text
stringlengths 145
7.65M
|
---|
==============================================================================================================================================
SOURCE CODE FILE: configuration_flaubert.py
LINES: 1
SIZE: 10.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\flaubert\configuration_flaubert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flaubert configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class FlaubertConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`FlaubertModel`] or a [`TFFlaubertModel`]. It is
used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FlauBERT
[flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
pre_norm (`bool`, *optional*, defaults to `False`):
Whether to apply the layer normalization before or after the feed forward layer following the attention in
each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018)
layerdrop (`float`, *optional*, defaults to 0.0):
Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with
Structured Dropout. ICLR 2020)
vocab_size (`int`, *optional*, defaults to 30145):
Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`FlaubertModel`] or [`TFFlaubertModel`].
emb_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention mechanism
gelu_activation (`bool`, *optional*, defaults to `True`):
Whether or not to use a *gelu* activation instead of *relu*.
sinusoidal_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
causal (`bool`, *optional*, defaults to `False`):
Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
order to only attend to the left-side context instead if a bidirectional context.
asm (`bool`, *optional*, defaults to `False`):
Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
layer.
n_langs (`int`, *optional*, defaults to 1):
The number of languages the model handles. Set to 1 for monolingual models.
use_lang_emb (`bool`, *optional*, defaults to `True`)
Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual
models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information
on how to use them.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
embed_init_std (`float`, *optional*, defaults to 2048^-0.5):
The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
init_std (`int`, *optional*, defaults to 50257):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
embedding matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
bos_index (`int`, *optional*, defaults to 0):
The index of the beginning of sentence token in the vocabulary.
eos_index (`int`, *optional*, defaults to 1):
The index of the end of sentence token in the vocabulary.
pad_index (`int`, *optional*, defaults to 2):
The index of the padding token in the vocabulary.
unk_index (`int`, *optional*, defaults to 3):
The index of the unknown token in the vocabulary.
mask_index (`int`, *optional*, defaults to 5):
The index of the masking token in the vocabulary.
is_encoder(`bool`, *optional*, defaults to `True`):
Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
summary_type (`string`, *optional*, defaults to "first"):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
Used in the sequence classification and multiple choice models.
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
summary_first_dropout (`float`, *optional*, defaults to 0.1):
Used in the sequence classification and multiple choice models.
The dropout ratio to be used after the projection and activation.
start_n_top (`int`, *optional*, defaults to 5):
Used in the SQuAD evaluation script.
end_n_top (`int`, *optional*, defaults to 5):
Used in the SQuAD evaluation script.
mask_token_id (`int`, *optional*, defaults to 0):
Model agnostic parameter to identify masked tokens when generating text in an MLM context.
lang_id (`int`, *optional*, defaults to 1):
The ID of the language used by the model. This parameter is used when generating text in a given language.
"""
model_type = "flaubert"
attribute_map = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__(
self,
pre_norm=False,
layerdrop=0.0,
vocab_size=30145,
emb_dim=2048,
n_layers=12,
n_heads=16,
dropout=0.1,
attention_dropout=0.1,
gelu_activation=True,
sinusoidal_embeddings=False,
causal=False,
asm=False,
n_langs=1,
use_lang_emb=True,
max_position_embeddings=512,
embed_init_std=2048**-0.5,
layer_norm_eps=1e-12,
init_std=0.02,
bos_index=0,
eos_index=1,
pad_index=2,
unk_index=3,
mask_index=5,
is_encoder=True,
summary_type="first",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
start_n_top=5,
end_n_top=5,
mask_token_id=0,
lang_id=0,
pad_token_id=2,
bos_token_id=0,
**kwargs,
):
"""Constructs FlaubertConfig."""
self.pre_norm = pre_norm
self.layerdrop = layerdrop
self.vocab_size = vocab_size
self.emb_dim = emb_dim
self.n_layers = n_layers
self.n_heads = n_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.gelu_activation = gelu_activation
self.sinusoidal_embeddings = sinusoidal_embeddings
self.causal = causal
self.asm = asm
self.n_langs = n_langs
self.use_lang_emb = use_lang_emb
self.layer_norm_eps = layer_norm_eps
self.bos_index = bos_index
self.eos_index = eos_index
self.pad_index = pad_index
self.unk_index = unk_index
self.mask_index = mask_index
self.is_encoder = is_encoder
self.max_position_embeddings = max_position_embeddings
self.embed_init_std = embed_init_std
self.init_std = init_std
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_proj_to_labels = summary_proj_to_labels
self.summary_first_dropout = summary_first_dropout
self.start_n_top = start_n_top
self.end_n_top = end_n_top
self.mask_token_id = mask_token_id
self.lang_id = lang_id
if "n_words" in kwargs:
self.n_words = kwargs["n_words"]
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs)
class FlaubertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
__all__ = ["FlaubertConfig", "FlaubertOnnxConfig"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: modeling_flaubert.py
LINES: 1
SIZE: 56.53 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\flaubert\modeling_flaubert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Flaubert model, based on XLM."""
import itertools
import math
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import gelu
from ...generation import GenerationMixin
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary, SQuADHead
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_flaubert import FlaubertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased"
_CONFIG_FOR_DOC = "FlaubertConfig"
# Copied from transformers.models.xlm.modeling_xlm.create_sinusoidal_embeddings
def create_sinusoidal_embeddings(n_pos, dim, out):
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
out.requires_grad = False
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
out.detach_()
# Copied from transformers.models.xlm.modeling_xlm.get_masks
def get_masks(slen, lengths, causal, padding_mask=None):
"""
Generate hidden states mask, and optionally an attention mask.
"""
alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
if padding_mask is not None:
mask = padding_mask
else:
assert lengths.max().item() <= slen
mask = alen < lengths[:, None]
# attention mask is the same as mask, or triangular inferior attention (causal)
bs = lengths.size(0)
if causal:
attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
else:
attn_mask = mask
# sanity check
assert mask.size() == (bs, slen)
assert causal is False or attn_mask.size() == (bs, slen, slen)
return mask, attn_mask
# Copied from transformers.models.xlm.modeling_xlm.MultiHeadAttention
class MultiHeadAttention(nn.Module):
NEW_ID = itertools.count()
def __init__(self, n_heads, dim, config):
super().__init__()
self.layer_id = next(MultiHeadAttention.NEW_ID)
self.dim = dim
self.n_heads = n_heads
self.dropout = config.attention_dropout
assert self.dim % self.n_heads == 0
self.q_lin = nn.Linear(dim, dim)
self.k_lin = nn.Linear(dim, dim)
self.v_lin = nn.Linear(dim, dim)
self.out_lin = nn.Linear(dim, dim)
self.pruned_heads = set()
def prune_heads(self, heads):
attention_head_size = self.dim // self.n_heads
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, attention_head_size, self.pruned_heads)
# Prune linear layers
self.q_lin = prune_linear_layer(self.q_lin, index)
self.k_lin = prune_linear_layer(self.k_lin, index)
self.v_lin = prune_linear_layer(self.v_lin, index)
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.dim = attention_head_size * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, input, mask, kv=None, cache=None, head_mask=None, output_attentions=False):
"""
Self-attention (if kv is None) or attention over source sentence (provided by kv).
"""
# Input is (bs, qlen, dim)
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
bs, qlen, dim = input.size()
if kv is None:
klen = qlen if cache is None else cache["slen"] + qlen
else:
klen = kv.size(1)
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
n_heads = self.n_heads
dim_per_head = self.dim // n_heads
mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)
def shape(x):
"""projection"""
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
def unshape(x):
"""compute context"""
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
if kv is None:
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
elif cache is None or self.layer_id not in cache:
k = v = kv
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
if cache is not None:
if self.layer_id in cache:
if kv is None:
k_, v_ = cache[self.layer_id]
k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head)
v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head)
else:
k, v = cache[self.layer_id]
cache[self.layer_id] = (k, v)
q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head)
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen)
mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen)
scores.masked_fill_(mask, torch.finfo(scores.dtype).min) # (bs, n_heads, qlen, klen)
weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen)
weights = nn.functional.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
context = unshape(context) # (bs, qlen, dim)
outputs = (self.out_lin(context),)
if output_attentions:
outputs = outputs + (weights,)
return outputs
# Copied from transformers.models.xlm.modeling_xlm.TransformerFFN
class TransformerFFN(nn.Module):
def __init__(self, in_dim, dim_hidden, out_dim, config):
super().__init__()
self.dropout = config.dropout
self.lin1 = nn.Linear(in_dim, dim_hidden)
self.lin2 = nn.Linear(dim_hidden, out_dim)
self.act = gelu if config.gelu_activation else nn.functional.relu
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
def forward(self, input):
return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input)
def ff_chunk(self, input):
x = self.lin1(input)
x = self.act(x)
x = self.lin2(x)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
return x
FLAUBERT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FLAUBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
also use `attention_mask` for the same result (see above), kept here for compatibility. Indices selected in
`[0, ..., input_ids.size(-1)]`:
cache (`Dict[str, torch.FloatTensor]`, *optional*):
Dictionary strings to `torch.FloatTensor` that contains precomputed hidden-states (key and values in the
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential
decoding. The dictionary object will be modified in-place during the forward pass to add newly computed
hidden-states.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_xlm.XLMPredLayer with XLM->Flaubert
class FlaubertPredLayer(nn.Module):
"""
Prediction layer (cross_entropy or adaptive_softmax).
"""
def __init__(self, config):
super().__init__()
self.asm = config.asm
self.n_words = config.n_words
self.pad_index = config.pad_index
dim = config.emb_dim
if config.asm is False:
self.proj = nn.Linear(dim, config.n_words, bias=True)
else:
self.proj = nn.AdaptiveLogSoftmaxWithLoss(
in_features=dim,
n_classes=config.n_words,
cutoffs=config.asm_cutoffs,
div_value=config.asm_div_value,
head_bias=True, # default is False
)
def forward(self, x, y=None):
"""Compute the loss, and optionally the scores."""
outputs = ()
if self.asm is False:
scores = self.proj(x)
outputs = (scores,) + outputs
if y is not None:
loss = nn.functional.cross_entropy(scores.view(-1, self.n_words), y.view(-1), reduction="mean")
outputs = (loss,) + outputs
else:
scores = self.proj.log_prob(x)
outputs = (scores,) + outputs
if y is not None:
_, loss = self.proj(x, y)
outputs = (loss,) + outputs
return outputs
# Copied from transformers.models.xlm.modeling_xlm.XLMPreTrainedModel with XLM->Flaubert
class FlaubertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FlaubertConfig
load_tf_weights = None
base_model_prefix = "transformer"
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
@property
def dummy_inputs(self):
inputs_list = torch.tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])
attns_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
if self.config.use_lang_emb and self.config.n_langs > 1:
langs_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
else:
langs_list = None
return {"input_ids": inputs_list, "attention_mask": attns_list, "langs": langs_list}
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Embedding):
if self.config is not None and self.config.embed_init_std is not None:
nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, nn.Linear):
if self.config is not None and self.config.init_std is not None:
nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
if module.bias is not None:
nn.init.constant_(module.bias, 0.0)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, FlaubertModel) and self.config.sinusoidal_embeddings:
create_sinusoidal_embeddings(
self.config.max_position_embeddings, self.config.emb_dim, out=module.position_embeddings.weight
)
class FlaubertModel(FlaubertPreTrainedModel):
def __init__(self, config): # , dico, is_encoder, with_output):
super().__init__(config)
# encoder / decoder, output layer
self.is_encoder = config.is_encoder
self.is_decoder = not config.is_encoder
if self.is_decoder:
raise NotImplementedError("Currently Flaubert can only be used as an encoder")
# self.with_output = with_output
self.causal = config.causal
# dictionary / languages
self.n_langs = config.n_langs
self.use_lang_emb = config.use_lang_emb
self.n_words = config.n_words
self.eos_index = config.eos_index
self.pad_index = config.pad_index
# self.dico = dico
# self.id2lang = config.id2lang
# self.lang2id = config.lang2id
# assert len(self.dico) == self.n_words
# assert len(self.id2lang) == len(self.lang2id) == self.n_langs
# model parameters
self.dim = config.emb_dim # 512 by default
self.hidden_dim = self.dim * 4 # 2048 by default
self.n_heads = config.n_heads # 8 by default
self.n_layers = config.n_layers
self.dropout = config.dropout
self.attention_dropout = config.attention_dropout
assert self.dim % self.n_heads == 0, "transformer dim must be a multiple of n_heads"
# embeddings
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
if config.n_langs > 1 and config.use_lang_emb:
self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
# transformer layers
self.attentions = nn.ModuleList()
self.layer_norm1 = nn.ModuleList()
self.ffns = nn.ModuleList()
self.layer_norm2 = nn.ModuleList()
# if self.is_decoder:
# self.layer_norm15 = nn.ModuleList()
# self.encoder_attn = nn.ModuleList()
for _ in range(self.n_layers):
self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
# if self.is_decoder:
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
if hasattr(config, "pruned_heads"):
pruned_heads = config.pruned_heads.copy().items()
config.pruned_heads = {}
for layer, heads in pruned_heads:
if self.attentions[int(layer)].n_heads == config.n_heads:
self.prune_heads({int(layer): list(map(int, heads))})
# Initialize weights and apply final processing
self.post_init()
self.layerdrop = getattr(config, "layerdrop", 0.0)
self.pre_norm = getattr(config, "pre_norm", False)
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
# Copied from transformers.models.xlm.modeling_xlm.XLMModel.get_input_embeddings
def get_input_embeddings(self):
return self.embeddings
# Copied from transformers.models.xlm.modeling_xlm.XLMModel.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings = new_embeddings
# Copied from transformers.models.xlm.modeling_xlm.XLMModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.attentions[layer].prune_heads(heads)
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
lengths: Optional[torch.LongTensor] = None,
cache: Optional[Dict[str, torch.FloatTensor]] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# removed: src_enc=None, src_len=None
if input_ids is not None:
bs, slen = input_ids.size()
else:
bs, slen = inputs_embeds.size()[:-1]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if lengths is None:
if input_ids is not None:
lengths = (input_ids != self.pad_index).sum(dim=1).long()
else:
lengths = torch.tensor([slen] * bs, device=device)
# mask = input_ids != self.pad_index
# check inputs
assert lengths.size(0) == bs
assert lengths.max().item() <= slen
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
# assert (src_enc is None) == (src_len is None)
# if src_enc is not None:
# assert self.is_decoder
# assert src_enc.size(0) == bs
# generate masks
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
# if self.is_decoder and src_enc is not None:
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
# Setting the position-ids to the registered buffer in constructor, it helps
# when tracing the model without passing position-ids, solves
# isues similar to issue #5664
if position_ids is None:
if hasattr(self, "position_ids"):
position_ids = self.position_ids[:, :slen]
position_ids = position_ids.expand((bs, slen))
else:
position_ids = torch.arange(slen, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand((bs, slen))
else:
assert position_ids.size() == (bs, slen) # (slen, bs)
# position_ids = position_ids.transpose(0, 1)
# langs
if langs is not None:
assert langs.size() == (bs, slen) # (slen, bs)
# langs = langs.transpose(0, 1)
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.n_layers)
# do not recompute cached elements
if cache is not None and input_ids is not None:
_slen = slen - cache["slen"]
input_ids = input_ids[:, -_slen:]
position_ids = position_ids[:, -_slen:]
if langs is not None:
langs = langs[:, -_slen:]
mask = mask[:, -_slen:]
attn_mask = attn_mask[:, -_slen:]
# embeddings
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
tensor = inputs_embeds + self.position_embeddings(position_ids).expand_as(inputs_embeds)
if langs is not None and self.use_lang_emb and self.config.n_langs > 1:
tensor = tensor + self.lang_embeddings(langs)
if token_type_ids is not None:
tensor = tensor + self.embeddings(token_type_ids)
tensor = self.layer_norm_emb(tensor)
tensor = nn.functional.dropout(tensor, p=self.dropout, training=self.training)
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
# transformer layers
hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
for i in range(self.n_layers):
# LayerDrop
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# self attention
if not self.pre_norm:
attn_outputs = self.attentions[i](
tensor,
attn_mask,
cache=cache,
head_mask=head_mask[i],
output_attentions=output_attentions,
)
attn = attn_outputs[0]
if output_attentions:
attentions = attentions + (attn_outputs[1],)
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
tensor = tensor + attn
tensor = self.layer_norm1[i](tensor)
else:
tensor_normalized = self.layer_norm1[i](tensor)
attn_outputs = self.attentions[i](tensor_normalized, attn_mask, cache=cache, head_mask=head_mask[i])
attn = attn_outputs[0]
if output_attentions:
attentions = attentions + (attn_outputs[1],)
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
tensor = tensor + attn
# encoder attention (for decoder only)
# if self.is_decoder and src_enc is not None:
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
# tensor = tensor + attn
# tensor = self.layer_norm15[i](tensor)
# FFN
if not self.pre_norm:
tensor = tensor + self.ffns[i](tensor)
tensor = self.layer_norm2[i](tensor)
else:
tensor_normalized = self.layer_norm2[i](tensor)
tensor = tensor + self.ffns[i](tensor_normalized)
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
# Add last hidden state
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# update cache length
if cache is not None:
cache["slen"] += tensor.size(1)
# move back sequence length to dimension 0
# tensor = tensor.transpose(0, 1)
if not return_dict:
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)
return BaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
@add_start_docstrings(
"""
The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
FLAUBERT_START_DOCSTRING,
)
# Copied transformers.models.xlm.modeling_xlm.XLMWithLMHeadModel with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertWithLMHeadModel(FlaubertPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["pred_layer.proj.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = FlaubertModel(config)
self.pred_layer = FlaubertPredLayer(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.pred_layer.proj
def set_output_embeddings(self, new_embeddings):
self.pred_layer.proj = new_embeddings
def prepare_inputs_for_generation(self, input_ids, **kwargs):
# Overwritten -- uses a language id
mask_token_id = self.config.mask_token_id
lang_id = self.config.lang_id
effective_batch_size = input_ids.shape[0]
mask_token = torch.full((effective_batch_size, 1), mask_token_id, dtype=torch.long, device=input_ids.device)
input_ids = torch.cat([input_ids, mask_token], dim=1)
if lang_id is not None:
langs = torch.full_like(input_ids, lang_id)
else:
langs = None
return {"input_ids": input_ids, "langs": langs}
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<special1>",
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
outputs = self.pred_layer(output, labels) # (loss, logits) or (logits,) depending on if labels are provided.
if not return_dict:
return outputs + transformer_outputs[1:]
return MaskedLMOutput(
loss=outputs[0] if labels is not None else None,
logits=outputs[0] if labels is None else outputs[1],
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
e.g. for GLUE tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied transformers.models.xlm.modeling_xlm.XLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertForSequenceClassification(FlaubertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.transformer = FlaubertModel(config)
self.sequence_summary = SequenceSummary(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_xlm.XLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertForTokenClassification(FlaubertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = FlaubertModel(config)
self.dropout = nn.Dropout(config.dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_xlm.XLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertForQuestionAnsweringSimple(FlaubertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = FlaubertModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = transformer_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + transformer_outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
Flaubert Model with a beam-search span classification head on top for extractive question-answering tasks like
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FLAUBERT_START_DOCSTRING,
)
@dataclass
# Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnsweringOutput with XLM->Flaubert
class FlaubertForQuestionAnsweringOutput(ModelOutput):
"""
Base class for outputs of question answering models using a `SquadHead`.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
losses.
start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Indices for the top config.start_n_top start token possibilities (beam-search).
end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
(beam-search).
end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
Log probabilities for the `is_impossible` label of the answers.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_top_log_probs: Optional[torch.FloatTensor] = None
start_top_index: Optional[torch.LongTensor] = None
end_top_log_probs: Optional[torch.FloatTensor] = None
end_top_index: Optional[torch.LongTensor] = None
cls_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnswering with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertForQuestionAnswering(FlaubertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = FlaubertModel(config)
self.qa_outputs = SQuADHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=FlaubertForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
is_impossible: Optional[torch.Tensor] = None,
cls_index: Optional[torch.Tensor] = None,
p_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FlaubertForQuestionAnsweringOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels whether a question has an answer or no answer (SQuAD 2.0)
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the classification token to use as input for computing plausibility of the
answer.
p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
masked. 0.0 mean token is not masked.
Returns:
Example:
```python
>>> from transformers import XLMTokenizer, XLMForQuestionAnswering
>>> import torch
>>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-mlm-en-2048")
>>> model = XLMForQuestionAnswering.from_pretrained("FacebookAI/xlm-mlm-en-2048")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0
... ) # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
outputs = self.qa_outputs(
output,
start_positions=start_positions,
end_positions=end_positions,
cls_index=cls_index,
is_impossible=is_impossible,
p_mask=p_mask,
return_dict=return_dict,
)
if not return_dict:
return outputs + transformer_outputs[1:]
return FlaubertForQuestionAnsweringOutput(
loss=outputs.loss,
start_top_log_probs=outputs.start_top_log_probs,
start_top_index=outputs.start_top_index,
end_top_log_probs=outputs.end_top_log_probs,
end_top_index=outputs.end_top_index,
cls_logits=outputs.cls_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformer.models.xlm.modeling_xlm.XLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class FlaubertForMultipleChoice(FlaubertPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = FlaubertModel(config)
self.sequence_summary = SequenceSummary(config)
self.logits_proj = nn.Linear(config.num_labels, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
langs: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
lengths: Optional[torch.Tensor] = None,
cache: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
langs = langs.view(-1, langs.size(-1)) if langs is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
if lengths is not None:
logger.warning(
"The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the "
"attention mask instead."
)
lengths = None
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
logits = self.logits_proj(logits)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
__all__ = [
"FlaubertForMultipleChoice",
"FlaubertForQuestionAnswering",
"FlaubertForQuestionAnsweringSimple",
"FlaubertForSequenceClassification",
"FlaubertForTokenClassification",
"FlaubertModel",
"FlaubertWithLMHeadModel",
"FlaubertPreTrainedModel",
]
```
|
============================================================================================================================================
SOURCE CODE FILE: modeling_tf_flaubert.py
LINES: 1
SIZE: 56.01 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\flaubert\modeling_tf_flaubert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
TF 2.0 Flaubert model.
"""
from __future__ import annotations
import itertools
import random
import warnings
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFSequenceSummary,
TFSharedEmbeddings,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS,
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_flaubert import FlaubertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased"
_CONFIG_FOR_DOC = "FlaubertConfig"
FLAUBERT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FLAUBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- `1` for tokens that are **not masked**,
- `0` for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
langs (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are
languages ids which can be obtained from the language names by using two conversion mappings provided in
the configuration of the model (only provided for multilingual models). More precisely, the *language name
to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the
*language id to language name* mapping is in `model.config.id2lang` (dictionary int to string).
See usage examples detailed in the [multilingual documentation](../multilingual).
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- `0` corresponds to a *sentence A* token,
- `1` corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
lengths (`tf.Tensor` or `Numpy array` of shape `(batch_size,)`, *optional*):
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
also use *attention_mask* for the same result (see above), kept here for compatibility Indices selected in
`[0, ..., input_ids.size(-1)]`:
cache (`Dict[str, tf.Tensor]`, *optional*):
Dictionary string to `tf.FloatTensor` that contains precomputed hidden states (key and values in the
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential
decoding.
The dictionary object will be modified in-place during the forward pass to add newly computed
hidden-states.
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- `1` indicates the head is **not masked**,
- `0` indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
def get_masks(slen, lengths, causal, padding_mask=None):
"""
Generate hidden states mask, and optionally an attention mask.
"""
bs = shape_list(lengths)[0]
if padding_mask is not None:
mask = padding_mask
else:
# assert lengths.max().item() <= slen
alen = tf.range(slen, dtype=lengths.dtype)
mask = alen < tf.expand_dims(lengths, axis=1)
# attention mask is the same as mask, or triangular inferior attention (causal)
if causal:
attn_mask = tf.less_equal(
tf.tile(tf.reshape(alen, (1, 1, slen)), (bs, slen, 1)), tf.reshape(alen, (1, slen, 1))
)
else:
attn_mask = mask
# sanity check
# assert shape_list(mask) == [bs, slen]
tf.debugging.assert_equal(shape_list(mask), [bs, slen])
if causal:
tf.debugging.assert_equal(shape_list(attn_mask), [bs, slen, slen])
return mask, attn_mask
class TFFlaubertPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FlaubertConfig
base_model_prefix = "transformer"
@property
def dummy_inputs(self):
# Sometimes Flaubert has language embeddings so don't forget to build them as well if needed
inputs_list = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]], dtype=tf.int32)
attns_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32)
if self.config.use_lang_emb and self.config.n_langs > 1:
return {
"input_ids": inputs_list,
"attention_mask": attns_list,
"langs": tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32),
}
else:
return {"input_ids": inputs_list, "attention_mask": attns_list}
@add_start_docstrings(
"The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.",
FLAUBERT_START_DOCSTRING,
)
class TFFlaubertModel(TFFlaubertPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFFlaubertMainLayer(config, name="transformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMMultiHeadAttention with XLM->Flaubert
class TFFlaubertMultiHeadAttention(keras.layers.Layer):
NEW_ID = itertools.count()
def __init__(self, n_heads, dim, config, **kwargs):
super().__init__(**kwargs)
self.layer_id = next(TFFlaubertMultiHeadAttention.NEW_ID)
self.dim = dim
self.n_heads = n_heads
self.output_attentions = config.output_attentions
assert self.dim % self.n_heads == 0
self.q_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="q_lin")
self.k_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="k_lin")
self.v_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="v_lin")
self.out_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="out_lin")
self.dropout = keras.layers.Dropout(config.attention_dropout)
self.pruned_heads = set()
self.dim = dim
def prune_heads(self, heads):
raise NotImplementedError
def call(self, input, mask, kv, cache, head_mask, output_attentions, training=False):
"""
Self-attention (if kv is None) or attention over source sentence (provided by kv).
