
def invert(self) -> Rigid:
"""
Inverts the transformation.
Returns:
The inverse transformation.
"""
rot_inv = self._rots.invert()
trn_inv = rot_inv.apply(self._trans)
return Rigid(rot_inv, -1 * trn_inv)
def map_tensor_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rigid:
"""
Apply a Tensor -> Tensor function to underlying translation and rotation tensors, mapping over the
translation/rotation dimensions respectively.
Args:
fn:
A Tensor -> Tensor function to be mapped over the Rigid
Returns:
The transformed Rigid object
"""
new_rots = self._rots.map_tensor_fn(fn)
new_trans = torch.stack(list(map(fn, torch.unbind(self._trans, dim=-1))), dim=-1)
return Rigid(new_rots, new_trans)
def to_tensor_4x4(self) -> torch.Tensor:
"""
Converts a transformation to a homogeneous transformation tensor.
Returns:
A [*, 4, 4] homogeneous transformation tensor
"""
tensor = self._trans.new_zeros((*self.shape, 4, 4))
tensor[..., :3, :3] = self._rots.get_rot_mats()
tensor[..., :3, 3] = self._trans
tensor[..., 3, 3] = 1
return tensor
@staticmethod
def from_tensor_4x4(t: torch.Tensor) -> Rigid:
"""
Constructs a transformation from a homogeneous transformation tensor.
Args:
t: [*, 4, 4] homogeneous transformation tensor
Returns:
T object with shape [*]
"""
if t.shape[-2:] != (4, 4):
raise ValueError("Incorrectly shaped input tensor")
rots = Rotation(rot_mats=t[..., :3, :3], quats=None)
trans = t[..., :3, 3]
return Rigid(rots, trans)
def to_tensor_7(self) -> torch.Tensor:
"""
Converts a transformation to a tensor with 7 final columns, four for the quaternion followed by three for the
translation.
Returns:
A [*, 7] tensor representation of the transformation
"""
tensor = self._trans.new_zeros((*self.shape, 7))
tensor[..., :4] = self._rots.get_quats()
tensor[..., 4:] = self._trans
return tensor
@staticmethod
def from_tensor_7(t: torch.Tensor, normalize_quats: bool = False) -> Rigid:
if t.shape[-1] != 7:
raise ValueError("Incorrectly shaped input tensor")
quats, trans = t[..., :4], t[..., 4:]
rots = Rotation(rot_mats=None, quats=quats, normalize_quats=normalize_quats)
return Rigid(rots, trans)
@staticmethod
def from_3_points(
p_neg_x_axis: torch.Tensor, origin: torch.Tensor, p_xy_plane: torch.Tensor, eps: float = 1e-8
) -> Rigid:
"""
Implements algorithm 21. Constructs transformations from sets of 3 points using the Gram-Schmidt algorithm.
Args:
p_neg_x_axis: [*, 3] coordinates
origin: [*, 3] coordinates used as frame origins
p_xy_plane: [*, 3] coordinates
eps: Small epsilon value
Returns:
A transformation object of shape [*]
"""
p_neg_x_axis_unbound = torch.unbind(p_neg_x_axis, dim=-1)
origin_unbound = torch.unbind(origin, dim=-1)
p_xy_plane_unbound = torch.unbind(p_xy_plane, dim=-1)
e0 = [c1 - c2 for c1, c2 in zip(origin_unbound, p_neg_x_axis_unbound)]
e1 = [c1 - c2 for c1, c2 in zip(p_xy_plane_unbound, origin_unbound)]
denom = torch.sqrt(sum(c * c for c in e0) + eps * torch.ones_like(e0[0]))
e0 = [c / denom for c in e0]
dot = sum((c1 * c2 for c1, c2 in zip(e0, e1)))
e1 = [c2 - c1 * dot for c1, c2 in zip(e0, e1)]
denom = torch.sqrt(sum((c * c for c in e1)) + eps * torch.ones_like(e1[0]))
e1 = [c / denom for c in e1]
e2 = [
e0[1] * e1[2] - e0[2] * e1[1],
e0[2] * e1[0] - e0[0] * e1[2],
e0[0] * e1[1] - e0[1] * e1[0],
]
rots = torch.stack([c for tup in zip(e0, e1, e2) for c in tup], dim=-1)
rots = rots.reshape(rots.shape[:-1] + (3, 3))
rot_obj = Rotation(rot_mats=rots, quats=None)
return Rigid(rot_obj, torch.stack(origin_unbound, dim=-1))
def unsqueeze(self, dim: int) -> Rigid:
"""
Analogous to torch.unsqueeze. The dimension is relative to the shared dimensions of the rotation/translation.
Args:
dim: A positive or negative dimension index.
Returns:
The unsqueezed transformation.
"""
if dim >= len(self.shape):
raise ValueError("Invalid dimension")
rots = self._rots.unsqueeze(dim)
trans = self._trans.unsqueeze(dim if dim >= 0 else dim - 1)
return Rigid(rots, trans)
@staticmethod
def cat(ts: Sequence[Rigid], dim: int) -> Rigid:
"""
Concatenates transformations along a new dimension.
Args:
ts:
A list of T objects
dim:
The dimension along which the transformations should be concatenated
Returns:
A concatenated transformation object
"""
rots = Rotation.cat([t._rots for t in ts], dim)
trans = torch.cat([t._trans for t in ts], dim=dim if dim >= 0 else dim - 1)
return Rigid(rots, trans)
def apply_rot_fn(self, fn: Callable[[Rotation], Rotation]) -> Rigid:
"""
Applies a Rotation -> Rotation function to the stored rotation object.
Args:
fn: A function of type Rotation -> Rotation
Returns:
A transformation object with a transformed rotation.
"""
return Rigid(fn(self._rots), self._trans)
def apply_trans_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rigid:
"""
Applies a Tensor -> Tensor function to the stored translation.
Args:
fn:
A function of type Tensor -> Tensor to be applied to the translation
Returns:
A transformation object with a transformed translation.
"""
return Rigid(self._rots, fn(self._trans))
def scale_translation(self, trans_scale_factor: float) -> Rigid:
"""
Scales the translation by a constant factor.
Args:
trans_scale_factor:
The constant factor
Returns:
A transformation object with a scaled translation.
"""
return self.apply_trans_fn(lambda t: t * trans_scale_factor)
def stop_rot_gradient(self) -> Rigid:
"""
Detaches the underlying rotation object
Returns:
A transformation object with detached rotations
"""
return self.apply_rot_fn(lambda r: r.detach())
@staticmethod
def make_transform_from_reference(
n_xyz: torch.Tensor, ca_xyz: torch.Tensor, c_xyz: torch.Tensor, eps: float = 1e-20
) -> Rigid:
"""
Returns a transformation object from reference coordinates.
Note that this method does not take care of symmetries. If you provide the atom positions in the non-standard
way, the N atom will end up not at [-0.527250, 1.359329, 0.0] but instead at [-0.527250, -1.359329, 0.0]. You
need to take care of such cases in your code.
Args:
n_xyz: A [*, 3] tensor of nitrogen xyz coordinates.
ca_xyz: A [*, 3] tensor of carbon alpha xyz coordinates.
c_xyz: A [*, 3] tensor of carbon xyz coordinates.
Returns:
A transformation object. After applying the translation and rotation to the reference backbone, the
coordinates will approximately equal to the input coordinates.
"""
translation = -1 * ca_xyz
n_xyz = n_xyz + translation
c_xyz = c_xyz + translation
c_x, c_y, c_z = [c_xyz[..., i] for i in range(3)]
norm = torch.sqrt(eps + c_x**2 + c_y**2)
sin_c1 = -c_y / norm
cos_c1 = c_x / norm
c1_rots = sin_c1.new_zeros((*sin_c1.shape, 3, 3))
c1_rots[..., 0, 0] = cos_c1
c1_rots[..., 0, 1] = -1 * sin_c1
c1_rots[..., 1, 0] = sin_c1
c1_rots[..., 1, 1] = cos_c1
c1_rots[..., 2, 2] = 1
norm = torch.sqrt(eps + c_x**2 + c_y**2 + c_z**2)
sin_c2 = c_z / norm
cos_c2 = torch.sqrt(c_x**2 + c_y**2) / norm
c2_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3))
c2_rots[..., 0, 0] = cos_c2
c2_rots[..., 0, 2] = sin_c2
c2_rots[..., 1, 1] = 1
c2_rots[..., 2, 0] = -1 * sin_c2
c2_rots[..., 2, 2] = cos_c2
c_rots = rot_matmul(c2_rots, c1_rots)
n_xyz = rot_vec_mul(c_rots, n_xyz)
_, n_y, n_z = [n_xyz[..., i] for i in range(3)]
norm = torch.sqrt(eps + n_y**2 + n_z**2)
sin_n = -n_z / norm
cos_n = n_y / norm
n_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3))
n_rots[..., 0, 0] = 1
n_rots[..., 1, 1] = cos_n
n_rots[..., 1, 2] = -1 * sin_n
n_rots[..., 2, 1] = sin_n
n_rots[..., 2, 2] = cos_n
rots = rot_matmul(n_rots, c_rots)
rots = rots.transpose(-1, -2)
translation = -1 * translation
rot_obj = Rotation(rot_mats=rots, quats=None)
return Rigid(rot_obj, translation)
def cuda(self) -> Rigid:
"""
Moves the transformation object to GPU memory
Returns:
A version of the transformation on GPU
"""
return Rigid(self._rots.cuda(), self._trans.cuda())
```
|
==============================================================================================================================================
SOURCE CODE FILE: tensor_utils.py
LINES: 1
SIZE: 4.67 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\openfold_utils\tensor_utils.py
ENCODING: utf-8
```py
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Any, Callable, Dict, List, Type, TypeVar, Union, overload
import torch
import torch.nn as nn
import torch.types
def add(m1: torch.Tensor, m2: torch.Tensor, inplace: bool) -> torch.Tensor:
# The first operation in a checkpoint can't be in-place, but it's
# nice to have in-place addition during inference. Thus...
if not inplace:
m1 = m1 + m2
else:
m1 += m2
return m1
def permute_final_dims(tensor: torch.Tensor, inds: List[int]) -> torch.Tensor:
zero_index = -1 * len(inds)
first_inds = list(range(len(tensor.shape[:zero_index])))
return tensor.permute(first_inds + [zero_index + i for i in inds])
def flatten_final_dims(t: torch.Tensor, no_dims: int) -> torch.Tensor:
return t.reshape(t.shape[:-no_dims] + (-1,))
def masked_mean(mask: torch.Tensor, value: torch.Tensor, dim: int, eps: float = 1e-4) -> torch.Tensor:
mask = mask.expand(*value.shape)
return torch.sum(mask * value, dim=dim) / (eps + torch.sum(mask, dim=dim))
def pts_to_distogram(
pts: torch.Tensor, min_bin: torch.types.Number = 2.3125, max_bin: torch.types.Number = 21.6875, no_bins: int = 64
) -> torch.Tensor:
boundaries = torch.linspace(min_bin, max_bin, no_bins - 1, device=pts.device)
dists = torch.sqrt(torch.sum((pts.unsqueeze(-2) - pts.unsqueeze(-3)) ** 2, dim=-1))
return torch.bucketize(dists, boundaries)
def dict_multimap(fn: Callable[[list], Any], dicts: List[dict]) -> dict:
first = dicts[0]
new_dict = {}
for k, v in first.items():
all_v = [d[k] for d in dicts]
if isinstance(v, dict):
new_dict[k] = dict_multimap(fn, all_v)
else:
new_dict[k] = fn(all_v)
return new_dict
def one_hot(x: torch.Tensor, v_bins: torch.Tensor) -> torch.Tensor:
reshaped_bins = v_bins.view(((1,) * len(x.shape)) + (len(v_bins),))
diffs = x[..., None] - reshaped_bins
am = torch.argmin(torch.abs(diffs), dim=-1)
return nn.functional.one_hot(am, num_classes=len(v_bins)).float()
def batched_gather(data: torch.Tensor, inds: torch.Tensor, dim: int = 0, no_batch_dims: int = 0) -> torch.Tensor:
ranges: List[Union[slice, torch.Tensor]] = []
for i, s in enumerate(data.shape[:no_batch_dims]):
r = torch.arange(s)
r = r.view(*(*((1,) * i), -1, *((1,) * (len(inds.shape) - i - 1))))
ranges.append(r)
remaining_dims: List[Union[slice, torch.Tensor]] = [slice(None) for _ in range(len(data.shape) - no_batch_dims)]
remaining_dims[dim - no_batch_dims if dim >= 0 else dim] = inds
ranges.extend(remaining_dims)
# Matt note: Editing this to get around the behaviour of using a list as an array index changing
# in recent Numpy versions
return data[tuple(ranges)]
T = TypeVar("T")
# With tree_map, a poor man's JAX tree_map
def dict_map(
fn: Callable[[T], Any], dic: Dict[Any, Union[dict, list, tuple, T]], leaf_type: Type[T]
) -> Dict[Any, Union[dict, list, tuple, Any]]:
new_dict: Dict[Any, Union[dict, list, tuple, Any]] = {}
for k, v in dic.items():
if isinstance(v, dict):
new_dict[k] = dict_map(fn, v, leaf_type)
else:
new_dict[k] = tree_map(fn, v, leaf_type)
return new_dict
@overload
def tree_map(fn: Callable[[T], Any], tree: T, leaf_type: Type[T]) -> Any: ...
@overload
def tree_map(fn: Callable[[T], Any], tree: dict, leaf_type: Type[T]) -> dict: ...
@overload
def tree_map(fn: Callable[[T], Any], tree: list, leaf_type: Type[T]) -> list: ...
@overload
def tree_map(fn: Callable[[T], Any], tree: tuple, leaf_type: Type[T]) -> tuple: ...
def tree_map(fn, tree, leaf_type):
if isinstance(tree, dict):
return dict_map(fn, tree, leaf_type)
elif isinstance(tree, list):
return [tree_map(fn, x, leaf_type) for x in tree]
elif isinstance(tree, tuple):
return tuple(tree_map(fn, x, leaf_type) for x in tree)
elif isinstance(tree, leaf_type):
return fn(tree)
else:
print(type(tree))
raise TypeError("Not supported")
tensor_tree_map = partial(tree_map, leaf_type=torch.Tensor)
```
|
===================================================================================================================================
SOURCE CODE FILE: tokenization_esm.py
LINES: 2
SIZE: 5.26 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\esm\tokenization_esm.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for ESM."""
import os
from typing import List, Optional
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
def load_vocab_file(vocab_file):
with open(vocab_file, "r") as f:
lines = f.read().splitlines()
return [l.strip() for l in lines]
class EsmTokenizer(PreTrainedTokenizer):
"""
Constructs an ESM tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token="<unk>",
cls_token="<cls>",
pad_token="<pad>",
mask_token="<mask>",
eos_token="<eos>",
**kwargs,
):
self.all_tokens = load_vocab_file(vocab_file)
self._id_to_token = dict(enumerate(self.all_tokens))
self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)}
super().__init__(
unk_token=unk_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
eos_token=eos_token,
**kwargs,
)
# TODO, all the tokens are added? But they are also part of the vocab... bit strange.
# none of them are special, but they all need special splitting.
self.unique_no_split_tokens = self.all_tokens
self._update_trie(self.unique_no_split_tokens)
def _convert_id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def _convert_token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def _tokenize(self, text, **kwargs):
return text.split()
def get_vocab(self):
base_vocab = self._token_to_id.copy()
base_vocab.update(self.added_tokens_encoder)
return base_vocab
def token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
cls = [self.cls_token_id]
sep = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_1 is None:
if self.eos_token_id is None:
return cls + token_ids_0
else:
return cls + token_ids_0 + sep
elif self.eos_token_id is None:
raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!")
return cls + token_ids_0 + sep + token_ids_1 + sep # Multiple inputs always have an EOS token
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of ids of the first sequence.
token_ids_1 (`List[int]`, *optional*):
List of ids of the second sequence.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
mask = [1] + ([0] * len(token_ids_0)) + [1]
if token_ids_1 is not None:
mask += [0] * len(token_ids_1) + [1]
return mask
def save_vocabulary(self, save_directory, filename_prefix):
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
with open(vocab_file, "w") as f:
f.write("\n".join(self.all_tokens))
return (vocab_file,)
@property
def vocab_size(self) -> int:
return len(self.all_tokens)
__all__ = ["EsmTokenizer"]
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\falcon\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_falcon import *
from .modeling_falcon import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==========================================================================================================================================
SOURCE CODE FILE: configuration_falcon.py
LINES: 1
SIZE: 10.66 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\falcon\configuration_falcon.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Falcon configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class FalconConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 65024):
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FalconModel`]
hidden_size (`int`, *optional*, defaults to 4544):
Dimension of the hidden representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 71):
Number of attention heads for each attention layer in the Transformer encoder.
num_ln_in_parallel_attn (`int`, *optional*):
Set to 2 if separate layer norms are to be used for the MLP and the attention output when using parallel
attention, otherwise, 1.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
`config.is_decoder=True`.
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for MLP layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for attention layers.
num_kv_heads (`int`, *optional*):
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
`num_attention_heads`.
alibi (`bool`, *optional*, defaults to `False`):
Whether to use ALiBi positional biases during self-attention.
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
arguments are ignored, as the new decoder always uses parallel attention.
multi_query (`bool`, *optional*, defaults to `True`):
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
parallel_attn (`bool`, *optional*, defaults to `True`):
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
bias (`bool`, *optional*, defaults to `False`):
Whether to use bias on Linear layers.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained
Falcon models with RoPE support up to 2048 tokens.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
bos_token_id (`int`, *optional*, defaults to 11):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 11):
The id of the "end-of-sequence" token.
ffn_hidden_size (`int`, *optional*):
The hidden size of the feedforward layer in the Transformer decoder.
defaults to 4x hidden dim
activation (`str`, *optional*, defaults to `"gelu"`):
The activation function used in the feedforward layer.
Example:
```python
>>> from transformers import FalconModel, FalconConfig
>>> # Initializing a small (2-layer) Falcon configuration
>>> configuration = FalconConfig(num_hidden_layers=2)
>>> # Initializing a model from the small configuration
>>> model = FalconModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "falcon"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=65024,
hidden_size=4544,
num_hidden_layers=32,
num_attention_heads=71,
num_ln_in_parallel_attn=None,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
use_cache=True,
hidden_dropout=0.0,
attention_dropout=0.0,
num_kv_heads=None,
alibi=False,
new_decoder_architecture=False,
multi_query=True,
parallel_attn=True,
bias=False,
max_position_embeddings=2048,
rope_theta=10000.0,
rope_scaling=None,
bos_token_id=11,
eos_token_id=11,
ffn_hidden_size=None,
activation="gelu",
**kwargs,
):
self.vocab_size = vocab_size
# Backward compatibility with n_embed kwarg
n_embed = kwargs.pop("n_embed", None)
self.hidden_size = hidden_size if n_embed is None else n_embed
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.use_cache = use_cache
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
self.alibi = alibi
self.new_decoder_architecture = new_decoder_architecture
self.multi_query = multi_query # Ignored when new_decoder_architecture is True
self.parallel_attn = parallel_attn
self.bias = bias
self.num_ln_in_parallel_attn = num_ln_in_parallel_attn
self.max_position_embeddings = max_position_embeddings
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.activation = activation
if ffn_hidden_size is None:
self.ffn_hidden_size = hidden_size * 4
else:
self.ffn_hidden_size = ffn_hidden_size
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
@property
def head_dim(self):
return self.hidden_size // self.num_attention_heads
@property
def rotary(self):
return not self.alibi
__all__ = ["FalconConfig"]
```
|
====================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\falcon_mamba\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_falcon_mamba import *
from .modeling_falcon_mamba import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================================
SOURCE CODE FILE: configuration_falcon_mamba.py
LINES: 1
SIZE: 7.58 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\falcon_mamba\configuration_falcon_mamba.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FALCONMAMBA configuration"""
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class FalconMambaConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`FalconMambaModel`]. It is used to instantiate a FALCON_MAMBA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the FALCON_MAMBA
[tiiuae/falcon-mamba-7b](https://huggingface.co/tiiuae/falcon-mamba-7b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50280):
Vocabulary size of the FALCON_MAMBA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FalconMambaModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the model.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 0):
The id of the beginning of sentence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 0):
The id of the end of sentence token in the vocabulary.
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
use_bias (`bool`, *optional*, defaults to `False`):
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
use_conv_bias (`bool`, *optional*, defaults to `True`):
Whether or not to use bias in the convolution layer of the mixer block.
hidden_act (`str`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.1):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
time_step_scale (`float`, *optional*, defaults to 1.0):
Scale used used to scale `dt_proj.bias`.
time_step_min (`float`, *optional*, defaults to 0.001):
Minimum `time_step` used to bound `dt_proj.bias`.
time_step_max (`float`, *optional*, defaults to 0.1):
Maximum `time_step` used to bound `dt_proj.bias`.
time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
time_step_floor (`float`, *optional*, defaults to 0.0001):
Minimum clamping value of the `dt_proj.bias` layer initialization.
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
Whether or not to rescale `out_proj` weights when initializing.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the cache should be used.
use_mambapy (`bool`, *optional*, defaults to `False`):
Determines the fallback strategy during training if the CUDA-based official implementation of FalconMamba is not available. If `True`, the falcon_mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited.
mixer_rms_eps (`float`, *optional*, defaults to 1e-06):
The RMS norm epsilon value that is used in the Mixer RMS norm for B, C and dt states.
Example:
```python
>>> from transformers import FalconMambaConfig, FalconMambaModel
>>> # Initializing a FalconMamba configuration
>>> configuration = FalconMambaConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = FalconMambaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "falcon_mamba"
def __init__(
self,
vocab_size=50280,
hidden_size=768,
state_size=16,
num_hidden_layers=32,
layer_norm_epsilon=1e-5,
pad_token_id=0,
bos_token_id=0,
eos_token_id=0,
expand=2,
conv_kernel=4,
use_bias=False,
use_conv_bias=True,
hidden_act="silu",
initializer_range=0.1,
residual_in_fp32=True,
time_step_rank="auto",
time_step_scale=1.0,
time_step_min=0.001,
time_step_max=0.1,
time_step_init_scheme="random",
time_step_floor=1e-4,
rescale_prenorm_residual=False,
use_cache=True,
use_mambapy=False,
mixer_rms_eps=1e-6,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.state_size = state_size
self.num_hidden_layers = num_hidden_layers
self.layer_norm_epsilon = layer_norm_epsilon
self.conv_kernel = conv_kernel
self.expand = expand
self.intermediate_size = int(expand * self.hidden_size)
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.use_bias = use_bias
self.use_conv_bias = use_conv_bias
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
self.time_step_scale = time_step_scale
self.time_step_min = time_step_min
self.time_step_max = time_step_max
self.time_step_init_scheme = time_step_init_scheme
self.time_step_floor = time_step_floor
self.rescale_prenorm_residual = rescale_prenorm_residual
self.residual_in_fp32 = residual_in_fp32
self.use_cache = use_cache
self.use_mambapy = use_mambapy
self.mixer_rms_eps = mixer_rms_eps
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
__all__ = ["FalconMambaConfig"]
```
|
=================================================================================================================================================
SOURCE CODE FILE: modeling_falcon_mamba.py
LINES: 1
SIZE: 39.76 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\falcon_mamba\modeling_falcon_mamba.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Tri Dao, Albert Gu, Technological Innovation Institute and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch FALCONMAMBA model."""
import math
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...cache_utils import MambaCache
from ...generation import GenerationMixin
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from ...utils.import_utils import is_causal_conv1d_available, is_mamba_ssm_available, is_mambapy_available
from .configuration_falcon_mamba import FalconMambaConfig
logger = logging.get_logger(__name__)
if is_mambapy_available():
from mambapy.pscan import pscan
else:
pscan = None
if is_mamba_ssm_available():
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from ...kernels.falcon_mamba import mamba_inner_fn
else:
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
if is_causal_conv1d_available():
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
causal_conv1d_update, causal_conv1d_fn = None, None
is_fast_path_available = all(
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
)
_CHECKPOINT_FOR_DOC = "tiiuae/falcon-mamba-7b"
_CONFIG_FOR_DOC = "FalconMambaConfig"
def rms_forward(hidden_states, variance_epsilon=1e-6):
"""
Calculates simple RMSNorm with no learnable weights. `MambaRMSNorm` will
leverage this in order to multiply the final result with the RMSNorm weight
Args:
hidden_states (`torch.Tensor`):
Hidden states to normalize
variance_epsilon (`float`):
The eps value to add in the square root scaling factor
"""
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
return hidden_states.to(input_dtype)
class FalconMambaMixer(nn.Module):
"""
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
A, D are input independent (see FalconMamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
∆, B, C are input-dependent (this is a key difference between FalconMamba and the linear time invariant S4,
and is why FalconMamba is called **selective** state spaces)
"""
def __init__(self, config: FalconMambaConfig, layer_idx: int):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.ssm_state_size = config.state_size
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = config.intermediate_size
self.time_step_rank = int(config.time_step_rank)
self.layer_idx = layer_idx
self.use_conv_bias = config.use_conv_bias
self.conv1d = nn.Conv1d(
in_channels=self.intermediate_size,
out_channels=self.intermediate_size,
bias=config.use_conv_bias,
kernel_size=config.conv_kernel,
groups=self.intermediate_size,
padding=config.conv_kernel - 1,
)
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
self.use_mambapy = config.use_mambapy
# projection of the input hidden states
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias)
# selective projection used to make dt, B and C input dependent
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
# time step projection (discretization)
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
A = A.expand(self.intermediate_size, -1).contiguous()
self.A_log = nn.Parameter(torch.log(A))
self.D = nn.Parameter(torch.ones(self.intermediate_size))
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
self.use_bias = config.use_bias
# Triton expects to pass RMS weights even if they are non learnable, thus we need to create these weights here
self.register_buffer(
"b_c_rms", torch.nn.Parameter(torch.ones(self.ssm_state_size), requires_grad=False), persistent=False
)
self.register_buffer(
"dt_rms", torch.nn.Parameter(torch.ones(self.intermediate_size), requires_grad=False), persistent=False
)
self.rms_eps = config.mixer_rms_eps
if not is_fast_path_available:
if self.use_mambapy:
if is_mambapy_available():
logger.warning_once(
"The fast path is not available because one of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
" is None. Falling back to the mamba.py backend. To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d"
)
else:
raise ImportError(
"use_mambapy is set to True but the mambapy package is not installed. To install it follow https://github.com/alxndrTL/mamba.py."
)
else:
logger.warning_once(
"The fast path is not available because one of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
" is None. Falling back to the sequential implementation of Mamba, as use_mambapy is set to False. To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d. For the mamba.py backend, follow https://github.com/alxndrTL/mamba.py."
)
def cuda_kernels_forward(
self,
hidden_states: torch.Tensor,
cache_params: Optional[MambaCache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
# 1. Gated MLP's linear projection
projected_states = self.in_proj(hidden_states).transpose(1, 2)
if self.training and cache_params is None: # Doesn't support outputting the states -> used for training
contextualized_states = mamba_inner_fn(
projected_states,
self.conv1d.weight,
self.conv1d.bias if self.use_conv_bias else None,
self.x_proj.weight,
self.dt_proj.weight,
self.out_proj.weight,
self.out_proj.bias.float() if self.use_bias else None,
-torch.exp(self.A_log.float()),
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
b_rms_weight=self.b_c_rms,
c_rms_weight=self.b_c_rms,
dt_rms_weight=self.dt_rms,
b_c_dt_rms_eps=self.rms_eps,
)
else:
hidden_states, gate = projected_states.chunk(2, dim=1)
if attention_mask is not None:
hidden_states = hidden_states * attention_mask.unsqueeze(1)
# 2. Convolution sequence transformation
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
if cache_params is not None and cache_position[0] > 0:
hidden_states = causal_conv1d_update(
hidden_states.squeeze(-1),
cache_params.conv_states[self.layer_idx],
conv_weights,
self.conv1d.bias,
self.activation,
)
hidden_states = hidden_states.unsqueeze(-1)
else:
if cache_params is not None:
conv_states = nn.functional.pad(
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.update_conv_state(self.layer_idx, conv_states, cache_position)
hidden_states = causal_conv1d_fn(
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
)
if attention_mask is not None:
hidden_states = hidden_states * attention_mask.unsqueeze(1)
# 3. State Space Model sequence transformation
# 3.a. input varying initialization of time_step, B and C
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
B = rms_forward(B, variance_epsilon=self.rms_eps)
C = rms_forward(C, variance_epsilon=self.rms_eps)
time_step = rms_forward(time_step, variance_epsilon=self.rms_eps)