"""
# Input is (bs, qlen, dim)
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
bs, qlen, dim = shape_list(input)
if kv is None:
klen = qlen if cache is None else cache["slen"] + qlen
else:
klen = shape_list(kv)[1]
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
dim_per_head = self.dim // self.n_heads
mask_reshape = (bs, 1, qlen, klen) if len(shape_list(mask)) == 3 else (bs, 1, 1, klen)
def shape(x):
"""projection"""
return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3))
def unshape(x):
"""compute context"""
return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head))
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
if kv is None:
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
elif cache is None or self.layer_id not in cache:
k = v = kv
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
if cache is not None:
if self.layer_id in cache:
if kv is None:
k_, v_ = cache[self.layer_id]
k = tf.concat([k_, k], axis=2) # (bs, n_heads, klen, dim_per_head)
v = tf.concat([v_, v], axis=2) # (bs, n_heads, klen, dim_per_head)
else:
k, v = cache[self.layer_id]
cache[self.layer_id] = (k, v)
f_dim_per_head = tf.cast(dim_per_head, dtype=q.dtype)
q = tf.multiply(q, tf.math.rsqrt(f_dim_per_head)) # (bs, n_heads, qlen, dim_per_head)
k = tf.cast(k, dtype=q.dtype)
scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, qlen, klen)
mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen)
# scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen)
mask = tf.cast(mask, dtype=scores.dtype)
scores = scores - 1e30 * (1.0 - mask)
weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen)
weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
context = unshape(context) # (bs, qlen, dim)
outputs = (self.out_lin(context),)
if output_attentions:
outputs = outputs + (weights,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "q_lin", None) is not None:
with tf.name_scope(self.q_lin.name):
self.q_lin.build([None, None, self.dim])
if getattr(self, "k_lin", None) is not None:
with tf.name_scope(self.k_lin.name):
self.k_lin.build([None, None, self.dim])
if getattr(self, "v_lin", None) is not None:
with tf.name_scope(self.v_lin.name):
self.v_lin.build([None, None, self.dim])
if getattr(self, "out_lin", None) is not None:
with tf.name_scope(self.out_lin.name):
self.out_lin.build([None, None, self.dim])
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMTransformerFFN
class TFFlaubertTransformerFFN(keras.layers.Layer):
def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs):
super().__init__(**kwargs)
self.lin1 = keras.layers.Dense(dim_hidden, kernel_initializer=get_initializer(config.init_std), name="lin1")
self.lin2 = keras.layers.Dense(out_dim, kernel_initializer=get_initializer(config.init_std), name="lin2")
self.act = get_tf_activation("gelu") if config.gelu_activation else get_tf_activation("relu")
self.dropout = keras.layers.Dropout(config.dropout)
self.in_dim = in_dim
self.dim_hidden = dim_hidden
def call(self, input, training=False):
x = self.lin1(input)
x = self.act(x)
x = self.lin2(x)
x = self.dropout(x, training=training)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "lin1", None) is not None:
with tf.name_scope(self.lin1.name):
self.lin1.build([None, None, self.in_dim])
if getattr(self, "lin2", None) is not None:
with tf.name_scope(self.lin2.name):
self.lin2.build([None, None, self.dim_hidden])
@keras_serializable
class TFFlaubertMainLayer(keras.layers.Layer):
config_class = FlaubertConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.n_heads = config.n_heads
self.n_langs = config.n_langs
self.dim = config.emb_dim
self.hidden_dim = self.dim * 4
self.n_words = config.n_words
self.pad_index = config.pad_index
self.causal = config.causal
self.n_layers = config.n_layers
self.use_lang_emb = config.use_lang_emb
self.layerdrop = getattr(config, "layerdrop", 0.0)
self.pre_norm = getattr(config, "pre_norm", False)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.max_position_embeddings = config.max_position_embeddings
self.embed_init_std = config.embed_init_std
self.dropout = keras.layers.Dropout(config.dropout)
self.embeddings = TFSharedEmbeddings(
self.n_words, self.dim, initializer_range=config.embed_init_std, name="embeddings"
)
self.layer_norm_emb = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm_emb")
self.attentions = []
self.layer_norm1 = []
self.ffns = []
self.layer_norm2 = []
for i in range(self.n_layers):
self.attentions.append(
TFFlaubertMultiHeadAttention(self.n_heads, self.dim, config=config, name=f"attentions_._{i}")
)
self.layer_norm1.append(
keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm1_._{i}")
)
# if self.is_decoder:
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
self.ffns.append(
TFFlaubertTransformerFFN(self.dim, self.hidden_dim, self.dim, config=config, name=f"ffns_._{i}")
)
self.layer_norm2.append(
keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm2_._{i}")
)
def build(self, input_shape=None):
with tf.name_scope("position_embeddings"):
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.dim],
initializer=get_initializer(self.embed_init_std),
)
if self.n_langs > 1 and self.use_lang_emb:
with tf.name_scope("lang_embeddings"):
self.lang_embeddings = self.add_weight(
name="embeddings",
shape=[self.n_langs, self.dim],
initializer=get_initializer(self.embed_init_std),
)
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "layer_norm_emb", None) is not None:
with tf.name_scope(self.layer_norm_emb.name):
self.layer_norm_emb.build([None, None, self.dim])
for layer in self.attentions:
with tf.name_scope(layer.name):
layer.build(None)
for layer in self.layer_norm1:
with tf.name_scope(layer.name):
layer.build([None, None, self.dim])
for layer in self.ffns:
with tf.name_scope(layer.name):
layer.build(None)
for layer in self.layer_norm2:
with tf.name_scope(layer.name):
layer.build([None, None, self.dim])
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
@unpack_inputs
def call(
self,
input_ids: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutput]:
# removed: src_enc=None, src_len=None
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
bs, slen = shape_list(input_ids)
elif inputs_embeds is not None:
bs, slen = shape_list(inputs_embeds)[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if lengths is None:
if input_ids is not None:
lengths = tf.reduce_sum(
tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=input_ids.dtype), axis=1
)
else:
lengths = tf.convert_to_tensor([slen] * bs)
# mask = input_ids != self.pad_index
# check inputs
# assert shape_list(lengths)[0] == bs
(
tf.debugging.assert_equal(shape_list(lengths)[0], bs),
f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched",
)
# assert lengths.max().item() <= slen
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
# assert (src_enc is None) == (src_len is None)
# if src_enc is not None:
# assert self.is_decoder
# assert src_enc.size(0) == bs
# generate masks
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
# if self.is_decoder and src_enc is not None:
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
# position_ids
if position_ids is None:
position_ids = tf.expand_dims(tf.range(slen), axis=0)
position_ids = tf.tile(position_ids, (bs, 1))
# assert shape_list(position_ids) == [bs, slen] # (slen, bs)
(
tf.debugging.assert_equal(shape_list(position_ids), [bs, slen]),
f"Position id shape {shape_list(position_ids)} and input shape {[bs, slen]} mismatched",
)
# position_ids = position_ids.transpose(0, 1)
# langs
if langs is not None:
# assert shape_list(langs) == [bs, slen] # (slen, bs)
(
tf.debugging.assert_equal(shape_list(langs), [bs, slen]),
f"Lang shape {shape_list(langs)} and input shape {[bs, slen]} mismatched",
)
# langs = langs.transpose(0, 1)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.n_layers
# do not recompute cached elements
if cache is not None and input_ids is not None:
_slen = slen - cache["slen"]
input_ids = input_ids[:, -_slen:]
position_ids = position_ids[:, -_slen:]
if langs is not None:
langs = langs[:, -_slen:]
mask = mask[:, -_slen:]
attn_mask = attn_mask[:, -_slen:]
# embeddings
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embeddings.vocab_size)
inputs_embeds = self.embeddings(input_ids)
tensor = inputs_embeds + tf.gather(self.position_embeddings, position_ids)
if langs is not None and self.use_lang_emb:
tensor = tensor + tf.gather(self.lang_embeddings, langs)
if token_type_ids is not None:
tensor = tensor + self.embeddings(token_type_ids)
tensor = self.layer_norm_emb(tensor)
tensor = self.dropout(tensor, training=training)
mask = tf.cast(mask, dtype=tensor.dtype)
tensor = tensor * tf.expand_dims(mask, axis=-1)
# hidden_states and attentions cannot be None in graph mode.
hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
# transformer layers
for i in range(self.n_layers):
# LayerDrop
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop):
continue
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# self attention
if not self.pre_norm:
attn_outputs = self.attentions[i](
tensor,
attn_mask,
None,
cache,
head_mask[i],
output_attentions,
training=training,
)
attn = attn_outputs[0]
if output_attentions:
attentions = attentions + (attn_outputs[1],)
attn = self.dropout(attn, training=training)
tensor = tensor + attn
tensor = self.layer_norm1[i](tensor)
else:
tensor_normalized = self.layer_norm1[i](tensor)
attn_outputs = self.attentions[i](
tensor_normalized,
attn_mask,
None,
cache,
head_mask[i],
output_attentions,
training=training,
)
attn = attn_outputs[0]
if output_attentions:
attentions = attentions + (attn_outputs[1],)
attn = self.dropout(attn, training=training)
tensor = tensor + attn
# encoder attention (for decoder only)
# if self.is_decoder and src_enc is not None:
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
# tensor = tensor + attn
# tensor = self.layer_norm15[i](tensor)
# FFN
if not self.pre_norm:
tensor = tensor + self.ffns[i](tensor)
tensor = self.layer_norm2[i](tensor)
else:
tensor_normalized = self.layer_norm2[i](tensor)
tensor = tensor + self.ffns[i](tensor_normalized)
tensor = tensor * tf.expand_dims(mask, axis=-1)
# Add last hidden state
if output_hidden_states:
hidden_states = hidden_states + (tensor,)
# update cache length
if cache is not None:
cache["slen"] += tensor.size(1)
# move back sequence length to dimension 0
# tensor = tensor.transpose(0, 1)
if not return_dict:
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)
return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMPredLayer
class TFFlaubertPredLayer(keras.layers.Layer):
"""
Prediction layer (cross_entropy or adaptive_softmax).
"""
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.asm = config.asm
self.n_words = config.n_words
self.pad_index = config.pad_index
if config.asm is False:
self.input_embeddings = input_embeddings
else:
raise NotImplementedError
# self.proj = nn.AdaptiveLogSoftmaxWithLoss(
# in_features=dim,
# n_classes=config.n_words,
# cutoffs=config.asm_cutoffs,
# div_value=config.asm_div_value,
# head_bias=True, # default is False
# )
def build(self, input_shape):
# The output weights are the same as the input embeddings, but there is an output-only bias for each token.
self.bias = self.add_weight(shape=(self.n_words,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def get_output_embeddings(self):
return self.input_embeddings
def set_output_embeddings(self, value):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
hidden_states = self.input_embeddings(hidden_states, mode="linear")
hidden_states = hidden_states + self.bias
return hidden_states
@dataclass
class TFFlaubertWithLMHeadModelOutput(ModelOutput):
"""
Base class for [`TFFlaubertWithLMHeadModel`] outputs.
Args:
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: Optional[tf.Tensor] = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
@add_start_docstrings(
"""
The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
FLAUBERT_START_DOCSTRING,
)
class TFFlaubertWithLMHeadModel(TFFlaubertPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFFlaubertMainLayer(config, name="transformer")
self.pred_layer = TFFlaubertPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj")
# Flaubert does not have past caching features
self.supports_xla_generation = False
def get_lm_head(self):
return self.pred_layer
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.pred_layer.name
def prepare_inputs_for_generation(self, inputs, **kwargs):
mask_token_id = self.config.mask_token_id
lang_id = self.config.lang_id
effective_batch_size = inputs.shape[0]
mask_token = tf.fill((effective_batch_size, 1), 1) * mask_token_id
inputs = tf.concat([inputs, mask_token], axis=1)
if lang_id is not None:
langs = tf.ones_like(inputs) * lang_id
else:
langs = None
return {"input_ids": inputs, "langs": langs}
@unpack_inputs
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFFlaubertWithLMHeadModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFFlaubertWithLMHeadModelOutput]:
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
output = transformer_outputs[0]
outputs = self.pred_layer(output)
if not return_dict:
return (outputs,) + transformer_outputs[1:]
return TFFlaubertWithLMHeadModelOutput(
logits=outputs, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "pred_layer", None) is not None:
with tf.name_scope(self.pred_layer.name):
self.pred_layer.build(None)
@add_start_docstrings(
"""
Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
e.g. for GLUE tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class TFFlaubertForSequenceClassification(TFFlaubertPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFFlaubertMainLayer(config, name="transformer")
self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary")
@unpack_inputs
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "sequence_summary", None) is not None:
with tf.name_scope(self.sequence_summary.name):
self.sequence_summary.build(None)
@add_start_docstrings(
"""
Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class TFFlaubertForQuestionAnsweringSimple(TFFlaubertPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFFlaubertMainLayer(config, name="transformer")
self.qa_outputs = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.init_std), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = transformer_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class TFFlaubertForTokenClassification(TFFlaubertPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.transformer = TFFlaubertMainLayer(config, name="transformer")
self.dropout = keras.layers.Dropout(config.dropout)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.init_std), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
langs=langs,
token_type_ids=token_type_ids,
position_ids=position_ids,
lengths=lengths,
cache=cache,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = transformer_outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
FLAUBERT_START_DOCSTRING,
)
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
class TFFlaubertForMultipleChoice(TFFlaubertPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFFlaubertMainLayer(config, name="transformer")
self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary")
self.logits_proj = keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj"
)
self.config = config
@property
def dummy_inputs(self):
"""
Dummy inputs to build the network.
Returns:
tf.Tensor with dummy inputs
"""
# Sometimes Flaubert has language embeddings so don't forget to build them as well if needed
if self.config.use_lang_emb and self.config.n_langs > 1:
return {
"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
"langs": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
}
else:
return {
"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
}
@unpack_inputs
@add_start_docstrings_to_model_forward(
FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
langs: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
lengths: np.ndarray | tf.Tensor | None = None,
cache: Optional[Dict[str, tf.Tensor]] = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_langs = tf.reshape(langs, (-1, seq_length)) if langs is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
if lengths is not None:
logger.warning(
"The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the "
"attention mask instead.",
)
lengths = None
transformer_outputs = self.transformer(
flat_input_ids,
flat_attention_mask,
flat_langs,
flat_token_type_ids,
flat_position_ids,
lengths,
cache,
head_mask,
flat_inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
output = transformer_outputs[0]
logits = self.sequence_summary(output)
logits = self.logits_proj(logits)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "sequence_summary", None) is not None:
with tf.name_scope(self.sequence_summary.name):
self.sequence_summary.build(None)
if getattr(self, "logits_proj", None) is not None:
with tf.name_scope(self.logits_proj.name):
self.logits_proj.build([None, None, self.config.num_labels])
__all__ = [
"TFFlaubertForMultipleChoice",
"TFFlaubertForQuestionAnsweringSimple",
"TFFlaubertForSequenceClassification",
"TFFlaubertForTokenClassification",
"TFFlaubertModel",
"TFFlaubertPreTrainedModel",
"TFFlaubertWithLMHeadModel",
]
```
|
=============================================================================================================================================
SOURCE CODE FILE: tokenization_flaubert.py
LINES: 6
SIZE: 21.69 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\flaubert\tokenization_flaubert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Flaubert."""
import json
import os
import re
import unicodedata
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
def convert_to_unicode(text):
"""
Converts `text` to Unicode (if it's not already), assuming UTF-8 input.
"""
def ensure_text(s, encoding="utf-8", errors="strict"):
if isinstance(s, bytes):
return s.decode(encoding, errors)
elif isinstance(s, str):
return s
else:
raise TypeError(f"not expecting type '{type(s)}'")
return ensure_text(text, encoding="utf-8", errors="ignore")
# Copied from transformers.models.xlm.tokenization_xlm.get_pairs
def get_pairs(word):
"""
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
strings)
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
# Copied from transformers.models.xlm.tokenization_xlm.replace_unicode_punct
def replace_unicode_punct(text):
"""
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
"""
text = text.replace(",", ",")
text = re.sub(r"。\s*", ". ", text)
text = text.replace("、", ",")
text = text.replace("”", '"')
text = text.replace("“", '"')
text = text.replace("∶", ":")
text = text.replace(":", ":")
text = text.replace("?", "?")
text = text.replace("《", '"')
text = text.replace("》", '"')
text = text.replace(")", ")")
text = text.replace("!", "!")
text = text.replace("(", "(")
text = text.replace(";", ";")
text = text.replace("1", "1")
text = text.replace("」", '"')
text = text.replace("「", '"')
text = text.replace("0", "0")
text = text.replace("3", "3")
text = text.replace("2", "2")
text = text.replace("5", "5")
text = text.replace("6", "6")
text = text.replace("9", "9")
text = text.replace("7", "7")
text = text.replace("8", "8")
text = text.replace("4", "4")
text = re.sub(r".\s*", ". ", text)
text = text.replace("~", "~")
text = text.replace("’", "'")
text = text.replace("…", "...")
text = text.replace("━", "-")
text = text.replace("〈", "<")
text = text.replace("〉", ">")
text = text.replace("【", "[")
text = text.replace("】", "]")
text = text.replace("%", "%")
return text
# Copied from transformers.models.xlm.tokenization_xlm.remove_non_printing_char
def remove_non_printing_char(text):
"""
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
"""
output = []
for char in text:
cat = unicodedata.category(char)
if cat.startswith("C"):
continue
output.append(char)
return "".join(output)
class FlaubertTokenizer(PreTrainedTokenizer):
"""
Construct a Flaubert tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following:
- Moses preprocessing and tokenization.
- Normalizing all inputs text.
- The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like
"__classify__") to a vocabulary.
- The argument `do_lowercase` controls lower casing (automatically set for pretrained vocabularies).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Vocabulary file.
merges_file (`str`):
Merges file.
do_lowercase (`bool`, *optional*, defaults to `False`):
Controls lower casing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"</s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"<special1>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
additional_special_tokens (`List[str]`, *optional*, defaults to `['<special0>', '<special1>', '<special2>', '<special3>', '<special4>', '<special5>', '<special6>', '<special7>', '<special8>', '<special9>']`):
List of additional special tokens.
lang2id (`Dict[str, int]`, *optional*):
Dictionary mapping languages string identifiers to their IDs.
id2lang (`Dict[int, str]`, *optional*):
Dictionary mapping language IDs to their string identifiers.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
merges_file,
do_lowercase=False,
unk_token="<unk>",
bos_token="<s>",
sep_token="</s>",
pad_token="<pad>",
cls_token="</s>",
mask_token="<special1>",
additional_special_tokens=[
"<special0>",
"<special1>",
"<special2>",
"<special3>",
"<special4>",
"<special5>",
"<special6>",
"<special7>",
"<special8>",
"<special9>",
],
lang2id=None,
id2lang=None,
**kwargs,
):
do_lowercase_and_remove_accent = kwargs.pop("do_lowercase_and_remove_accent", None)
if do_lowercase_and_remove_accent is not None:
logger.warning(
"`do_lowercase_and_remove_accent` is passed as a keyword argument, but this won't do anything."
" `FlaubertTokenizer` will always set it to `False`."
)
# always `False`
self.do_lowercase_and_remove_accent = False
self.do_lowercase = do_lowercase
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use FlaubertTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.sm = sacremoses
# cache of sm.MosesPunctNormalizer instance
self.cache_moses_punct_normalizer = {}
# cache of sm.MosesTokenizer instance
self.cache_moses_tokenizer = {}
self.lang_with_custom_tokenizer = {"zh", "th", "ja"}
self.lang2id = lang2id
self.id2lang = id2lang
if lang2id is not None and id2lang is not None:
assert len(lang2id) == len(id2lang)
self.ja_word_tokenizer = None
self.zh_word_tokenizer = None
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[:-1]
merges = [tuple(merge.split()[:2]) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
super().__init__(
do_lowercase=do_lowercase,
unk_token=unk_token,
bos_token=bos_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
additional_special_tokens=additional_special_tokens,
lang2id=lang2id,
id2lang=id2lang,
**kwargs,
)
@property
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.do_lower_case
def do_lower_case(self):
return self.do_lowercase_and_remove_accent
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_punct_norm
def moses_punct_norm(self, text, lang):
if lang not in self.cache_moses_punct_normalizer:
punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang)
self.cache_moses_punct_normalizer[lang] = punct_normalizer
else:
punct_normalizer = self.cache_moses_punct_normalizer[lang]
return punct_normalizer.normalize(text)
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_tokenize
def moses_tokenize(self, text, lang):
if lang not in self.cache_moses_tokenizer:
moses_tokenizer = self.sm.MosesTokenizer(lang=lang)
self.cache_moses_tokenizer[lang] = moses_tokenizer
else:
moses_tokenizer = self.cache_moses_tokenizer[lang]
return moses_tokenizer.tokenize(text, return_str=False, escape=False)
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_pipeline
def moses_pipeline(self, text, lang):
text = replace_unicode_punct(text)
text = self.moses_punct_norm(text, lang)
text = remove_non_printing_char(text)
return text
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.ja_tokenize
def ja_tokenize(self, text):
if self.ja_word_tokenizer is None:
try:
import Mykytea
self.ja_word_tokenizer = Mykytea.Mykytea(
f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin"
)
except (AttributeError, ImportError):
logger.error(
"Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper"
" (https://github.com/chezou/Mykytea-python) with the following steps"
)
logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea")
logger.error("2. autoreconf -i")
logger.error("3. ./configure --prefix=$HOME/local")
logger.error("4. make && make install")
logger.error("5. pip install kytea")
raise
return list(self.ja_word_tokenizer.getWS(text))
@property
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.vocab_size
def vocab_size(self):
return len(self.encoder)
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_vocab
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.bpe
def bpe(self, token):
word = tuple(token[:-1]) + (token[-1] + "</w>",)
if token in self.cache:
return self.cache[token]
pairs = get_pairs(word)
if not pairs:
return token + "</w>"
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
if word == "\n </w>":
word = "\n</w>"
self.cache[token] = word
return word
def preprocess_text(self, text):
text = text.replace("``", '"').replace("''", '"')
text = convert_to_unicode(text)
text = unicodedata.normalize("NFC", text)
if self.do_lowercase:
text = text.lower()
return text
def _tokenize(self, text, bypass_tokenizer=False):
"""
Tokenize a string given language code using Moses.
Details of tokenization:
- [sacremoses](https://github.com/alvations/sacremoses): port of Moses
- Install with `pip install sacremoses`
Args:
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
(bool). If True, we only apply BPE.
Returns:
List of tokens.
"""
lang = "fr"
if lang and self.lang2id and lang not in self.lang2id:
logger.error(
"Supplied language code not found in lang2id mapping. Please check that your language is supported by"
" the loaded pretrained model."
)
if bypass_tokenizer:
text = text.split()
else:
text = self.preprocess_text(text)
text = self.moses_pipeline(text, lang=lang)
text = self.moses_tokenize(text, lang=lang)
split_tokens = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(token).split(" ")))
return split_tokens
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = "".join(tokens).replace("</w>", " ").strip()
return out_string
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLM sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
bos = [self.bos_token_id]
sep = [self.sep_token_id]
if token_ids_1 is None:
return bos + token_ids_0 + sep
return bos + token_ids_0 + sep + token_ids_1 + sep
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__getstate__
def __getstate__(self):
state = self.__dict__.copy()
state["sm"] = None
return state
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__setstate__
def __setstate__(self, d):
self.__dict__ = d
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use XLMTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.sm = sacremoses
__all__ = ["FlaubertTokenizer"]
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.09 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\flava\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_flava import *
from .feature_extraction_flava import *
from .image_processing_flava import *
from .modeling_flava import *
from .processing_flava import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================
SOURCE CODE FILE: configuration_flava.py
LINES: 1
SIZE: 33.27 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\flava\configuration_flava.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FLAVA model configurations"""
from typing import Any, Dict
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class FlavaImageConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaImageModel`]. It is used to instantiate an
FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
mask_token (`bool`, *optional*, defaults to `True`):
Whether to use a mask token or not. Used in MIM (Masked Image Modeling) loss for FLAVA.
vocab_size (`int`, *optional*, defaults to 8192):
Vocabulary size of the [`FlavaImageCodebook`] used in conjunction with [`FlavaImageModel`] for MIM (Masked
Image Modeling) loss for FLAVA.
Example:
```python
>>> from transformers import FlavaImageConfig, FlavaImageModel
>>> # Initializing a FlavaImageModel with style configuration
>>> configuration = FlavaImageConfig()
>>> # Initializing a FlavaImageModel model (with random weights) from the style configuration
>>> model = FlavaImageModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_image_model"
base_config_key = "image_config"
def __init__(
self,
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: int = "gelu",
hidden_dropout_prob: float = 0.0,
attention_probs_dropout_prob: float = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
image_size: int = 224,
patch_size: int = 16,
num_channels: int = 3,
qkv_bias: bool = True,
mask_token: bool = True,
vocab_size: int = 8192,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.mask_token = mask_token
self.vocab_size = vocab_size
class FlavaTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaTextModel`]. It is used to instantiate an
FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FlavaTextModel`].
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`FlavaTextModel`]. Note that even though
text encoder allows `token_type_ids`'s value as 2, for text-only pretraining and fine-tuning, only 1 is
used similar to RoBERTa.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048). For VL, max_length passed to model is 77.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
Example:
```python
>>> from transformers import FlavaTextConfig, FlavaTextModel
>>> # Initializing a FlavaTextModel with style configuration
>>> configuration = FlavaTextConfig()
>>> # Initializing a FlavaTextModel model (with random weights) from the style configuration
>>> model = FlavaTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size: int = 30522,
type_vocab_size: int = 2,
max_position_embeddings: int = 512,
position_embedding_type: str = "absolute",
hidden_size: int = 768,
num_hidden_layers: int = 12,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: str = "gelu",
hidden_dropout_prob: float = 0.0,
attention_probs_dropout_prob: float = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
pad_token_id: int = 0,
qkv_bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.type_vocab_size = type_vocab_size
self.max_position_embeddings = max_position_embeddings
self.position_embedding_type = position_embedding_type
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.pad_token_id = pad_token_id
class FlavaMultimodalConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FlavaMultimodalModel`]. It is used to instantiate
an FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
use_cls_token (`bool`, *optional*, defaults to `True`):
Whether to use an extra CLS token for multimodal settings. Usually needed by the FLAVA model.
Example:
```python
>>> from transformers import FlavaMultimodalConfig, FlavaMultimodalModel
>>> # Initializing a FlavaMultimodalModel with style configuration
>>> configuration = FlavaMultimodalConfig()
>>> # Initializing a FlavaMultimodalModel model (with random weights) from the style configuration
>>> model = FlavaMultimodalModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "flava_multimodal_model"
base_config_key = "multimodal_config"
def __init__(
self,
hidden_size: int = 768,
num_hidden_layers: int = 6,
num_attention_heads: int = 12,
intermediate_size: int = 3072,
hidden_act: int = "gelu",
hidden_dropout_prob: int = 0.0,
attention_probs_dropout_prob: int = 0.0,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
qkv_bias: bool = True,
use_cls_token: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.use_cls_token = use_cls_token
class FlavaImageCodebookConfig(PretrainedConfig):
model_type = "flava_image_codebook"
base_config_key = "image_codebook_config"
r"""
[`FlavaImageCodebookConfig`] is the configuration class to store the configuration of a [`FlavaImageCodebook`]. It
is used to instantiate an FLAVA model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
[facebook/flava-image-codebook](https://huggingface.co/facebook/flava-image-codebook) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_groups (`int`, *optional*, defaults to 4):
Number of groups to be created. This parameter as of now doesn't affect the model and is used for some
internal calculation and estimations.
input_channels (`int`, *optional*, defaults to 3):
Number of channels in the image to be passed.
num_blocks_per_group (`int`, *optional*, defaults to 2):
Number of conv-based blocks per group.
hidden_size (`int`, *optional*, defaults to 256):
Size of hidden dim for the blocks.
vocab_size (`int`, *optional*, defaults to 8192):
Size of the output vocabulary for the codebook.
freeze (`bool`, defaults to `True`):
Whether to freeze the weights of the model.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import FlavaImageCodebookConfig, FlavaImageCodebook
>>> # Initializing a FlavaImageCodebook with style configuration
>>> configuration = FlavaImageCodebookConfig()
>>> # Initializing a FlavaImageCodebook model (with random weights) from the style configuration
>>> model = FlavaImageCodebook(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
def __init__(
self,
num_groups: int = 4,
input_channels: int = 3,
num_blocks_per_group: int = 2,
hidden_size: int = 256,
vocab_size: int = 8192,
freeze: int = True,
initializer_range: float = 0.02,
**kwargs,
):
super().__init__(**kwargs)
self.num_groups = num_groups
self.input_channels = input_channels
self.num_blocks_per_group = num_blocks_per_group
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.freeze = freeze
self.initializer_range = initializer_range
class FlavaConfig(PretrainedConfig):
r"""
[`FlavaConfig`] is the configuration class to store the configuration of a [`FlavaModel`]. It is used to
instantiate FLAVA model according to the specified arguments, defining the text model, image model, image codebook
and multimodal model configs. Instantiating a configuration with the defaults will yield a similar configuration to
that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaTextConfig`].
image_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaImageConfig`].
multimodal_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`FlavaMultimodalConfig`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
projection_dim (`int`, *optional*, defaults to 512):
Dimensionality of text and image projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The initial value of the *logit_scale* parameter. Default is used as per the original FLAVA/CLIP
implementation.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
ce_ignore_index (`int`, *optional*, defaults to -100):
Cross entropy index to ignore.
mim_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MIM (Masked Image Modeling) unimodal loss
mlm_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MLM (Masked Language Modeling) unimodal loss
global_contrastive_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to global contrastive cross-alignment loss.
itm_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to image-text matching multimodal loss.
mmm_image_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MMM loss's image part.
mmm_text_weight (`float`, *optional*, defaults to 1.0):
Weight to be assigned to MMM loss's text part.
global_backprop_contrastive (`bool`, *optional*, defaults to `True`):
Whether to use global backpropgation through all workers in contrastive loss.
skip_unmasked_multimodal_encoder (`bool`, *optional*, defaults to `True`):
Whether to skip running unmasked multimodal encoder whose outputs are not used by FLAVA losses.
return_loss (`bool`, *optional*, defaults to `True`):
Whether to return loss or not
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import FlavaConfig, FlavaModel, FlavaForPreTraining
>>> # Initializing a FlavaConfig with style configuration
>>> configuration = FlavaConfig()
>>> # Initializing a FlavaModel and FlavaForPreTraining model (with random weights) from the style configuration
>>> model = FlavaModel(configuration)
>>> model_pre = FlavaForPreTraining(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> configuration_pre = model_pre.config
```
"""
model_type = "flava"
sub_configs = {
"text_config": FlavaTextConfig,
"image_config": FlavaImageConfig,
"multimodal_config": FlavaMultimodalConfig,
"image_codebook_config": FlavaImageCodebookConfig,
}
def __init__(
self,
image_config: Dict[str, Any] = None,
text_config: Dict[str, Any] = None,
multimodal_config: Dict[str, Any] = None,
image_codebook_config: Dict[str, Any] = None,
hidden_size: int = 768,
layer_norm_eps: float = 1e-12,
projection_dim: int = 768,
init_codebook: bool = True,
logit_scale_init_value: float = 2.6592,
initializer_range: float = 0.02,
ce_ignore_index: int = -100,
mim_weight: float = 1.0,
mlm_weight: float = 1.0,
global_contrastive_weight: float = 1.0,
itm_weight: float = 1.0,
mmm_image_weight: float = 1.0,
mmm_text_weight: float = 1.0,
global_backprop_contrastive: bool = True,
skip_unmasked_multimodal_encoder: bool = True,
return_loss: bool = True,
**kwargs,
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
text_config_dict = kwargs.pop("text_config_dict", None)
image_config_dict = kwargs.pop("image_config_dict", None)
multimodal_config_dict = kwargs.pop("multimodal_config_dict", None)
image_codebook_config_dict = kwargs.pop("image_codebook_config_dict", None)
super().__init__(**kwargs)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = FlavaTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`text_config_dict` is provided which will be used to initialize `FlavaTextConfig`. The "
f'value `text_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if image_config_dict is not None:
if image_config is None:
image_config = {}
# This is the complete result when using `image_config_dict`.
_image_config_dict = FlavaImageConfig(**image_config_dict).to_dict()
# convert keys to string instead of integer
if "id2label" in _image_config_dict:
_image_config_dict["id2label"] = {
str(key): value for key, value in _image_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_image_config_dict` and `image_config` but being different.
for key, value in _image_config_dict.items():
if key in image_config and value != image_config[key] and key not in ["transformers_version"]:
# If specified in `image_config_dict`
if key in image_config_dict:
message = (
f"`{key}` is found in both `image_config_dict` and `image_config` but with different "
f'values. The value `image_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`image_config_dict` is provided which will be used to initialize `FlavaImageConfig`. "
f'The value `image_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `image_config` with the ones in `_image_config_dict`.
image_config.update(_image_config_dict)
if multimodal_config_dict is not None:
if multimodal_config is None:
multimodal_config = {}
# This is the complete result when using `multimodal_config_dict`.
_multimodal_config_dict = FlavaMultimodalConfig(**multimodal_config_dict).to_dict()
# Give a warning if the values exist in both `_multimodal_config_dict` and `multimodal_config` but being
# different.
for key, value in _multimodal_config_dict.items():
if (
key in multimodal_config
and value != multimodal_config[key]
and key not in ["transformers_version"]
):
# If specified in `multimodal_config_dict`
if key in multimodal_config_dict:
message = (
f"`{key}` is found in both `multimodal_config_dict` and `multimodal_config` but with "
f'different values. The value `multimodal_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`multimodal_config_dict` is provided which will be used to initialize "
f'`FlavaMultimodalConfig`. The value `multimodal_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `multimodal_config` with the ones in `_multimodal_config_dict`.
multimodal_config.update(_multimodal_config_dict)
if image_codebook_config_dict is not None:
if image_codebook_config is None:
image_codebook_config = {}
# This is the complete result when using `image_codebook_config_dict`.
_image_codebook_config_dict = FlavaImageCodebookConfig(**image_codebook_config_dict).to_dict()
# Give a warning if the values exist in both `_image_codebook_config_dict` and `image_codebook_config` but
# being different.
for key, value in _image_codebook_config_dict.items():
if (
key in image_codebook_config
and value != image_codebook_config[key]
and key not in ["transformers_version"]
):
# If specified in `image_codebook_config_dict`
if key in image_codebook_config_dict:
message = (
f"`{key}` is found in both `image_codebook_config_dict` and `image_codebook_config` but "
f'with different values. The value `image_codebook_config_dict["{key}"]` will be used '
"instead."
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`image_codebook_config_dict` is provided which will be used to initialize "
f'`FlavaImageCodebookConfig`. The value `image_codebook_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `image_codebook_config` with the ones in `_image_codebook_config_dict`.
image_codebook_config.update(_image_codebook_config_dict)
if image_config is None:
image_config = {}
logger.info("`image_config` is `None`. initializing the `FlavaImageConfig` with default values.")
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `FlavaTextConfig` with default values.")
if multimodal_config is None:
multimodal_config = {}
logger.info("`multimodal_config` is `None`. initializing the `FlavaMultimodalConfig` with default values.")
if image_codebook_config is None:
image_codebook_config = {}
logger.info(
"`image_codebook_config` is `None`. initializing the `FlavaImageCodebookConfig` with default values."
)
self.image_config = FlavaImageConfig(**image_config)
self.text_config = FlavaTextConfig(**text_config)
self.multimodal_config = FlavaMultimodalConfig(**multimodal_config)
self.image_codebook_config = FlavaImageCodebookConfig(**image_codebook_config)
self.projection_dim = projection_dim
self.init_codebook = init_codebook
self.hidden_size = hidden_size
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = 1.0
self.ce_ignore_index = ce_ignore_index
self.mim_weight = mim_weight
self.mlm_weight = mlm_weight
self.global_contrastive_weight = global_contrastive_weight
self.itm_weight = itm_weight
self.mmm_image_weight = mmm_image_weight
self.mmm_text_weight = mmm_text_weight
self.global_backprop_contrastive = global_backprop_contrastive
self.skip_unmasked_multimodal_encoder = skip_unmasked_multimodal_encoder
self.return_loss = return_loss
@classmethod
def from_configs(
cls,
image_config: FlavaImageConfig,
text_config: FlavaTextConfig,
multimodal_config: FlavaMultimodalConfig,
image_codebook_config: FlavaImageCodebookConfig,
**kwargs,
):
r"""
Instantiate a [`FlavaConfig`] (or a derived class) from flava text model configuration, flava image model
configuration, flava multimodal model and flava codebook model configuration.
Returns:
[`FlavaConfig`]: An instance of a configuration object
"""
return cls(
image_config=image_config.to_dict(),
text_config=text_config.to_dict(),
multimodal_config=multimodal_config.to_dict(),
image_codebook_config=image_codebook_config.to_dict(),
**kwargs,
)
__all__ = ["FlavaConfig", "FlavaImageCodebookConfig", "FlavaImageConfig", "FlavaMultimodalConfig", "FlavaTextConfig"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: feature_extraction_flava.py
LINES: 1
SIZE: 1.21 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\flava\feature_extraction_flava.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for FLAVA."""
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
logger = logging.get_logger(__name__)
class FlavaFeatureExtractor(FlavaImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use FlavaImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
__all__ = ["FlavaFeatureExtractor"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: image_processing_flava.py
LINES: 1
SIZE: 36.65 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\flava\image_processing_flava.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Flava."""
import math
import random
from functools import lru_cache
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
# These values are taken from CLIP
FLAVA_IMAGE_MEAN = OPENAI_CLIP_MEAN
FLAVA_IMAGE_STD = OPENAI_CLIP_STD
FLAVA_CODEBOOK_MEAN = [0.0, 0.0, 0.0]
FLAVA_CODEBOOK_STD = [1.0, 1.0, 1.0]
LOGIT_LAPLACE_EPS: float = 0.1
# Inspired from https://github.com/microsoft/unilm/blob/master/beit/masking_generator.py
class FlavaMaskingGenerator:
def __init__(
self,
input_size: Union[int, Tuple[int, int]] = 14,
total_mask_patches: int = 75,
mask_group_max_patches: Optional[int] = None,
mask_group_min_patches: int = 16,
mask_group_min_aspect_ratio: Optional[float] = 0.3,
mask_group_max_aspect_ratio: Optional[float] = None,
):
if not isinstance(input_size, tuple):
input_size = (input_size,) * 2
self.height, self.width = input_size
self.num_patches = self.height * self.width
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = total_mask_patches if mask_group_max_patches is None else mask_group_max_patches
mask_group_max_aspect_ratio = mask_group_max_aspect_ratio or 1 / mask_group_min_aspect_ratio
self.log_aspect_ratio = (math.log(mask_group_min_aspect_ratio), math.log(mask_group_max_aspect_ratio))
def __repr__(self):
repr_str = "MaskingGenerator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % (
self.height,
self.width,
self.mask_group_min_patches,
self.mask_group_max_patches,
self.total_mask_patches,
self.log_aspect_ratio[0],
self.log_aspect_ratio[1],
)
return repr_str
def get_shape(self):
return self.height, self.width
def _mask(self, mask, max_mask_patches):
delta = 0
for _attempt in range(10):
target_area = random.uniform(self.mask_group_min_patches, max_mask_patches)
aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio))
height = int(round(math.sqrt(target_area * aspect_ratio)))
width = int(round(math.sqrt(target_area / aspect_ratio)))
if width < self.width and height < self.height:
top = random.randint(0, self.height - height)
left = random.randint(0, self.width - width)
num_masked = mask[top : top + height, left : left + width].sum()
# Overlap
if 0 < height * width - num_masked <= max_mask_patches:
for i in range(top, top + height):
for j in range(left, left + width):
if mask[i, j] == 0:
mask[i, j] = 1
delta += 1
if delta > 0:
break
return delta
def __call__(self):
mask = np.zeros(shape=self.get_shape(), dtype=int)
mask_count = 0
while mask_count < self.total_mask_patches:
max_mask_patches = self.total_mask_patches - mask_count
max_mask_patches = min(max_mask_patches, self.mask_group_max_patches)
delta = self._mask(mask, max_mask_patches)
if delta == 0:
break
else:
mask_count += delta
return mask
class FlavaImageProcessor(BaseImageProcessor):
r"""
Constructs a Flava image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by the `size` parameter in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in
`preprocess`.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the images. Can be overridden by the `do_center_crop` parameter in `preprocess`.
crop_size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of image after the center crop `(crop_size["height"], crop_size["width"])`. Can be overridden by the
`crop_size` parameter in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in `preprocess`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in
`preprocess`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in `preprocess`.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
return_image_mask (`bool`, *optional*, defaults to `False`):
Whether to return the image mask. Can be overridden by the `return_image_mask` parameter in `preprocess`.
input_size_patches (`int`, *optional*, defaults to 14):
Number of patches in the image in height and width direction. 14x14 = 196 total patches. Can be overridden
by the `input_size_patches` parameter in `preprocess`.
total_mask_patches (`int`, *optional*, defaults to 75):
Total number of patches that should be masked. Can be overridden by the `total_mask_patches` parameter in
`preprocess`.
mask_group_min_patches (`int`, *optional*, defaults to 16):
Minimum number of patches that should be masked. Can be overridden by the `mask_group_min_patches`
parameter in `preprocess`.
mask_group_max_patches (`int`, *optional*):
Maximum number of patches that should be masked. Can be overridden by the `mask_group_max_patches`
parameter in `preprocess`.
mask_group_min_aspect_ratio (`float`, *optional*, defaults to 0.3):
Minimum aspect ratio of the mask window. Can be overridden by the `mask_group_min_aspect_ratio` parameter
in `preprocess`.
mask_group_max_aspect_ratio (`float`, *optional*):
Maximum aspect ratio of the mask window. Can be overridden by the `mask_group_max_aspect_ratio` parameter
in `preprocess`.
codebook_do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the input for codebook to a certain. Can be overridden by the `codebook_do_resize`
parameter in `preprocess`. `codebook_size`.
codebook_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Resize the input for codebook to the given size. Can be overridden by the `codebook_size` parameter in
`preprocess`.
codebook_resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`):
Resampling filter to use if resizing the codebook image. Can be overridden by the `codebook_resample`
parameter in `preprocess`.
codebook_do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to crop the input for codebook at the center. If the input size is smaller than
`codebook_crop_size` along any edge, the image is padded with 0's and then center cropped. Can be
overridden by the `codebook_do_center_crop` parameter in `preprocess`.
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired output size for codebook input when applying center-cropping. Can be overridden by the
`codebook_crop_size` parameter in `preprocess`.
codebook_do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the input for codebook by the specified scale `codebook_rescale_factor`. Can be
overridden by the `codebook_do_rescale` parameter in `preprocess`.
codebook_rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Defines the scale factor to use if rescaling the codebook image. Can be overridden by the
`codebook_rescale_factor` parameter in `preprocess`.
codebook_do_map_pixels (`bool`, *optional*, defaults to `True`):
Whether to map the pixel values of the codebook input to (1 - 2e)x + e. Can be overridden by the
`codebook_do_map_pixels` parameter in `preprocess`.
codebook_do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input for codebook with `codebook_image_mean` and `codebook_image_std`. Can
be overridden by the `codebook_do_normalize` parameter in `preprocess`.
codebook_image_mean (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0, 0, 0]`):
The sequence of means for each channel, to be used when normalizing images for codebook. Can be overridden
by the `codebook_image_mean` parameter in `preprocess`.
codebook_image_std (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
The sequence of standard deviations for each channel, to be used when normalizing images for codebook. Can
be overridden by the `codebook_image_std` parameter in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, Iterable[float]]] = None,
image_std: Optional[Union[float, Iterable[float]]] = None,
# Mask related params
return_image_mask: bool = False,
input_size_patches: int = 14,
total_mask_patches: int = 75,
mask_group_min_patches: int = 16,
mask_group_max_patches: Optional[int] = None,
mask_group_min_aspect_ratio: float = 0.3,
mask_group_max_aspect_ratio: Optional[float] = None,
# Codebook related params
return_codebook_pixels: bool = False,
codebook_do_resize: bool = True,
codebook_size: Optional[bool] = None,
codebook_resample: int = PILImageResampling.LANCZOS,
codebook_do_center_crop: bool = True,
codebook_crop_size: Optional[int] = None,
codebook_do_rescale: bool = True,
codebook_rescale_factor: Union[int, float] = 1 / 255,
codebook_do_map_pixels: bool = True,
codebook_do_normalize: bool = True,
codebook_image_mean: Optional[Union[float, Iterable[float]]] = None,
codebook_image_std: Optional[Union[float, Iterable[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112}
codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else FLAVA_IMAGE_MEAN
self.image_std = image_std if image_std is not None else FLAVA_IMAGE_STD
self.return_image_mask = return_image_mask
self.input_size_patches = input_size_patches
self.total_mask_patches = total_mask_patches
self.mask_group_min_patches = mask_group_min_patches
self.mask_group_max_patches = mask_group_max_patches
self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio
self.return_codebook_pixels = return_codebook_pixels
self.codebook_do_resize = codebook_do_resize
self.codebook_size = codebook_size
self.codebook_resample = codebook_resample
self.codebook_do_center_crop = codebook_do_center_crop
self.codebook_crop_size = codebook_crop_size
self.codebook_do_rescale = codebook_do_rescale
self.codebook_rescale_factor = codebook_rescale_factor
self.codebook_do_map_pixels = codebook_do_map_pixels
self.codebook_do_normalize = codebook_do_normalize
self.codebook_image_mean = codebook_image_mean
self.codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else FLAVA_CODEBOOK_MEAN
self.codebook_image_std = codebook_image_std if codebook_image_std is not None else FLAVA_CODEBOOK_STD
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `FlavaImageProcessor.from_pretrained(checkpoint, codebook_size=600)`
"""
image_processor_dict = image_processor_dict.copy()
if "codebook_size" in kwargs:
image_processor_dict["codebook_size"] = kwargs.pop("codebook_size")
if "codebook_crop_size" in kwargs:
image_processor_dict["codebook_crop_size"] = kwargs.pop("codebook_crop_size")
return super().from_dict(image_processor_dict, **kwargs)
@lru_cache()
def masking_generator(
self,
input_size_patches,
total_mask_patches,
mask_group_min_patches,
mask_group_max_patches,
mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio,
) -> FlavaMaskingGenerator:
return FlavaMaskingGenerator(
input_size=input_size_patches,
total_mask_patches=total_mask_patches,
mask_group_min_patches=mask_group_min_patches,
mask_group_max_patches=mask_group_max_patches,
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
)
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def map_pixels(self, image: np.ndarray) -> np.ndarray:
return (1 - 2 * LOGIT_LAPLACE_EPS) * image + LOGIT_LAPLACE_EPS
def _preprocess_image(
self,
image: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_map_pixels: Optional[bool] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[ChannelDimension] = None,
) -> np.ndarray:
"""Preprocesses a single image."""
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
image = to_numpy_array(image)
if do_rescale and is_scaled_image(image):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(image)
if do_resize:
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
if do_center_crop:
image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
if do_map_pixels:
image = self.map_pixels(image)
if data_format is not None:
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
return image
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
# Mask related params
return_image_mask: Optional[bool] = None,
input_size_patches: Optional[int] = None,
total_mask_patches: Optional[int] = None,
mask_group_min_patches: Optional[int] = None,
mask_group_max_patches: Optional[int] = None,
mask_group_min_aspect_ratio: Optional[float] = None,
mask_group_max_aspect_ratio: Optional[float] = None,
# Codebook related params
return_codebook_pixels: Optional[bool] = None,
codebook_do_resize: Optional[bool] = None,
codebook_size: Optional[Dict[str, int]] = None,
codebook_resample: Optional[int] = None,
codebook_do_center_crop: Optional[bool] = None,
codebook_crop_size: Optional[Dict[str, int]] = None,
codebook_do_rescale: Optional[bool] = None,
codebook_rescale_factor: Optional[float] = None,
codebook_do_map_pixels: Optional[bool] = None,
codebook_do_normalize: Optional[bool] = None,
codebook_image_mean: Optional[Iterable[float]] = None,
codebook_image_std: Optional[Iterable[float]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_image_mask (`bool`, *optional*, defaults to `self.return_image_mask`):
Whether to return the image mask.
input_size_patches (`int`, *optional*, defaults to `self.input_size_patches`):
Size of the patches to extract from the image.
total_mask_patches (`int`, *optional*, defaults to `self.total_mask_patches`):
Total number of patches to extract from the image.
mask_group_min_patches (`int`, *optional*, defaults to `self.mask_group_min_patches`):
Minimum number of patches to extract from the image.
mask_group_max_patches (`int`, *optional*, defaults to `self.mask_group_max_patches`):
Maximum number of patches to extract from the image.
mask_group_min_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_min_aspect_ratio`):
Minimum aspect ratio of the patches to extract from the image.
mask_group_max_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_max_aspect_ratio`):
Maximum aspect ratio of the patches to extract from the image.
return_codebook_pixels (`bool`, *optional*, defaults to `self.return_codebook_pixels`):
Whether to return the codebook pixels.
codebook_do_resize (`bool`, *optional*, defaults to `self.codebook_do_resize`):
Whether to resize the codebook pixels.
codebook_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_size`):
Size of the codebook pixels.
codebook_resample (`int`, *optional*, defaults to `self.codebook_resample`):
Resampling filter to use if resizing the codebook pixels. This can be one of the enum
`PILImageResampling`, Only has an effect if `codebook_do_resize` is set to `True`.
codebook_do_center_crop (`bool`, *optional*, defaults to `self.codebook_do_center_crop`):
Whether to center crop the codebook pixels.
codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_crop_size`):
Size of the center crop of the codebook pixels. Only has an effect if `codebook_do_center_crop` is set
to `True`.
codebook_do_rescale (`bool`, *optional*, defaults to `self.codebook_do_rescale`):
Whether to rescale the codebook pixels values between [0 - 1].
codebook_rescale_factor (`float`, *optional*, defaults to `self.codebook_rescale_factor`):
Rescale factor to rescale the codebook pixels by if `codebook_do_rescale` is set to `True`.
codebook_do_map_pixels (`bool`, *optional*, defaults to `self.codebook_do_map_pixels`):
Whether to map the codebook pixels values.
codebook_do_normalize (`bool`, *optional*, defaults to `self.codebook_do_normalize`):
Whether to normalize the codebook pixels.
codebook_image_mean (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_mean`):
Codebook pixels mean to normalize the codebook pixels by if `codebook_do_normalize` is set to `True`.
codebook_image_std (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_std`):
Codebook pixels standard deviation to normalize the codebook pixels by if `codebook_do_normalize` is
set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
return_image_mask = return_image_mask if return_image_mask is not None else self.return_image_mask
input_size_patches = input_size_patches if input_size_patches is not None else self.input_size_patches
total_mask_patches = total_mask_patches if total_mask_patches is not None else self.total_mask_patches
mask_group_min_patches = (
mask_group_min_patches if mask_group_min_patches is not None else self.mask_group_min_patches
)
mask_group_max_patches = (
mask_group_max_patches if mask_group_max_patches is not None else self.mask_group_max_patches
)
mask_group_min_aspect_ratio = (
mask_group_min_aspect_ratio
if mask_group_min_aspect_ratio is not None
else self.mask_group_min_aspect_ratio
)
mask_group_max_aspect_ratio = (
mask_group_max_aspect_ratio
if mask_group_max_aspect_ratio is not None
else self.mask_group_max_aspect_ratio
)
return_codebook_pixels = (
return_codebook_pixels if return_codebook_pixels is not None else self.return_codebook_pixels
)
codebook_do_resize = codebook_do_resize if codebook_do_resize is not None else self.codebook_do_resize
codebook_size = codebook_size if codebook_size is not None else self.codebook_size
codebook_size = get_size_dict(codebook_size, param_name="codebook_size")
codebook_resample = codebook_resample if codebook_resample is not None else self.codebook_resample
codebook_do_rescale = codebook_do_rescale if codebook_do_rescale is not None else self.codebook_do_rescale
codebook_rescale_factor = (
codebook_rescale_factor if codebook_rescale_factor is not None else self.codebook_rescale_factor
)
codebook_do_center_crop = (
codebook_do_center_crop if codebook_do_center_crop is not None else self.codebook_do_center_crop
)
codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else self.codebook_crop_size
codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size")
codebook_do_map_pixels = (
codebook_do_map_pixels if codebook_do_map_pixels is not None else self.codebook_do_map_pixels
)
codebook_do_normalize = (
codebook_do_normalize if codebook_do_normalize is not None else self.codebook_do_normalize
)
codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else self.codebook_image_mean
codebook_image_std = codebook_image_std if codebook_image_std is not None else self.codebook_image_std
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
processed_images = [
self._preprocess_image(
image=img,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_map_pixels=False,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data = {"pixel_values": processed_images}
if return_codebook_pixels:
codebook_images = [
self._preprocess_image(
image=img,
do_resize=codebook_do_resize,
size=codebook_size,
resample=codebook_resample,
do_center_crop=codebook_do_center_crop,
crop_size=codebook_crop_size,
do_rescale=codebook_do_rescale,
rescale_factor=codebook_rescale_factor,
do_normalize=codebook_do_normalize,
image_mean=codebook_image_mean,
image_std=codebook_image_std,
do_map_pixels=codebook_do_map_pixels,
data_format=data_format,
input_data_format=input_data_format,
)
for img in images
]
data["codebook_pixel_values"] = codebook_images
if return_image_mask:
mask_generator = self.masking_generator(
input_size_patches=input_size_patches,
total_mask_patches=total_mask_patches,
mask_group_min_patches=mask_group_min_patches,
mask_group_max_patches=mask_group_max_patches,
mask_group_min_aspect_ratio=mask_group_min_aspect_ratio,
mask_group_max_aspect_ratio=mask_group_max_aspect_ratio,
)
masks = [mask_generator() for _ in images]
data["bool_masked_pos"] = masks
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["FlavaImageProcessor"]
```
|
===================================================================================================================================
SOURCE CODE FILE: modeling_flava.py
LINES: 1
SIZE: 95.03 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\flava\modeling_flava.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch FLAVA model."""
import collections
import math
from collections import OrderedDict
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
torch_int,
)
from .configuration_flava import (
FlavaConfig,
FlavaImageCodebookConfig,
FlavaImageConfig,
FlavaMultimodalConfig,
FlavaTextConfig,
)
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/flava-full"
# Codebook docstring
_CHECKPOINT_FOR_CODEBOOK_DOC = "facebook/flava-image-codebook"
_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC = "FlavaImageConfig"
_CONFIG_CLASS_FOR_TEXT_MODEL_DOC = "FlavaTextConfig"
_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC = "FlavaMultimodalConfig"
_EXPECTED_IMAGE_OUTPUT_SHAPE = [1, 197, 768]
LOGIT_SCALE_CLAMP_MIN = 0
LOGIT_SCALE_CLAMP_MAX = 4.6052
FlavaPossibleConfigs = Union[FlavaTextConfig, FlavaImageConfig, FlavaMultimodalConfig]
@dataclass
class FlavaModelOutput(ModelOutput):
"""
Output from FlavaModel containing embeddings and outputs from individual encoders.
Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
Args:
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`].
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
The output of the [`FlavaTextModel`].
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`):
The output of the [`FlavaMultimodalModel`].
"""
image_embeddings: Optional[torch.FloatTensor] = None
image_output: Optional[BaseModelOutputWithPooling] = None
text_embeddings: Optional[torch.FloatTensor] = None
text_output: Optional[BaseModelOutputWithPooling] = None
multimodal_embeddings: Optional[torch.FloatTensor] = None
multimodal_output: Optional[BaseModelOutputWithPooling] = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_output", "image_output", "multimodal_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
@dataclass
class FlavaLosses(ModelOutput):
"""Class representing pretraining losses from FLAVA model
Args:
mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.:
Masked Image Modeling loss as used in BeIT calculated only for unimodal image data.
mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.:
Masked Language Modeling loss as used in BERT calculated only for unimodal text data.
itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.:
Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on
masked pairs in FLAVA.
global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.:
Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text
data. This is calculated on unmasked images and texts.
mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.:
Masked Multimodal Modeling loss's image component calculated on paired image-text data.
mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.:
Masked Multimodal Modeling loss's text component calculated on paired image-text data.
"""
mim: Optional[torch.FloatTensor] = None
mlm: Optional[torch.FloatTensor] = None
itm: Optional[torch.FloatTensor] = None
global_contrastive: Optional[torch.FloatTensor] = None
mmm_image: Optional[torch.FloatTensor] = None
mmm_text: Optional[torch.FloatTensor] = None
def all_none(self) -> bool:
all_none = True
for v in self.values():
if v is not None:
all_none = False
break
return all_none
@dataclass
class FlavaForPreTrainingOutput(ModelOutput):
"""
Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders.
Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a
transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and
`text_projection` layers on `image_embeddings` and `text_embeddings` respectively.
Args:
loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True):
Total loss calculated for this model.
loss_info (`FlavaLosses`):
Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on
the keys.
image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`].
image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`].
text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present):
The output of the [`FlavaTextModel`].
multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`):
The output of the [`FlavaMultimodalModel`].
image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present):
The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos`
to create masked images.
image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present):
The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images.
text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present):
The text embeddings which are basically the pooled output of [`FlavaTextModel`].
text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present):
The output of the [`FlavaTextModel`].
multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present):
The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`].
multimodal_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
The output of the [`FlavaMultimodalModel`].
mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not):
The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is
returned when `bool_masked_pos` has some of the patches masked.
mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not):
The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of
the tokens masked.
itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present):
The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA.
mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened
output is returned when `bool_masked_pos` has some of the patches masked.
mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present):
The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has
some of the tokens masked.
contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's
`image_projection` and `text_projection` layers respectively. This represents the image-text similarity
scores. This is calculated on unmasked images and texts.
contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's
`text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and
texts.
"""
loss: Optional[torch.FloatTensor] = None
loss_info: FlavaLosses = None
image_embeddings: Optional[torch.FloatTensor] = None
image_output: Optional[BaseModelOutputWithPooling] = None
text_embeddings: Optional[torch.FloatTensor] = None
text_output: Optional[BaseModelOutputWithPooling] = None
multimodal_embeddings: Optional[torch.FloatTensor] = None
multimodal_output: Optional[BaseModelOutputWithPooling] = None
image_masked_embeddings: Optional[torch.FloatTensor] = None
image_masked_output: Optional[BaseModelOutputWithPooling] = None
text_masked_embeddings: Optional[torch.FloatTensor] = None
text_masked_output: Optional[BaseModelOutputWithPooling] = None
multimodal_masked_embeddings: Optional[torch.FloatTensor] = None
multimodal_masked_output: Optional[BaseModelOutputWithPooling] = None
mim_logits: Optional[torch.FloatTensor] = None
mlm_logits: Optional[torch.FloatTensor] = None
itm_logits: Optional[torch.FloatTensor] = None
contrastive_logits_per_image: Optional[torch.FloatTensor] = None
contrastive_logits_per_text: Optional[torch.FloatTensor] = None
mmm_image_logits: Optional[torch.FloatTensor] = None
mmm_text_logits: Optional[torch.FloatTensor] = None
def to_tuple(self) -> Tuple[Any]:
transformer_outputs = [
"text_output",
"image_output",
"multimodal_output",
"text_masked_output",
"image_masked_output",
"multimodal_masked_output",
]
return tuple(self[k] if k not in transformer_outputs else getattr(self, k).to_tuple() for k in self.keys())
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
class FlavaImageEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: FlavaImageConfig, use_mask_token: bool = False) -> None:
super().__init__()
use_mask_token = use_mask_token or config.mask_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None
self.patch_embeddings = PatchEmbeddings(
image_size=config.image_size,
patch_size=config.patch_size,
num_channels=config.num_channels,
embed_dim=config.hidden_size,
)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.patch_size = config.patch_size
self.config = config
# Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: bool = False,
) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# B X H X W = B X HW
if bool_masked_pos.dim() == 3:
bool_masked_pos = bool_masked_pos.view(bool_masked_pos.size(0), -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py
class PatchEmbeddings(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
image_size: int = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
num_channels: int = 3,
embed_dim: int = 768,
):
super().__init__()
if not isinstance(image_size, collections.abc.Iterable):
image_size = (image_size, image_size)
if not isinstance(patch_size, collections.abc.Iterable):
patch_size = (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if not interpolate_pos_encoding:
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
return x
class FlavaTextEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
):
input_shape = input_ids.size()
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class FlavaSelfAttention(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class FlavaSelfOutput(nn.Module):
"""
The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other
models), due to the layernorm applied before each block.
"""
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class FlavaAttention(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.attention = FlavaSelfAttention(config)
self.output = FlavaSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(
hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class FlavaIntermediate(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate.forward
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class FlavaOutput(nn.Module):
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# Copied from transformers.models.vit.modeling_vit.ViTOutput.forward
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class FlavaLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: FlavaPossibleConfigs) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = FlavaAttention(config)
self.intermediate = FlavaIntermediate(config)
self.output = FlavaOutput(config)
# TODO: Check fp32 layer norm possiblity
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_states)
outputs = (layer_output,) + outputs
return outputs
class FlavaEncoder(nn.Module):
def __init__(self, config: FlavaConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([FlavaLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions
)
class FlavaPooler(nn.Module):
def __init__(self, config: FlavaPossibleConfigs):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
FLAVA_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`{config}`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FLAVA_INPUTS_DOCSTRING_COMMON = r"""
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`FlavaImageProcessor.__call__`] for details.