# In case the model has been quantized, we need a hack to properly call the `nn.Linear` module
# at the price of a small overhead.
if hasattr(self.config, "_pre_quantization_dtype"):
discrete_time_step = (self.dt_proj(time_step) - self.dt_proj.bias).transpose(1, 2)
else:
discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)
A = -torch.exp(self.A_log.float())
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None
if cache_params is not None and cache_position[0] > 0:
scan_outputs = selective_state_update(
cache_params.ssm_states[self.layer_idx],
hidden_states[..., 0],
discrete_time_step[..., 0],
A,
B[:, 0],
C[:, 0],
self.D,
gate[..., 0],
time_proj_bias,
dt_softplus=True,
).unsqueeze(-1)
else:
scan_outputs, ssm_state = selective_scan_fn(
hidden_states,
discrete_time_step,
A,
B.transpose(1, 2),
C.transpose(1, 2),
self.D.float(),
gate,
time_proj_bias,
delta_softplus=True,
return_last_state=True,
)
if ssm_state is not None and cache_params is not None:
cache_params.update_ssm_state(self.layer_idx, ssm_state)
# 4. Final linear projection
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
return contextualized_states
def slow_forward(
self,
input_states,
cache_params: Optional[MambaCache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# 1. Gated MLP's linear projection
projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
hidden_states, gate = projected_states.chunk(2, dim=1)
if attention_mask is not None:
hidden_states = hidden_states * attention_mask.unsqueeze(1)
# 2. Convolution sequence transformation
if cache_params is not None:
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
ssm_state = ssm_state.to(hidden_states.device)
# use `cache_position.shape[0]` to check whether we are in prefill
# stage, it's equivalent to check `cache_position[0] == 0`, which
# breaks dynamo fullgraph constraints
if cache_position is not None and cache_position.shape[0] == self.conv_kernel_size:
conv_state = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0))
cache_params.update_conv_state(self.layer_idx, conv_state, cache_position)
hidden_states = self.act(
self.conv1d(hidden_states)[..., :seq_len]
) # [batch, intermediate_size, seq_len]
else:
conv_state = cache_params.update_conv_state(self.layer_idx, hidden_states, cache_position)
conv_state = conv_state.to(self.conv1d.weight.device)
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
if self.use_conv_bias:
hidden_states += self.conv1d.bias
hidden_states = (
self.act(hidden_states).to(dtype).unsqueeze(-1)
) # [batch, intermediate_size, 1] : decoding
else:
ssm_state = torch.zeros(
(batch_size, self.intermediate_size, self.ssm_state_size), device=hidden_states.device, dtype=dtype
)
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
if attention_mask is not None:
hidden_states = hidden_states * attention_mask.unsqueeze(1)
# 3. State Space Model sequence transformation
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
B = rms_forward(B, variance_epsilon=self.rms_eps)
C = rms_forward(C, variance_epsilon=self.rms_eps)
time_step = rms_forward(time_step, variance_epsilon=self.rms_eps)
discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(
1, 2
) # [batch, intermediate_size, seq_len]
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size]
discrete_A = torch.exp(
A[None, :, None, :] * discrete_time_step[:, :, :, None]
) # [batch, intermediate_size, seq_len, ssm_state_size]
discrete_B = (
discrete_time_step[:, :, :, None] * B[:, None, :, :].float()
) # [batch, intermediate_size, seq_len, ssm_state_size]
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
if self.use_mambapy and self.training and cache_params is None:
hs = pscan(
discrete_A.transpose(1, 2), deltaB_u.transpose(1, 2)
) # [batch, seq_len, intermediate_size, ssm_state_size]
scan_output = (hs @ C.unsqueeze(-1)).squeeze(3).transpose(1, 2) # [batch, intermediate_size, seq_len]
scan_output = scan_output + hidden_states * self.D[None, :, None]
scan_output = scan_output * self.act(gate)
else:
scan_outputs = []
for i in range(seq_len):
ssm_state = (
discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :]
) # [batch, intermediate_size, ssm_state]
scan_output = torch.matmul(
ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)
) # [batch, intermediate_size, 1]
scan_outputs.append(scan_output[:, :, 0])
scan_output = torch.stack(scan_outputs, dim=-1) # [batch, intermediate_size, seq_len]
scan_output = scan_output + (hidden_states * self.D[None, :, None])
scan_output = scan_output * self.act(gate)
if cache_params is not None:
cache_params.update_ssm_state(self.layer_idx, ssm_state)
# 4. Final linear projection
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
return contextualized_states
# Copied from transformers.models.mamba.modeling_mamba.MambaMixer.forward
def forward(
self,
hidden_states,
cache_params: Optional[MambaCache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
if is_fast_path_available and "cuda" in self.x_proj.weight.device.type and not torch._dynamo.is_compiling():
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
return self.slow_forward(hidden_states, cache_params, cache_position, attention_mask)
# Copied from transformers.models.mamba.modeling_mamba.MambaRMSNorm with Mamba->FalconMamba
class FalconMambaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
FalconMambaRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def extra_repr(self):
return f"{self.weight.shape[0]}, eps={self.variance_epsilon}"
# Ignore copy
def forward(self, hidden_states):
return self.weight.to(hidden_states.device) * rms_forward(
hidden_states, variance_epsilon=self.variance_epsilon
)
# Copied from transformers.models.mamba.modeling_mamba.MambaBlock with Mamba->FalconMamba,FalconMambaCache->MambaCache
class FalconMambaBlock(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.residual_in_fp32 = config.residual_in_fp32
self.norm = FalconMambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mixer = FalconMambaMixer(config, layer_idx=layer_idx)
def forward(
self,
hidden_states,
cache_params: Optional[MambaCache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
residual = hidden_states
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
if self.residual_in_fp32:
residual = residual.to(torch.float32)
hidden_states = self.mixer(
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
)
hidden_states = residual + hidden_states
return hidden_states
# Copied from transformers.models.mamba.modeling_mamba.MambaPreTrainedModel with Mamba->FalconMamba
class FalconMambaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FalconMambaConfig
base_model_prefix = "backbone"
_no_split_modules = ["FalconMambaBlock", "FalconMambaMixer"]
supports_gradient_checkpointing = True
_is_stateful = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, FalconMambaMixer):
module.A_log._no_weight_decay = True
module.D._no_weight_decay = True
dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale
if self.config.time_step_init_scheme == "constant":
nn.init.constant_(module.dt_proj.weight, dt_init_std)
elif self.config.time_step_init_scheme == "random":
nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std)
dt = torch.exp(
torch.rand(self.config.intermediate_size)
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
+ math.log(self.config.time_step_min)
).clamp(min=self.config.time_step_floor)
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
module.dt_proj.bias.copy_(inv_dt)
module.dt_proj.bias._no_reinit = True
if isinstance(module, nn.Linear):
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=self.config.initializer_range)
if self.config.rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(self.config.num_hidden_layers)
@dataclass
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->FALCONMAMBA,Mamba->FalconMamba,FalconMambaCache->MambaCache
class FalconMambaOutput(ModelOutput):
"""
Class for the FALCONMAMBA model outputs.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
cache_params (`MambaCache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
cache_params: Optional[MambaCache] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->FalconMamba,FalconMambaCache->MambaCache
class FalconMambaCausalLMOutput(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
cache_params (`MambaCache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
cache_params: Optional[MambaCache] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
FALCONMAMBA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FalconMambaConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FALCONMAMBA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
Indices of input sequence tokens in the vocabulary.
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
cache_params (`MambaCache`, *optional*):
If passed along, the model uses the previous state in all the blocks (which will give the output for the
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
use_cache (`bool`, *optional*):
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare FALCONMAMBA Model transformer outputting raw hidden-states without any specific head on top.",
FALCONMAMBA_START_DOCSTRING,
)
class FalconMambaModel(FalconMambaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList(
[FalconMambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
self.norm_f = FalconMambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings = new_embeddings
@add_start_docstrings_to_model_forward(FALCONMAMBA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=FalconMambaOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
cache_params: Optional[MambaCache] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
) -> Union[Tuple, FalconMambaOutput]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
if self.gradient_checkpointing and self.training and use_cache:
use_cache = False
if use_cache:
if cache_params is None:
cache_params = MambaCache(
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
)
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
elif cache_position is None:
# cases when we do manual forward instead of using `model.generate` which will initiate
# `cache_position` and makes sure it is not None, throw error here instead of doing some
# hack to conjecture the current cache position
raise ValueError(
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
"be initialized for you automatically"
)
else:
cache_params = None
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
for mixer_block in self.layers:
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
)
else:
hidden_states = mixer_block(
hidden_states,
cache_params=cache_params,
cache_position=cache_position,
attention_mask=attention_mask,
)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = self.norm_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
return FalconMambaOutput(
last_hidden_state=hidden_states,
cache_params=cache_params if use_cache else None,
hidden_states=all_hidden_states,
)
@add_start_docstrings(
"""
The FALCONMAMBA Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
FALCONMAMBA_START_DOCSTRING,
)
# Copied from transformers.models.mamba.modeling_mamba.MambaForCausalLM with MAMBA->FALCONMAMBA,Mamba->FalconMamba,mamba->falcon_mamba,FalconMambaCache->MambaCache
class FalconMambaForCausalLM(FalconMambaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.backbone = FalconMambaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.backbone.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
return self.backbone.set_input_embeddings(new_embeddings)
def _update_model_kwargs_for_generation(
self, outputs: ModelOutput, model_kwargs: Dict[str, Any], num_new_tokens: int = 1, **kwargs
) -> Dict[str, Any]:
model_kwargs["cache_params"] = outputs.get("cache_params", None)
if (
model_kwargs.get("use_cache", True)
and "cache_position" in model_kwargs
and model_kwargs["cache_position"] is not None
):
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
return model_kwargs
def prepare_inputs_for_generation(
self,
input_ids,
inputs_embeds=None,
use_cache=None,
cache_params: Optional[MambaCache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
**kwargs,
):
# Overwritten -- uses `cache_params` as opposed to `past_key_values`
if use_cache:
# `cache_position` should have been initialized in `generate`
if cache_position is None:
raise ValueError(
"`cache_position` should not be None as it should have been initialized in "
"`model.generate`, you are responsible for passing in a valid `cache_position` if "
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
)
if cache_position[0] > 0:
input_ids = input_ids[:, -1].unsqueeze(-1)
if attention_mask is not None:
attention_mask = None
else:
# we initialize the `cache_position` to full size of `conv_states` at prefill stage
# considering padding will be applied when input length is shorter, and truncation
# will be applied when it is longer, so it will be equivalent to always have it match
# the length of `cache_params.conv_states`, which is `config.conv_kernel`
cache_position = torch.arange(0, self.config.conv_kernel, device=input_ids.device)
if inputs_embeds is not None and cache_params is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()}
model_inputs.update(
{
"cache_params": cache_params,
"use_cache": use_cache,
"cache_position": cache_position,
"attention_mask": attention_mask,
}
)
return model_inputs
@add_start_docstrings_to_model_forward(FALCONMAMBA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=FalconMambaCausalLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_params: Optional[MambaCache] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
**kwargs, # for now we need this for generation
) -> Union[Tuple, FalconMambaCausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
falcon_mamba_outputs = self.backbone(
input_ids,
cache_params=cache_params,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_cache=use_cache,
cache_position=cache_position,
attention_mask=attention_mask,
)
hidden_states = falcon_mamba_outputs[0]
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (logits,) + falcon_mamba_outputs[1:]
return ((loss,) + output) if loss is not None else output
return FalconMambaCausalLMOutput(
loss=loss,
logits=logits,
cache_params=falcon_mamba_outputs.cache_params,
hidden_states=falcon_mamba_outputs.hidden_states,
)
__all__ = ["FalconMambaForCausalLM", "FalconMambaModel", "FalconMambaPreTrainedModel"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: modeling_falcon.py
LINES: 1
SIZE: 71.23 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\falcon\modeling_falcon.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Falcon model."""
import math
from typing import TYPE_CHECKING, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
from torch.nn import functional as F
from ...activations import get_activation
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
AttentionMaskConverter,
)
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_falcon import FalconConfig
if TYPE_CHECKING:
from ...configuration_utils import PretrainedConfig
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b"
_CONFIG_FOR_DOC = "FalconConfig"
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
class FalconLinear(nn.Linear):
def forward(self, input: torch.Tensor) -> torch.Tensor:
hidden_states = input @ self.weight.T
if self.bias is None:
return hidden_states
return hidden_states + self.bias
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Falcon
class FalconRotaryEmbedding(nn.Module):
def __init__(self, config: FalconConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
batch_size, seq_length = attention_mask.shape
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
base = torch.tensor(
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
)
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = torch.tensor(
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
# => the query_length dimension will then be broadcasted correctly
# This is more or less identical to T5's relative position bias:
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
alibi = slopes[..., None].bfloat16() * arange_tensor
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
# Copied from transformers.models.bloom.modeling_bloom.dropout_add
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
"""
Dropout add function
Args:
x (`torch.tensor`):
input tensor
residual (`torch.tensor`):
residual tensor
prob (`float`):
dropout probability
training (`bool`):
training mode
"""
out = F.dropout(x, p=prob, training=training)
out = residual + out
return out
class FalconAttention(nn.Module):
def __init__(self, config: FalconConfig, layer_idx=None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.split_size = self.hidden_size
self.hidden_dropout = config.hidden_dropout
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self._use_sdpa = config._attn_implementation == "sdpa"
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
if self.head_dim * self.num_heads != self.hidden_size:
raise ValueError(
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
f" {self.num_heads})."
)
# Layer-wise attention scaling
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
self.beta = self.inv_norm_factor
if config.new_decoder_architecture:
qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
elif config.multi_query:
qkv_out_dim = self.hidden_size + 2 * self.head_dim
else:
qkv_out_dim = 3 * self.hidden_size
self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
self.new_decoder_architecture = config.new_decoder_architecture
self.multi_query = config.multi_query
self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
self.attention_dropout = nn.Dropout(config.attention_dropout)
self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1
# TODO (raushan): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
if config.rotary:
self.rotary_emb = FalconRotaryEmbedding(config=self.config)
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`
Args:
fused_qkv (`torch.tensor`): [batch_size, seq_length, num_heads * 3 * head_dim]
Returns:
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
value: [batch_size, seq_length, num_heads, head_dim]
"""
if self.new_decoder_architecture:
batch, seq_len, _ = fused_qkv.shape
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim)
query = qkv[:, :, :, :-2]
key = qkv[:, :, :, [-2]]
value = qkv[:, :, :, [-1]]
key = torch.broadcast_to(key, query.shape)
value = torch.broadcast_to(value, query.shape)
query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
return query, key, value
elif not self.multi_query:
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
else:
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]
# Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
"""
Merge heads together over the last dimension
Args:
x (`torch.tensor`): [batch_size * num_heads, seq_length, head_dim]
Returns:
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
"""
# What we want to achieve is:
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
batch_size_and_num_heads, seq_length, _ = x.shape
batch_size = batch_size_and_num_heads // self.num_heads
# First view to decompose the batch size
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
x = x.permute(0, 2, 1, 3)
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
alibi: Optional[torch.Tensor],
attention_mask: torch.Tensor,
position_ids: Optional[torch.LongTensor] = None,
layer_past: Optional[Cache] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
):
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
# 3 x [batch_size, seq_length, num_heads, head_dim]
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
batch_size, query_length, _, _ = query_layer.shape
query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
if alibi is None:
cos, sin = position_embeddings
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin)
if layer_past is not None:
cache_kwargs = {"cache_position": cache_position}
if alibi is None:
cache_kwargs.update({"sin": sin, "cos": cos})
key_layer, value_layer = layer_past.update(key_layer, value_layer, self.layer_idx, cache_kwargs)
kv_length = key_layer.shape[-2]
if self._use_sdpa and query_layer.device.type == "cuda" and attention_mask is not None:
# For torch<=2.1.2, SDPA with memory-efficient backend is bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
query_layer = query_layer.contiguous()
key_layer = key_layer.contiguous()
value_layer = value_layer.contiguous()
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key_layer.shape[-2]]
if alibi is None:
if self._use_sdpa and not output_attentions:
# We dispatch to SDPA's Flash Attention or Efficient kernels via this if statement instead of an
# inline conditional assignment to support both torch.compile's `dynamic=True` and `fullgraph=True`
# The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not
# create a causal mask in case query_length == 1.
is_causal = True if self.is_causal and attention_mask is None and query_length > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_layer,
key_layer,
value_layer,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=is_causal,
)
attention_scores = None
else:
attention_scores = query_layer @ key_layer.transpose(-1, -2)
attention_scores /= math.sqrt(self.head_dim)
attention_scores = F.softmax(attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype)