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
interpolate_pos_encoding (`bool`, *optional*):
Whether to interpolate the pre-trained position encodings.
"""
FLAVA_IMAGE_INPUTS_DOCSTRING = FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
FLAVA_TEXT_INPUTS_DOCSTRING_BASE = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
"""
FLAVA_TEXT_INPUTS_DOCSTRING = FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON
FLAVA_MULTIMODAL_INPUTS_DOCSTRING = (
r"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`):
The concatenated hidden states of unimodal encoders.
"""
+ FLAVA_INPUTS_DOCSTRING_COMMON
)
FLAVA_MODEL_INPUTS_DOCSTRING_BASE = r"""
Args:
skip_multimodal_encoder (*bool*, *optional*):
Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used.
"""
FLAVA_MODEL_INPUTS_DOCSTRING = (
FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE
+ FLAVA_INPUTS_DOCSTRING_COMMON
+ FLAVA_MODEL_INPUTS_DOCSTRING_BASE
)
FLAVA_PRETRAINING_INPUTS_DOCSTRING = (
r"""
Args:
input_ids_masked (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task
to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with
[`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
"""
+ FLAVA_TEXT_INPUTS_DOCSTRING_BASE
+ FLAVA_IMAGE_INPUTS_DOCSTRING_BASE
+ r"""
image_attention_mask (`torch.FloatTensor` of shape `({1})`, *optional*):
Mask to avoid performing attention on padding token indices specifically for images. Mask values selected
in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
skip_unmasked_multimodal_encoder (*bool*, *optional*):
Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked
multimodal embeddings or outputs as of now.
mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*):
Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction).
Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with
indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0,
..., text_config.vocab_size - 1]`.
mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*):
Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ...,
image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only
computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are
generated automatically using the image codebook assigned to the model. By default, it uses
[`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels.
itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well.
return_loss (`bool`, *optional*, default to None):
Whether to return calculated loss or not.
"""
+ FLAVA_INPUTS_DOCSTRING_COMMON
)
FLAVA_PRETRAINING_START_DOCSTRING_EXTRA = r"""
Parameters:
image_codebook ([`nn.Module`]): If passed, the image codebook will be set to this. Otherwise. it will
be initialized using the image_codebook_config defined in the config first as the first parameter.
"""
class FlavaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FlavaConfig
base_model_prefix = "flava"
supports_gradient_checkpointing = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, FlavaMaskedPredictionHead):
module.bias.data.zero_()
elif isinstance(module, FlavaImageEmbeddings):
module.cls_token.data.zero_()
module.position_embeddings.data.zero_()
if module.mask_token is not None:
module.mask_token.data.zero_()
elif isinstance(module, FlavaMultimodalModel):
if module.use_cls_token:
module.cls_token.data.zero_()
elif isinstance(module, FlavaModel):
module.logit_scale.data.fill_(self.config.logit_scale_init_value)
@add_start_docstrings(
"The bare FLAVA Image Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaImageConfig"),
)
class FlavaImageModel(FlavaPreTrainedModel):
config_class = FlavaImageConfig
# This override allows us to load FlavaImageModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.image_model"
main_input_name = "pixel_values"
def __init__(self, config: FlavaImageConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = FlavaImageEmbeddings(config)
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embeddings
def set_input_embeddings(self, value: nn.Module):
self.embeddings.patch_embeddings = value
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC,
modality="vision",
expected_output=_EXPECTED_IMAGE_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: Optional[bool] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare FLAVA Text Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaTextConfig"),
)
class FlavaTextModel(FlavaPreTrainedModel):
config_class = FlavaTextConfig
# This override allows us to load FlavaTextModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.text_model"
def __init__(self, config: FlavaTextConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = FlavaTextEmbeddings(config)
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self) -> PatchEmbeddings:
return self.embeddings.word_embeddings
def set_input_embeddings(self, value: nn.Module):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_TEXT_MODEL_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=input_ids.device)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, input_shape, input_ids.device
)
embedding_output = self.embeddings(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare FLAVA Multimodal Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaMultimodalConfig"),
)
class FlavaMultimodalModel(FlavaPreTrainedModel):
config_class = FlavaMultimodalConfig
# This override allows us to load FlavaMultimodalModel from FlavaModel/FlavaForPreTraining checkpoints.
base_model_prefix = "flava.multimodal_model"
main_input_name = "hidden_states"
def __init__(self, config: FlavaMultimodalConfig, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.use_cls_token = self.config.use_cls_token
if self.use_cls_token:
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.encoder = FlavaEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = FlavaPooler(config) if add_pooling_layer else None
self.post_init()
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(
FLAVA_MULTIMODAL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC,
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length, _ = hidden_states.size()
if self.use_cls_token:
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
hidden_states = torch.cat((cls_tokens, hidden_states), dim=1)
seq_length += 1
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, (batch_size, seq_length), hidden_states.device
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The bare FLAVA Model transformer outputting raw hidden-states without any specific head on top.",
FLAVA_START_DOCSTRING.format(config="FlavaConfig"),
)
class FlavaModel(FlavaPreTrainedModel):
config_class = FlavaConfig
def __init__(self, config: FlavaConfig):
super().__init__(config)
if not isinstance(config.text_config, FlavaTextConfig):
raise TypeError(
"config.text_config is expected to be of type FlavaTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.image_config, FlavaImageConfig):
raise TypeError(
"config.image_config is expected to be of type FlavaImageConfig but is of type"
f" {type(config.image_config)}."
)
if not isinstance(config.multimodal_config, FlavaMultimodalConfig):
raise TypeError(
"config.multimodal_config is expected to be of type FlavaMultimodalConfig but "
+ f"is of type {type(config.multimodal_config)}."
)
text_config = config.text_config
image_config = config.image_config
multimodal_config = config.multimodal_config
self.projection_dim = config.projection_dim
self.text_hidden_size = text_config.hidden_size
self.image_hidden_size = image_config.hidden_size
self.mm_hidden_size = multimodal_config.hidden_size
self.text_model = FlavaTextModel(text_config)
self.image_model = FlavaImageModel(image_config)
self.multimodal_model = FlavaMultimodalModel(multimodal_config)
self.image_projection = nn.Linear(self.image_hidden_size, self.projection_dim)
self.text_projection = nn.Linear(self.text_hidden_size, self.projection_dim)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
self.image_to_mm_projection = nn.Linear(self.image_hidden_size, self.mm_hidden_size)
self.text_to_mm_projection = nn.Linear(self.text_hidden_size, self.mm_hidden_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length"))
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`FlavaTextModel`].
Examples:
```python
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("{0}")
>>> processor = AutoProcessor.from_pretrained("{0}")
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt"
... )
>>> text_features = model.get_text_features(**inputs)
```""".format(_CHECKPOINT_FOR_DOC)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[0] # last_hidden_state
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches"))
def get_image_features(
self,
pixel_values: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: Optional[bool] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`FlavaImageModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("{0}")
>>> processor = AutoProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```""".format(_CHECKPOINT_FOR_DOC)
image_outputs = self.image_model(
pixel_values=pixel_values,
bool_masked_pos=bool_masked_pos,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = image_outputs[0] # last_hidden_state
image_features = self.image_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(
FLAVA_MODEL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len")
)
@replace_return_docstrings(output_type=FlavaModelOutput, config_class=FlavaConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_attention_mask: Optional[torch.Tensor] = None,
skip_multimodal_encoder: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: bool = True,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FlavaOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, FlavaModel
>>> model = FlavaModel.from_pretrained("facebook/flava-full")
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> image_embeddings = outputs.image_embeddings
>>> text_embeddings = outputs.text_embeddings
>>> multimodal_embeddings = outputs.multimodal_embeddings
>>> outputs.image_embeddings.shape
torch.Size([1, 197, 768])
>>> text_embeddings.shape
torch.Size([1, 7, 768])
>>> multimodal_embeddings.shape
torch.Size([1, 205, 768])
```
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
if not output_hidden_states:
raise ValueError("FLAVA model requires hidden states to work. Please set `output_hidden_states=True`")
image_embeddings = None
image_states = None
image_mm_projection = None
image_output = None
if pixel_values is not None:
image_output = self.image_model(
pixel_values=pixel_values,
bool_masked_pos=bool_masked_pos,
attention_mask=image_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeddings, image_states = image_output[0], image_output[2]
# Note that these states don't use final layernorm in the transformer model
image_mm_projection = self.image_to_mm_projection(image_states[-1])
text_embeddings = None
text_states = None
text_mm_projection = None
text_output = None
if input_ids is not None:
text_output = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeddings, text_states = text_output[0], text_output[2]
# Note that these states don't use final layernorm in the transformer model
text_mm_projection = self.text_to_mm_projection(text_states[-1])
multimodal_embeddings = None
multimodal_output = None
if image_mm_projection is not None and text_mm_projection is not None and not skip_multimodal_encoder:
if attention_mask is not None:
batch_size, seq_len, _ = image_mm_projection.shape
if self.multimodal_model.use_cls_token:
seq_len += 1
attention_mask_image = torch.ones(batch_size, seq_len, device=image_mm_projection.device)
attention_multimodal = torch.cat([attention_mask_image, attention_mask], dim=1)
else:
attention_multimodal = None
multimodal_input = torch.cat([image_mm_projection, text_mm_projection], dim=1)
multimodal_output = self.multimodal_model(
multimodal_input, attention_mask=attention_multimodal, return_dict=return_dict
)
multimodal_embeddings = multimodal_output[0]
if not return_dict:
return (
image_embeddings,
image_output,
text_embeddings,
text_output,
multimodal_embeddings,
multimodal_output,
)
return FlavaModelOutput(
image_embeddings=image_embeddings,
image_output=image_output,
text_embeddings=text_embeddings,
text_output=text_output,
multimodal_embeddings=multimodal_embeddings,
multimodal_output=multimodal_output,
)
class FlavaImageCodebookResPath(nn.Module):
def __init__(self, in_size: int, out_size: int, **kwargs):
super().__init__()
hid_size = out_size // 4
path = OrderedDict()
path["relu_1"] = nn.ReLU()
path["conv_1"] = nn.Conv2d(in_size, hid_size, kernel_size=3, padding=1)
path["relu_2"] = nn.ReLU()
path["conv_2"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
path["relu_3"] = nn.ReLU()
path["conv_3"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1)
path["relu_4"] = nn.ReLU()
path["conv_4"] = nn.Conv2d(hid_size, out_size, kernel_size=1, padding=0)
self.path = nn.Sequential(path)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.path(x)
class FlavaImageCodebookBlock(nn.Module):
def __init__(self, in_size: int, out_size: int, num_layers: int, **kwargs):
super().__init__()
self.post_gain = 1 / (num_layers**2)
if in_size != out_size:
self.id_path = nn.Conv2d(in_size, out_size, kernel_size=1, padding=0)
else:
self.id_path = nn.Identity()
self.res_path = FlavaImageCodebookResPath(in_size, out_size)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.id_path(x) + self.post_gain * self.res_path(x)
class FlavaImageCodebookLayerGroup(nn.Module):
def __init__(self, num_blocks: int, num_layers: int, in_size: int, out_size: int, use_pool: bool = True):
super().__init__()
blocks = OrderedDict()
for i in range(num_blocks):
if i == 0:
blocks[f"block_{i + 1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers)
else:
blocks[f"block_{i + 1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers)
if use_pool:
blocks["pool"] = nn.MaxPool2d(kernel_size=2)
self.group = nn.Sequential(blocks)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.group(x)
# Inspired by DALLE Encoder in https://github.com/openai/DALL-E/blob/5be4b236bc3ade6943662354117a0e83752cc322/dall_e/encoder.py#L42
@add_start_docstrings(
"""
The FLAVA's image codebook model inspired from DALL-E's original encoder. Outputs raw hidden states and can be used
to generate image tokens for an image based on DALL-E's vocab. Used to generate labels for MIM. Use
`get_codebook_indices` to get image tokens for an image.
""",
FLAVA_START_DOCSTRING.format(config="FlavaImageCodebookConfig"),
)
class FlavaImageCodebook(FlavaPreTrainedModel):
base_model_prefix = ""
config_class = FlavaImageCodebookConfig
main_input_name = "pixel_values"
supports_gradient_checkpointing = False
def __init__(
self,
config: FlavaImageCodebookConfig,
**kwargs: Any,
):
super().__init__(config)
self.config = config
self.num_groups = config.num_groups
self.input_channels = config.input_channels
self.num_blocks_per_group = config.num_blocks_per_group
self.hidden_size = config.hidden_size
self.vocab_size = config.vocab_size
num_layers = self.num_groups * self.num_blocks_per_group
output_blocks = OrderedDict()
output_blocks["relu"] = nn.ReLU()
output_blocks["conv"] = nn.Conv2d(8 * self.hidden_size, self.vocab_size, kernel_size=1, padding=0)
blocks = OrderedDict()
blocks["input"] = nn.Conv2d(self.input_channels, 1 * self.hidden_size, kernel_size=7, padding=3)
blocks["group_1"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 1 * self.hidden_size
)
blocks["group_2"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 2 * self.hidden_size
)
blocks["group_3"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 2 * self.hidden_size, 4 * self.hidden_size
)
blocks["group_4"] = FlavaImageCodebookLayerGroup(
self.num_blocks_per_group, num_layers, 4 * self.hidden_size, 8 * self.hidden_size, use_pool=False
)
blocks["output"] = nn.Sequential(output_blocks)
self.blocks = nn.Sequential(blocks)
self.post_init()
if self.config.freeze:
for param in self.parameters():
param.requires_grad = False
def get_codebook_indices(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
>>> model = FlavaImageCodebook.from_pretrained("{0}")
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
>>> outputs = model.get_codebook_indices(**inputs)
```
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
z_logits = self.blocks(pixel_values)
return torch.argmax(z_logits, axis=1)
def get_codebook_probs(self, pixel_values: torch.Tensor) -> torch.Tensor:
z_logits = self.blocks(pixel_values)
return nn.Softmax(dim=1)(z_logits)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing
`return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoImageProcessor, FlavaImageCodebook
>>> model = FlavaImageCodebook.from_pretrained("{0}")
>>> image_processor = AutoImageProcessor.from_pretrained("{0}")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt")
>>> inputs = dict(pixel_values=inputs.codebook_pixel_values)
>>> outputs = model(**inputs)
>>> print(outputs.shape)
(1, 196)
```
""".format(_CHECKPOINT_FOR_CODEBOOK_DOC)
if len(pixel_values.shape) != 4:
raise ValueError(f"input shape {pixel_values.shape} is not 4d")
if pixel_values.shape[1] != self.input_channels:
raise ValueError(f"input has {pixel_values.shape[1]} channels but model built for {self.input_channels}")
return self.blocks(pixel_values)
class FlavaPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class FlavaMaskedPredictionHead(nn.Module):
def __init__(self, config, weight=None):
super().__init__()
self.config = config
self.transform = FlavaPredictionHeadTransform(config)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
if weight is not None:
self.decoder.weight = weight
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, x):
x = self.transform(x)
x = self.decoder(x)
return x
class FlavaITMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pooler = FlavaPooler(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, x):
x = self.pooler(x)
x = self.seq_relationship(x)
return x
class FlavaGlobalContrastiveHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.global_backprop_contrastive = config.global_backprop_contrastive
def forward(self, image_embeddings, text_embeddings, logit_scale):
temperature = torch.exp(logit_scale)
if not torch.distributed.is_available() or not torch.distributed.is_initialized():
labels = torch.arange(image_embeddings.size(0), device=image_embeddings.device)
image_embeddings_all = [image_embeddings]
text_embeddings_all = [text_embeddings]
else:
local_batch_size = image_embeddings.size(0)
world_size = torch.distributed.get_world_size()
if self.global_backprop_contrastive:
# `torch.distributed.nn.functional.all_gather` does backprop on all active workers
# whereas `torch.distributed.all_gather` does only backpropagates on the current worker.
image_embeddings_all = torch.distributed.nn.functional.all_gather(image_embeddings)
text_embeddings_all = torch.distributed.nn.functional.all_gather(text_embeddings)
else:
image_embeddings_all = [torch.zeros_like(text_embeddings) for _ in range(world_size)]
text_embeddings_all = [torch.zeros_like(image_embeddings) for _ in range(world_size)]
torch.distributed.all_gather(image_embeddings_all, image_embeddings)
torch.distributed.all_gather(text_embeddings_all, text_embeddings)
labels = local_batch_size * torch.distributed.get_rank() + torch.arange(
local_batch_size, device=image_embeddings.device
)
image_embeddings_all = torch.cat(image_embeddings_all)
text_embeddings_all = torch.cat(text_embeddings_all)
logits_per_image = torch.matmul(image_embeddings, text_embeddings_all.transpose(0, 1)) * temperature
logits_per_text = torch.matmul(text_embeddings, image_embeddings_all.transpose(0, 1)) * temperature
return logits_per_image, logits_per_text, labels
@add_start_docstrings(
"""
The FLAVA model for pretraining which outputs losses, embeddings, logits and transformer outputs.
""",
FLAVA_START_DOCSTRING.format(config="FlavaConfig") + FLAVA_PRETRAINING_START_DOCSTRING_EXTRA,
)
class FlavaForPreTraining(FlavaPreTrainedModel):
# Those are linked to xxx.bias
_tied_weights_keys = [
"mmm_text_head.decoder.bias",
"mmm_image_head.decoder.bias",
"mlm_head.decoder.bias",
"mim_head.decoder.bias",
]
def __init__(self, config: FlavaConfig, image_codebook: Optional[nn.Module] = None):
super().__init__(config)
self.flava = FlavaModel(config)
self.image_codebook = image_codebook
if self.image_codebook is None and config.init_codebook:
self.image_codebook = FlavaImageCodebook(config.image_codebook_config)
# Levarage text and image encoder configs to create the masked
# head since it has the right vocab
self.mim_head = FlavaMaskedPredictionHead(config.image_config)
self.mlm_head = FlavaMaskedPredictionHead(config.text_config)
self.itm_head = FlavaITMHead(config)
self.mmm_image_head = FlavaMaskedPredictionHead(config.image_config)
self.mmm_text_head = FlavaMaskedPredictionHead(config.text_config)
self.global_contrastive_head = FlavaGlobalContrastiveHead(config)
self.image_vocab_size = config.image_config.vocab_size
self.text_vocab_size = config.text_config.vocab_size
self.mlm_weight = config.mlm_weight
self.mim_weight = config.mim_weight
self.global_contrastive_weight = config.global_contrastive_weight
self.ce_ignore_index = config.ce_ignore_index
self.itm_weight = config.itm_weight
self.mmm_image_weight = config.mmm_image_weight
self.mmm_text_weight = config.mmm_text_weight
self.skip_unmasked_multimodal_encoder = config.skip_unmasked_multimodal_encoder
self.post_init()
def _resize_to_2d(self, x: torch.Tensor):
if x.dim() > 2:
x = x.view(x.size(0), -1)
return x
@add_start_docstrings_to_model_forward(
FLAVA_PRETRAINING_INPUTS_DOCSTRING.format("batch_size, text_seq_len", "batch_size, image_num_patches")
)
@replace_return_docstrings(output_type=FlavaForPreTrainingOutput, config_class=FlavaConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
input_ids_masked: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
codebook_pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
bool_masked_pos: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_attention_mask: Optional[torch.Tensor] = None,
skip_unmasked_multimodal_encoder: Optional[bool] = None,
mlm_labels: Optional[torch.Tensor] = None,
mim_labels: Optional[torch.Tensor] = None,
itm_labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: bool = True,
return_dict: Optional[bool] = None,
return_loss: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]:
"""
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import FlavaForPreTraining, AutoProcessor
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full")
>>> processor = AutoProcessor.from_pretrained("facebook/flava-full")
>>> text = ["a photo of a cat"]
>>> inputs = processor(
... images=[image],
... text=text,
... return_masks=True,
... return_codebook_pixels=True,
... padding=True,
... max_length=77,
... return_tensors="pt",
... )
>>> output = model(**inputs)
```
Return:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return_loss = return_loss if return_loss is not None else self.config.return_loss
skip_unmasked_multimodal_encoder = (
skip_unmasked_multimodal_encoder
if skip_unmasked_multimodal_encoder is not None
else self.skip_unmasked_multimodal_encoder
)
if input_ids_masked is None and input_ids is not None:
logger.warning(
"`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to"
" `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if"
" you are doing inference on unmasked text..."
)
input_ids_masked = input_ids
flava_output = self.flava(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
image_attention_mask=image_attention_mask,
# Don't need unmasked multimodal embedding for anything so skip it
# NOTE: ITM uses masked version
skip_multimodal_encoder=skip_unmasked_multimodal_encoder,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
# Pass true to have deterministic outputs
return_dict=True,
)
flava_masked_output = self.flava(
input_ids=input_ids_masked,
pixel_values=pixel_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
image_attention_mask=image_attention_mask,
bool_masked_pos=bool_masked_pos,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
pos_mask = None
image_embeddings = flava_output.image_embeddings
text_embeddings = flava_output.text_embeddings
image_masked_embeddings = flava_masked_output.image_embeddings
text_masked_embeddings = flava_masked_output.text_embeddings
multimodal_masked_embeddings = flava_masked_output.multimodal_embeddings
total_loss = mim_loss = mlm_loss = mmm_text_loss = mmm_image_loss = gc_loss = itm_loss = None
mim_logits = mlm_logits = mmm_text_logits = mmm_image_logits = None
itm_logits = logits_per_image = logits_per_text = None
# Calculate mim_labels if necessary from the image_codebook
if image_masked_embeddings is not None or multimodal_masked_embeddings is not None:
if mim_labels is None and return_loss:
if self.image_codebook is None:
raise RuntimeError(
"`return_loss` is set to True but the image codebook is not initialized and no `mim_labels` "
" have been passed. Reinstantiate the model with `init_codebook` set to True or "
"pass in your custom `mim_labels`"
)
if codebook_pixel_values is None:
raise ValueError(
"`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. "
"Call `AutoProcessor` with `return_codebook_pixels` set to True"
)
mim_labels = self.image_codebook.get_codebook_indices(codebook_pixel_values)
# Unimodal MIM Loss
# If multimodal embeddings are present, we will calculate MMM loss
if self.mim_weight > 0 and image_masked_embeddings is not None and multimodal_masked_embeddings is None:
sequence_for_image = image_masked_embeddings
if mim_labels is not None:
mim_labels = self._resize_to_2d(mim_labels)
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
sequence_for_image = sequence_for_image[:, -mim_labels.size(1) :, :]
masked_tokens = mim_labels.ne(self.ce_ignore_index)
mim_labels_filtered = mim_labels[masked_tokens]
sequence_for_image = sequence_for_image[masked_tokens, :]
mim_logits = self.mim_head(sequence_for_image)
if return_loss:
mim_loss = nn.functional.cross_entropy(
mim_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
)
mim_loss *= self.mim_weight
else:
mim_logits = self.mim_head(sequence_for_image)
# Unimodal MLM Loss
if self.mlm_weight > 0 and text_masked_embeddings is not None and multimodal_masked_embeddings is None:
sequence_for_text = text_masked_embeddings
if mlm_labels is not None:
mlm_labels = self._resize_to_2d(mlm_labels)
sequence_for_text = sequence_for_text[:, -mlm_labels.size(1) :, :]
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
mlm_labels_filtered = mlm_labels[masked_tokens]
sequence_for_text = sequence_for_text[masked_tokens, :]
mlm_logits = self.mlm_head(sequence_for_text)
if return_loss:
mlm_loss = nn.functional.cross_entropy(
mlm_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
)
mlm_loss *= self.mlm_weight
else:
mlm_logits = self.mlm_head(sequence_for_text)
# ITM Loss
if self.itm_weight > 0 and multimodal_masked_embeddings is not None:
itm_logits = self.itm_head(multimodal_masked_embeddings)
if itm_labels is not None:
pos_pairs = itm_labels.ne(0)
pos_mask = torch.where(pos_pairs.any(), pos_pairs, pos_pairs.new([True]))
if return_loss:
itm_loss = nn.functional.cross_entropy(itm_logits, itm_labels)
itm_loss *= self.itm_weight
if multimodal_masked_embeddings is not None:
multimodal_masked_embeddings = multimodal_masked_embeddings[pos_mask]
if mlm_labels is not None:
mlm_labels = mlm_labels[pos_mask]
if mim_labels is not None:
mim_labels = mim_labels[pos_mask]
bool_masked_pos = bool_masked_pos[pos_mask]
# MMM Image Loss
if multimodal_masked_embeddings is not None and self.mmm_image_weight > 0:
sequence_for_image = multimodal_masked_embeddings
end_index = image_masked_embeddings.size(1) - 1
sequence_for_image = sequence_for_image[:, 2 : 2 + end_index, :]
if mim_labels is not None:
mim_labels = self._resize_to_2d(mim_labels)
bool_masked_pos = self._resize_to_2d(bool_masked_pos)
mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index
masked_tokens = mim_labels.ne(self.ce_ignore_index)
mim_labels_filtered = mim_labels[masked_tokens]
sequence_for_image = sequence_for_image[masked_tokens, :]
mmm_image_logits = self.mmm_image_head(sequence_for_image)
if return_loss:
mmm_image_loss = nn.functional.cross_entropy(
mmm_image_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1)
)
mmm_image_loss *= self.mmm_image_weight
else:
mmm_image_logits = self.mmm_image_head(sequence_for_image)
# MMM Text Loss
if multimodal_masked_embeddings is not None and self.mmm_text_weight > 0:
sequence_for_text = multimodal_masked_embeddings
sequence_for_text = sequence_for_text[:, -text_masked_embeddings.size(1) :, :]
if mlm_labels is not None:
mlm_labels = self._resize_to_2d(mlm_labels)
masked_tokens = mlm_labels.ne(self.ce_ignore_index)
mlm_labels_filtered = mlm_labels[masked_tokens]
sequence_for_text = sequence_for_text[masked_tokens, :]
mmm_text_logits = self.mmm_text_head(sequence_for_text)
if return_loss:
mmm_text_loss = nn.functional.cross_entropy(
mmm_text_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1)
)
mmm_text_loss *= self.mmm_text_weight
else:
mmm_text_logits = self.mmm_text_head(sequence_for_text)
# Global Contrastive Loss
if image_embeddings is not None and text_embeddings is not None and self.global_contrastive_weight > 0:
text_embedding = self.flava.text_projection(text_embeddings[:, 0, :])
text_embedding = nn.functional.normalize(text_embedding, dim=-1)
image_embedding = self.flava.image_projection(image_embeddings[:, 0, :])
image_embedding = nn.functional.normalize(image_embedding, dim=-1)
self.flava.logit_scale.data.clamp_(LOGIT_SCALE_CLAMP_MIN, LOGIT_SCALE_CLAMP_MAX)
logits_per_image, logits_per_text, gc_labels = self.global_contrastive_head(
image_embedding, text_embedding, self.flava.logit_scale
)
# Apply ITM negative mask if any
if pos_mask is not None:
logits_per_image = logits_per_image[pos_mask]
logits_per_text = logits_per_text[pos_mask]
gc_labels = gc_labels[pos_mask]
if return_loss:
gc_loss_image = nn.functional.cross_entropy(logits_per_image, gc_labels)
gc_loss_text = nn.functional.cross_entropy(logits_per_text, gc_labels)
gc_loss = (gc_loss_image + gc_loss_text) / 2
gc_loss *= self.global_contrastive_weight
flava_losses = FlavaLosses(
mim=mim_loss,
mlm=mlm_loss,
itm=itm_loss,
global_contrastive=gc_loss,
mmm_image=mmm_image_loss,
mmm_text=mmm_text_loss,
)
if return_loss and not flava_losses.all_none():
total_loss = sum(loss if loss is not None else 0 for loss in flava_losses.values())
if not return_dict:
output = (
image_embeddings,
flava_output.image_output.to_tuple() if flava_output.image_output is not None else None,
text_embeddings,
flava_output.text_output.to_tuple() if flava_output.text_output is not None else None,
flava_output.multimodal_embeddings,
flava_output.multimodal_output.to_tuple() if flava_output.multimodal_output is not None else None,
image_masked_embeddings,
flava_masked_output.image_output.to_tuple() if flava_masked_output.image_output is not None else None,
text_masked_embeddings,
flava_masked_output.text_output.to_tuple() if flava_masked_output.text_output is not None else None,
multimodal_masked_embeddings,
flava_masked_output.multimodal_output.to_tuple()
if flava_masked_output.multimodal_output is not None
else None,
mim_logits,
mlm_logits,
itm_logits,
logits_per_image,
logits_per_image,
mmm_image_logits,
mmm_text_logits,
)
if return_loss and not flava_losses.all_none():
output = (
total_loss,
flava_losses,
) + output
# Filter None as transformer by default won't handle it
return tuple(x for x in output if x is None)
return FlavaForPreTrainingOutput(
loss=total_loss,
loss_info=flava_losses,
image_embeddings=image_embeddings,
image_output=flava_output.image_output,
text_embeddings=text_embeddings,
text_output=flava_output.text_output,
multimodal_embeddings=flava_output.multimodal_embeddings,
multimodal_output=flava_output.multimodal_output,
image_masked_embeddings=image_masked_embeddings,
image_masked_output=flava_masked_output.image_output,
text_masked_embeddings=text_masked_embeddings,
text_masked_output=flava_masked_output.text_output,
multimodal_masked_embeddings=multimodal_masked_embeddings,
multimodal_masked_output=flava_masked_output.multimodal_output,
mim_logits=mim_logits,
mlm_logits=mlm_logits,
itm_logits=itm_logits,
contrastive_logits_per_image=logits_per_image,
contrastive_logits_per_text=logits_per_text,
mmm_image_logits=mmm_image_logits,
mmm_text_logits=mmm_text_logits,
)
__all__ = [
"FlavaForPreTraining",
"FlavaImageCodebook",
"FlavaImageModel",
"FlavaModel",
"FlavaMultimodalModel",
"FlavaPreTrainedModel",
"FlavaTextModel",
]
```
|
=====================================================================================================================================
SOURCE CODE FILE: processing_flava.py
LINES: 1
SIZE: 6.70 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\flava\processing_flava.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for FLAVA
"""
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class FlavaProcessor(ProcessorMixin):
r"""
Constructs a FLAVA processor which wraps a FLAVA image processor and a FLAVA tokenizer into a single processor.
[`FlavaProcessor`] offers all the functionalities of [`FlavaImageProcessor`] and [`BertTokenizerFast`]. See the
[`~FlavaProcessor.__call__`] and [`~FlavaProcessor.decode`] for more information.
Args:
image_processor ([`FlavaImageProcessor`], *optional*): The image processor is a required input.
tokenizer ([`BertTokenizerFast`], *optional*): The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "FlavaImageProcessor"
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_image_mask: Optional[bool] = None,
return_codebook_pixels: Optional[bool] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
):
"""
This method uses [`FlavaImageProcessor.__call__`] method to prepare image(s) for the model, and
[`BertTokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(
text=text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
if images is not None:
image_features = self.image_processor(
images,
return_image_mask=return_image_mask,
return_codebook_pixels=return_codebook_pixels,
return_tensors=return_tensors,
**kwargs,
)
if text is not None and images is not None:
encoding.update(image_features)
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
__all__ = ["FlavaProcessor"]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.04 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fnet\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_fnet import *
from .modeling_fnet import *
from .tokenization_fnet import *
from .tokenization_fnet_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_fnet.py
LINES: 1
SIZE: 5.44 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fnet\configuration_fnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FNet model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class FNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FNetModel`]. It is used to instantiate an FNet
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the FNet
[google/fnet-base](https://huggingface.co/google/fnet-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the FNet model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FNetModel`] or [`TFFNetModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 4):
The vocabulary size of the `token_type_ids` passed when calling [`FNetModel`] or [`TFFNetModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_tpu_fourier_optimizations (`bool`, *optional*, defaults to `False`):
Determines whether to use TPU optimized FFTs. If `True`, the model will favor axis-wise FFTs transforms.
Set to `False` for GPU/CPU hardware, in which case n-dimensional FFTs are used.
tpu_short_seq_length (`int`, *optional*, defaults to 512):
The sequence length that is expected by the model when using TPUs. This will be used to initialize the DFT
matrix only when *use_tpu_fourier_optimizations* is set to `True` and the input sequence is shorter than or
equal to 4096 tokens.
Example:
```python
>>> from transformers import FNetConfig, FNetModel
>>> # Initializing a FNet fnet-base style configuration
>>> configuration = FNetConfig()
>>> # Initializing a model (with random weights) from the fnet-base style configuration
>>> model = FNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "fnet"
def __init__(
self,
vocab_size=32000,
hidden_size=768,
num_hidden_layers=12,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=4,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_tpu_fourier_optimizations=False,
tpu_short_seq_length=512,
pad_token_id=3,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.use_tpu_fourier_optimizations = use_tpu_fourier_optimizations
self.tpu_short_seq_length = tpu_short_seq_length
__all__ = ["FNetConfig"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_fnet.py
LINES: 1
SIZE: 48.42 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fnet\modeling_fnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch FNet model."""
import warnings
from dataclasses import dataclass
from functools import partial
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...utils import is_scipy_available
if is_scipy_available():
from scipy import linalg
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
MaskedLMOutput,
ModelOutput,
MultipleChoiceModelOutput,
NextSentencePredictorOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_fnet import FNetConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/fnet-base"
_CONFIG_FOR_DOC = "FNetConfig"
# Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py
def _two_dim_matmul(x, matrix_dim_one, matrix_dim_two):
"""Applies 2D matrix multiplication to 3D input arrays."""
seq_length = x.shape[1]
matrix_dim_one = matrix_dim_one[:seq_length, :seq_length]
x = x.type(torch.complex64)
return torch.einsum("bij,jk,ni->bnk", x, matrix_dim_two, matrix_dim_one)
# # Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py
def two_dim_matmul(x, matrix_dim_one, matrix_dim_two):
return _two_dim_matmul(x, matrix_dim_one, matrix_dim_two)
# Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py
def fftn(x):
"""
Applies n-dimensional Fast Fourier Transform (FFT) to input array.
Args:
x: Input n-dimensional array.
Returns:
n-dimensional Fourier transform of input n-dimensional array.
"""
out = x
for axis in reversed(range(x.ndim)[1:]): # We don't need to apply FFT to last axis
out = torch.fft.fft(out, axis=axis)
return out
class FNetEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# NOTE: This is the project layer and will be needed. The original code allows for different embedding and different model dimensions.
self.projection = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.projection(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class FNetBasicFourierTransform(nn.Module):
def __init__(self, config):
super().__init__()
self._init_fourier_transform(config)
def _init_fourier_transform(self, config):
if not config.use_tpu_fourier_optimizations:
self.fourier_transform = partial(torch.fft.fftn, dim=(1, 2))
elif config.max_position_embeddings <= 4096:
if is_scipy_available():
self.register_buffer(
"dft_mat_hidden", torch.tensor(linalg.dft(config.hidden_size), dtype=torch.complex64)
)
self.register_buffer(
"dft_mat_seq", torch.tensor(linalg.dft(config.tpu_short_seq_length), dtype=torch.complex64)
)
self.fourier_transform = partial(
two_dim_matmul, matrix_dim_one=self.dft_mat_seq, matrix_dim_two=self.dft_mat_hidden
)
else:
logging.warning(
"SciPy is needed for DFT matrix calculation and is not found. Using TPU optimized fast fourier"
" transform instead."
)
self.fourier_transform = fftn
else:
self.fourier_transform = fftn
def forward(self, hidden_states):
# NOTE: We do not use torch.vmap as it is not integrated into PyTorch stable versions.
# Interested users can modify the code to use vmap from the nightly versions, getting the vmap from here:
# https://pytorch.org/docs/master/generated/torch.vmap.html. Note that fourier transform methods will need
# change accordingly.
outputs = self.fourier_transform(hidden_states).real
return (outputs,)
class FNetBasicOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, input_tensor):
hidden_states = self.LayerNorm(input_tensor + hidden_states)
return hidden_states
class FNetFourierTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.self = FNetBasicFourierTransform(config)
self.output = FNetBasicOutput(config)
def forward(self, hidden_states):
self_outputs = self.self(hidden_states)
fourier_output = self.output(self_outputs[0], hidden_states)
outputs = (fourier_output,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->FNet
class FNetIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->FNet
class FNetOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class FNetLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1 # The dimension which has the sequence length
self.fourier = FNetFourierTransform(config)
self.intermediate = FNetIntermediate(config)
self.output = FNetOutput(config)
def forward(self, hidden_states):
self_fourier_outputs = self.fourier(hidden_states)
fourier_output = self_fourier_outputs[0]
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, fourier_output
)
outputs = (layer_output,)
return outputs
def feed_forward_chunk(self, fourier_output):
intermediate_output = self.intermediate(fourier_output)
layer_output = self.output(intermediate_output, fourier_output)
return layer_output
class FNetEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([FNetLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(self, hidden_states, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(layer_module.__call__, hidden_states)
else:
layer_outputs = layer_module(hidden_states)
hidden_states = layer_outputs[0]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->FNet
class FNetPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->FNet
class FNetPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class FNetLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = FNetPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
def _tie_weights(self) -> None:
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
class FNetOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = FNetLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->FNet
class FNetOnlyNSPHead(nn.Module):
def __init__(self, config):
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->FNet
class FNetPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = FNetLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class FNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FNetConfig
base_model_prefix = "fnet"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
# NOTE: Original code uses same initialization as weights for biases as well.
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@dataclass
class FNetForPreTrainingOutput(ModelOutput):
"""
Output type of [`FNetForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None
prediction_logits: Optional[torch.FloatTensor] = None
seq_relationship_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
FNET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`FNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FNET_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare FNet Model transformer outputting raw hidden-states without any specific head on top.",
FNET_START_DOCSTRING,
)
class FNetModel(FNetPreTrainedModel):
"""
The model can behave as an encoder, following the architecture described in [FNet: Mixing Tokens with Fourier
Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = FNetEmbeddings(config)
self.encoder = FNetEncoder(config)
self.pooler = FNetPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
batch_size, seq_length = input_shape
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if (
self.config.use_tpu_fourier_optimizations
and seq_length <= 4096
and self.config.tpu_short_seq_length != seq_length
):
raise ValueError(
"The `tpu_short_seq_length` in FNetConfig should be set equal to the sequence length being passed to"
" the model when using TPU optimizations."
)
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooler_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooler_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooler_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
FNet Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
sentence prediction (classification)` head.
""",
FNET_START_DOCSTRING,
)
class FNetForPreTraining(FNetPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
self.fnet = FNetModel(config)
self.cls = FNetPreTrainingHeads(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=FNetForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
next_sentence_label: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FNetForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see `input_ids` docstring) Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FNetForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForPreTraining.from_pretrained("google/fnet-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
total_loss = None
if labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
if not return_dict:
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return FNetForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
)
@add_start_docstrings("""FNet Model with a `language modeling` head on top.""", FNET_START_DOCSTRING)
class FNetForMaskedLM(FNetPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
self.fnet = FNetModel(config)
self.cls = FNetOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""FNet Model with a `next sentence prediction (classification)` head on top.""",
FNET_START_DOCSTRING,
)
class FNetForNextSentencePrediction(FNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.fnet = FNetModel(config)
self.cls = FNetOnlyNSPHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, NextSentencePredictorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see `input_ids` docstring). Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FNetForNextSentencePrediction
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForNextSentencePrediction.from_pretrained("google/fnet-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
```"""
if "next_sentence_label" in kwargs:
warnings.warn(
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
" `labels` instead.",
FutureWarning,
)
labels = kwargs.pop("next_sentence_label")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
seq_relationship_scores = self.cls(pooled_output)
next_sentence_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
if not return_dict:
output = (seq_relationship_scores,) + outputs[2:]
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
return NextSentencePredictorOutput(
loss=next_sentence_loss,
logits=seq_relationship_scores,
hidden_states=outputs.hidden_states,
)
@add_start_docstrings(
"""
FNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
FNET_START_DOCSTRING,
)
class FNetForSequenceClassification(FNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.fnet = FNetModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""
FNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
FNET_START_DOCSTRING,
)
class FNetForMultipleChoice(FNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.fnet = FNetModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""
FNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
FNET_START_DOCSTRING,
)
class FNetForTokenClassification(FNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.fnet = FNetModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""
FNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FNET_START_DOCSTRING,
)
class FNetForQuestionAnswering(FNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.fnet = FNetModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states
)
__all__ = [
"FNetForMaskedLM",
"FNetForMultipleChoice",
"FNetForNextSentencePrediction",
"FNetForPreTraining",
"FNetForQuestionAnswering",
"FNetForSequenceClassification",
"FNetForTokenClassification",
"FNetLayer",
"FNetModel",
"FNetPreTrainedModel",
]
```
|
=====================================================================================================================================
SOURCE CODE FILE: tokenization_fnet.py
LINES: 1
SIZE: 14.25 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fnet\tokenization_fnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Google Research, Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for FNet model."""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
SPIECE_UNDERLINE = "▁"
class FNetTokenizer(PreTrainedTokenizer):
"""
Construct an FNet tokenizer. Adapted from [`AlbertTokenizer`]. Based on
[SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`]
which contains most of the main methods. Users should refer to this superclass for more information regarding those
methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
remove_space (`bool`, *optional*, defaults to `True`):
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (`bool`, *optional*, defaults to `True`):
Whether or not to keep accents when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "token_type_ids"]
def __init__(
self,
vocab_file,
do_lower_case=False,
remove_space=True,
keep_accents=True,
unk_token="<unk>",
sep_token="[SEP]",
pad_token="<pad>",
cls_token="[CLS]",
mask_token="[MASK]",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
mask_token = AddedToken(mask_token, special=True) if isinstance(mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
super().__init__(
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
@property
def vocab_size(self):
return len(self.sp_model)
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def preprocess_text(self, inputs):
if self.remove_space:
outputs = " ".join(inputs.strip().split())
else:
outputs = inputs
outputs = outputs.replace("``", '"').replace("''", '"')
if not self.keep_accents:
outputs = unicodedata.normalize("NFKD", outputs)
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def _tokenize(self, text: str) -> List[str]:
"""Tokenize a string."""
text = self.preprocess_text(text)
pieces = self.sp_model.encode(text, out_type=str)
new_pieces = []
for piece in pieces:
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
cur_pieces = cur_pieces[1:]
else:
cur_pieces[0] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(cur_pieces)
else:
new_pieces.append(piece)
return new_pieces
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_model.IdToPiece(index)
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: Optional[bool] = None,
spaces_between_special_tokens: bool = False,
**kwargs,
) -> str:
text = super()._decode(
token_ids=token_ids,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
spaces_between_special_tokens=spaces_between_special_tokens,
**kwargs,
)
# Mimic the behavior of the Rust tokenizer:
# No space after <unk>
if not spaces_between_special_tokens:
text = text.replace("<unk> ", "<unk>")
return text
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An FNet sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An FNet sequence
pair mask has the following format: :
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["FNetTokenizer"]
```
|
==========================================================================================================================================
SOURCE CODE FILE: tokenization_fnet_fast.py
LINES: 1
SIZE: 7.91 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fnet\tokenization_fnet_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for FNet model."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
FNetTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
SPIECE_UNDERLINE = "▁"
class FNetTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" FNetTokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
[`AlbertTokenizerFast`]. Based on
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This
tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
remove_space (`bool`, *optional*, defaults to `True`):
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (`bool`, *optional*, defaults to `True`):
Whether or not to keep accents when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "token_type_ids"]
slow_tokenizer_class = FNetTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=False,
remove_space=True,
keep_accents=True,
unk_token="<unk>",
sep_token="[SEP]",
pad_token="<pad>",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs,
):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An FNet sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An FNet
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
__all__ = ["FNetTokenizerFast"]
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\focalnet\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_focalnet import *
from .modeling_focalnet import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==============================================================================================================================================
SOURCE CODE FILE: configuration_focalnet.py
LINES: 1
SIZE: 7.87 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\focalnet\configuration_focalnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FocalNet model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
class FocalNetConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FocalNetModel`]. It is used to instantiate a
FocalNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the FocalNet
[microsoft/focalnet-tiny](https://huggingface.co/microsoft/focalnet-tiny) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 4):
The size (resolution) of each patch in the embeddings layer.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embed_dim (`int`, *optional*, defaults to 96):
Dimensionality of patch embedding.
use_conv_embed (`bool`, *optional*, defaults to `False`):
Whether to use convolutional embedding. The authors noted that using convolutional embedding usually
improve the performance, but it's not used by default.
hidden_sizes (`List[int]`, *optional*, defaults to `[192, 384, 768, 768]`):
Dimensionality (hidden size) at each stage.
depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
Depth (number of layers) of each stage in the encoder.
focal_levels (`list(int)`, *optional*, defaults to `[2, 2, 2, 2]`):
Number of focal levels in each layer of the respective stages in the encoder.
focal_windows (`list(int)`, *optional*, defaults to `[3, 3, 3, 3]`):
Focal window size in each layer of the respective stages in the encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
mlp_ratio (`float`, *optional*, defaults to 4.0):
Ratio of MLP hidden dimensionality to embedding dimensionality.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings and encoder.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate.
use_layerscale (`bool`, *optional*, defaults to `False`):
Whether to use layer scale in the encoder.
layerscale_value (`float`, *optional*, defaults to 0.0001):
The initial value of the layer scale.
use_post_layernorm (`bool`, *optional*, defaults to `False`):
Whether to use post layer normalization in the encoder.
use_post_layernorm_in_modulation (`bool`, *optional*, defaults to `False`):
Whether to use post layer normalization in the modulation layer.
normalize_modulator (`bool`, *optional*, defaults to `False`):
Whether to normalize the modulator.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
encoder_stride (`int`, *optional*, defaults to 32):
Factor to increase the spatial resolution by in the decoder head for masked image modeling.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import FocalNetConfig, FocalNetModel
>>> # Initializing a FocalNet microsoft/focalnet-tiny style configuration
>>> configuration = FocalNetConfig()
>>> # Initializing a model (with random weights) from the microsoft/focalnet-tiny style configuration
>>> model = FocalNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "focalnet"
def __init__(
self,
image_size=224,
patch_size=4,
num_channels=3,
embed_dim=96,
use_conv_embed=False,
hidden_sizes=[192, 384, 768, 768],
depths=[2, 2, 6, 2],
focal_levels=[2, 2, 2, 2],
focal_windows=[3, 3, 3, 3],
hidden_act="gelu",
mlp_ratio=4.0,
hidden_dropout_prob=0.0,
drop_path_rate=0.1,
use_layerscale=False,
layerscale_value=1e-4,
use_post_layernorm=False,
use_post_layernorm_in_modulation=False,
normalize_modulator=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
encoder_stride=32,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.use_conv_embed = use_conv_embed
self.hidden_sizes = hidden_sizes
self.depths = depths
self.focal_levels = focal_levels
self.focal_windows = focal_windows
self.hidden_act = hidden_act
self.mlp_ratio = mlp_ratio
self.hidden_dropout_prob = hidden_dropout_prob
self.drop_path_rate = drop_path_rate
self.use_layerscale = use_layerscale
self.layerscale_value = layerscale_value
self.use_post_layernorm = use_post_layernorm
self.use_post_layernorm_in_modulation = use_post_layernorm_in_modulation
self.normalize_modulator = normalize_modulator
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.encoder_stride = encoder_stride
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
__all__ = ["FocalNetConfig"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: modeling_focalnet.py
LINES: 1
SIZE: 42.56 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\focalnet\modeling_focalnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch FocalNet model."""
import collections.abc
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_focalnet import FocalNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "FocalNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/focalnet-tiny"
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/focalnet-tiny"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
@dataclass
class FocalNetEncoderOutput(ModelOutput):
"""
FocalNet encoder's outputs, with potential hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class FocalNetModelOutput(ModelOutput):
"""
FocalNet model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class FocalNetMaskedImageModelingOutput(ModelOutput):
"""
FocalNet masked image model outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
Masked image modeling (MLM) loss.
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Reconstructed pixel values.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
reconstruction: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class FocalNetImageClassifierOutput(ModelOutput):
"""
FocalNet outputs for image classification.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class FocalNetEmbeddings(nn.Module):
"""
Construct the patch embeddings and layernorm. Optionally, also the mask token.
"""
def __init__(self, config, use_mask_token=False):
super().__init__()
self.patch_embeddings = FocalNetPatchEmbeddings(
config=config,
image_size=config.image_size,
patch_size=config.patch_size,
num_channels=config.num_channels,
embed_dim=config.embed_dim,
use_conv_embed=config.use_conv_embed,
is_stem=True,
)
self.patch_grid = self.patch_embeddings.grid_size
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
self.norm = nn.LayerNorm(config.embed_dim, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None
) -> Tuple[torch.Tensor]:
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
embeddings = self.norm(embeddings)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
embeddings = self.dropout(embeddings)
return embeddings, output_dimensions
class FocalNetPatchEmbeddings(nn.Module):
def __init__(
self,
config,
image_size,
patch_size,
num_channels,
embed_dim,
add_norm=False,
use_conv_embed=False,
is_stem=False,
):
super().__init__()
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
if use_conv_embed:
# if we choose to use conv embedding, then we treat the stem and non-stem differently
if is_stem:
kernel_size = 7
padding = 2
stride = 4
else:
kernel_size = 3
padding = 1
stride = 2
self.projection = nn.Conv2d(
num_channels, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
)
else:
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
if add_norm:
self.norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
else:
self.norm = None
def maybe_pad(self, pixel_values, height, width):
if width % self.patch_size[1] != 0:
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
pixel_values = nn.functional.pad(pixel_values, pad_values)
if height % self.patch_size[0] != 0:
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
pixel_values = nn.functional.pad(pixel_values, pad_values)
return pixel_values
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
_, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
# pad the input to be divisible by self.patch_size, if needed
pixel_values = self.maybe_pad(pixel_values, height, width)
embeddings = self.projection(pixel_values)
_, _, height, width = embeddings.shape
output_dimensions = (height, width)
embeddings = embeddings.flatten(2).transpose(1, 2)
if self.norm is not None:
embeddings = self.norm(embeddings)
return embeddings, output_dimensions
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->FocalNet
class FocalNetDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class FocalNetModulation(nn.Module):
def __init__(self, config, index, dim, focal_factor=2, bias=True, projection_dropout=0.0):
super().__init__()
self.dim = dim
self.focal_window = config.focal_windows[index]
self.focal_level = config.focal_levels[index]
self.focal_factor = focal_factor
self.use_post_layernorm_in_modulation = config.use_post_layernorm_in_modulation
self.normalize_modulator = config.normalize_modulator
self.projection_in = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=bias)
self.projection_context = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)
self.activation = nn.GELU()
self.projection_out = nn.Linear(dim, dim)
self.projection_dropout = nn.Dropout(projection_dropout)
self.focal_layers = nn.ModuleList()
self.kernel_sizes = []
for k in range(self.focal_level):
kernel_size = self.focal_factor * k + self.focal_window
self.focal_layers.append(
nn.Sequential(
nn.Conv2d(
dim, dim, kernel_size=kernel_size, stride=1, groups=dim, padding=kernel_size // 2, bias=False
),
nn.GELU(),
)
)
self.kernel_sizes.append(kernel_size)
if self.use_post_layernorm_in_modulation:
self.layernorm = nn.LayerNorm(dim, eps=config.layer_norm_eps)
def forward(self, hidden_state):
"""
Args:
hidden_state:
Input features with shape of (batch_size, height, width, num_channels)
"""
num_channels = hidden_state.shape[-1]
# pre linear projection
x = self.projection_in(hidden_state).permute(0, 3, 1, 2).contiguous()
q, ctx, gates = torch.split(x, (num_channels, num_channels, self.focal_level + 1), 1)
# context aggreation
ctx_all = 0
for level in range(self.focal_level):
ctx = self.focal_layers[level](ctx)
ctx_all = ctx_all + ctx * gates[:, level : level + 1]
ctx_global = self.activation(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
ctx_all = ctx_all + ctx_global * gates[:, self.focal_level :]
# normalize context
if self.normalize_modulator:
ctx_all = ctx_all / (self.focal_level + 1)
# focal modulation
modulator = self.projection_context(ctx_all)
x_out = q * modulator
x_out = x_out.permute(0, 2, 3, 1).contiguous()
if self.use_post_layernorm_in_modulation:
x_out = self.layernorm(x_out)
# post linear porjection
x_out = self.projection_out(x_out)
x_out = self.projection_dropout(x_out)
return x_out
class FocalNetMlp(nn.Module):
def __init__(self, config, in_features, hidden_features=None, out_features=None, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.activation = ACT2FN[config.hidden_act]
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, hidden_state):
hidden_state = self.fc1(hidden_state)
hidden_state = self.activation(hidden_state)
hidden_state = self.drop(hidden_state)
hidden_state = self.fc2(hidden_state)
hidden_state = self.drop(hidden_state)
return hidden_state
class FocalNetLayer(nn.Module):
r"""Focal Modulation Network layer (block).
Args:
config (`FocalNetConfig`):
Model config.
index (`int`):
Layer index.
dim (`int`):
Number of input channels.
input_resolution (`Tuple[int]`):
Input resulotion.
drop_path (`float`, *optional*, defaults to 0.0):
Stochastic depth rate.
"""
def __init__(self, config, index, dim, input_resolution, drop_path=0.0):
super().__init__()
self.config = config
# layer-specific attributes
self.dim = dim
self.input_resolution = input_resolution
# general attributes
self.drop = config.hidden_dropout_prob
self.use_post_layernorm = config.use_post_layernorm
self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.modulation = FocalNetModulation(
config=config,
index=index,
dim=dim,
projection_dropout=self.drop,
)
self.drop_path = FocalNetDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
mlp_hidden_dim = int(dim * config.mlp_ratio)
self.mlp = FocalNetMlp(config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=self.drop)
self.gamma_1 = 1.0
self.gamma_2 = 1.0
if config.use_layerscale:
self.gamma_1 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True)
self.gamma_2 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True)
def forward(self, hidden_state, input_dimensions):
height, width = input_dimensions
batch_size, _, num_channels = hidden_state.shape
shortcut = hidden_state
# Focal Modulation
hidden_state = hidden_state if self.use_post_layernorm else self.norm1(hidden_state)
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
hidden_state = self.modulation(hidden_state).view(batch_size, height * width, num_channels)
hidden_state = hidden_state if not self.use_post_layernorm else self.norm1(hidden_state)
# FFN
hidden_state = shortcut + self.drop_path(self.gamma_1 * hidden_state)
hidden_state = hidden_state + self.drop_path(
self.gamma_2
* (self.norm2(self.mlp(hidden_state)) if self.use_post_layernorm else self.mlp(self.norm2(hidden_state)))
)
return hidden_state
class FocalNetStage(nn.Module):
def __init__(self, config, index, input_resolution):
super().__init__()
self.config = config
self.num_stages = len(config.depths)
embed_dim = [config.embed_dim * (2**i) for i in range(self.num_stages)]
dim = embed_dim[index]
out_dim = embed_dim[index + 1] if (index < self.num_stages - 1) else None
downsample = FocalNetPatchEmbeddings if (index < self.num_stages - 1) else None
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
drop_path = dpr[sum(config.depths[:index]) : sum(config.depths[: index + 1])]
self.layers = nn.ModuleList(
[
FocalNetLayer(
config=config,
index=index,
dim=dim,
input_resolution=input_resolution,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
)
for i in range(config.depths[index])
]
)
if downsample is not None:
self.downsample = downsample(
config=config,
image_size=input_resolution,
patch_size=2,
num_channels=dim,
embed_dim=out_dim,
add_norm=True,
use_conv_embed=config.use_conv_embed,
is_stem=False,
)
else:
self.downsample = None
self.pointing = False
def forward(self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int]) -> Tuple[torch.Tensor]:
height, width = input_dimensions
for layer_module in self.layers:
hidden_states = layer_module(hidden_states, input_dimensions)
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
height, width = input_dimensions
hidden_states = hidden_states.transpose(1, 2).reshape(
hidden_states_before_downsampling.shape[0], -1, height, width
)
hidden_states, output_dimensions = self.downsample(hidden_states)
else:
output_dimensions = (height, width, height, width)
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
return stage_outputs
class FocalNetEncoder(nn.Module):
def __init__(self, config, grid_size):
super().__init__()
self.num_stages = len(config.depths)
self.config = config
self.stages = nn.ModuleList(
[
FocalNetStage(
config=config,
index=i_layer,
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
)
for i_layer in range(self.num_stages)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
output_hidden_states: Optional[bool] = False,
output_hidden_states_before_downsampling: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, FocalNetEncoderOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
if output_hidden_states:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, stage_module in enumerate(self.stages):
if self.gradient_checkpointing and self.training:
stage_outputs = self._gradient_checkpointing_func(
stage_module.__call__,
hidden_states,
input_dimensions,
)
else:
stage_outputs = stage_module(hidden_states, input_dimensions)
hidden_states = stage_outputs[0]
hidden_states_before_downsampling = stage_outputs[1]
output_dimensions = stage_outputs[2]
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
if output_hidden_states and output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
# rearrange b (h w) c -> b c h w
# here we use the original (not downsampled) height and width
reshaped_hidden_state = hidden_states_before_downsampling.view(
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return FocalNetEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
reshaped_hidden_states=all_reshaped_hidden_states,
)
class FocalNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FocalNetConfig
base_model_prefix = "focalnet"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["FocalNetStage"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, FocalNetEmbeddings):
if module.mask_token is not None:
module.mask_token.data.zero_()
elif isinstance(module, FocalNetLayer):
if self.config.use_layerscale:
module.gamma_1.data.fill_(self.config.layerscale_value)
module.gamma_2.data.fill_(self.config.layerscale_value)
FOCALNET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`FocalNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FOCALNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`AutoImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare FocalNet Model outputting raw hidden-states without any specific head on top.",
FOCALNET_START_DOCSTRING,
)
class FocalNetModel(FocalNetPreTrainedModel):
def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
super().__init__(config)
self.config = config
self.num_stages = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_stages - 1))
self.embeddings = FocalNetEmbeddings(config, use_mask_token=use_mask_token)
self.encoder = FocalNetEncoder(config, self.embeddings.patch_grid)
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=FocalNetModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FocalNetModelOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
input_dimensions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output.transpose(1, 2))
pooled_output = torch.flatten(pooled_output, 1)
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return FocalNetModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""FocalNet Model with a decoder on top for masked image modeling.