# It is unclear why neither dropout nor head_mask is applied here (while it is with alibi).
attn_output = attention_scores @ value_layer
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
attn_output = attn_output.permute(0, 2, 1, 3)
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
attn_output = self.dense(attn_output)
if output_attentions:
return attn_output, layer_past, attention_scores
else:
return attn_output, layer_past
else:
if self._use_sdpa and not output_attentions and head_mask is None:
# We dispatch to SDPA's Flash Attention or Efficient kernels via this if statement instead of an
# inline conditional assignment to support both torch.compile's `dynamic=True` and `fullgraph=True`
is_causal = True if self.is_causal and attention_mask is None and query_length > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_layer,
key_layer,
value_layer,
attn_mask=attention_mask,
dropout_p=self.attention_dropout.p if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
attn_output = self.dense(attn_output)
else:
matmul_result = query_layer @ key_layer.transpose(-1, -2)
# change view to [batch_size, num_heads, q_length, kv_length]
attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
input_dtype = attention_scores.dtype
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
attention_scores = attention_scores.to(torch.float32)
attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
attention_logits *= self.inv_norm_factor
attention_probs = F.softmax(attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype)
# [batch_size, num_heads, q_length, kv_length]
attention_probs = self.attention_dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
# change view [batch_size, num_heads, q_length, kv_length]
attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)
# matmul: [batch_size * num_heads, q_length, head_dim]
attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1)
# change view [batch_size, q_length, num_heads * head_dim]
attn_output = self._merge_heads(attn_output)
attn_output = self.dense(attn_output)
if output_attentions:
return attn_output, layer_past, attention_probs
else:
return attn_output, layer_past
class FalconFlashAttention2(FalconAttention):
"""
Falcon flash attention module. This module inherits from `FalconAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states: torch.Tensor,
alibi: Optional[torch.Tensor],
attention_mask: torch.Tensor,
position_ids: Optional[torch.LongTensor] = None,
layer_past: Optional[Cache] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
):
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
# 3 x [batch_size, seq_length, num_heads, head_dim]
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
batch_size, query_length, _, _ = query_layer.shape
query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
if alibi is None:
cos, sin = position_embeddings
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin)
if layer_past is not None:
cache_kwargs = {"cache_position": cache_position}
if alibi is None:
cache_kwargs.update({"sin": sin, "cos": cos})
key_layer, value_layer = layer_past.update(key_layer, value_layer, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_layer = query_layer.transpose(1, 2)
key_layer = key_layer.transpose(1, 2)
value_layer = value_layer.transpose(1, 2)
if alibi is not None:
raise ValueError("`alibi` is not supported when `use_flash_attn` is True")
attn_dropout = self.config.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_layer.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.query_key_value.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_layer = query_layer.to(target_dtype)
key_layer = key_layer.to(target_dtype)
value_layer = value_layer.to(target_dtype)
attn_output = _flash_attention_forward(
query_layer,
key_layer,
value_layer,
attention_mask,
query_length,
position_ids=position_ids,
dropout=attn_dropout,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_weights = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
attn_output = self.dense(attn_weights)
if not output_attentions:
attn_weights = None
return attn_output, layer_past, attn_weights
class FalconMLP(nn.Module):
def __init__(self, config: FalconConfig):
super().__init__()
hidden_size = config.hidden_size
self.dense_h_to_4h = FalconLinear(hidden_size, config.ffn_hidden_size, bias=config.bias)
self.act = get_activation(config.activation)
self.dense_4h_to_h = FalconLinear(config.ffn_hidden_size, hidden_size, bias=config.bias)
self.hidden_dropout = config.hidden_dropout
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.act(self.dense_h_to_4h(x))
x = self.dense_4h_to_h(x)
return x
FALCON_ATTENTION_CLASSES = {
"eager": FalconAttention,
"sdpa": FalconAttention, # FalconAttention originally implemented both a forward with & without SDPA
"flash_attention_2": FalconFlashAttention2,
}
class FalconDecoderLayer(nn.Module):
def __init__(self, config: FalconConfig, layer_idx=None):
super().__init__()
hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.self_attention = FALCON_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
self.mlp = FalconMLP(config)
self.hidden_dropout = config.hidden_dropout
self.config = config
if config.num_ln_in_parallel_attn is None and config.new_decoder_architecture:
config.num_ln_in_parallel_attn = 2
if not config.parallel_attn:
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
else:
if config.num_ln_in_parallel_attn == 2:
# The layer norm before self-attention
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
# The layer norm before the MLP
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
else:
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
hidden_states: torch.Tensor,
alibi: Optional[torch.Tensor],
attention_mask: torch.Tensor,
position_ids: Optional[torch.LongTensor] = None,
layer_past: Optional[Union[Cache, Tuple[torch.Tensor, torch.Tensor]]] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
):
residual = hidden_states
if self.config.new_decoder_architecture and self.config.num_ln_in_parallel_attn == 2:
attention_layernorm_out = self.ln_attn(hidden_states)
mlp_layernorm_out = self.ln_mlp(hidden_states)
else:
attention_layernorm_out = self.input_layernorm(hidden_states)
# Self attention.
attn_outputs = self.self_attention(
attention_layernorm_out,
layer_past=layer_past,
attention_mask=attention_mask,
position_ids=position_ids,
alibi=alibi,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
attention_output = attn_outputs[0]
if not self.config.new_decoder_architecture:
if self.config.parallel_attn:
mlp_layernorm_out = attention_layernorm_out
else:
residual = dropout_add(
attention_output, residual, self.config.attention_dropout, training=self.training
)
mlp_layernorm_out = self.post_attention_layernorm(residual)
if (
self.config.new_decoder_architecture
and self.config.parallel_attn
and self.config.num_ln_in_parallel_attn == 1
):
mlp_layernorm_out = attention_layernorm_out
outputs = attn_outputs[1:]
# MLP.
mlp_output = self.mlp(mlp_layernorm_out)
if self.config.new_decoder_architecture or self.config.parallel_attn:
mlp_output += attention_output
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
if use_cache:
outputs = (output,) + outputs
else:
outputs = (output,) + outputs[1:]
return outputs # hidden_states, past_kv, attentions
FALCON_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FalconConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FALCON_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
`past_key_values`).
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
class FalconPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FalconConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["FalconDecoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module: nn.Module):
"""Initialize the weights."""
if isinstance(module, nn.Linear) or isinstance(module, FalconLinear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa
@classmethod
def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> "PretrainedConfig":
_is_bettertransformer = getattr(cls, "use_bettertransformer", False)
if _is_bettertransformer:
return config
if not hard_check_only:
config._attn_implementation = "sdpa"
return config
@add_start_docstrings(
"The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.",
FALCON_START_DOCSTRING,
)
class FalconModel(FalconPreTrainedModel):
def __init__(self, config: FalconConfig):
super().__init__(config)
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.use_alibi = config.alibi
# Embedding + LN Embedding
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
# Transformer blocks
self.h = nn.ModuleList([FalconDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
# Final Layer Norm
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.rotary_emb = FalconRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.word_embeddings
def set_input_embeddings(self, new_embeddings: torch.Tensor):
self.word_embeddings = new_embeddings
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
# Compute alibi tensor: check build_alibi_tensor documentation
alibi = None
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
batch_size, seq_length, _ = inputs_embeds.shape
if self.use_alibi:
mask = (
torch.ones(
(batch_size, seq_length + past_key_values_length), device=inputs_embeds.device, dtype=torch.long
)
if attention_mask is None
else attention_mask
)
alibi = build_alibi_tensor(mask, self.num_heads, dtype=inputs_embeds.dtype)
if cache_position is None:
cache_position = torch.arange(
past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions, head_mask, alibi
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape batch_size x num_heads x N x N
# head_mask has shape n_layer x batch x num_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
next_decoder_cache = None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, block in enumerate(self.h):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
alibi,
causal_mask,
position_ids,
head_mask[i],
past_key_values,
use_cache,
output_attentions,
cache_position,
position_embeddings,
)
else:
outputs = block(
hidden_states,
layer_past=past_key_values,
attention_mask=causal_mask,
position_ids=position_ids,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
alibi=alibi,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = outputs[0]
if use_cache is True:
next_decoder_cache = outputs[1]
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
# Add last hidden state
hidden_states = self.ln_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(
v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions] if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
head_mask: torch.Tensor,
alibi: torch.Tensor,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not using_static_cache
and not output_attentions
and head_mask is None
and alibi is None
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
batch_size, sequence_length, _ = input_tensor.shape
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
# We take care to integrate alibi bias in the causal_mask here
if head_mask is None and alibi is not None:
alibi = alibi.reshape(batch_size, -1, *alibi.shape[1:])
causal_mask = torch.masked_fill(
alibi / math.sqrt(self.config.hidden_size // self.num_heads),
causal_mask < -1,
min_dtype,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
@add_start_docstrings(
"The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).",
FALCON_START_DOCSTRING,
)
class FalconForCausalLM(FalconPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: FalconConfig):
super().__init__(config)
self.transformer = FalconModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings: torch.Tensor):
self.lm_head = new_embeddings
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = transformer_outputs[0]
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
lm_logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(
lm_logits,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def _reorder_cache(
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
Output shares the same memory storage as `past`.
"""
# Get a copy of `beam_idx` on all the devices where we need those indices.
device_to_beam_idx = {
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
}
reordered_past = tuple(
(
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
)
for layer_past in past
)
return reordered_past
@add_start_docstrings(
"""
The Falcon Model transformer with a sequence classification head on top (linear layer).
[`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
FALCON_START_DOCSTRING,
)
class FalconForSequenceClassification(FalconPreTrainedModel):
def __init__(self, config: FalconConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = FalconModel(config)
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
FALCON_START_DOCSTRING,
)
class FalconForTokenClassification(FalconPreTrainedModel):
def __init__(self, config: FalconConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = FalconModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
batch_size, seq_length = labels.shape
loss_fct = CrossEntropyLoss()
loss = loss_fct(
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
)
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FALCON_START_DOCSTRING,
)
class FalconForQuestionAnswering(FalconPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = FalconModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
```
|
=============================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.05 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fastspeech2_conformer\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_fastspeech2_conformer import *
from .modeling_fastspeech2_conformer import *
from .tokenization_fastspeech2_conformer import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================================================
SOURCE CODE FILE: configuration_fastspeech2_conformer.py
LINES: 1
SIZE: 24.05 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fastspeech2_conformer\configuration_fastspeech2_conformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FastSpeech2Conformer model configuration"""
from typing import Dict
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class FastSpeech2ConformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FastSpeech2ConformerModel`]. It is used to
instantiate a FastSpeech2Conformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the
FastSpeech2Conformer [espnet/fastspeech2_conformer](https://huggingface.co/espnet/fastspeech2_conformer)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 384):
The dimensionality of the hidden layers.
vocab_size (`int`, *optional*, defaults to 78):
The size of the vocabulary.
num_mel_bins (`int`, *optional*, defaults to 80):
The number of mel filters used in the filter bank.
encoder_num_attention_heads (`int`, *optional*, defaults to 2):
The number of attention heads in the encoder.
encoder_layers (`int`, *optional*, defaults to 4):
The number of layers in the encoder.
encoder_linear_units (`int`, *optional*, defaults to 1536):
The number of units in the linear layer of the encoder.
decoder_layers (`int`, *optional*, defaults to 4):
The number of layers in the decoder.
decoder_num_attention_heads (`int`, *optional*, defaults to 2):
The number of attention heads in the decoder.
decoder_linear_units (`int`, *optional*, defaults to 1536):
The number of units in the linear layer of the decoder.
speech_decoder_postnet_layers (`int`, *optional*, defaults to 5):
The number of layers in the post-net of the speech decoder.
speech_decoder_postnet_units (`int`, *optional*, defaults to 256):
The number of units in the post-net layers of the speech decoder.
speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5):
The kernel size in the post-net of the speech decoder.
positionwise_conv_kernel_size (`int`, *optional*, defaults to 3):
The size of the convolution kernel used in the position-wise layer.
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
Specifies whether to normalize before encoder layers.
decoder_normalize_before (`bool`, *optional*, defaults to `False`):
Specifies whether to normalize before decoder layers.
encoder_concat_after (`bool`, *optional*, defaults to `False`):
Specifies whether to concatenate after encoder layers.
decoder_concat_after (`bool`, *optional*, defaults to `False`):
Specifies whether to concatenate after decoder layers.
reduction_factor (`int`, *optional*, defaults to 1):
The factor by which the speech frame rate is reduced.
speaking_speed (`float`, *optional*, defaults to 1.0):
The speed of the speech produced.
use_macaron_style_in_conformer (`bool`, *optional*, defaults to `True`):
Specifies whether to use macaron style in the conformer.
use_cnn_in_conformer (`bool`, *optional*, defaults to `True`):
Specifies whether to use convolutional neural networks in the conformer.
encoder_kernel_size (`int`, *optional*, defaults to 7):
The kernel size used in the encoder.
decoder_kernel_size (`int`, *optional*, defaults to 31):
The kernel size used in the decoder.
duration_predictor_layers (`int`, *optional*, defaults to 2):
The number of layers in the duration predictor.
duration_predictor_channels (`int`, *optional*, defaults to 256):
The number of channels in the duration predictor.
duration_predictor_kernel_size (`int`, *optional*, defaults to 3):
The kernel size used in the duration predictor.
energy_predictor_layers (`int`, *optional*, defaults to 2):
The number of layers in the energy predictor.
energy_predictor_channels (`int`, *optional*, defaults to 256):
The number of channels in the energy predictor.
energy_predictor_kernel_size (`int`, *optional*, defaults to 3):
The kernel size used in the energy predictor.
energy_predictor_dropout (`float`, *optional*, defaults to 0.5):
The dropout rate in the energy predictor.
energy_embed_kernel_size (`int`, *optional*, defaults to 1):
The kernel size used in the energy embed layer.
energy_embed_dropout (`float`, *optional*, defaults to 0.0):
The dropout rate in the energy embed layer.
stop_gradient_from_energy_predictor (`bool`, *optional*, defaults to `False`):
Specifies whether to stop gradients from the energy predictor.
pitch_predictor_layers (`int`, *optional*, defaults to 5):
The number of layers in the pitch predictor.
pitch_predictor_channels (`int`, *optional*, defaults to 256):
The number of channels in the pitch predictor.
pitch_predictor_kernel_size (`int`, *optional*, defaults to 5):
The kernel size used in the pitch predictor.
pitch_predictor_dropout (`float`, *optional*, defaults to 0.5):
The dropout rate in the pitch predictor.
pitch_embed_kernel_size (`int`, *optional*, defaults to 1):
The kernel size used in the pitch embed layer.
pitch_embed_dropout (`float`, *optional*, defaults to 0.0):
The dropout rate in the pitch embed layer.
stop_gradient_from_pitch_predictor (`bool`, *optional*, defaults to `True`):
Specifies whether to stop gradients from the pitch predictor.
encoder_dropout_rate (`float`, *optional*, defaults to 0.2):
The dropout rate in the encoder.
encoder_positional_dropout_rate (`float`, *optional*, defaults to 0.2):
The positional dropout rate in the encoder.
encoder_attention_dropout_rate (`float`, *optional*, defaults to 0.2):
The attention dropout rate in the encoder.
decoder_dropout_rate (`float`, *optional*, defaults to 0.2):
The dropout rate in the decoder.
decoder_positional_dropout_rate (`float`, *optional*, defaults to 0.2):
The positional dropout rate in the decoder.
decoder_attention_dropout_rate (`float`, *optional*, defaults to 0.2):
The attention dropout rate in the decoder.
duration_predictor_dropout_rate (`float`, *optional*, defaults to 0.2):
The dropout rate in the duration predictor.
speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5):
The dropout rate in the speech decoder postnet.
max_source_positions (`int`, *optional*, defaults to 5000):
if `"relative"` position embeddings are used, defines the maximum source input positions.
use_masking (`bool`, *optional*, defaults to `True`):
Specifies whether to use masking in the model.
use_weighted_masking (`bool`, *optional*, defaults to `False`):
Specifies whether to use weighted masking in the model.
num_speakers (`int`, *optional*):
Number of speakers. If set to > 1, assume that the speaker ids will be provided as the input and use
speaker id embedding layer.
num_languages (`int`, *optional*):
Number of languages. If set to > 1, assume that the language ids will be provided as the input and use the
languge id embedding layer.
speaker_embed_dim (`int`, *optional*):
Speaker embedding dimension. If set to > 0, assume that speaker_embedding will be provided as the input.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Specifies whether the model is an encoder-decoder.