This follows the same implementation as in [SimMIM](https://arxiv.org/abs/2111.09886).
<Tip>
Note that we provide a script to pre-train this model on custom data in our [examples
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
</Tip>
""",
FOCALNET_START_DOCSTRING,
)
class FocalNetForMaskedImageModeling(FocalNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.focalnet = FocalNetModel(config, add_pooling_layer=False, use_mask_token=True)
self.num_stages = len(config.depths)
num_features = int(config.embed_dim * 2 ** (self.num_stages - 1))
self.decoder = nn.Sequential(
nn.Conv2d(
in_channels=num_features, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1
),
nn.PixelShuffle(config.encoder_stride),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FocalNetMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FocalNetMaskedImageModelingOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, FocalNetConfig, FocalNetForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/focalnet-base-simmim-window6-192")
>>> config = FocalNetConfig()
>>> model = FocalNetForMaskedImageModeling(config)
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.logits
>>> list(reconstructed_pixel_values.shape)
[1, 3, 192, 192]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.focalnet(
pixel_values,
bool_masked_pos=bool_masked_pos,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# Reshape to (batch_size, num_channels, height, width)
sequence_output = sequence_output.transpose(1, 2)
batch_size, num_channels, sequence_length = sequence_output.shape
height = width = math.floor(sequence_length**0.5)
sequence_output = sequence_output.reshape(batch_size, num_channels, height, width)
# Reconstruct pixel values
reconstructed_pixel_values = self.decoder(sequence_output)
masked_im_loss = None
if bool_masked_pos is not None:
size = self.config.image_size // self.config.patch_size
bool_masked_pos = bool_masked_pos.reshape(-1, size, size)
mask = (
bool_masked_pos.repeat_interleave(self.config.patch_size, 1)
.repeat_interleave(self.config.patch_size, 2)
.unsqueeze(1)
.contiguous()
)
reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none")
masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels
if not return_dict:
output = (reconstructed_pixel_values,) + outputs[2:]
return ((masked_im_loss,) + output) if masked_im_loss is not None else output
return FocalNetMaskedImageModelingOutput(
loss=masked_im_loss,
reconstruction=reconstructed_pixel_values,
hidden_states=outputs.hidden_states,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""
FocalNet Model with an image classification head on top (a linear layer on top of the pooled output) e.g. for
ImageNet.
""",
FOCALNET_START_DOCSTRING,
)
class FocalNetForImageClassification(FocalNetPreTrainedModel):
# Copied from transformers.models.swin.modeling_swin.SwinForImageClassification.__init__ with Swin->FocalNet, swin->focalnet
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.focalnet = FocalNetModel(config)
# Classifier head
self.classifier = (
nn.Linear(self.focalnet.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=FocalNetImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FocalNetImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.focalnet(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return FocalNetImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""
FocalNet backbone, to be used with frameworks like X-Decoder.
""",
FOCALNET_START_DOCSTRING,
)
class FocalNetBackbone(FocalNetPreTrainedModel, BackboneMixin):
def __init__(self, config: FocalNetConfig):
super().__init__(config)
super()._init_backbone(config)
self.num_features = [config.embed_dim] + config.hidden_sizes
self.focalnet = FocalNetModel(config)
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny-lrf")
>>> model = AutoBackbone.from_pretrained("microsoft/focalnet-tiny-lrf")
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.focalnet(pixel_values, output_hidden_states=True, return_dict=True)
hidden_states = outputs.reshaped_hidden_states
feature_maps = ()
for idx, stage in enumerate(self.stage_names):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
__all__ = [
"FocalNetForImageClassification",
"FocalNetForMaskedImageModeling",
"FocalNetBackbone",
"FocalNetModel",
"FocalNetPreTrainedModel",
]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.00 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fsmt\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_fsmt import *
from .modeling_fsmt import *
from .tokenization_fsmt import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_fsmt.py
LINES: 1
SIZE: 9.85 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fsmt\configuration_fsmt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""FSMT configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class DecoderConfig(PretrainedConfig):
r"""
Configuration class for FSMT's decoder specific things. note: this is a private helper class
"""
model_type = "fsmt_decoder"
def __init__(self, vocab_size=0, bos_token_id=0):
super().__init__()
self.vocab_size = vocab_size
self.bos_token_id = bos_token_id
class FSMTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FSMTModel`]. It is used to instantiate a FSMT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the FSMT
[facebook/wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
langs (`List[str]`):
A list with source language and target_language (e.g., ['en', 'ru']).
src_vocab_size (`int`):
Vocabulary size of the encoder. Defines the number of different tokens that can be represented by the
`inputs_ids` passed to the forward method in the encoder.
tgt_vocab_size (`int`):
Vocabulary size of the decoder. Defines the number of different tokens that can be represented by the
`inputs_ids` passed to the forward method in the decoder.
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `Callable`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_embedding (`bool`, *optional*, defaults to `True`):
Scale embeddings by diving by sqrt(d_model).
bos_token_id (`int`, *optional*, defaults to 0)
Beginning of stream token id.
pad_token_id (`int`, *optional*, defaults to 1)
Padding token id.
eos_token_id (`int`, *optional*, defaults to 2)
End of stream token id.
decoder_start_token_id (`int`, *optional*):
This model starts decoding with `eos_token_id`
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
Google "layerdrop arxiv", as its not explainable in one line.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
Google "layerdrop arxiv", as its not explainable in one line.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether this is an encoder/decoder model.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie input and output embeddings.
num_beams (`int`, *optional*, defaults to 5)
Number of beams for beam search that will be used by default in the `generate` method of the model. 1 means
no beam search.
length_penalty (`float`, *optional*, defaults to 1)
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
`length_penalty` < 0.0 encourages shorter sequences.
early_stopping (`bool`, *optional*, defaults to `False`)
Flag that will be used by default in the `generate` method of the model. Whether to stop the beam search
when at least `num_beams` sentences are finished per batch or not.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*, defaults to 2):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
Examples:
```python
>>> from transformers import FSMTConfig, FSMTModel
>>> # Initializing a FSMT facebook/wmt19-en-ru style configuration
>>> config = FSMTConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = FSMTModel(config)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "fsmt"
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
# update the defaults from config file
def __init__(
self,
langs=["en", "de"],
src_vocab_size=42024,
tgt_vocab_size=42024,
activation_function="relu",
d_model=1024,
max_length=200,
max_position_embeddings=1024,
encoder_ffn_dim=4096,
encoder_layers=12,
encoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_ffn_dim=4096,
decoder_layers=12,
decoder_attention_heads=16,
decoder_layerdrop=0.0,
attention_dropout=0.0,
dropout=0.1,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=2,
is_encoder_decoder=True,
scale_embedding=True,
tie_word_embeddings=False,
num_beams=5,
length_penalty=1.0,
early_stopping=False,
use_cache=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
forced_eos_token_id=2,
**common_kwargs,
):
self.langs = langs
self.src_vocab_size = src_vocab_size
self.tgt_vocab_size = tgt_vocab_size
self.d_model = d_model # encoder_embed_dim and decoder_embed_dim
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = self.num_hidden_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.max_position_embeddings = max_position_embeddings
self.init_std = init_std # Normal(0, this parameter)
self.activation_function = activation_function
self.decoder = DecoderConfig(vocab_size=tgt_vocab_size, bos_token_id=eos_token_id)
if "decoder" in common_kwargs:
del common_kwargs["decoder"]
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
# 3 Types of Dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.dropout = dropout
self.use_cache = use_cache
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
is_encoder_decoder=is_encoder_decoder,
tie_word_embeddings=tie_word_embeddings,
forced_eos_token_id=forced_eos_token_id,
max_length=max_length,
num_beams=num_beams,
length_penalty=length_penalty,
early_stopping=early_stopping,
**common_kwargs,
)
__all__ = ["FSMTConfig"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_fsmt.py
LINES: 1
SIZE: 56.47 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fsmt\modeling_fsmt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original implementation: https://github.com/pytorch/fairseq/tree/master/examples/wmt19
# Authors:
# - @alexeib Alexei Baevski
# - @edunov Sergey Edunov
# - @michaelauli Michael Auli
# - @myleott Myle Ott
# - @nng555 Nathan Ng
# - David Grangier
# - Kyra Yee
#
# Paper: Facebook FAIR's WMT19 News Translation Task Submission https://arxiv.org/abs/1907.06616
#
"""PyTorch Fairseq model, ported from https://github.com/pytorch/fairseq/tree/master/examples/wmt19"""
import math
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss, LayerNorm
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_fsmt import FSMTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/wmt19-ru-en"
_CONFIG_FOR_DOC = "FSMTConfig"
# See all FSMT models at https://huggingface.co/models?filter=fsmt
# Porting notes:
# this one is modeled after BartModel*
#
# Currently only translation (fairseq also has weights for LM)
#
# fairseq provides weights for ru-en, en-ru and de-en, en-de pairs. All have been ported.
# - ru-en, en-ru use asymmetric vocab
# - de-en, en-de use a merged single vocab (but the code works as if they are separate)
#
# Differences with Bart:
# - not using bos token
# - 2 separate vocabs (src and target)
# - embed weights aren't tied
# - uses a model Ensemble (but that part isn't ported/implemented yet) - so we
# aren't getting as good of a BLEU score
# - uses a projection layer at the end of the decoder
# - doesn't use final_logits_bias
# - beam search: stops as soon as num_beams == len(hypos) (whereas transformers
# is not satisfied there and will continue searching until the next cycles
# aren't promising something better), comparing BLEU scores - the transformers
# algorithm is slightly superior, therefore using the latter. But if you want
# to match fairseq outputs, you need to pass ``early_stopping=True`` to ``generate()``.
#
# SinusoidalPositionalEmbedding is slightly different from Bart's - generates
# different embeddings. This implementation is copied verbatim from fairseq with
# some small changes to make it work here.
#
# Other changes:
# - doesn't support use_cache as Bart's version does
#
#
# FSMTConfig changes with BartConfig
#
# Differences with BART:
# - src/tgt vocabs aren't shared
# - token embeddings aren't shared
# - needs a language pair
# - scale_embedding are True
#
# some unused args were removed too
#
#
# TODO:
# - port model ensemble (fs uses 4 model checkpoints)
# - solve beam search discrepancies
# docstyle-ignore
"""
Here is how to compare BLEU scores against fairseq implementation:
# en-ru
export PAIR=en-ru
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 36.4 http://matrix.statmt.org/matrix/output/1914?score_id=37605)
# ru-en
export PAIR=ru-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 41.3 http://matrix.statmt.org/matrix/output/1907?run_id=6937)
# de-en
export PAIR=de-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 42.3 http://matrix.statmt.org/matrix/output/1902?run_id=6750)
# en-de
export PAIR=en-de
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 43.1 http://matrix.statmt.org/matrix/output/1909?run_id=6862)
"""
FSMT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FSMTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FSMT_GENERATION_EXAMPLE = r"""
Translation example::
```python
>>> from transformers import AutoTokenizer, FSMTForConditionalGeneration
>>> mname = "facebook/wmt19-ru-en"
>>> model = FSMTForConditionalGeneration.from_pretrained(mname)
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
>>> src_text = "Машинное обучение - это здорово, не так ли?"
>>> input_ids = tokenizer(src_text, return_tensors="pt").input_ids
>>> outputs = model.generate(input_ids, num_beams=5, num_return_sequences=3)
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
"Machine learning is great, isn't it?"
```
"""
FSMT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`FSTMTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
FSMT uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`Tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden-states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`Tuple(torch.FloatTensor)` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def invert_mask(attention_mask):
"""Turns 1->0, 0->1, False->True, True-> False"""
assert attention_mask.dim() == 2
return attention_mask.eq(0)
def triu_onnx(x, diagonal=0):
l = x.shape[0]
arange = torch.arange(l, device=x.device)
mask = arange.expand(l, l)
arange = arange.unsqueeze(-1)
if diagonal:
arange = arange + diagonal
mask = mask >= arange
return x.masked_fill(mask == 0, 0)
def _prepare_fsmt_decoder_inputs(
config,
input_ids,
decoder_input_ids=None,
decoder_padding_mask=None,
causal_mask_dtype=torch.float32,
):
"""
Prepare masks that ignore padding tokens in the decoder and a causal mask for the decoder if none are provided.
This mimics the default behavior in fairseq. To override it pass in masks. Note: this is not called during
generation
"""
pad_token_id = config.pad_token_id
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(input_ids, pad_token_id)
bsz, tgt_len = decoder_input_ids.size()
if decoder_padding_mask is None:
decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id)
else:
decoder_padding_mask = invert_mask(decoder_padding_mask)
causal_mask = triu_onnx(fill_with_neg_inf(torch.zeros(tgt_len, tgt_len, dtype=causal_mask_dtype)), 1).to(
device=decoder_input_ids.device
)
return decoder_input_ids, decoder_padding_mask, causal_mask
class PretrainedFSMTModel(PreTrainedModel):
config_class = FSMTConfig
base_model_prefix = "model"
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, SinusoidalPositionalEmbedding):
weight = module.get_embedding(*module.weight.shape, module.padding_idx)
weight = nn.Parameter(weight, requires_grad=False)
weight.detach_()
module.weight = weight
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
def _make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
# Helper Functions, mostly for making masks
def _check_shapes(shape_1, shape2):
if shape_1 != shape2:
raise AssertionError(f"shape mismatch: {shape_1} != {shape2}")
def shift_tokens_right(input_ids, pad_token_id):
"""Shift input ids one token to the right, and wrap the last non pad token (usually <eos>)."""
# replace possible -100 values in labels by `pad_token_id`
input_ids.masked_fill_(input_ids == -100, pad_token_id)
prev_output_tokens = input_ids.clone()
index_of_eos = (input_ids.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze()
prev_output_tokens[:, 1:] = input_ids[:, :-1]
return prev_output_tokens
def make_padding_mask(input_ids, padding_idx=1):
"""True for pad tokens"""
padding_mask = input_ids.eq(padding_idx)
if not padding_mask.any():
padding_mask = None
return padding_mask
# Helper Modules
class EncoderLayer(nn.Module):
def __init__(self, config: FSMTConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = Attention(self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout)
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
def forward(self, x, encoder_padding_mask, layer_head_mask, output_attentions=False):
"""
Args:
x (`torch.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
encoder_padding_mask (`torch.ByteTensor`): binary ByteTensor of shape
*(batch, src_len)* where padding elements are indicated by `1`.
for t_tgt, t_src is excluded (or masked out), =0 means it is
included in attention
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*(config.encoder_attention_heads,)*.
Returns:
encoded output of shape *(seq_len, batch, embed_dim)*
"""
residual = x
x, attn_weights = self.self_attn(
query=x,
key=x,
key_padding_mask=encoder_padding_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.self_attn_layer_norm(x)
residual = x
x = self.activation_fn(self.fc1(x))
x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.final_layer_norm(x)
return x, attn_weights
class FSMTEncoder(nn.Module):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`EncoderLayer`].
Args:
config: FSMTConfig
"""
def __init__(self, config: FSMTConfig, embed_tokens):
super().__init__()
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.padding_idx = embed_tokens.padding_idx
self.embed_tokens = embed_tokens
embed_dim = embed_tokens.embedding_dim
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_positions = SinusoidalPositionalEmbedding(
config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx
)
self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.encoder_layers)]) # type: List[EncoderLayer]
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
"""
Args:
input_ids (`torch.LongTensor`): tokens in the source language of shape
*(batch, src_len)*
attention_mask (`torch.LongTensor`): indicating which indices are padding tokens
inputs_embeds (`torch.FloatTensor`):
embedding vectors of shape *(batch, src_len, embed_dim)*
head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
Returns:
BaseModelOutput or Tuple comprised of:
- **x** (`torch.Tensor`): the last encoder layer's output of shape *(src_len, batch, embed_dim)*
- **encoder_states** (`Tuple(torch.FloatTensor)`): all intermediate hidden states of shape *(src_len,
batch, embed_dim)*. Only populated if *output_hidden_states:* is True.
- **all_attentions** (`Tuple(torch.FloatTensor)`): Attention weights for each layer.
During training might not be of length n_layers because of layer dropout.
"""
# check attention mask and invert
if attention_mask is not None:
attention_mask = invert_mask(attention_mask)
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_ids)
elif inputs_embeds is not None:
inputs_embeds = inputs_embeds * self.embed_scale
# We assume zeros hidden states correspond to padding tokens
# and create `position_ids` where inputs_embeds[:, :, 0] == 0
position_ids = inputs_embeds[:, :, 0].masked_fill(
inputs_embeds[:, :, 0].eq(0), self.embed_positions.padding_idx
)
embed_pos = self.embed_positions(position_ids)
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
x = inputs_embeds + embed_pos
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (len(self.layers)), (
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
x = x.transpose(0, 1) # T x B x C -> B x T x C
encoder_states += (x,)
x = x.transpose(0, 1) # B x T x C -> T x B x C
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
attn = None
else:
x, attn = encoder_layer(
x,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
if output_attentions:
all_attentions = all_attentions + (attn,)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
if output_hidden_states:
encoder_states += (x,)
if not return_dict:
return tuple(v for v in [x, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(last_hidden_state=x, hidden_states=encoder_states, attentions=all_attentions)
class DecoderLayer(nn.Module):
def __init__(self, config: FSMTConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = Attention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
self.encoder_attn = Attention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
encoder_decoder_attention=True,
)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
def forward(
self,
x,
encoder_hidden_states,
encoder_attn_mask=None,
layer_state=None,
causal_mask=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
decoder_padding_mask=None,
output_attentions=False,
):
residual = x
if layer_state is None:
layer_state = {}
# Self Attention
x, self_attn_weights = self.self_attn(
query=x,
key=x,
layer_state=layer_state, # adds keys to layer state
key_padding_mask=decoder_padding_mask,
attn_mask=causal_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.self_attn_layer_norm(x)
# Cross attention
residual = x
assert self.encoder_attn.cache_key != self.self_attn.cache_key
x, cross_attn_weights = self.encoder_attn(
query=x,
key=encoder_hidden_states,
key_padding_mask=encoder_attn_mask,
layer_state=layer_state, # mutates layer state
layer_head_mask=cross_attn_layer_head_mask,
output_attentions=output_attentions,
)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.encoder_attn_layer_norm(x)
# Fully Connected
residual = x
x = self.activation_fn(self.fc1(x))
x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.final_layer_norm(x)
return (
x,
self_attn_weights,
layer_state,
cross_attn_weights,
) # layer_state = cache for decoding
class FSMTDecoder(nn.Module):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DecoderLayer`]
Args:
config: FSMTConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: FSMTConfig, embed_tokens: nn.Embedding):
super().__init__()
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = embed_tokens.padding_idx
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = embed_tokens
embed_dim = embed_tokens.embedding_dim
self.embed_positions = SinusoidalPositionalEmbedding(
config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx
)
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.decoder_layers)]) # type: List[DecoderLayer]
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.embed_tokens.weight, modifier_rank=None):
embed_tokens_weight_shape = self.embed_tokens.weight.shape
else:
embed_tokens_weight_shape = self.embed_tokens.weight.shape
self.output_projection = nn.Linear(embed_tokens_weight_shape[1], embed_tokens_weight_shape[0], bias=False)
self.output_projection.weight = self.embed_tokens.weight
def _tie_weights(self):
self.embed_tokens.weight = self.output_projection.weight
def forward(
self,
input_ids: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_padding_mask: torch.Tensor,
decoder_padding_mask: torch.Tensor,
decoder_causal_mask: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
"""
Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al.,
EMNLP 2019).
Args:
input_ids (`torch.LongTensor` of shape `(batch, tgt_len)`):
previous decoder outputs for teacher forcing
encoder_hidden_states: output from the encoder, used for
encoder-side attention
encoder_padding_mask: for ignoring pad tokens
past_key_values (dict or None): dictionary used for storing state during generation
head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
Returns:
BaseModelOutputWithPast or tuple:
- the decoder's features of shape *(batch, tgt_len, embed_dim)*
- the cache
- hidden states
- attentions
"""
# check attention mask and invert
if encoder_padding_mask is not None:
encoder_padding_mask = invert_mask(encoder_padding_mask)
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
# embed positions
positions = self.embed_positions(input_ids)
if use_cache:
input_ids = input_ids[:, -1:]
positions = positions[:, -1:] # happens after we embed them
x = self.embed_tokens(input_ids) * self.embed_scale
elif inputs_embeds is not None:
# We assume zeros hidden states correspond to padding tokens
# and create `position_ids` where inputs_embeds[:, :, 0] == 0
position_ids = inputs_embeds[:, :, 0].masked_fill(
inputs_embeds[:, :, 0].eq(0), self.embed_positions.padding_idx
)
positions = self.embed_positions(position_ids)
x = inputs_embeds * self.embed_scale
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
x += positions
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
# Convert to FSMT output format: (BS, seq_len, model_dim) -> (seq_len, BS, model_dim)
x = x.transpose(0, 1)
encoder_hidden_states = encoder_hidden_states.transpose(0, 1)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attns = () if output_attentions else None
next_decoder_cache = []
# check if head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
assert attn_mask.size()[0] == (len(self.layers)), (
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
x = x.transpose(0, 1)
all_hidden_states += (x,)
x = x.transpose(0, 1)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
layer_state = past_key_values[idx] if past_key_values is not None else None
x, layer_self_attn, layer_past, layer_cross_attn = decoder_layer(
x,
encoder_hidden_states,
encoder_attn_mask=encoder_padding_mask,
decoder_padding_mask=decoder_padding_mask,
layer_state=layer_state,
causal_mask=decoder_causal_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
output_attentions=output_attentions,
)
if use_cache:
next_decoder_cache.append(layer_past.copy())
if output_attentions:
all_self_attns += (layer_self_attn,)
all_cross_attns += (layer_cross_attn,)
# add hidden states from the last decoder layer
if output_hidden_states:
x = x.transpose(0, 1)
all_hidden_states += (x,)
x = x.transpose(0, 1)
# Convert to standard output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
x = x.transpose(0, 1)
encoder_hidden_states = encoder_hidden_states.transpose(0, 1)
x = self.output_projection(x)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v for v in [x, next_cache, all_hidden_states, all_self_attns, all_cross_attns] if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=x,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
def _reorder_buffer(attn_cache, new_order):
for k, input_buffer_k in attn_cache.items():
if input_buffer_k is not None:
attn_cache[k] = input_buffer_k.index_select(0, new_order)
return attn_cache
class Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
encoder_decoder_attention=False, # otherwise self_attention
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim**-0.5
self.encoder_decoder_attention = encoder_decoder_attention
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.cache_key = "encoder_decoder" if self.encoder_decoder_attention else "self"
def _shape(self, tensor, seq_len, bsz):
return tensor.contiguous().view(seq_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
def forward(
self,
query,
key: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
layer_state: Optional[Dict[str, Optional[Tensor]]] = None,
attn_mask: Optional[Tensor] = None,
layer_head_mask: Optional[Tensor] = None,
output_attentions=False,
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time(SeqLen) x Batch x Channel"""
static_kv: bool = self.encoder_decoder_attention
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
# get here for encoder decoder cause of static_kv
if layer_state is not None: # reuse k,v and encoder_padding_mask
saved_state = layer_state.get(self.cache_key, {})
if "prev_key" in saved_state and static_kv:
# previous time steps are cached - no need to recompute key and value if they are static
key = None
else:
saved_state = None
layer_state = {}
q = self.q_proj(query) * self.scaling
if static_kv:
if key is None:
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
k = self.k_proj(query)
v = self.v_proj(query)
q = self._shape(q, tgt_len, bsz)
if k is not None:
k = self._shape(k, -1, bsz)
if v is not None:
v = self._shape(v, -1, bsz)
if saved_state is not None:
k, v, key_padding_mask = self._use_saved_state(k, v, saved_state, key_padding_mask, static_kv, bsz)
# Update cache
layer_state[self.cache_key] = {
"prev_key": k.view(bsz, self.num_heads, -1, self.head_dim),
"prev_value": v.view(bsz, self.num_heads, -1, self.head_dim),
"prev_key_padding_mask": key_padding_mask if not static_kv else None,
}
assert k is not None
src_len = k.size(1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert attn_weights.size() == (bsz * self.num_heads, tgt_len, src_len)
if attn_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
# This is part of a workaround to get around fork/join parallelism not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
assert key_padding_mask is None or key_padding_mask.size()[:2] == (
bsz,
src_len,
)
if key_padding_mask is not None: # don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
reshaped = key_padding_mask.unsqueeze(1).unsqueeze(2)
attn_weights = attn_weights.masked_fill(reshaped, torch.finfo(attn_weights.dtype).min)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
assert layer_head_mask.size() == (self.num_heads,), (
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# make sure that attn_weights are included in graph
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(
attn_weights,
p=self.dropout,
training=self.training,
)
assert v is not None
attn_output = torch.bmm(attn_probs, v)
assert attn_output.size() == (bsz * self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
def _use_saved_state(self, k, v, saved_state, key_padding_mask, static_kv, bsz):
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
assert k is not None and v is not None
prev_key_padding_mask: Optional[Tensor] = saved_state.get("prev_key_padding_mask", None)
if prev_key_padding_mask is not None:
if static_kv:
new_key_padding_mask = prev_key_padding_mask
else:
new_key_padding_mask = torch.cat([prev_key_padding_mask, key_padding_mask], dim=1)
else:
new_key_padding_mask = key_padding_mask
return k, v, new_key_padding_mask
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a input_ids with -inf."""
return t.float().fill_(torch.finfo(t.dtype).min).type_as(t)
# Public API
def _get_shape(t):
return getattr(t, "shape", None)
@add_start_docstrings(
"The bare FSMT Model outputting raw hidden-states without any specific head on top.",
FSMT_START_DOCSTRING,
)
class FSMTModel(PretrainedFSMTModel):
_tied_weights_keys = ["decoder.embed_tokens.weight", "decoder.output_projection.weight"]
def __init__(self, config: FSMTConfig):
super().__init__(config)
padding_idx = config.pad_token_id
encoder_embed_tokens = nn.Embedding(config.src_vocab_size, config.d_model, padding_idx)
decoder_embed_tokens = nn.Embedding(config.tgt_vocab_size, config.d_model, padding_idx)
self.encoder = FSMTEncoder(config, encoder_embed_tokens)
self.decoder = FSMTDecoder(config, decoder_embed_tokens)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.decoder.embed_tokens, self.get_input_embeddings())
self._tie_or_clone_weights(self.decoder.output_projection, self.get_input_embeddings())
@add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
if decoder_input_ids is None:
use_cache = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# make masks if user doesn't supply
if not use_cache and input_ids is not None:
decoder_input_ids, decoder_padding_mask, causal_mask = _prepare_fsmt_decoder_inputs(
self.config,
input_ids,
decoder_input_ids=decoder_input_ids,
decoder_padding_mask=decoder_attention_mask,
causal_mask_dtype=self.decoder.embed_tokens.weight.dtype,
)
else:
decoder_padding_mask, causal_mask = None, None
if decoder_input_ids is None and decoder_inputs_embeds is None:
raise ValueError("Make sure that `decoder_input_ids` or `decoder_inputs_embeds` are passed.")
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=False
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
decoder_input_ids,
encoder_outputs[0],
attention_mask,
decoder_padding_mask,
decoder_causal_mask=causal_mask,
inputs_embeds=decoder_inputs_embeds,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def get_input_embeddings(self):
return self.encoder.embed_tokens
def set_input_embeddings(self, value):
self.encoder.embed_tokens = value
def get_output_embeddings(self):
return self.decoder.embed_tokens
def set_output_embeddings(self, value):
self.decoder.embed_tokens = value
@add_start_docstrings(
"The FSMT Model with a language modeling head. Can be used for summarization.", FSMT_START_DOCSTRING
)
class FSMTForConditionalGeneration(PretrainedFSMTModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["decoder.embed_tokens.weight", "decoder.output_projection.weight"]
def __init__(self, config: FSMTConfig):
super().__init__(config)
base_model = FSMTModel(config)
self.model = base_model
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(FSMT_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.model(
input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_inputs_embeds=decoder_inputs_embeds,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = outputs[0]
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# TODO(SS): do we need to ignore pad tokens in labels?
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.tgt_vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = []
for layer_past in past_key_values:
# get the correct batch idx from decoder layer's batch dim for cross and self-attn
layer_past_new = {
attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items()
}
reordered_past.append(layer_past_new)
return reordered_past
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
def get_output_embeddings(self):
return self.model.decoder.embed_tokens
def set_output_embeddings(self, value):
self.model.decoder.embed_tokens = value
class SinusoidalPositionalEmbedding(nn.Embedding):
"""
This module produces sinusoidal positional embeddings of any length.
We don't want to save the weight of this embedding since it's not trained (deterministic) and it can be huge.
Padding symbols are ignored.
These embeddings get automatically extended in forward if more positions is needed.