Example:
```python
>>> from transformers import FastSpeech2ConformerModel, FastSpeech2ConformerConfig
>>> # Initializing a FastSpeech2Conformer style configuration
>>> configuration = FastSpeech2ConformerConfig()
>>> # Initializing a model from the FastSpeech2Conformer style configuration
>>> model = FastSpeech2ConformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "fastspeech2_conformer"
base_config_key = "model_config"
attribute_map = {"num_hidden_layers": "encoder_layers", "num_attention_heads": "encoder_num_attention_heads"}
def __init__(
self,
hidden_size=384,
vocab_size=78,
num_mel_bins=80,
encoder_num_attention_heads=2,
encoder_layers=4,
encoder_linear_units=1536,
decoder_layers=4,
decoder_num_attention_heads=2,
decoder_linear_units=1536,
speech_decoder_postnet_layers=5,
speech_decoder_postnet_units=256,
speech_decoder_postnet_kernel=5,
positionwise_conv_kernel_size=3,
encoder_normalize_before=False,
decoder_normalize_before=False,
encoder_concat_after=False,
decoder_concat_after=False,
reduction_factor=1,
speaking_speed=1.0,
use_macaron_style_in_conformer=True,
use_cnn_in_conformer=True,
encoder_kernel_size=7,
decoder_kernel_size=31,
duration_predictor_layers=2,
duration_predictor_channels=256,
duration_predictor_kernel_size=3,
energy_predictor_layers=2,
energy_predictor_channels=256,
energy_predictor_kernel_size=3,
energy_predictor_dropout=0.5,
energy_embed_kernel_size=1,
energy_embed_dropout=0.0,
stop_gradient_from_energy_predictor=False,
pitch_predictor_layers=5,
pitch_predictor_channels=256,
pitch_predictor_kernel_size=5,
pitch_predictor_dropout=0.5,
pitch_embed_kernel_size=1,
pitch_embed_dropout=0.0,
stop_gradient_from_pitch_predictor=True,
encoder_dropout_rate=0.2,
encoder_positional_dropout_rate=0.2,
encoder_attention_dropout_rate=0.2,
decoder_dropout_rate=0.2,
decoder_positional_dropout_rate=0.2,
decoder_attention_dropout_rate=0.2,
duration_predictor_dropout_rate=0.2,
speech_decoder_postnet_dropout=0.5,
max_source_positions=5000,
use_masking=True,
use_weighted_masking=False,
num_speakers=None,
num_languages=None,
speaker_embed_dim=None,
is_encoder_decoder=True,
**kwargs,
):
if positionwise_conv_kernel_size % 2 == 0:
raise ValueError(
f"positionwise_conv_kernel_size must be odd, but got {positionwise_conv_kernel_size} instead."
)
if encoder_kernel_size % 2 == 0:
raise ValueError(f"encoder_kernel_size must be odd, but got {encoder_kernel_size} instead.")
if decoder_kernel_size % 2 == 0:
raise ValueError(f"decoder_kernel_size must be odd, but got {decoder_kernel_size} instead.")
if duration_predictor_kernel_size % 2 == 0:
raise ValueError(
f"duration_predictor_kernel_size must be odd, but got {duration_predictor_kernel_size} instead."
)
if energy_predictor_kernel_size % 2 == 0:
raise ValueError(
f"energy_predictor_kernel_size must be odd, but got {energy_predictor_kernel_size} instead."
)
if energy_embed_kernel_size % 2 == 0:
raise ValueError(f"energy_embed_kernel_size must be odd, but got {energy_embed_kernel_size} instead.")
if pitch_predictor_kernel_size % 2 == 0:
raise ValueError(
f"pitch_predictor_kernel_size must be odd, but got {pitch_predictor_kernel_size} instead."
)
if pitch_embed_kernel_size % 2 == 0:
raise ValueError(f"pitch_embed_kernel_size must be odd, but got {pitch_embed_kernel_size} instead.")
if hidden_size % encoder_num_attention_heads != 0:
raise ValueError("The hidden_size must be evenly divisible by encoder_num_attention_heads.")
if hidden_size % decoder_num_attention_heads != 0:
raise ValueError("The hidden_size must be evenly divisible by decoder_num_attention_heads.")
if use_masking and use_weighted_masking:
raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.")
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.num_mel_bins = num_mel_bins
self.encoder_config = {
"num_attention_heads": encoder_num_attention_heads,
"layers": encoder_layers,
"kernel_size": encoder_kernel_size,
"attention_dropout_rate": encoder_attention_dropout_rate,
"dropout_rate": encoder_dropout_rate,
"positional_dropout_rate": encoder_positional_dropout_rate,
"linear_units": encoder_linear_units,
"normalize_before": encoder_normalize_before,
"concat_after": encoder_concat_after,
}
self.decoder_config = {
"num_attention_heads": decoder_num_attention_heads,
"layers": decoder_layers,
"kernel_size": decoder_kernel_size,
"attention_dropout_rate": decoder_attention_dropout_rate,
"dropout_rate": decoder_dropout_rate,
"positional_dropout_rate": decoder_positional_dropout_rate,
"linear_units": decoder_linear_units,
"normalize_before": decoder_normalize_before,
"concat_after": decoder_concat_after,
}
self.encoder_num_attention_heads = encoder_num_attention_heads
self.encoder_layers = encoder_layers
self.duration_predictor_channels = duration_predictor_channels
self.duration_predictor_kernel_size = duration_predictor_kernel_size
self.duration_predictor_layers = duration_predictor_layers
self.energy_embed_dropout = energy_embed_dropout
self.energy_embed_kernel_size = energy_embed_kernel_size
self.energy_predictor_channels = energy_predictor_channels
self.energy_predictor_dropout = energy_predictor_dropout
self.energy_predictor_kernel_size = energy_predictor_kernel_size
self.energy_predictor_layers = energy_predictor_layers
self.pitch_embed_dropout = pitch_embed_dropout
self.pitch_embed_kernel_size = pitch_embed_kernel_size
self.pitch_predictor_channels = pitch_predictor_channels
self.pitch_predictor_dropout = pitch_predictor_dropout
self.pitch_predictor_kernel_size = pitch_predictor_kernel_size
self.pitch_predictor_layers = pitch_predictor_layers
self.positionwise_conv_kernel_size = positionwise_conv_kernel_size
self.speech_decoder_postnet_units = speech_decoder_postnet_units
self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout
self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel
self.speech_decoder_postnet_layers = speech_decoder_postnet_layers
self.reduction_factor = reduction_factor
self.speaking_speed = speaking_speed
self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor
self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor
self.max_source_positions = max_source_positions
self.use_cnn_in_conformer = use_cnn_in_conformer
self.use_macaron_style_in_conformer = use_macaron_style_in_conformer
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
self.num_speakers = num_speakers
self.num_languages = num_languages
self.speaker_embed_dim = speaker_embed_dim
self.duration_predictor_dropout_rate = duration_predictor_dropout_rate
self.is_encoder_decoder = is_encoder_decoder
super().__init__(
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
class FastSpeech2ConformerHifiGanConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FastSpeech2ConformerHifiGanModel`]. It is used to
instantiate a FastSpeech2Conformer HiFi-GAN vocoder model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
FastSpeech2Conformer
[espnet/fastspeech2_conformer_hifigan](https://huggingface.co/espnet/fastspeech2_conformer_hifigan) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
model_in_dim (`int`, *optional*, defaults to 80):
The number of frequency bins in the input log-mel spectrogram.
upsample_initial_channel (`int`, *optional*, defaults to 512):
The number of input channels into the upsampling network.
upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`):
A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The
length of *upsample_rates* defines the number of convolutional layers and has to match the length of
*upsample_kernel_sizes*.
upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The
length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of
*upsample_rates*.
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field
fusion (MRF) module.
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the
multi-receptive field fusion (MRF) module.
initializer_range (`float`, *optional*, defaults to 0.01):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
leaky_relu_slope (`float`, *optional*, defaults to 0.1):
The angle of the negative slope used by the leaky ReLU activation.
normalize_before (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance.
Example:
```python
>>> from transformers import FastSpeech2ConformerHifiGan, FastSpeech2ConformerHifiGanConfig
>>> # Initializing a FastSpeech2ConformerHifiGan configuration
>>> configuration = FastSpeech2ConformerHifiGanConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = FastSpeech2ConformerHifiGan(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "hifigan"
base_config_key = "vocoder_config"
def __init__(
self,
model_in_dim=80,
upsample_initial_channel=512,
upsample_rates=[8, 8, 2, 2],
upsample_kernel_sizes=[16, 16, 4, 4],
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
initializer_range=0.01,
leaky_relu_slope=0.1,
normalize_before=True,
**kwargs,
):
self.model_in_dim = model_in_dim
self.upsample_initial_channel = upsample_initial_channel
self.upsample_rates = upsample_rates
self.upsample_kernel_sizes = upsample_kernel_sizes
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.initializer_range = initializer_range
self.leaky_relu_slope = leaky_relu_slope
self.normalize_before = normalize_before
super().__init__(**kwargs)
class FastSpeech2ConformerWithHifiGanConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`FastSpeech2ConformerWithHifiGan`]. It is used to
instantiate a `FastSpeech2ConformerWithHifiGanModel` model according to the specified sub-models configurations,
defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the
FastSpeech2ConformerModel [espnet/fastspeech2_conformer](https://huggingface.co/espnet/fastspeech2_conformer) and
FastSpeech2ConformerHifiGan
[espnet/fastspeech2_conformer_hifigan](https://huggingface.co/espnet/fastspeech2_conformer_hifigan) architectures.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
model_config (`typing.Dict`, *optional*):
Configuration of the text-to-speech model.
vocoder_config (`typing.Dict`, *optional*):
Configuration of the vocoder model.
model_config ([`FastSpeech2ConformerConfig`], *optional*):
Configuration of the text-to-speech model.
vocoder_config ([`FastSpeech2ConformerHiFiGanConfig`], *optional*):
Configuration of the vocoder model.
Example:
```python
>>> from transformers import (
... FastSpeech2ConformerConfig,
... FastSpeech2ConformerHifiGanConfig,
... FastSpeech2ConformerWithHifiGanConfig,
... FastSpeech2ConformerWithHifiGan,
... )
>>> # Initializing FastSpeech2ConformerWithHifiGan sub-modules configurations.
>>> model_config = FastSpeech2ConformerConfig()
>>> vocoder_config = FastSpeech2ConformerHifiGanConfig()
>>> # Initializing a FastSpeech2ConformerWithHifiGan module style configuration
>>> configuration = FastSpeech2ConformerWithHifiGanConfig(model_config.to_dict(), vocoder_config.to_dict())
>>> # Initializing a model (with random weights)
>>> model = FastSpeech2ConformerWithHifiGan(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "fastspeech2_conformer_with_hifigan"
sub_configs = {"model_config": FastSpeech2ConformerConfig, "vocoder_config": FastSpeech2ConformerHifiGanConfig}
def __init__(
self,
model_config: Dict = None,
vocoder_config: Dict = None,
**kwargs,
):
if model_config is None:
model_config = {}
logger.info("model_config is None. initializing the model with default values.")
if vocoder_config is None:
vocoder_config = {}
logger.info("vocoder_config is None. initializing the coarse model with default values.")
self.model_config = FastSpeech2ConformerConfig(**model_config)
self.vocoder_config = FastSpeech2ConformerHifiGanConfig(**vocoder_config)
super().__init__(**kwargs)
__all__ = ["FastSpeech2ConformerConfig", "FastSpeech2ConformerHifiGanConfig", "FastSpeech2ConformerWithHifiGanConfig"]
```
|
===================================================================================================================================================================
SOURCE CODE FILE: modeling_fastspeech2_conformer.py
LINES: 1
SIZE: 76.24 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fastspeech2_conformer\modeling_fastspeech2_conformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The Espnet authors, IMS Toucan authors, and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch FastSpeech2Conformer model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from torch import nn
from ...modeling_outputs import BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import ModelOutput, add_start_docstrings, logging, replace_return_docstrings
from .configuration_fastspeech2_conformer import (
FastSpeech2ConformerConfig,
FastSpeech2ConformerHifiGanConfig,
FastSpeech2ConformerWithHifiGanConfig,
)
logger = logging.get_logger(__name__)
@dataclass
class FastSpeech2ConformerModelOutput(ModelOutput):
"""
Output type of [`FastSpeech2ConformerModel`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Spectrogram generation loss.
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
The predicted spectrogram.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*):
Outputs of the duration predictor.
pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the pitch predictor.
energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the energy predictor.
"""
loss: Optional[torch.FloatTensor] = None
spectrogram: Optional[torch.FloatTensor] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
duration_outputs: Optional[torch.LongTensor] = None
pitch_outputs: Optional[torch.FloatTensor] = None
energy_outputs: Optional[torch.FloatTensor] = None
@dataclass
class FastSpeech2ConformerWithHifiGanOutput(FastSpeech2ConformerModelOutput):
"""
Output type of [`FastSpeech2ConformerWithHifiGan`].
Args:
waveform (`torch.FloatTensor` of shape `(batch_size, audio_length)`):
Speech output as a result of passing the predicted mel spectrogram through the vocoder.
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Spectrogram generation loss.
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
The predicted spectrogram.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length + 1)`, *optional*):
Outputs of the duration predictor.
pitch_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the pitch predictor.
energy_outputs (`torch.FloatTensor` of shape `(batch_size, max_text_length + 1, 1)`, *optional*):
Outputs of the energy predictor.
"""
waveform: Optional[torch.FloatTensor] = None
_CONFIG_FOR_DOC = "FastSpeech2ConformerConfig"
FASTSPEECH2_CONFORMER_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FastSpeech2ConformerConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
HIFIGAN_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FastSpeech2ConformerConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FASTSPEECH2_CONFORMER_WITH_HIFIGAN_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FastSpeech2ConformerWithHifiGanConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
def length_regulator(encoded_embeddings, duration_labels, speaking_speed=1.0):
"""
Length regulator for feed-forward Transformer.
This is the length regulator module described in `FastSpeech: Fast, Robust and Controllable Text to Speech`
https://arxiv.org/pdf/1905.09263.pdf. The length regulator expands char or phoneme-level embedding features to
frame-level by repeating each feature based on the corresponding predicted durations.
Args:
encoded_embeddings (`torch.Tensor` of shape `(batch_size, max_text_length, embedding_dim)`):
Batch of sequences of char or phoneme embeddings.
duration_labels (`torch.LongTensor` of shape `(batch_size, time)`):
Batch of durations of each frame.
speaking_speed (`float`, *optional*, defaults to 1.0):
Value to control speed of speech.
Returns:
`torch.Tensor`:
Replicated input tensor based on durations (batch_size, time*, embedding_dim).
"""
if speaking_speed <= 0:
raise ValueError("`speaking_speed` must be greater than 0.")
elif speaking_speed != 1.0:
duration_labels = torch.round(duration_labels.float() * speaking_speed).long()
if duration_labels.sum() == 0:
duration_labels[duration_labels.sum(dim=1).eq(0)] = 1
# Calculate the maximum length needed
max_len = torch.sum(duration_labels, dim=1).max()
# Create a padded tensor to hold the results
hidden_states = torch.zeros(
(encoded_embeddings.size(0), max_len, encoded_embeddings.size(2)),
dtype=torch.float,
device=encoded_embeddings.device,
)
# Loop through the batch and fill in the data
for i, (encoded_embedding, target_duration) in enumerate(zip(encoded_embeddings, duration_labels)):
repeated = torch.repeat_interleave(encoded_embedding, target_duration, dim=0)
hidden_states[i, : repeated.size(0)] = repeated
return hidden_states
class FastSpeech2ConformerDurationPredictor(nn.Module):
"""
Duration predictor module.
This is a module of duration predictor described in the paper 'FastSpeech: Fast, Robust and Controllable Text to
Speech' https://arxiv.org/pdf/1905.09263.pdf The duration predictor predicts a duration of each frame in log domain
from the hidden embeddings of encoder.
Note:
The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, the
outputs are calculated in log domain but in `inference`, those are calculated in linear domain.
"""
def __init__(self, config: FastSpeech2ConformerConfig):
super().__init__()
self.conv_layers = nn.ModuleList()
self.log_domain_offset = 1.0
for layer_idx in range(config.duration_predictor_layers):
num_chans = config.duration_predictor_channels
input_channels = config.hidden_size if layer_idx == 0 else num_chans
layer = FastSpeech2ConformerPredictorLayer(
input_channels,
num_chans,
config.duration_predictor_kernel_size,
config.duration_predictor_dropout_rate,
)
self.conv_layers.append(layer)
self.linear = nn.Linear(config.duration_predictor_channels, 1)
def forward(self, encoder_hidden_states):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`):
Batch of input sequences.
padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*):
Batch of masks indicating padded part.
Returns:
`torch.Tensor`: Batch of predicted durations in log domain `(batch_size, max_text_length)`.
"""
# (batch_size, input_dim, max_text_length)
hidden_states = encoder_hidden_states.transpose(1, -1)
for layer in self.conv_layers:
hidden_states = layer(hidden_states)
# NOTE: calculate in log domain, (batch_size, max_text_length)
hidden_states = self.linear(hidden_states.transpose(1, -1)).squeeze(-1)
if not self.training:
# NOTE: calculate in linear domain
hidden_states = torch.clamp(torch.round(hidden_states.exp() - self.log_domain_offset), min=0).long()
return hidden_states
# Copied from transformers.models.speecht5.modeling_speecht5.SpeechT5BatchNormConvLayer
class FastSpeech2ConformerBatchNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
if layer_id == 0:
in_conv_dim = config.num_mel_bins
else:
in_conv_dim = config.speech_decoder_postnet_units
if layer_id == config.speech_decoder_postnet_layers - 1:
out_conv_dim = config.num_mel_bins
else:
out_conv_dim = config.speech_decoder_postnet_units
self.conv = nn.Conv1d(
in_conv_dim,
out_conv_dim,
kernel_size=config.speech_decoder_postnet_kernel,
stride=1,
padding=(config.speech_decoder_postnet_kernel - 1) // 2,
bias=False,
)
self.batch_norm = nn.BatchNorm1d(out_conv_dim)
if layer_id < config.speech_decoder_postnet_layers - 1:
self.activation = nn.Tanh()
else:
self.activation = None
self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.batch_norm(hidden_states)
if self.activation is not None:
hidden_states = self.activation(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class FastSpeech2ConformerSpeechDecoderPostnet(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor)
self.layers = nn.ModuleList(
[FastSpeech2ConformerBatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)]
)
def forward(self, hidden_states: torch.Tensor):
outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins)
layer_output = outputs_before_postnet.transpose(1, 2)
for layer in self.layers:
layer_output = layer(layer_output)
outputs_after_postnet = outputs_before_postnet + layer_output.transpose(1, 2)
return outputs_before_postnet, outputs_after_postnet
class FastSpeech2ConformerPredictorLayer(nn.Module):
def __init__(self, input_channels, num_chans, kernel_size, dropout_rate):
super().__init__()
self.conv = nn.Conv1d(
input_channels,
num_chans,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
)
self.activation = nn.ReLU()
self.layer_norm = nn.LayerNorm(num_chans)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
# Perform layer norm on dimension 1
hidden_states = hidden_states.transpose(1, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(1, -1)
hidden_states = self.dropout(hidden_states)
return hidden_states
class FastSpeech2ConformerVariancePredictor(nn.Module):
def __init__(
self,
config: FastSpeech2ConformerConfig,
num_layers=2,
num_chans=384,
kernel_size=3,
dropout_rate=0.5,
):
"""
Initilize variance predictor module.
Args:
input_dim (`int`): Input dimension.
num_layers (`int`, *optional*, defaults to 2): Number of convolutional layers.
num_chans (`int`, *optional*, defaults to 384): Number of channels of convolutional layers.
kernel_size (`int`, *optional*, defaults to 3): Kernel size of convolutional layers.
dropout_rate (`float`, *optional*, defaults to 0.5): Dropout rate.
"""
super().__init__()
self.conv_layers = nn.ModuleList()
for idx in range(num_layers):
input_channels = config.hidden_size if idx == 0 else num_chans
layer = FastSpeech2ConformerPredictorLayer(input_channels, num_chans, kernel_size, dropout_rate)
self.conv_layers.append(layer)
self.linear = nn.Linear(num_chans, 1)
def forward(self, encoder_hidden_states, padding_masks=None):
"""
Calculate forward propagation.
Args:
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, max_text_length, input_dim)`):
Batch of input sequences.
padding_masks (`torch.ByteTensor` of shape `(batch_size, max_text_length)`, *optional*):
Batch of masks indicating padded part.
Returns:
Tensor: Batch of predicted sequences `(batch_size, max_text_length, 1)`.
"""
# (batch_size, input_dim, max_text_length)
hidden_states = encoder_hidden_states.transpose(1, -1)
for layer in self.conv_layers:
hidden_states = layer(hidden_states)
hidden_states = self.linear(hidden_states.transpose(1, 2))
if padding_masks is not None:
hidden_states = hidden_states.masked_fill(padding_masks, 0.0)
return hidden_states
class FastSpeech2ConformerVarianceEmbedding(nn.Module):
def __init__(
self,
in_channels=1,
out_channels=384,
kernel_size=1,
padding=0,
dropout_rate=0.0,
):
super().__init__()
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding,
)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class FastSpeech2ConformerAttention(nn.Module):
"""
Multi-Head attention layer with relative position encoding. Details can be found in
https://github.com/espnet/espnet/pull/2816. Paper: https://arxiv.org/abs/1901.02860.
"""
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
"""Construct an FastSpeech2ConformerAttention object."""
super().__init__()
# We assume d_v always equals dim_key
self.num_heads = module_config["num_attention_heads"]
self.hidden_size = config.hidden_size
self.dim_key = self.hidden_size // self.num_heads
self.head_dim = self.hidden_size // self.num_heads
self.linear_q = nn.Linear(self.hidden_size, self.hidden_size)
self.linear_k = nn.Linear(self.hidden_size, self.hidden_size)
self.linear_v = nn.Linear(self.hidden_size, self.hidden_size)
self.linear_out = nn.Linear(self.hidden_size, self.hidden_size)
self.dropout = nn.Dropout(p=module_config["attention_dropout_rate"])
# linear transformation for positional encoding
self.linear_pos = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.num_heads, self.head_dim))
def shift_relative_position_tensor(self, pos_tensor):
"""
Args:
pos_tensor (torch.Tensor of shape (batch_size, head, time1, 2*time1-1)): Input tensor.
"""
zero_pad = torch.zeros((*pos_tensor.size()[:3], 1), device=pos_tensor.device, dtype=pos_tensor.dtype)
pos_tensor_padded = torch.cat([zero_pad, pos_tensor], dim=-1)
pos_tensor_padded = pos_tensor_padded.view(*pos_tensor.size()[:2], pos_tensor.size(3) + 1, pos_tensor.size(2))
# only keep the positions from 0 to time2
pos_tensor = pos_tensor_padded[:, :, 1:].view_as(pos_tensor)[:, :, :, : pos_tensor.size(-1) // 2 + 1]
return pos_tensor
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
pos_emb: Optional[torch.Tensor] = None,
output_attentions: Optional[torch.Tensor] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Args:
hidden_states (`torch.Tensor` of shape `(batch, time2, size)`): Values of the hidden states
attention_mask (`torch.Tensor` of shape `(batch, time1, time2)`): Mask tensor.
pos_emb (`torch.Tensor` of shape `(batch, 2*time1-1, size)`): Positional embedding tensor.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
Returns:
`torch.Tensor`: Output tensor of shape `(batch, time1, d_model)`.
"""
bsz, q_len, _ = hidden_states.size()
query_states = self.linear_q(hidden_states).view(bsz, -1, self.num_heads, self.head_dim)
key_states = self.linear_k(hidden_states).view(bsz, -1, self.num_heads, self.head_dim)
value_states = self.linear_v(hidden_states).view(bsz, -1, self.num_heads, self.head_dim)
bsz_pos = pos_emb.size(0)
pos_encoding = self.linear_pos(pos_emb).view(bsz_pos, -1, self.num_heads, self.head_dim)
# (batch_size, head, time1, dim_key)
query_with_bias_u = (query_states + self.pos_bias_u).transpose(1, 2)
# (batch_size, head, time1, dim_key)
query_with_bias_v = (query_states + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch_size, head, time1, time2)
matrix_ac = torch.matmul(query_with_bias_u, key_states.permute(0, 2, 3, 1))
# compute matrix b and matrix d
# (batch_size, head, time1, 2*time1-1)
matrix_bd = torch.matmul(query_with_bias_v, pos_encoding.permute(0, 2, 3, 1))
matrix_bd = self.shift_relative_position_tensor(matrix_bd)
# (batch_size, head, time1, time2)
scores = (matrix_ac + matrix_bd) / math.sqrt(self.dim_key)
# Forward attention
if attention_mask is not None:
expected_size = (bsz, 1, q_len)
if attention_mask.size() != expected_size:
raise ValueError(f"Attention mask should be of size {expected_size}, but is {attention_mask.size()}")
attention_mask = attention_mask.unsqueeze(1).eq(0)
min_value = float(torch.finfo(scores.dtype).min)
scores = scores.masked_fill(attention_mask, min_value)
attn_weights = torch.softmax(scores, dim=-1).masked_fill(attention_mask, 0.0)
else:
attn_weights = torch.softmax(scores, dim=-1)
attn_weights = self.dropout(attn_weights)
attn_output = torch.matmul(attn_weights, value_states.transpose(1, 2))
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, -1)
attn_output = self.linear_out(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class FastSpeech2ConformerConvolutionModule(nn.Module):
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
super().__init__()
# kernel_size should be an odd number for 'SAME' padding
channels = config.hidden_size
kernel_size = module_config["kernel_size"]
self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels, kernel_size=1, stride=1, padding=0, bias=True)
self.depthwise_conv = nn.Conv1d(
channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=True
)
self.norm = nn.BatchNorm1d(channels)
self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, hidden_states):
"""
Compute convolution module.
Args:
hidden_states (`torch.Tensor` of shape `(batch, time, channels)`): Input tensor.
Returns:
`torch.Tensor`: Output tensor of shape `(batch, time, channels)`.
"""
# exchange the temporal dimension and the feature dimension
hidden_states = hidden_states.transpose(1, 2)
# GLU mechanism, (batch_size, 2*channel, dim)
hidden_states = self.pointwise_conv1(hidden_states)
# (batch_size, channel, dim)
hidden_states = nn.functional.glu(hidden_states, dim=1)
# 1D Depthwise Conv
hidden_states = self.depthwise_conv(hidden_states)
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states * torch.sigmoid(hidden_states)
hidden_states = self.pointwise_conv2(hidden_states)
return hidden_states.transpose(1, 2)
class FastSpeech2ConformerEncoderLayer(nn.Module):
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
super().__init__()
# self-attention module definition
self.self_attn = FastSpeech2ConformerAttention(config, module_config)
# feed-forward module definition
self.feed_forward = FastSpeech2ConformerMultiLayeredConv1d(config, module_config)
self.macaron_style = config.use_macaron_style_in_conformer
if self.macaron_style:
self.feed_forward_macaron = FastSpeech2ConformerMultiLayeredConv1d(config, module_config)
self.ff_macaron_layer_norm = nn.LayerNorm(config.hidden_size)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
# convolution module definition
self.use_cnn_module = config.use_cnn_in_conformer
if self.use_cnn_module:
self.conv_module = FastSpeech2ConformerConvolutionModule(config, module_config)
self.conv_layer_norm = nn.LayerNorm(config.hidden_size)
self.final_layer_norm = nn.LayerNorm(config.hidden_size)
self.ff_layer_norm = nn.LayerNorm(config.hidden_size)
self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size)
self.dropout = nn.Dropout(module_config["dropout_rate"])
self.size = config.hidden_size
self.normalize_before = module_config["normalize_before"]
self.concat_after = module_config["concat_after"]
if self.concat_after:
self.concat_linear = nn.Linear(config.hidden_size + config.hidden_size, config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
pos_emb: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[torch.Tensor] = False,
):
"""
Compute encoded features.
Args:
hidden_states (`torch.Tensor` of shape `(batch, time, size)`): Input tensor.
pos_emb (`torch.Tensor` of shape `(1, time, size)`): Positional embeddings tensor.
attention_mask (`torch.Tensor` of shape `(batch, time)`): Attention mask tensor for the input.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
Returns:
`torch.Tensor`: Output tensor of shape `(batch, time, size)`.
"""
# whether to use macaron style
if self.macaron_style:
residual = hidden_states
if self.normalize_before:
hidden_states = self.ff_macaron_layer_norm(hidden_states)
hidden_states = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(hidden_states))
if not self.normalize_before:
hidden_states = self.ff_macaron_layer_norm(hidden_states)
# multi-headed self-attention module
residual = hidden_states
if self.normalize_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
attention_output, attention_scores = self.self_attn(
hidden_states, attention_mask=attention_mask, pos_emb=pos_emb, output_attentions=output_attentions
)
if self.concat_after:
x_concat = torch.cat((hidden_states, attention_output), dim=-1)
hidden_states = self.concat_linear(x_concat)
hidden_states = residual + hidden_states
else:
hidden_states = self.dropout(attention_output)
hidden_states = residual + hidden_states
if not self.normalize_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# convolution module
if self.use_cnn_module:
residual = hidden_states
if self.normalize_before:
hidden_states = self.conv_layer_norm(hidden_states)
hidden_states = self.conv_module(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + hidden_states
if not self.normalize_before:
hidden_states = self.conv_layer_norm(hidden_states)
# feed forward module
residual = hidden_states
if self.normalize_before:
hidden_states = self.ff_layer_norm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = residual + self.ff_scale * hidden_states
if not self.normalize_before:
hidden_states = self.ff_layer_norm(hidden_states)
if self.conv_module is not None:
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_scores,)
return outputs
class FastSpeech2ConformerMultiLayeredConv1d(nn.Module):
"""
Multi-layered conv1d for Transformer block.