"""
def __init__(self, num_positions, embedding_dim, padding_idx):
super().__init__(num_positions, embedding_dim, padding_idx)
def make_weight(self, num_positions, embedding_dim, padding_idx):
weight = self.get_embedding(num_positions, embedding_dim, padding_idx)
# in forward put the weights on the correct dtype and device of the param
weight = weight.to(dtype=self.weight.dtype, device=self.weight.device)
self.weight = nn.Parameter(weight)
self.weight.detach_()
self.weight.requires_grad = False
@staticmethod
def get_embedding(num_embeddings, embedding_dim, padding_idx):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
@staticmethod
def make_positions(tensor, padding_idx: int):
"""
Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1. Padding symbols are ignored.
"""
# The series of casts and type-conversions here are carefully
# balanced to both work with ONNX export and XLA. In particular XLA
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
# how to handle the dtype kwarg in cumsum.
mask = tensor.ne(padding_idx).int()
return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx
def forward(
self,
input,
incremental_state: Optional[Any] = None,
timestep: Optional[Tensor] = None,
):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input.shape[:2]
max_pos = self.padding_idx + 1 + seq_len
if max_pos > self.weight.size(0):
# expand embeddings if needed
self.make_weight(max_pos, self.embedding_dim, self.padding_idx)
positions = self.make_positions(input, self.padding_idx)
return super().forward(positions)
__all__ = ["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: tokenization_fsmt.py
LINES: 7
SIZE: 18.81 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fsmt\tokenization_fsmt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for FSMT."""
import json
import os
import re
import unicodedata
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"src_vocab_file": "vocab-src.json",
"tgt_vocab_file": "vocab-tgt.json",
"merges_file": "merges.txt",
}
def get_pairs(word):
"""
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
strings)
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def replace_unicode_punct(text):
"""
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
"""
text = text.replace(",", ",")
text = re.sub(r"。\s*", ". ", text)
text = text.replace("、", ",")
text = text.replace("”", '"')
text = text.replace("“", '"')
text = text.replace("∶", ":")
text = text.replace(":", ":")
text = text.replace("?", "?")
text = text.replace("《", '"')
text = text.replace("》", '"')
text = text.replace(")", ")")
text = text.replace("!", "!")
text = text.replace("(", "(")
text = text.replace(";", ";")
text = text.replace("1", "1")
text = text.replace("」", '"')
text = text.replace("「", '"')
text = text.replace("0", "0")
text = text.replace("3", "3")
text = text.replace("2", "2")
text = text.replace("5", "5")
text = text.replace("6", "6")
text = text.replace("9", "9")
text = text.replace("7", "7")
text = text.replace("8", "8")
text = text.replace("4", "4")
text = re.sub(r".\s*", ". ", text)
text = text.replace("~", "~")
text = text.replace("’", "'")
text = text.replace("…", "...")
text = text.replace("━", "-")
text = text.replace("〈", "<")
text = text.replace("〉", ">")
text = text.replace("【", "[")
text = text.replace("】", "]")
text = text.replace("%", "%")
return text
def remove_non_printing_char(text):
"""
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
"""
output = []
for char in text:
cat = unicodedata.category(char)
if cat.startswith("C"):
continue
output.append(char)
return "".join(output)
# Porting notes:
# this one is modeled after XLMTokenizer
#
# added:
# - src_vocab_file,
# - tgt_vocab_file,
# - langs,
class FSMTTokenizer(PreTrainedTokenizer):
"""
Construct an FAIRSEQ Transformer tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following:
- Moses preprocessing and tokenization.
- Normalizing all inputs text.
- The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like
"__classify__") to a vocabulary.
- The argument `langs` defines a pair of languages.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
langs (`List[str]`, *optional*):
A list of two languages to translate from and to, for instance `["en", "ru"]`.
src_vocab_file (`str`, *optional*):
File containing the vocabulary for the source language.
tgt_vocab_file (`st`, *optional*):
File containing the vocabulary for the target language.
merges_file (`str`, *optional*):
File containing the merges.
do_lower_case (`bool`, *optional*, defaults to `False`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
langs=None,
src_vocab_file=None,
tgt_vocab_file=None,
merges_file=None,
do_lower_case=False,
unk_token="<unk>",
bos_token="<s>",
sep_token="</s>",
pad_token="<pad>",
**kwargs,
):
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use XLMTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.sm = sacremoses
self.src_vocab_file = src_vocab_file
self.tgt_vocab_file = tgt_vocab_file
self.merges_file = merges_file
self.do_lower_case = do_lower_case
# cache of sm.MosesPunctNormalizer instance
self.cache_moses_punct_normalizer = {}
# cache of sm.MosesTokenizer instance
self.cache_moses_tokenizer = {}
self.cache_moses_detokenizer = {}
if langs and len(langs) == 2:
self.src_lang, self.tgt_lang = langs
else:
raise ValueError(
f"arg `langs` needs to be a list of 2 langs, e.g. ['en', 'ru'], but got {langs}. "
"Usually that means that tokenizer can't find a mapping for the given model path "
"in and other maps of this tokenizer."
)
with open(src_vocab_file, encoding="utf-8") as src_vocab_handle:
self.encoder = json.load(src_vocab_handle)
with open(tgt_vocab_file, encoding="utf-8") as tgt_vocab_handle:
tgt_vocab = json.load(tgt_vocab_handle)
self.decoder = {v: k for k, v in tgt_vocab.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[:-1]
merges = [tuple(merge.split()[:2]) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
super().__init__(
langs=langs,
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
bos_token=bos_token,
sep_token=sep_token,
pad_token=pad_token,
**kwargs,
)
# hack override
def get_vocab(self) -> Dict[str, int]:
return self.get_src_vocab()
# hack override
@property
def vocab_size(self) -> int:
return self.src_vocab_size
def moses_punct_norm(self, text, lang):
if lang not in self.cache_moses_punct_normalizer:
punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang)
self.cache_moses_punct_normalizer[lang] = punct_normalizer
return self.cache_moses_punct_normalizer[lang].normalize(text)
def moses_tokenize(self, text, lang):
if lang not in self.cache_moses_tokenizer:
moses_tokenizer = self.sm.MosesTokenizer(lang=lang)
self.cache_moses_tokenizer[lang] = moses_tokenizer
return self.cache_moses_tokenizer[lang].tokenize(
text, aggressive_dash_splits=True, return_str=False, escape=True
)
def moses_detokenize(self, tokens, lang):
if lang not in self.cache_moses_detokenizer:
moses_detokenizer = self.sm.MosesDetokenizer(lang=lang)
self.cache_moses_detokenizer[lang] = moses_detokenizer
return self.cache_moses_detokenizer[lang].detokenize(tokens)
def moses_pipeline(self, text, lang):
text = replace_unicode_punct(text)
text = self.moses_punct_norm(text, lang)
text = remove_non_printing_char(text)
return text
@property
def src_vocab_size(self):
return len(self.encoder)
@property
def tgt_vocab_size(self):
return len(self.decoder)
def get_src_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def get_tgt_vocab(self):
return dict(self.decoder, **self.added_tokens_decoder)
def bpe(self, token):
word = tuple(token[:-1]) + (token[-1] + "</w>",)
if token in self.cache:
return self.cache[token]
pairs = get_pairs(word)
if not pairs:
return token + "</w>"
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
if word == "\n </w>":
word = "\n</w>"
self.cache[token] = word
return word
def _tokenize(self, text, lang="en", bypass_tokenizer=False):
"""
Tokenize a string given language code using Moses.
Details of tokenization:
- [sacremoses](https://github.com/alvations/sacremoses): port of Moses
- Install with `pip install sacremoses`
Args:
- lang: ISO language code (default = 'en') (string). Languages should belong of the model supported
languages. However, we don't enforce it.
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
(bool). If True, we only apply BPE.
Returns:
List of tokens.
"""
# ignore `lang` which is currently isn't explicitly passed in tokenization_utils.py and always results in lang=en
# if lang != self.src_lang:
# raise ValueError(f"Expected lang={self.src_lang}, but got {lang}")
lang = self.src_lang
if self.do_lower_case:
text = text.lower()
if bypass_tokenizer:
text = text.split()
else:
text = self.moses_pipeline(text, lang=lang)
text = self.moses_tokenize(text, lang=lang)
split_tokens = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(token).split(" ")))
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
# remove BPE
tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens]
tokens = "".join(tokens).split()
# detokenize
text = self.moses_detokenize(tokens, self.tgt_lang)
return text
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A FAIRSEQ Transformer sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
# no bos used in fairseq
if token_ids_1 is None:
return token_ids_0 + sep
return token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
# no bos used in fairseq
if token_ids_1 is not None:
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ
Transformer sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An
FAIRSEQ_TRANSFORMER sequence pair mask has the following format:
"""
sep = [self.sep_token_id]
# no bos used in fairseq
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0]
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
src_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["src_vocab_file"]
)
tgt_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["tgt_vocab_file"]
)
merges_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(src_vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
with open(tgt_vocab_file, "w", encoding="utf-8") as f:
tgt_vocab = {v: k for k, v in self.decoder.items()}
f.write(json.dumps(tgt_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merges_file, "w", encoding="utf-8") as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return src_vocab_file, tgt_vocab_file, merges_file
def __getstate__(self):
state = self.__dict__.copy()
state["sm"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import sacremoses
except ImportError:
raise ImportError(
"You need to install sacremoses to use XLMTokenizer. "
"See https://pypi.org/project/sacremoses/ for installation."
)
self.sm = sacremoses
__all__ = ["FSMTTokenizer"]
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.15 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\funnel\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_funnel import *
from .convert_funnel_original_tf_checkpoint_to_pytorch import *
from .modeling_funnel import *
from .modeling_tf_funnel import *
from .tokenization_funnel import *
from .tokenization_funnel_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==========================================================================================================================================
SOURCE CODE FILE: configuration_funnel.py
LINES: 1
SIZE: 7.50 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\funnel\configuration_funnel.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020, Hugging Face
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Funnel Transformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class FunnelConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to
instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel
Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`].
block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`):
The sizes of the blocks used in the model.
block_repeats (`List[int]`, *optional*):
If passed along, each layer of each block is repeated the number of times indicated.
num_decoder_layers (`int`, *optional*, defaults to 2):
The number of layers in the decoder (when not using the base model).
d_model (`int`, *optional*, defaults to 768):
Dimensionality of the model's hidden states.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
d_head (`int`, *optional*, defaults to 64):
Dimensionality of the model's heads.
d_inner (`int`, *optional*, defaults to 3072):
Inner dimension in the feed-forward blocks.
hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability used between the two layers of the feed-forward blocks.
initializer_range (`float`, *optional*, defaults to 0.1):
The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers.
initializer_std (`float`, *optional*):
The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of
linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for
linear layers.
layer_norm_eps (`float`, *optional*, defaults to 1e-09):
The epsilon used by the layer normalization layers.
pooling_type (`str`, *optional*, defaults to `"mean"`):
Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block.
attention_type (`str`, *optional*, defaults to `"relative_shift"`):
Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter
is faster on TPU.
separate_cls (`bool`, *optional*, defaults to `True`):
Whether or not to separate the cls token when applying pooling.
truncate_seq (`bool`, *optional*, defaults to `True`):
When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a
sequence length that is not a multiple of 2.
pool_q_only (`bool`, *optional*, defaults to `True`):
Whether or not to apply the pooling only to the query or to query, key and values for the attention layers.
"""
model_type = "funnel"
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "n_head",
}
def __init__(
self,
vocab_size=30522,
block_sizes=[4, 4, 4],
block_repeats=None,
num_decoder_layers=2,
d_model=768,
n_head=12,
d_head=64,
d_inner=3072,
hidden_act="gelu_new",
hidden_dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
initializer_range=0.1,
initializer_std=None,
layer_norm_eps=1e-9,
pooling_type="mean",
attention_type="relative_shift",
separate_cls=True,
truncate_seq=True,
pool_q_only=True,
**kwargs,
):
self.vocab_size = vocab_size
self.block_sizes = block_sizes
self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats
assert len(block_sizes) == len(self.block_repeats), (
"`block_sizes` and `block_repeats` should have the same length."
)
self.num_decoder_layers = num_decoder_layers
self.d_model = d_model
self.n_head = n_head
self.d_head = d_head
self.d_inner = d_inner
self.hidden_act = hidden_act
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.initializer_range = initializer_range
self.initializer_std = initializer_std
self.layer_norm_eps = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported."
self.pooling_type = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported."
self.attention_type = attention_type
self.separate_cls = separate_cls
self.truncate_seq = truncate_seq
self.pool_q_only = pool_q_only
super().__init__(**kwargs)
@property
def num_hidden_layers(self):
return sum(self.block_sizes)
@num_hidden_layers.setter
def num_hidden_layers(self, value):
raise NotImplementedError(
"This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`."
)
@property
def num_blocks(self):
return len(self.block_sizes)
@num_blocks.setter
def num_blocks(self, value):
raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`.")
__all__ = ["FunnelConfig"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: modeling_funnel.py
LINES: 1
SIZE: 68.14 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\funnel\modeling_funnel.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Funnel Transformer model."""
import os
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_funnel import FunnelConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "FunnelConfig"
_CHECKPOINT_FOR_DOC = "funnel-transformer/small"
INF = 1e6
def load_tf_weights_in_funnel(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
_layer_map = {
"k": "k_head",
"q": "q_head",
"v": "v_head",
"o": "post_proj",
"layer_1": "linear_1",
"layer_2": "linear_2",
"rel_attn": "attention",
"ff": "ffn",
"kernel": "weight",
"gamma": "weight",
"beta": "bias",
"lookup_table": "weight",
"word_embedding": "word_embeddings",
"input": "embeddings",
}
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
if name[0] == "generator":
continue
pointer = model
skipped = False
for m_name in name[1:]:
if not isinstance(pointer, FunnelPositionwiseFFN) and re.fullmatch(r"layer_\d+", m_name):
layer_index = int(re.search(r"layer_(\d+)", m_name).groups()[0])
if layer_index < config.num_hidden_layers:
block_idx = 0
while layer_index >= config.block_sizes[block_idx]:
layer_index -= config.block_sizes[block_idx]
block_idx += 1
pointer = pointer.blocks[block_idx][layer_index]
else:
layer_index -= config.num_hidden_layers
pointer = pointer.layers[layer_index]
elif m_name == "r" and isinstance(pointer, FunnelRelMultiheadAttention):
pointer = pointer.r_kernel
break
elif m_name in _layer_map:
pointer = getattr(pointer, _layer_map[m_name])
else:
try:
pointer = getattr(pointer, m_name)
except AttributeError:
print(f"Skipping {'/'.join(name)}", array.shape)
skipped = True
break
if not skipped:
if len(pointer.shape) != len(array.shape):
array = array.reshape(pointer.shape)
if m_name == "kernel":
array = np.transpose(array)
pointer.data = torch.from_numpy(array)
return model
class FunnelEmbeddings(nn.Module):
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
def forward(
self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None
) -> torch.Tensor:
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
embeddings = self.layer_norm(inputs_embeds)
embeddings = self.dropout(embeddings)
return embeddings
class FunnelAttentionStructure(nn.Module):
"""
Contains helpers for `FunnelRelMultiheadAttention `.
"""
cls_token_type_id: int = 2
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.config = config
self.sin_dropout = nn.Dropout(config.hidden_dropout)
self.cos_dropout = nn.Dropout(config.hidden_dropout)
# Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was
# divided.
self.pooling_mult = None
def init_attention_inputs(
self,
inputs_embeds: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor]:
"""Returns the attention inputs associated to the inputs of the model."""
# inputs_embeds has shape batch_size x seq_len x d_model
# attention_mask and token_type_ids have shape batch_size x seq_len
self.pooling_mult = 1
self.seq_len = seq_len = inputs_embeds.size(1)
position_embeds = self.get_position_embeds(seq_len, inputs_embeds.dtype, inputs_embeds.device)
token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None
cls_mask = (
nn.functional.pad(inputs_embeds.new_ones([seq_len - 1, seq_len - 1]), (1, 0, 1, 0))
if self.config.separate_cls
else None
)
return (position_embeds, token_type_mat, attention_mask, cls_mask)
def token_type_ids_to_mat(self, token_type_ids: torch.Tensor) -> torch.Tensor:
"""Convert `token_type_ids` to `token_type_mat`."""
token_type_mat = token_type_ids[:, :, None] == token_type_ids[:, None]
# Treat <cls> as in the same segment as both A & B
cls_ids = token_type_ids == self.cls_token_type_id
cls_mat = cls_ids[:, :, None] | cls_ids[:, None]
return cls_mat | token_type_mat
def get_position_embeds(
self, seq_len: int, dtype: torch.dtype, device: torch.device
) -> Union[Tuple[torch.Tensor], List[List[torch.Tensor]]]:
"""
Create and cache inputs related to relative position encoding. Those are very different depending on whether we
are using the factorized or the relative shift attention:
For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2,
final formula.
For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final
formula.
Paper link: https://arxiv.org/abs/2006.03236
"""
d_model = self.config.d_model
if self.config.attention_type == "factorized":
# Notations from the paper, appending A.2.2, final formula.
# We need to create and return the matrices phi, psi, pi and omega.
pos_seq = torch.arange(0, seq_len, 1.0, dtype=torch.int64, device=device).to(dtype)
freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype)
inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
sinusoid = pos_seq[:, None] * inv_freq[None]
sin_embed = torch.sin(sinusoid)
sin_embed_d = self.sin_dropout(sin_embed)
cos_embed = torch.cos(sinusoid)
cos_embed_d = self.cos_dropout(cos_embed)
# This is different from the formula on the paper...
phi = torch.cat([sin_embed_d, sin_embed_d], dim=-1)
psi = torch.cat([cos_embed, sin_embed], dim=-1)
pi = torch.cat([cos_embed_d, cos_embed_d], dim=-1)
omega = torch.cat([-sin_embed, cos_embed], dim=-1)
return (phi, pi, psi, omega)
else:
# Notations from the paper, appending A.2.1, final formula.
# We need to create and return all the possible vectors R for all blocks and shifts.
freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype)
inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2)))
# Maximum relative positions for the first input
rel_pos_id = torch.arange(-seq_len * 2, seq_len * 2, 1.0, dtype=torch.int64, device=device).to(dtype)
zero_offset = seq_len * 2
sinusoid = rel_pos_id[:, None] * inv_freq[None]
sin_embed = self.sin_dropout(torch.sin(sinusoid))
cos_embed = self.cos_dropout(torch.cos(sinusoid))
pos_embed = torch.cat([sin_embed, cos_embed], dim=-1)
pos = torch.arange(0, seq_len, dtype=torch.int64, device=device).to(dtype)
pooled_pos = pos
position_embeds_list = []
for block_index in range(0, self.config.num_blocks):
# For each block with block_index > 0, we need two types position embeddings:
# - Attention(pooled-q, unpooled-kv)
# - Attention(pooled-q, pooled-kv)
# For block_index = 0 we only need the second one and leave the first one as None.
# First type
if block_index == 0:
position_embeds_pooling = None
else:
pooled_pos = self.stride_pool_pos(pos, block_index)
# construct rel_pos_id
stride = 2 ** (block_index - 1)
rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2)
rel_pos = rel_pos[:, None] + zero_offset
rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
position_embeds_pooling = torch.gather(pos_embed, 0, rel_pos)
# Second type
pos = pooled_pos
stride = 2**block_index
rel_pos = self.relative_pos(pos, stride)
rel_pos = rel_pos[:, None] + zero_offset
rel_pos = rel_pos.expand(rel_pos.size(0), d_model)
position_embeds_no_pooling = torch.gather(pos_embed, 0, rel_pos)
position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling])
return position_embeds_list
def stride_pool_pos(self, pos_id: torch.Tensor, block_index: int):
"""
Pool `pos_id` while keeping the cls token separate (if `config.separate_cls=True`).
"""
if self.config.separate_cls:
# Under separate <cls>, we treat the <cls> as the first token in
# the previous block of the 1st real block. Since the 1st real
# block always has position 1, the position of the previous block
# will be at `1 - 2 ** block_index`.
cls_pos = pos_id.new_tensor([-(2**block_index) + 1])
pooled_pos_id = pos_id[1:-1] if self.config.truncate_seq else pos_id[1:]
return torch.cat([cls_pos, pooled_pos_id[::2]], 0)
else:
return pos_id[::2]
def relative_pos(self, pos: torch.Tensor, stride: int, pooled_pos=None, shift: int = 1) -> torch.Tensor:
"""
Build the relative positional vector between `pos` and `pooled_pos`.
"""
if pooled_pos is None:
pooled_pos = pos
ref_point = pooled_pos[0] - pos[0]
num_remove = shift * len(pooled_pos)
max_dist = ref_point + num_remove * stride
min_dist = pooled_pos[0] - pos[-1]
return torch.arange(max_dist, min_dist - 1, -stride, dtype=torch.long, device=pos.device)
def stride_pool(
self,
tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]],
axis: Union[int, Tuple[int], List[int]],
) -> torch.Tensor:
"""
Perform pooling by stride slicing the tensor along the given axis.
"""
if tensor is None:
return None
# Do the stride pool recursively if axis is a list or a tuple of ints.
if isinstance(axis, (list, tuple)):
for ax in axis:
tensor = self.stride_pool(tensor, ax)
return tensor
# Do the stride pool recursively if tensor is a list or tuple of tensors.
if isinstance(tensor, (tuple, list)):
return type(tensor)(self.stride_pool(x, axis) for x in tensor)
# Deal with negative axis
axis %= tensor.ndim
axis_slice = (
slice(None, -1, 2) if self.config.separate_cls and self.config.truncate_seq else slice(None, None, 2)
)
enc_slice = [slice(None)] * axis + [axis_slice]
if self.config.separate_cls:
cls_slice = [slice(None)] * axis + [slice(None, 1)]
tensor = torch.cat([tensor[cls_slice], tensor], axis=axis)
return tensor[enc_slice]
def pool_tensor(
self, tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], mode: str = "mean", stride: int = 2
) -> torch.Tensor:
"""Apply 1D pooling to a tensor of size [B x T (x H)]."""
if tensor is None:
return None
# Do the pool recursively if tensor is a list or tuple of tensors.
if isinstance(tensor, (tuple, list)):
return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor)
if self.config.separate_cls:
suffix = tensor[:, :-1] if self.config.truncate_seq else tensor
tensor = torch.cat([tensor[:, :1], suffix], dim=1)
ndim = tensor.ndim
if ndim == 2:
tensor = tensor[:, None, :, None]
elif ndim == 3:
tensor = tensor[:, None, :, :]
# Stride is applied on the second-to-last dimension.
stride = (stride, 1)
if mode == "mean":
tensor = nn.functional.avg_pool2d(tensor, stride, stride=stride, ceil_mode=True)
elif mode == "max":
tensor = nn.functional.max_pool2d(tensor, stride, stride=stride, ceil_mode=True)
elif mode == "min":
tensor = -nn.functional.max_pool2d(-tensor, stride, stride=stride, ceil_mode=True)
else:
raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.")
if ndim == 2:
return tensor[:, 0, :, 0]
elif ndim == 3:
return tensor[:, 0]
return tensor
def pre_attention_pooling(
self, output, attention_inputs: Tuple[torch.Tensor]
) -> Tuple[torch.Tensor, Tuple[torch.Tensor]]:
"""Pool `output` and the proper parts of `attention_inputs` before the attention layer."""
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
if self.config.pool_q_only:
if self.config.attention_type == "factorized":
position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:]
token_type_mat = self.stride_pool(token_type_mat, 1)
cls_mask = self.stride_pool(cls_mask, 0)
output = self.pool_tensor(output, mode=self.config.pooling_type)
else:
self.pooling_mult *= 2
if self.config.attention_type == "factorized":
position_embeds = self.stride_pool(position_embeds, 0)
token_type_mat = self.stride_pool(token_type_mat, [1, 2])
cls_mask = self.stride_pool(cls_mask, [1, 2])
attention_mask = self.pool_tensor(attention_mask, mode="min")
output = self.pool_tensor(output, mode=self.config.pooling_type)
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
return output, attention_inputs
def post_attention_pooling(self, attention_inputs: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]:
"""Pool the proper parts of `attention_inputs` after the attention layer."""
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
if self.config.pool_q_only:
self.pooling_mult *= 2
if self.config.attention_type == "factorized":
position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0)
token_type_mat = self.stride_pool(token_type_mat, 2)
cls_mask = self.stride_pool(cls_mask, 1)
attention_mask = self.pool_tensor(attention_mask, mode="min")
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
return attention_inputs
def _relative_shift_gather(positional_attn: torch.Tensor, context_len: int, shift: int) -> torch.Tensor:
batch_size, n_head, seq_len, max_rel_len = positional_attn.shape
# max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j
# What's next is the same as doing the following gather, which might be clearer code but less efficient.
# idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1)
# # matrix of context_len + i-j
# return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len]))
positional_attn = torch.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len])
positional_attn = positional_attn[:, :, shift:, :]
positional_attn = torch.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift])
positional_attn = positional_attn[..., :context_len]
return positional_attn
class FunnelRelMultiheadAttention(nn.Module):
def __init__(self, config: FunnelConfig, block_index: int) -> None:
super().__init__()
self.config = config
self.block_index = block_index
d_model, n_head, d_head = config.d_model, config.n_head, config.d_head
self.hidden_dropout = nn.Dropout(config.hidden_dropout)
self.attention_dropout = nn.Dropout(config.attention_dropout)
self.q_head = nn.Linear(d_model, n_head * d_head, bias=False)
self.k_head = nn.Linear(d_model, n_head * d_head)
self.v_head = nn.Linear(d_model, n_head * d_head)
self.r_w_bias = nn.Parameter(torch.zeros([n_head, d_head]))
self.r_r_bias = nn.Parameter(torch.zeros([n_head, d_head]))
self.r_kernel = nn.Parameter(torch.zeros([d_model, n_head, d_head]))
self.r_s_bias = nn.Parameter(torch.zeros([n_head, d_head]))
self.seg_embed = nn.Parameter(torch.zeros([2, n_head, d_head]))
self.post_proj = nn.Linear(n_head * d_head, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=config.layer_norm_eps)
self.scale = 1.0 / (d_head**0.5)
def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None):
"""Relative attention score for the positional encodings"""
# q_head has shape batch_size x sea_len x n_head x d_head
if self.config.attention_type == "factorized":
# Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236)
# phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model
phi, pi, psi, omega = position_embeds
# Shape n_head x d_head
u = self.r_r_bias * self.scale
# Shape d_model x n_head x d_head
w_r = self.r_kernel
# Shape batch_size x sea_len x n_head x d_model
q_r_attention = torch.einsum("binh,dnh->bind", q_head + u, w_r)
q_r_attention_1 = q_r_attention * phi[:, None]
q_r_attention_2 = q_r_attention * pi[:, None]
# Shape batch_size x n_head x seq_len x context_len
positional_attn = torch.einsum("bind,jd->bnij", q_r_attention_1, psi) + torch.einsum(
"bind,jd->bnij", q_r_attention_2, omega
)
else:
shift = 2 if q_head.shape[1] != context_len else 1
# Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236)
# Grab the proper positional encoding, shape max_rel_len x d_model
r = position_embeds[self.block_index][shift - 1]
# Shape n_head x d_head
v = self.r_r_bias * self.scale
# Shape d_model x n_head x d_head
w_r = self.r_kernel
# Shape max_rel_len x n_head x d_model
r_head = torch.einsum("td,dnh->tnh", r, w_r)
# Shape batch_size x n_head x seq_len x max_rel_len
positional_attn = torch.einsum("binh,tnh->bnit", q_head + v, r_head)
# Shape batch_size x n_head x seq_len x context_len
positional_attn = _relative_shift_gather(positional_attn, context_len, shift)
if cls_mask is not None:
positional_attn *= cls_mask
return positional_attn
def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None):
"""Relative attention score for the token_type_ids"""
if token_type_mat is None:
return 0
batch_size, seq_len, context_len = token_type_mat.shape
# q_head has shape batch_size x seq_len x n_head x d_head
# Shape n_head x d_head
r_s_bias = self.r_s_bias * self.scale
# Shape batch_size x n_head x seq_len x 2
token_type_bias = torch.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed)
# Shape batch_size x n_head x seq_len x context_len
token_type_mat = token_type_mat[:, None].expand([batch_size, q_head.shape[2], seq_len, context_len])
# Shapes batch_size x n_head x seq_len
diff_token_type, same_token_type = torch.split(token_type_bias, 1, dim=-1)
# Shape batch_size x n_head x seq_len x context_len
token_type_attn = torch.where(
token_type_mat, same_token_type.expand(token_type_mat.shape), diff_token_type.expand(token_type_mat.shape)
)
if cls_mask is not None:
token_type_attn *= cls_mask
return token_type_attn
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_inputs: Tuple[torch.Tensor],
output_attentions: bool = False,
) -> Tuple[torch.Tensor, ...]:
# query has shape batch_size x seq_len x d_model
# key and value have shapes batch_size x context_len x d_model
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
batch_size, seq_len, _ = query.shape
context_len = key.shape[1]
n_head, d_head = self.config.n_head, self.config.d_head
# Shape batch_size x seq_len x n_head x d_head
q_head = self.q_head(query).view(batch_size, seq_len, n_head, d_head)
# Shapes batch_size x context_len x n_head x d_head
k_head = self.k_head(key).view(batch_size, context_len, n_head, d_head)
v_head = self.v_head(value).view(batch_size, context_len, n_head, d_head)
q_head = q_head * self.scale
# Shape n_head x d_head
r_w_bias = self.r_w_bias * self.scale
# Shapes batch_size x n_head x seq_len x context_len
content_score = torch.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head)
positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask)
token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask)
# merge attention scores
attn_score = content_score + positional_attn + token_type_attn
# precision safe in case of mixed precision training
dtype = attn_score.dtype
attn_score = attn_score.float()
# perform masking
if attention_mask is not None:
attn_score = attn_score - INF * (1 - attention_mask[:, None, None].float())
# attention probability
attn_prob = torch.softmax(attn_score, dim=-1, dtype=dtype)
attn_prob = self.attention_dropout(attn_prob)
# attention output, shape batch_size x seq_len x n_head x d_head
attn_vec = torch.einsum("bnij,bjnd->bind", attn_prob, v_head)
# Shape shape batch_size x seq_len x d_model
attn_out = self.post_proj(attn_vec.reshape(batch_size, seq_len, n_head * d_head))
attn_out = self.hidden_dropout(attn_out)
output = self.layer_norm(query + attn_out)
return (output, attn_prob) if output_attentions else (output,)
class FunnelPositionwiseFFN(nn.Module):
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.linear_1 = nn.Linear(config.d_model, config.d_inner)
self.activation_function = ACT2FN[config.hidden_act]
self.activation_dropout = nn.Dropout(config.activation_dropout)
self.linear_2 = nn.Linear(config.d_inner, config.d_model)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps)
def forward(self, hidden: torch.Tensor) -> torch.Tensor:
h = self.linear_1(hidden)
h = self.activation_function(h)
h = self.activation_dropout(h)
h = self.linear_2(h)
h = self.dropout(h)
return self.layer_norm(hidden + h)
class FunnelLayer(nn.Module):
def __init__(self, config: FunnelConfig, block_index: int) -> None:
super().__init__()
self.attention = FunnelRelMultiheadAttention(config, block_index)
self.ffn = FunnelPositionwiseFFN(config)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_inputs,
output_attentions: bool = False,
) -> Tuple:
attn = self.attention(query, key, value, attention_inputs, output_attentions=output_attentions)
output = self.ffn(attn[0])
return (output, attn[1]) if output_attentions else (output,)
class FunnelEncoder(nn.Module):
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.config = config
self.attention_structure = FunnelAttentionStructure(config)
self.blocks = nn.ModuleList(
[
nn.ModuleList([FunnelLayer(config, block_index) for _ in range(block_size)])
for block_index, block_size in enumerate(config.block_sizes)
]
)
def forward(
self,
inputs_embeds: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[Tuple, BaseModelOutput]:
# The pooling is not implemented on long tensors, so we convert this mask.
attention_mask = attention_mask.type_as(inputs_embeds)
attention_inputs = self.attention_structure.init_attention_inputs(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
)
hidden = inputs_embeds
all_hidden_states = (inputs_embeds,) if output_hidden_states else None
all_attentions = () if output_attentions else None
for block_index, block in enumerate(self.blocks):
pooling_flag = hidden.size(1) > (2 if self.config.separate_cls else 1)
pooling_flag = pooling_flag and block_index > 0
if pooling_flag:
pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling(
hidden, attention_inputs
)
for layer_index, layer in enumerate(block):
for repeat_index in range(self.config.block_repeats[block_index]):
do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag
if do_pooling:
query = pooled_hidden
key = value = hidden if self.config.pool_q_only else pooled_hidden
else:
query = key = value = hidden
layer_output = layer(query, key, value, attention_inputs, output_attentions=output_attentions)
hidden = layer_output[0]
if do_pooling:
attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs)
if output_attentions:
all_attentions = all_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden,)
if not return_dict:
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
def upsample(
x: torch.Tensor, stride: int, target_len: int, separate_cls: bool = True, truncate_seq: bool = False
) -> torch.Tensor:
"""
Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension.