This is a module of multi-layered conv1d designed to replace positionwise feed-forward network in Transformer
block, which is introduced in 'FastSpeech: Fast, Robust and Controllable Text to Speech'
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
"""
Initialize FastSpeech2ConformerMultiLayeredConv1d module.
Args:
input_channels (`int`): Number of input channels.
hidden_channels (`int`): Number of hidden channels.
kernel_size (`int`): Kernel size of conv1d.
dropout_rate (`float`): Dropout rate.
"""
super().__init__()
input_channels = config.hidden_size
hidden_channels = module_config["linear_units"]
kernel_size = config.positionwise_conv_kernel_size
self.conv1 = nn.Conv1d(input_channels, hidden_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2)
self.conv2 = nn.Conv1d(hidden_channels, input_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2)
self.dropout = nn.Dropout(module_config["dropout_rate"])
def forward(self, hidden_states):
"""
Calculate forward propagation.
Args:
hidden_states (torch.Tensor): Batch of input tensors (batch_size, time, input_channels).
Returns:
torch.Tensor: Batch of output tensors (batch_size, time, hidden_channels).
"""
hidden_states = hidden_states.transpose(-1, 1)
hidden_states = self.conv1(hidden_states)
hidden_states = torch.relu(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = hidden_states.transpose(-1, 1)
return hidden_states
class FastSpeech2ConformerRelPositionalEncoding(nn.Module):
"""
Args:
Relative positional encoding module (new implementation). Details can be found in
https://github.com/espnet/espnet/pull/2816. See : Appendix Batch in https://arxiv.org/abs/1901.02860
config (`FastSpeech2ConformerConfig`):
FastSpeech2ConformerConfig instance.
module_config (`dict`):
Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`.
"""
def __init__(self, config: FastSpeech2ConformerConfig, module_config):
"""
Construct an PositionalEncoding object.
"""
super().__init__()
self.embed_dim = config.hidden_size
self.input_scale = math.sqrt(self.embed_dim)
self.dropout = nn.Dropout(p=module_config["positional_dropout_rate"])
self.pos_enc = None
self.max_len = 5000
self.extend_pos_enc(torch.tensor(0.0).expand(1, self.max_len))
def extend_pos_enc(self, x):
"""Reset the positional encodings."""
if self.pos_enc is not None:
# self.pos_enc contains both positive and negative parts
# the length of self.pos_enc is 2 * input_len - 1
if self.pos_enc.size(1) >= x.size(1) * 2 - 1:
if self.pos_enc.dtype != x.dtype or self.pos_enc.device != x.device:
self.pos_enc = self.pos_enc.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vector and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pos_enc_positive = torch.zeros(x.size(1), self.embed_dim)
pos_enc_negative = torch.zeros(x.size(1), self.embed_dim)
position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.embed_dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.embed_dim)
)
pos_enc_positive[:, 0::2] = torch.sin(position * div_term)
pos_enc_positive[:, 1::2] = torch.cos(position * div_term)
pos_enc_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pos_enc_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pos_enc_positive = torch.flip(pos_enc_positive, [0]).unsqueeze(0)
pos_enc_negative = pos_enc_negative[1:].unsqueeze(0)
pos_enc = torch.cat([pos_enc_positive, pos_enc_negative], dim=1)
self.pos_enc = pos_enc.to(device=x.device, dtype=x.dtype)
def forward(self, feature_representation):
"""
Args:
feature_representation (`torch.Tensor` of shape (batch_size, time, `*`)):
Input tensor.
Returns:
`torch.Tensor`: Encoded tensor (batch_size, time, `*`).
"""
self.extend_pos_enc(feature_representation)
hidden_states = feature_representation * self.input_scale
center_idx = self.pos_enc.size(1) // 2
pos_emb = self.pos_enc[:, center_idx - hidden_states.size(1) + 1 : center_idx + hidden_states.size(1)]
return self.dropout(hidden_states), self.dropout(pos_emb)
class FastSpeech2ConformerEncoder(nn.Module):
"""
FastSpeech2ConformerEncoder encoder module.
Args:
config (`FastSpeech2ConformerConfig`):
FastSpeech2ConformerConfig instance.
module_config (`dict`):
Dictionary containing the encoder or decoder module configuration from the `FastSpeech2ConformerConfig`.
use_encoder_input_layer (`bool`, *optional*, defaults to `False`):
Input layer type.
"""
def __init__(
self,
config: FastSpeech2ConformerConfig,
module_config,
use_encoder_input_layer=False,
):
super().__init__()
self.embed = None
if use_encoder_input_layer:
self.embed = nn.Embedding(
num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, padding_idx=0
)
self.pos_enc = FastSpeech2ConformerRelPositionalEncoding(config, module_config)
self.conformer_layers = nn.ModuleList(
[FastSpeech2ConformerEncoderLayer(config, module_config) for _ in range(module_config["layers"])]
)
def forward(
self,
input_tensor: torch.LongTensor,
attention_mask: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = False,
return_dict: Optional[bool] = None,
):
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
`torch.Tensor`:
Output tensor of shape `(batch, time, attention_dim)`.
"""
feature_representation = input_tensor
if self.embed is not None:
feature_representation = self.embed(feature_representation)
hidden_states, pos_emb = self.pos_enc(feature_representation)
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for conformer_layer in self.conformer_layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = conformer_layer(hidden_states, pos_emb, attention_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
)
class FastSpeech2ConformerLoss(nn.Module):
def __init__(self, config: FastSpeech2ConformerConfig):
super().__init__()
use_masking = config.use_masking
use_weighted_masking = config.use_weighted_masking
if use_masking and use_weighted_masking:
raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.")
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
# define criterions
reduction = "none" if self.use_weighted_masking else "mean"
self.l1_criterion = nn.L1Loss(reduction=reduction)
self.mse_criterion = nn.MSELoss(reduction=reduction)
self.duration_criterion = nn.MSELoss(reduction=reduction)
self.log_domain_offset = 1.0
def forward(
self,
outputs_after_postnet,
outputs_before_postnet,
duration_outputs,
pitch_outputs,
energy_outputs,
spectrogram_labels,
duration_labels,
pitch_labels,
energy_labels,
duration_mask,
spectrogram_mask,
):
"""
Args:
outputs_after_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`):
Batch of outputs after postnet.
outputs_before_postnet (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`):
Batch of outputs before postnet.
duration_outputs (`torch.LongTensor` of shape `(batch_size, max_text_length)`):
Batch of outputs of duration predictor.
pitch_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of outputs of pitch predictor.
energy_outputs (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of outputs of energy predictor.
spectrogram_labels (`torch.Tensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`):
Batch of target features.
duration_labels (`torch.LongTensor` of shape `(batch_size, max_text_length)`): Batch of durations.
pitch_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of target token-averaged pitch.
energy_labels (`torch.Tensor` of shape `(batch_size, max_text_length, 1)`):
Batch of target token-averaged energy.
duration_mask (`torch.LongTensor`):
Mask used to discern which values the duration loss should be calculated for.
spectrogram_mask (`torch.LongTensor`):
Mask used to discern which values the spectrogam loss should be calculated for.
Returns:
`tuple(torch.FloatTensor)`: Tuple of tensors containing, in order, the L1 loss value, duration predictor
loss value, pitch predictor loss value, and energy predictor loss value.
"""
pitch_and_energy_masks = duration_mask.unsqueeze(-1)
# apply mask to remove padded part
if self.use_masking:
outputs_before_postnet = outputs_before_postnet.masked_select(spectrogram_mask)
if outputs_after_postnet is not None:
outputs_after_postnet = outputs_after_postnet.masked_select(spectrogram_mask)
spectrogram_labels = spectrogram_labels.masked_select(spectrogram_mask)
duration_outputs = duration_outputs.masked_select(duration_mask)
duration_labels = duration_labels.masked_select(duration_mask)
pitch_outputs = pitch_outputs.masked_select(pitch_and_energy_masks)
energy_outputs = energy_outputs.masked_select(pitch_and_energy_masks)
pitch_labels = pitch_labels.masked_select(pitch_and_energy_masks)
energy_labels = energy_labels.masked_select(pitch_and_energy_masks)
# calculate loss
l1_loss = self.l1_criterion(outputs_before_postnet, spectrogram_labels)
if outputs_after_postnet is not None:
l1_loss = l1_loss + self.l1_criterion(outputs_after_postnet, spectrogram_labels)
duration_labels = torch.log(duration_labels.float() + self.log_domain_offset)
duration_loss = self.duration_criterion(duration_outputs, duration_labels)
pitch_loss = self.mse_criterion(pitch_outputs, pitch_labels)
energy_loss = self.mse_criterion(energy_outputs, energy_labels)
# make weighted mask and apply it
if self.use_weighted_masking:
spectrogram_mask = nn.functional.pad(
spectrogram_mask.transpose(1, 2),
[0, spectrogram_labels.size(1) - spectrogram_mask.size(1), 0, 0, 0, 0],
value=False,
).transpose(1, 2)
out_weights = spectrogram_mask.float() / spectrogram_mask.sum(dim=1, keepdim=True).float()
out_weights /= spectrogram_labels.size(0) * spectrogram_labels.size(2)
duration_weights = duration_mask.float() / duration_mask.sum(dim=1, keepdim=True).float()
duration_weights /= duration_labels.size(0)
# apply weight
l1_loss = l1_loss.mul(out_weights).masked_select(spectrogram_mask).sum()
duration_loss = duration_loss.mul(duration_weights).masked_select(duration_mask).sum()
pitch_weights = duration_weights.unsqueeze(-1)
pitch_loss = pitch_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum()
energy_loss = energy_loss.mul(pitch_weights).masked_select(pitch_and_energy_masks).sum()
return l1_loss + duration_loss + pitch_loss + energy_loss
class FastSpeech2ConformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FastSpeech2ConformerConfig
base_model_prefix = "fastspeech2_conformer"
main_input_name = "input_ids"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.LayerNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
key = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-key, b=key)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_()
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, FastSpeech2ConformerAttention):
nn.init.xavier_uniform_(module.pos_bias_u)
nn.init.xavier_uniform_(module.pos_bias_v)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, FastSpeech2ConformerEncoder):
module.gradient_checkpointing = value
@add_start_docstrings(
"""FastSpeech2Conformer Model.""",
FASTSPEECH2_CONFORMER_START_DOCSTRING,
)
class FastSpeech2ConformerModel(FastSpeech2ConformerPreTrainedModel):
"""
FastSpeech 2 module.
This is a module of FastSpeech 2 described in 'FastSpeech 2: Fast and High-Quality End-to-End Text to Speech'
https://arxiv.org/abs/2006.04558. Instead of quantized pitch and energy, we use token-averaged value introduced in
FastPitch: Parallel Text-to-speech with Pitch Prediction. The encoder and decoder are Conformers instead of regular
Transformers.
"""
def __init__(self, config: FastSpeech2ConformerConfig):
super().__init__(config)
self.config = config
# store hyperparameters
self.vocab_size = config.vocab_size
self.num_mel_bins = config.num_mel_bins
self.hidden_size = config.hidden_size
self.reduction_factor = config.reduction_factor
self.stop_gradient_from_pitch_predictor = config.stop_gradient_from_pitch_predictor
self.stop_gradient_from_energy_predictor = config.stop_gradient_from_energy_predictor
self.multilingual_model = config.num_languages is not None and config.num_languages > 1
if self.multilingual_model:
self.language_id_embedding = torch.nn.Embedding(config.num_languages, self.hidden_size)
self.multispeaker_model = config.num_speakers is not None and config.num_speakers > 1
if self.multispeaker_model:
self.speaker_id_embedding = torch.nn.Embedding(config.num_speakers, config.hidden_size)
self.speaker_embed_dim = config.speaker_embed_dim
if self.speaker_embed_dim:
self.projection = nn.Linear(config.hidden_size + self.speaker_embed_dim, config.hidden_size)
self.encoder = FastSpeech2ConformerEncoder(config, config.encoder_config, use_encoder_input_layer=True)
self.duration_predictor = FastSpeech2ConformerDurationPredictor(config)
self.pitch_predictor = FastSpeech2ConformerVariancePredictor(
config,
num_layers=config.pitch_predictor_layers,
num_chans=config.pitch_predictor_channels,
kernel_size=config.pitch_predictor_kernel_size,
dropout_rate=config.pitch_predictor_dropout,
)
# continuous pitch + FastPitch style avg
self.pitch_embed = FastSpeech2ConformerVarianceEmbedding(
out_channels=self.hidden_size,
kernel_size=config.pitch_embed_kernel_size,
padding=(config.pitch_embed_kernel_size - 1) // 2,
dropout_rate=config.pitch_embed_dropout,
)
self.energy_predictor = FastSpeech2ConformerVariancePredictor(
config,
num_layers=config.energy_predictor_layers,
num_chans=config.energy_predictor_channels,
kernel_size=config.energy_predictor_kernel_size,
dropout_rate=config.energy_predictor_dropout,
)
# continuous energy + FastPitch style avg
self.energy_embed = FastSpeech2ConformerVarianceEmbedding(
out_channels=self.hidden_size,
kernel_size=config.energy_embed_kernel_size,
padding=(config.energy_embed_kernel_size - 1) // 2,
dropout_rate=config.energy_embed_dropout,
)
# The decoder is an encoder
self.decoder = FastSpeech2ConformerEncoder(config, config.decoder_config, use_encoder_input_layer=False)
self.speech_decoder_postnet = FastSpeech2ConformerSpeechDecoderPostnet(config)
self.criterion = FastSpeech2ConformerLoss(config)
self.post_init()
@replace_return_docstrings(output_type=FastSpeech2ConformerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.LongTensor] = None,
spectrogram_labels: Optional[torch.FloatTensor] = None,
duration_labels: Optional[torch.LongTensor] = None,
pitch_labels: Optional[torch.FloatTensor] = None,
energy_labels: Optional[torch.FloatTensor] = None,
speaker_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
speaker_embedding: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Union[Tuple, FastSpeech2ConformerModelOutput]:
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Input sequence of text vectors.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
`[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**.
spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`):
Batch of padded target features.
duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`):
Batch of padded durations.
pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged pitch.
energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged energy.
speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Speaker ids used to condition features of speech output by the model.
lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Language ids used to condition features of speech output by the model.
speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`):
Embedding containing conditioning signals for the features of the speech.
return_dict (`bool`, *optional*, defaults to `None`):
Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple.
output_attentions (`bool`, *optional*, defaults to `None`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*, defaults to `None`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
Returns:
Example:
```python
>>> from transformers import (
... FastSpeech2ConformerTokenizer,
... FastSpeech2ConformerModel,
... FastSpeech2ConformerHifiGan,
... )
>>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer")
>>> inputs = tokenizer("some text to convert to speech", return_tensors="pt")
>>> input_ids = inputs["input_ids"]
>>> model = FastSpeech2ConformerModel.from_pretrained("espnet/fastspeech2_conformer")
>>> output_dict = model(input_ids, return_dict=True)
>>> spectrogram = output_dict["spectrogram"]
>>> vocoder = FastSpeech2ConformerHifiGan.from_pretrained("espnet/fastspeech2_conformer_hifigan")
>>> waveform = vocoder(spectrogram)
>>> print(waveform.shape)
torch.Size([1, 49664])
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if attention_mask is None:
attention_mask = torch.ones(input_ids.shape, device=input_ids.device)
has_missing_labels = (
spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None
)
if self.training and has_missing_labels:
raise ValueError("All labels must be provided to run in training mode.")
# forward encoder
text_masks = attention_mask.unsqueeze(-2)
encoder_outputs = self.encoder(
input_ids,
text_masks,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
# Integrate with language id, speaker id, and speaker embedding
if self.multispeaker_model and speaker_ids is not None:
speaker_id_embeddings = self.speaker_id_embedding(speaker_ids.view(-1))
hidden_states = hidden_states + speaker_id_embeddings.unsqueeze(1)
if self.multilingual_model and lang_ids is not None:
language_id_embbedings = self.language_id_embedding(lang_ids.view(-1))
hidden_states = hidden_states + language_id_embbedings.unsqueeze(1)
if self.speaker_embed_dim is not None and speaker_embedding is not None:
embeddings_expanded = (
nn.functional.normalize(speaker_embedding).unsqueeze(1).expand(-1, hidden_states.size(1), -1)
)
hidden_states = self.projection(torch.cat([hidden_states, embeddings_expanded], dim=-1))
# forward duration predictor and variance predictors
duration_mask = ~attention_mask.bool()
if self.stop_gradient_from_pitch_predictor:
pitch_predictions = self.pitch_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1))
else:
pitch_predictions = self.pitch_predictor(hidden_states, duration_mask.unsqueeze(-1))
if self.stop_gradient_from_energy_predictor:
energy_predictions = self.energy_predictor(hidden_states.detach(), duration_mask.unsqueeze(-1))
else:
energy_predictions = self.energy_predictor(hidden_states, duration_mask.unsqueeze(-1))
duration_predictions = self.duration_predictor(hidden_states)
duration_predictions = duration_predictions.masked_fill(duration_mask, 0.0)
if not self.training:
# use prediction in inference
embedded_pitch_curve = self.pitch_embed(pitch_predictions)
embedded_energy_curve = self.energy_embed(energy_predictions)
hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve
hidden_states = length_regulator(hidden_states, duration_predictions, self.config.speaking_speed)
else:
# use groundtruth in training
embedded_pitch_curve = self.pitch_embed(pitch_labels)
embedded_energy_curve = self.energy_embed(energy_labels)
hidden_states = hidden_states + embedded_energy_curve + embedded_pitch_curve
hidden_states = length_regulator(hidden_states, duration_labels)
# forward decoder
if not self.training:
hidden_mask = None
else:
spectrogram_mask = (spectrogram_labels != -100).any(dim=-1)
spectrogram_mask = spectrogram_mask.int()
if self.reduction_factor > 1:
length_dim = spectrogram_mask.shape[1] - spectrogram_mask.shape[1] % self.reduction_factor
spectrogram_mask = spectrogram_mask[:, :, :length_dim]
hidden_mask = spectrogram_mask.unsqueeze(-2)
decoder_outputs = self.decoder(
hidden_states,
hidden_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
outputs_before_postnet, outputs_after_postnet = self.speech_decoder_postnet(decoder_outputs[0])
loss = None
if self.training:
# calculate loss
loss_duration_mask = ~duration_mask
loss_spectrogram_mask = spectrogram_mask.unsqueeze(-1).bool()
loss = self.criterion(
outputs_after_postnet=outputs_after_postnet,
outputs_before_postnet=outputs_before_postnet,
duration_outputs=duration_predictions,
pitch_outputs=pitch_predictions,
energy_outputs=energy_predictions,
spectrogram_labels=spectrogram_labels,
duration_labels=duration_labels,
pitch_labels=pitch_labels,
energy_labels=energy_labels,
duration_mask=loss_duration_mask,
spectrogram_mask=loss_spectrogram_mask,
)
if not return_dict:
postnet_outputs = (outputs_after_postnet,)
audio_feature_predictions = (
duration_predictions,
pitch_predictions,
energy_predictions,
)
outputs = postnet_outputs + encoder_outputs + decoder_outputs[1:] + audio_feature_predictions
return ((loss,) + outputs) if loss is not None else outputs
return FastSpeech2ConformerModelOutput(
loss=loss,
spectrogram=outputs_after_postnet,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
duration_outputs=duration_predictions,
pitch_outputs=pitch_predictions,
energy_outputs=energy_predictions,
)
# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
class HifiGanResidualBlock(nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
super().__init__()
self.leaky_relu_slope = leaky_relu_slope
self.convs1 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=dilation[i],
padding=self.get_padding(kernel_size, dilation[i]),
)
for i in range(len(dilation))
]
)
self.convs2 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
for _ in range(len(dilation))
]
)
def get_padding(self, kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
for layer in self.convs1:
weight_norm(layer)
for layer in self.convs2:
weight_norm(layer)
def remove_weight_norm(self):
for layer in self.convs1:
nn.utils.remove_weight_norm(layer)
for layer in self.convs2:
nn.utils.remove_weight_norm(layer)
def forward(self, hidden_states):
for conv1, conv2 in zip(self.convs1, self.convs2):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv2(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
@add_start_docstrings(
"""HiFi-GAN vocoder.""",
HIFIGAN_START_DOCSTRING,
)
# Copied from transformers.models.speecht5.modeling_speecht5.SpeechT5HifiGan with SpeechT5->FastSpeech2Conformer
class FastSpeech2ConformerHifiGan(PreTrainedModel):
config_class = FastSpeech2ConformerHifiGanConfig
main_input_name = "spectrogram"
def __init__(self, config: FastSpeech2ConformerHifiGanConfig):
super().__init__(config)
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = nn.Conv1d(
config.model_in_dim,
config.upsample_initial_channel,
kernel_size=7,
stride=1,
padding=3,
)
self.upsampler = nn.ModuleList()
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
self.upsampler.append(
nn.ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=kernel_size,
stride=upsample_rate,
padding=(kernel_size - upsample_rate) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.upsampler)):
channels = config.upsample_initial_channel // (2 ** (i + 1))
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3)
self.register_buffer("mean", torch.zeros(config.model_in_dim))
self.register_buffer("scale", torch.ones(config.model_in_dim))
# Initialize weights and apply final processing
self.post_init()
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
weight_norm(self.conv_pre)
for layer in self.upsampler:
weight_norm(layer)
for layer in self.resblocks:
layer.apply_weight_norm()
weight_norm(self.conv_post)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.conv_pre)
for layer in self.upsampler:
nn.utils.remove_weight_norm(layer)
for layer in self.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.conv_post)
def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor:
r"""
Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch
of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech
waveform.
Args:
spectrogram (`torch.FloatTensor`):
Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`.
Returns:
`torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of
shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`.
"""
if self.config.normalize_before:
spectrogram = (spectrogram - self.mean) / self.scale
is_batched = spectrogram.dim() == 3
if not is_batched:
spectrogram = spectrogram.unsqueeze(0)
hidden_states = spectrogram.transpose(2, 1)
hidden_states = self.conv_pre(hidden_states)
for i in range(self.num_upsamples):
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
hidden_states = self.upsampler[i](hidden_states)
res_state = self.resblocks[i * self.num_kernels](hidden_states)
for j in range(1, self.num_kernels):
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
hidden_states = res_state / self.num_kernels
hidden_states = nn.functional.leaky_relu(hidden_states)
hidden_states = self.conv_post(hidden_states)
hidden_states = torch.tanh(hidden_states)
if not is_batched:
# remove batch dim and collapse tensor to 1-d audio waveform
waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1)
else:
# remove seq-len dim since this collapses to 1
waveform = hidden_states.squeeze(1)
return waveform
@add_start_docstrings(
"The FastSpeech2ConformerModel with a FastSpeech2ConformerHifiGan vocoder head that performs text-to-speech (waveform).",
FASTSPEECH2_CONFORMER_WITH_HIFIGAN_START_DOCSTRING,
)
class FastSpeech2ConformerWithHifiGan(PreTrainedModel):
config_class = FastSpeech2ConformerWithHifiGanConfig
def __init__(self, config: FastSpeech2ConformerWithHifiGanConfig):
super().__init__(config)
self.model = FastSpeech2ConformerModel(config.model_config)
self.vocoder = FastSpeech2ConformerHifiGan(config.vocoder_config)
self.config = config
@replace_return_docstrings(
output_type=FastSpeech2ConformerWithHifiGanOutput, config_class=FastSpeech2ConformerWithHifiGanConfig
)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.LongTensor] = None,
spectrogram_labels: Optional[torch.FloatTensor] = None,
duration_labels: Optional[torch.LongTensor] = None,
pitch_labels: Optional[torch.FloatTensor] = None,
energy_labels: Optional[torch.FloatTensor] = None,
speaker_ids: Optional[torch.LongTensor] = None,
lang_ids: Optional[torch.LongTensor] = None,
speaker_embedding: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Union[Tuple, FastSpeech2ConformerModelOutput]:
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Input sequence of text vectors.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*, defaults to `None`):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in
`[0, 1]`: 0 for tokens that are **masked**, 1 for tokens that are **not masked**.
spectrogram_labels (`torch.FloatTensor` of shape `(batch_size, max_spectrogram_length, num_mel_bins)`, *optional*, defaults to `None`):
Batch of padded target features.
duration_labels (`torch.LongTensor` of shape `(batch_size, sequence_length + 1)`, *optional*, defaults to `None`):
Batch of padded durations.
pitch_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged pitch.
energy_labels (`torch.FloatTensor` of shape `(batch_size, sequence_length + 1, 1)`, *optional*, defaults to `None`):
Batch of padded token-averaged energy.
speaker_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Speaker ids used to condition features of speech output by the model.
lang_ids (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*, defaults to `None`):
Language ids used to condition features of speech output by the model.
speaker_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`, *optional*, defaults to `None`):
Embedding containing conditioning signals for the features of the speech.
return_dict (`bool`, *optional*, defaults to `None`):
Whether or not to return a [`FastSpeech2ConformerModelOutput`] instead of a plain tuple.
output_attentions (`bool`, *optional*, defaults to `None`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*, defaults to `None`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
Returns:
Example:
```python
>>> from transformers import (
... FastSpeech2ConformerTokenizer,
... FastSpeech2ConformerWithHifiGan,
... )
>>> tokenizer = FastSpeech2ConformerTokenizer.from_pretrained("espnet/fastspeech2_conformer")
>>> inputs = tokenizer("some text to convert to speech", return_tensors="pt")
>>> input_ids = inputs["input_ids"]
>>> model = FastSpeech2ConformerWithHifiGan.from_pretrained("espnet/fastspeech2_conformer_with_hifigan")
>>> output_dict = model(input_ids, return_dict=True)
>>> waveform = output_dict["waveform"]
>>> print(waveform.shape)
torch.Size([1, 49664])
```
"""
return_dict = return_dict if return_dict is not None else self.config.model_config.use_return_dict
output_attentions = (
output_attentions if output_attentions is not None else self.config.model_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.model_config.output_hidden_states
)
model_outputs = self.model(
input_ids,
attention_mask,
spectrogram_labels=spectrogram_labels,
duration_labels=duration_labels,
pitch_labels=pitch_labels,
energy_labels=energy_labels,
speaker_ids=speaker_ids,
lang_ids=lang_ids,
speaker_embedding=speaker_embedding,
return_dict=return_dict,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if not return_dict:
has_missing_labels = (
spectrogram_labels is None or duration_labels is None or pitch_labels is None or energy_labels is None
)
if has_missing_labels:
spectrogram = model_outputs[0]
else:
spectrogram = model_outputs[1]
else:
spectrogram = model_outputs["spectrogram"]
waveform = self.vocoder(spectrogram)
if not return_dict:
return model_outputs + (waveform,)
return FastSpeech2ConformerWithHifiGanOutput(waveform=waveform, **model_outputs)
__all__ = [
"FastSpeech2ConformerWithHifiGan",
"FastSpeech2ConformerHifiGan",
"FastSpeech2ConformerModel",
"FastSpeech2ConformerPreTrainedModel",
]
```
|
=======================================================================================================================================================================
SOURCE CODE FILE: tokenization_fastspeech2_conformer.py
LINES: 1
SIZE: 6.12 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fastspeech2_conformer\tokenization_fastspeech2_conformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for FastSpeech2Conformer."""
import json
import os
from typing import Optional, Tuple
import regex
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging, requires_backends
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"}
class FastSpeech2ConformerTokenizer(PreTrainedTokenizer):
"""
Construct a FastSpeech2Conformer tokenizer.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<sos/eos>"`):
The begin of sequence token. Note that for FastSpeech2, it is the same as the `eos_token`.
eos_token (`str`, *optional*, defaults to `"<sos/eos>"`):
The end of sequence token. Note that for FastSpeech2, it is the same as the `bos_token`.
pad_token (`str`, *optional*, defaults to `"<blank>"`):
The token used for padding, for example when batching sequences of different lengths.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
should_strip_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to strip the spaces from the list of tokens.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
bos_token="<sos/eos>",
eos_token="<sos/eos>",
pad_token="<blank>",
unk_token="<unk>",
should_strip_spaces=False,
**kwargs,
):
requires_backends(self, "g2p_en")
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
import g2p_en
self.g2p = g2p_en.G2p()
self.decoder = {v: k for k, v in self.encoder.items()}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
should_strip_spaces=should_strip_spaces,
**kwargs,
)
self.should_strip_spaces = should_strip_spaces
@property
def vocab_size(self):
return len(self.decoder)
def get_vocab(self):
"Returns vocab as a dict"
return dict(self.encoder, **self.added_tokens_encoder)
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
# expand symbols
text = regex.sub(";", ",", text)
text = regex.sub(":", ",", text)
text = regex.sub("-", " ", text)
text = regex.sub("&", "and", text)
# strip unnecessary symbols
text = regex.sub(r"[\(\)\[\]\<\>\"]+", "", text)
# strip whitespaces
text = regex.sub(r"\s+", " ", text)
text = text.upper()
return text, kwargs
def _tokenize(self, text):
"""Returns a tokenized string."""
# phonemize
tokens = self.g2p(text)
if self.should_strip_spaces:
tokens = list(filter(lambda s: s != " ", tokens))
tokens.append(self.eos_token)
return tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
# Override since phonemes cannot be converted back to strings
def decode(self, token_ids, **kwargs):
logger.warning(
"Phonemes cannot be reliably converted to a string due to the one-many mapping, converting to tokens instead."
)
return self.convert_ids_to_tokens(token_ids)
# Override since phonemes cannot be converted back to strings
def convert_tokens_to_string(self, tokens, **kwargs):
logger.warning(
"Phonemes cannot be reliably converted to a string due to the one-many mapping, returning the tokens."
)
return tokens
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.get_vocab(), ensure_ascii=False))
return (vocab_file,)
def __getstate__(self):
state = self.__dict__.copy()
state["g2p"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import g2p_en
self.g2p = g2p_en.G2p()
except ImportError:
raise ImportError(
"You need to install g2p-en to use FastSpeech2ConformerTokenizer. "
"See https://pypi.org/project/g2p-en/ for installation."
)
__all__ = ["FastSpeech2ConformerTokenizer"]
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.05 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\flaubert\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_flaubert import *
from .modeling_flaubert import *
from .modeling_tf_flaubert import *
from .tokenization_flaubert import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.