"""
if stride == 1:
return x
if separate_cls:
cls = x[:, :1]
x = x[:, 1:]
output = torch.repeat_interleave(x, repeats=stride, dim=1)
if separate_cls:
if truncate_seq:
output = nn.functional.pad(output, (0, 0, 0, stride - 1, 0, 0))
output = output[:, : target_len - 1]
output = torch.cat([cls, output], dim=1)
else:
output = output[:, :target_len]
return output
class FunnelDecoder(nn.Module):
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.config = config
self.attention_structure = FunnelAttentionStructure(config)
self.layers = nn.ModuleList([FunnelLayer(config, 0) for _ in range(config.num_decoder_layers)])
def forward(
self,
final_hidden: torch.Tensor,
first_block_hidden: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[Tuple, BaseModelOutput]:
upsampled_hidden = upsample(
final_hidden,
stride=2 ** (len(self.config.block_sizes) - 1),
target_len=first_block_hidden.shape[1],
separate_cls=self.config.separate_cls,
truncate_seq=self.config.truncate_seq,
)
hidden = upsampled_hidden + first_block_hidden
all_hidden_states = (hidden,) if output_hidden_states else None
all_attentions = () if output_attentions else None
attention_inputs = self.attention_structure.init_attention_inputs(
hidden,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
)
for layer in self.layers:
layer_output = layer(hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions)
hidden = layer_output[0]
if output_attentions:
all_attentions = all_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden,)
if not return_dict:
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
class FunnelDiscriminatorPredictions(nn.Module):
"""Prediction module for the discriminator, made up of two dense layers."""
def __init__(self, config: FunnelConfig) -> None:
super().__init__()
self.config = config
self.dense = nn.Linear(config.d_model, config.d_model)
self.dense_prediction = nn.Linear(config.d_model, 1)
def forward(self, discriminator_hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(discriminator_hidden_states)
hidden_states = ACT2FN[self.config.hidden_act](hidden_states)
logits = self.dense_prediction(hidden_states).squeeze(-1)
return logits
class FunnelPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FunnelConfig
load_tf_weights = load_tf_weights_in_funnel
base_model_prefix = "funnel"
def _init_weights(self, module):
classname = module.__class__.__name__
if classname.find("Linear") != -1:
if getattr(module, "weight", None) is not None:
if self.config.initializer_std is None:
fan_out, fan_in = module.weight.shape
std = np.sqrt(1.0 / float(fan_in + fan_out))
else:
std = self.config.initializer_std
nn.init.normal_(module.weight, std=std)
if getattr(module, "bias", None) is not None:
nn.init.constant_(module.bias, 0.0)
elif classname == "FunnelRelMultiheadAttention":
nn.init.uniform_(module.r_w_bias, b=self.config.initializer_range)
nn.init.uniform_(module.r_r_bias, b=self.config.initializer_range)
nn.init.uniform_(module.r_kernel, b=self.config.initializer_range)
nn.init.uniform_(module.r_s_bias, b=self.config.initializer_range)
nn.init.uniform_(module.seg_embed, b=self.config.initializer_range)
elif classname == "FunnelEmbeddings":
std = 1.0 if self.config.initializer_std is None else self.config.initializer_std
nn.init.normal_(module.word_embeddings.weight, std=std)
if module.word_embeddings.padding_idx is not None:
module.word_embeddings.weight.data[module.word_embeddings.padding_idx].zero_()
class FunnelClassificationHead(nn.Module):
def __init__(self, config: FunnelConfig, n_labels: int) -> None:
super().__init__()
self.linear_hidden = nn.Linear(config.d_model, config.d_model)
self.dropout = nn.Dropout(config.hidden_dropout)
self.linear_out = nn.Linear(config.d_model, n_labels)
def forward(self, hidden: torch.Tensor) -> torch.Tensor:
hidden = self.linear_hidden(hidden)
hidden = torch.tanh(hidden)
hidden = self.dropout(hidden)
return self.linear_out(hidden)
@dataclass
class FunnelForPreTrainingOutput(ModelOutput):
"""
Output type of [`FunnelForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss of the ELECTRA-style objective.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the head (scores for each token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
FUNNEL_START_DOCSTRING = r"""
The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FunnelConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FUNNEL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""
The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called
decoder) or any task-specific head on top.
""",
FUNNEL_START_DOCSTRING,
)
class FunnelBaseModel(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.embeddings = FunnelEmbeddings(config)
self.encoder = FunnelEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.embeddings.word_embeddings = new_embeddings
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# TODO: deal with head_mask
inputs_embeds = self.embeddings(input_ids, inputs_embeds=inputs_embeds)
encoder_outputs = self.encoder(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
@add_start_docstrings(
"The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.",
FUNNEL_START_DOCSTRING,
)
class FunnelModel(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.config = config
self.embeddings = FunnelEmbeddings(config)
self.encoder = FunnelEncoder(config)
self.decoder = FunnelDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.embeddings.word_embeddings = new_embeddings
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# TODO: deal with head_mask
inputs_embeds = self.embeddings(input_ids, inputs_embeds=inputs_embeds)
encoder_outputs = self.encoder(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
)
decoder_outputs = self.decoder(
final_hidden=encoder_outputs[0],
first_block_hidden=encoder_outputs[1][self.config.block_sizes[0]],
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
idx = 0
outputs = (decoder_outputs[0],)
if output_hidden_states:
idx += 1
outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],)
if output_attentions:
idx += 1
outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],)
return outputs
return BaseModelOutput(
last_hidden_state=decoder_outputs[0],
hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states)
if output_hidden_states
else None,
attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None,
)
add_start_docstrings(
"""
Funnel Transformer model with a binary classification head on top as used during pretraining for identifying
generated tokens.
""",
FUNNEL_START_DOCSTRING,
)
class FunnelForPreTraining(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.funnel = FunnelModel(config)
self.discriminator_predictions = FunnelDiscriminatorPredictions(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=FunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FunnelForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the ELECTRA-style loss. Input should be a sequence of tokens (see `input_ids`
docstring) Indices should be in `[0, 1]`:
- 0 indicates the token is an original token,
- 1 indicates the token was replaced.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, FunnelForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = FunnelForPreTraining.from_pretrained("funnel-transformer/small")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> logits = model(**inputs).logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
discriminator_hidden_states = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
discriminator_sequence_output = discriminator_hidden_states[0]
logits = self.discriminator_predictions(discriminator_sequence_output)
loss = None
if labels is not None:
loss_fct = nn.BCEWithLogitsLoss()
if attention_mask is not None:
active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1
active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss]
active_labels = labels[active_loss]
loss = loss_fct(active_logits, active_labels.float())
else:
loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float())
if not return_dict:
output = (logits,) + discriminator_hidden_states[1:]
return ((loss,) + output) if loss is not None else output
return FunnelForPreTrainingOutput(
loss=loss,
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
@add_start_docstrings("""Funnel Transformer Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING)
class FunnelForMaskedLM(FunnelPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.funnel = FunnelModel(config)
self.lm_head = nn.Linear(config.d_model, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head
def set_output_embeddings(self, new_embeddings: nn.Embedding) -> None:
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
prediction_logits = self.lm_head(last_hidden_state)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Funnel Transformer Model with a sequence classification/regression head on top (two linear layer on top of the
first timestep of the last hidden state) e.g. for GLUE tasks.
""",
FUNNEL_START_DOCSTRING,
)
class FunnelForSequenceClassification(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.funnel = FunnelBaseModel(config)
self.classifier = FunnelClassificationHead(config, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
pooled_output = last_hidden_state[:, 0]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Funnel Transformer Model with a multiple choice classification head on top (two linear layer on top of the first
timestep of the last hidden state, and a softmax) e.g. for RocStories/SWAG tasks.
""",
FUNNEL_START_DOCSTRING,
)
class FunnelForMultipleChoice(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.funnel = FunnelBaseModel(config)
self.classifier = FunnelClassificationHead(config, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
pooled_output = last_hidden_state[:, 0]
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Funnel Transformer Model with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
FUNNEL_START_DOCSTRING,
)
class FunnelForTokenClassification(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.funnel = FunnelModel(config)
self.dropout = nn.Dropout(config.hidden_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
last_hidden_state = self.dropout(last_hidden_state)
logits = self.classifier(last_hidden_state)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Funnel Transformer Model with a span classification head on top for extractive question-answering tasks like SQuAD
(a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FUNNEL_START_DOCSTRING,
)
class FunnelForQuestionAnswering(FunnelPreTrainedModel):
def __init__(self, config: FunnelConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.funnel = FunnelModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.funnel(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
logits = self.qa_outputs(last_hidden_state)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"FunnelBaseModel",
"FunnelForMaskedLM",
"FunnelForMultipleChoice",
"FunnelForPreTraining",
"FunnelForQuestionAnswering",
"FunnelForSequenceClassification",
"FunnelForTokenClassification",
"FunnelModel",
"FunnelPreTrainedModel",
"load_tf_weights_in_funnel",
]
```
|
========================================================================================================================================
SOURCE CODE FILE: modeling_tf_funnel.py
LINES: 1
SIZE: 78.59 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\funnel\modeling_tf_funnel.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 Funnel model."""
from __future__ import annotations
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_funnel import FunnelConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "FunnelConfig"
INF = 1e6
class TFFunnelEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.initializer_std = 1.0 if config.initializer_std is None else config.initializer_std
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.hidden_size],
initializer=get_initializer(initializer_range=self.initializer_std),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.d_model])
def call(self, input_ids=None, inputs_embeds=None, training=False):
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
assert not (input_ids is None and inputs_embeds is None)
assert not (input_ids is not None and inputs_embeds is not None)
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(self.weight, input_ids)
final_embeddings = self.LayerNorm(inputs=inputs_embeds)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
class TFFunnelAttentionStructure:
"""
Contains helpers for `TFFunnelRelMultiheadAttention `.
"""
cls_token_type_id: int = 2
def __init__(self, config):
self.d_model = config.d_model
self.attention_type = config.attention_type
self.num_blocks = config.num_blocks
self.separate_cls = config.separate_cls
self.truncate_seq = config.truncate_seq
self.pool_q_only = config.pool_q_only
self.pooling_type = config.pooling_type
self.sin_dropout = keras.layers.Dropout(config.hidden_dropout)
self.cos_dropout = keras.layers.Dropout(config.hidden_dropout)
# Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was
# divided.
self.pooling_mult = None
def init_attention_inputs(self, inputs_embeds, attention_mask=None, token_type_ids=None, training=False):
"""Returns the attention inputs associated to the inputs of the model."""
# inputs_embeds has shape batch_size x seq_len x d_model
# attention_mask and token_type_ids have shape batch_size x seq_len
self.pooling_mult = 1
self.seq_len = seq_len = shape_list(inputs_embeds)[1]
position_embeds = self.get_position_embeds(seq_len, training=training)
token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None
cls_mask = (
tf.pad(tf.ones([seq_len - 1, seq_len - 1], dtype=inputs_embeds.dtype), [[1, 0], [1, 0]])
if self.separate_cls
else None
)
return (position_embeds, token_type_mat, attention_mask, cls_mask)
def token_type_ids_to_mat(self, token_type_ids):
"""Convert `token_type_ids` to `token_type_mat`."""
token_type_mat = tf.equal(tf.expand_dims(token_type_ids, -1), tf.expand_dims(token_type_ids, -2))
# Treat <cls> as in the same segment as both A & B
cls_ids = tf.equal(token_type_ids, tf.constant([self.cls_token_type_id], dtype=token_type_ids.dtype))
cls_mat = tf.logical_or(tf.expand_dims(cls_ids, -1), tf.expand_dims(cls_ids, -2))
return tf.logical_or(cls_mat, token_type_mat)
def get_position_embeds(self, seq_len, training=False):
"""
Create and cache inputs related to relative position encoding. Those are very different depending on whether we
are using the factorized or the relative shift attention:
For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2,
final formula.
For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final
formula.
Paper link: https://arxiv.org/abs/2006.03236
"""
if self.attention_type == "factorized":
# Notations from the paper, appending A.2.2, final formula.
# We need to create and return the matrices phi, psi, pi and omega.
pos_seq = tf.range(0, seq_len, 1.0)
freq_seq = tf.range(0, self.d_model // 2, 1.0)
inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2)))
sinusoid = tf.einsum("i,d->id", pos_seq, inv_freq)
sin_embed = tf.sin(sinusoid)
sin_embed_d = self.sin_dropout(sin_embed, training=training)
cos_embed = tf.cos(sinusoid)
cos_embed_d = self.cos_dropout(cos_embed, training=training)
# This is different from the formula on the paper...
phi = tf.concat([sin_embed_d, sin_embed_d], axis=-1)
psi = tf.concat([cos_embed, sin_embed], axis=-1)
pi = tf.concat([cos_embed_d, cos_embed_d], axis=-1)
omega = tf.concat([-sin_embed, cos_embed], axis=-1)
return (phi, pi, psi, omega)
else:
# Notations from the paper, appending A.2.1, final formula.
# We need to create and return all the possible vectors R for all blocks and shifts.
freq_seq = tf.range(0, self.d_model // 2, 1.0)
inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2)))
# Maximum relative positions for the first input
rel_pos_id = tf.range(-seq_len * 2, seq_len * 2, 1.0)
zero_offset = seq_len * tf.constant(2)
sinusoid = tf.einsum("i,d->id", rel_pos_id, inv_freq)
sin_embed = self.sin_dropout(tf.sin(sinusoid), training=training)
cos_embed = self.cos_dropout(tf.cos(sinusoid), training=training)
pos_embed = tf.concat([sin_embed, cos_embed], axis=-1)
pos = tf.range(0, seq_len)
pooled_pos = pos
position_embeds_list = []
for block_index in range(0, self.num_blocks):
# For each block with block_index > 0, we need two types position embeddings:
# - Attention(pooled-q, unpooled-kv)
# - Attention(pooled-q, pooled-kv)
# For block_index = 0 we only need the second one and leave the first one as None.
# First type
position_embeds_pooling = tf.fill([1], value=-1.0)
if block_index != 0:
pooled_pos = self.stride_pool_pos(pos, block_index)
# construct rel_pos_id
stride = 2 ** (block_index - 1)
rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2)
# rel_pos = tf.expand_dims(rel_pos,1) + zero_offset
# rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model))
rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype)
rel_pos = rel_pos + zero_offset
position_embeds_pooling = tf.gather(pos_embed, rel_pos, axis=0)
# Second type
pos = pooled_pos
stride = 2**block_index
rel_pos = self.relative_pos(pos, stride)
# rel_pos = tf.expand_dims(rel_pos,1) + zero_offset
# rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model))
rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype)
rel_pos = rel_pos + zero_offset
tf.debugging.assert_less(rel_pos, tf.shape(pos_embed)[0])
position_embeds_no_pooling = tf.gather(pos_embed, rel_pos, axis=0)
position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling])
return position_embeds_list
def stride_pool_pos(self, pos_id, block_index):
"""
Pool `pos_id` while keeping the cls token separate (if `self.separate_cls=True`).
"""
if self.separate_cls:
# Under separate <cls>, we treat the <cls> as the first token in
# the previous block of the 1st real block. Since the 1st real
# block always has position 1, the position of the previous block
# will be at `1 - 2 ** block_index`.
cls_pos = tf.constant([-(2**block_index) + 1], dtype=pos_id.dtype)
pooled_pos_id = pos_id[1:-1] if self.truncate_seq else pos_id[1:]
return tf.concat([cls_pos, pooled_pos_id[::2]], 0)
else:
return pos_id[::2]
def relative_pos(self, pos, stride, pooled_pos=None, shift=1):
"""
Build the relative positional vector between `pos` and `pooled_pos`.
"""
if pooled_pos is None:
pooled_pos = pos
ref_point = pooled_pos[0] - pos[0]
num_remove = shift * shape_list(pooled_pos)[0]
max_dist = ref_point + num_remove * stride
min_dist = pooled_pos[0] - pos[-1]
return tf.range(max_dist, min_dist - 1, -stride)
def stride_pool(self, tensor, axis):
"""
Perform pooling by stride slicing the tensor along the given axis.
"""
if tensor is None:
return None
# Do the stride pool recursively if axis is a list or a tuple of ints.
if isinstance(axis, (list, tuple)):
for ax in axis:
tensor = self.stride_pool(tensor, ax)
return tensor
# Do the stride pool recursively if tensor is a list or tuple of tensors.
if isinstance(tensor, (tuple, list)):
return type(tensor)(self.stride_pool(x, axis) for x in tensor)
# Deal with negative axis
axis %= len(shape_list(tensor))
axis_slice = slice(None, -1, 2) if self.separate_cls and self.truncate_seq else slice(None, None, 2)
enc_slice = [slice(None)] * axis + [axis_slice]
if self.separate_cls:
cls_slice = [slice(None)] * axis + [slice(None, 1)]
tensor = tf.concat([tensor[cls_slice], tensor], axis)
return tensor[enc_slice]
def pool_tensor(self, tensor, mode="mean", stride=2):
"""Apply 1D pooling to a tensor of size [B x T (x H)]."""
if tensor is None:
return None
# Do the pool recursively if tensor is a list or tuple of tensors.
if isinstance(tensor, (tuple, list)):
return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor)
if self.separate_cls:
suffix = tensor[:, :-1] if self.truncate_seq else tensor
tensor = tf.concat([tensor[:, :1], suffix], axis=1)
ndim = len(shape_list(tensor))
if ndim == 2:
tensor = tensor[:, :, None]
if mode == "mean":
tensor = tf.nn.avg_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME")
elif mode == "max":
tensor = tf.nn.max_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME")
elif mode == "min":
tensor = -tf.nn.max_pool1d(-tensor, stride, strides=stride, data_format="NWC", padding="SAME")
else:
raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.")
return tf.squeeze(tensor, 2) if ndim == 2 else tensor
def pre_attention_pooling(self, output, attention_inputs):
"""Pool `output` and the proper parts of `attention_inputs` before the attention layer."""
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
if self.pool_q_only:
if self.attention_type == "factorized":
position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:]
token_type_mat = self.stride_pool(token_type_mat, 1)
cls_mask = self.stride_pool(cls_mask, 0)
output = self.pool_tensor(output, mode=self.pooling_type)
else:
self.pooling_mult *= 2
if self.attention_type == "factorized":
position_embeds = self.stride_pool(position_embeds, 0)
token_type_mat = self.stride_pool(token_type_mat, [1, 2])
cls_mask = self.stride_pool(cls_mask, [1, 2])
attention_mask = self.pool_tensor(attention_mask, mode="min")
output = self.pool_tensor(output, mode=self.pooling_type)
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
return output, attention_inputs
def post_attention_pooling(self, attention_inputs):
"""Pool the proper parts of `attention_inputs` after the attention layer."""
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
if self.pool_q_only:
self.pooling_mult *= 2
if self.attention_type == "factorized":
position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0)
token_type_mat = self.stride_pool(token_type_mat, 2)
cls_mask = self.stride_pool(cls_mask, 1)
attention_mask = self.pool_tensor(attention_mask, mode="min")
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
return attention_inputs
def _relative_shift_gather(positional_attn, context_len, shift):
batch_size, n_head, seq_len, max_rel_len = shape_list(positional_attn)
# max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j
# What's next is the same as doing the following gather in PyTorch, which might be clearer code but less efficient.
# idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1)
# # matrix of context_len + i-j
# return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len]))
positional_attn = tf.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len])
positional_attn = positional_attn[:, :, shift:, :]
positional_attn = tf.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift])
positional_attn = positional_attn[..., :context_len]
return positional_attn
class TFFunnelRelMultiheadAttention(keras.layers.Layer):
def __init__(self, config, block_index, **kwargs):
super().__init__(**kwargs)
self.attention_type = config.attention_type
self.n_head = n_head = config.n_head
self.d_head = d_head = config.d_head
self.d_model = d_model = config.d_model
self.initializer_range = config.initializer_range
self.block_index = block_index
self.hidden_dropout = keras.layers.Dropout(config.hidden_dropout)
self.attention_dropout = keras.layers.Dropout(config.attention_dropout)
initializer = get_initializer(config.initializer_range)
self.q_head = keras.layers.Dense(
n_head * d_head, use_bias=False, kernel_initializer=initializer, name="q_head"
)
self.k_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="k_head")
self.v_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="v_head")
self.post_proj = keras.layers.Dense(d_model, kernel_initializer=initializer, name="post_proj")
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.scale = 1.0 / (d_head**0.5)
def build(self, input_shape=None):
n_head, d_head, d_model = self.n_head, self.d_head, self.d_model
initializer = get_initializer(self.initializer_range)
self.r_w_bias = self.add_weight(
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_w_bias"
)
self.r_r_bias = self.add_weight(
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_r_bias"
)
self.r_kernel = self.add_weight(
shape=(d_model, n_head, d_head), initializer=initializer, trainable=True, name="r_kernel"
)
self.r_s_bias = self.add_weight(
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_s_bias"
)
self.seg_embed = self.add_weight(
shape=(2, n_head, d_head), initializer=initializer, trainable=True, name="seg_embed"
)
if self.built:
return
self.built = True
if getattr(self, "q_head", None) is not None:
with tf.name_scope(self.q_head.name):
self.q_head.build([None, None, d_model])
if getattr(self, "k_head", None) is not None:
with tf.name_scope(self.k_head.name):
self.k_head.build([None, None, d_model])
if getattr(self, "v_head", None) is not None:
with tf.name_scope(self.v_head.name):
self.v_head.build([None, None, d_model])
if getattr(self, "post_proj", None) is not None:
with tf.name_scope(self.post_proj.name):
self.post_proj.build([None, None, n_head * d_head])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, d_model])
def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None):
"""Relative attention score for the positional encodings"""
# q_head has shape batch_size x sea_len x n_head x d_head
if self.attention_type == "factorized":
# Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236)
# phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model
phi, pi, psi, omega = position_embeds
# Shape n_head x d_head
u = self.r_r_bias * self.scale
# Shape d_model x n_head x d_head
w_r = self.r_kernel
# Shape batch_size x sea_len x n_head x d_model
q_r_attention = tf.einsum("binh,dnh->bind", q_head + u, w_r)
q_r_attention_1 = q_r_attention * phi[:, None]
q_r_attention_2 = q_r_attention * pi[:, None]
# Shape batch_size x n_head x seq_len x context_len
positional_attn = tf.einsum("bind,jd->bnij", q_r_attention_1, psi) + tf.einsum(
"bind,jd->bnij", q_r_attention_2, omega
)
else:
# Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236)
# Grab the proper positional encoding, shape max_rel_len x d_model
if shape_list(q_head)[1] != context_len:
shift = 2
r = position_embeds[self.block_index][1]
else:
shift = 1
r = position_embeds[self.block_index][0]
# Shape n_head x d_head
v = self.r_r_bias * self.scale
# Shape d_model x n_head x d_head
w_r = self.r_kernel
# Shape max_rel_len x n_head x d_model
r_head = tf.einsum("td,dnh->tnh", r, w_r)
# Shape batch_size x n_head x seq_len x max_rel_len
positional_attn = tf.einsum("binh,tnh->bnit", q_head + v, r_head)
# Shape batch_size x n_head x seq_len x context_len
positional_attn = _relative_shift_gather(positional_attn, context_len, shift)
if cls_mask is not None:
positional_attn *= cls_mask
return positional_attn
def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None):
"""Relative attention score for the token_type_ids"""
if token_type_mat is None:
return 0
batch_size, seq_len, context_len = shape_list(token_type_mat)
# q_head has shape batch_size x seq_len x n_head x d_head
# Shape n_head x d_head
r_s_bias = self.r_s_bias * self.scale
# Shape batch_size x n_head x seq_len x 2
token_type_bias = tf.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed)
# Shape batch_size x n_head x seq_len x context_len
token_type_mat = tf.tile(token_type_mat[:, None], [1, shape_list(q_head)[2], 1, 1])
# token_type_mat = tf.broadcast_to(token_type_mat[:, None], new_shape)
# Shapes batch_size x n_head x seq_len
diff_token_type, same_token_type = tf.split(token_type_bias, 2, axis=-1)
# Shape batch_size x n_head x seq_len x context_len
token_type_attn = tf.where(
token_type_mat,
tf.tile(same_token_type, [1, 1, 1, context_len]),
tf.tile(diff_token_type, [1, 1, 1, context_len]),
)
if cls_mask is not None:
token_type_attn *= cls_mask
return token_type_attn
def call(self, query, key, value, attention_inputs, output_attentions=False, training=False):
# query has shape batch_size x seq_len x d_model
# key and value have shapes batch_size x context_len x d_model
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
batch_size, seq_len, _ = shape_list(query)
context_len = shape_list(key)[1]
n_head, d_head = self.n_head, self.d_head
# Shape batch_size x seq_len x n_head x d_head
q_head = tf.reshape(self.q_head(query), [batch_size, seq_len, n_head, d_head])
# Shapes batch_size x context_len x n_head x d_head
k_head = tf.reshape(self.k_head(key), [batch_size, context_len, n_head, d_head])
v_head = tf.reshape(self.v_head(value), [batch_size, context_len, n_head, d_head])
q_head = q_head * self.scale
# Shape n_head x d_head
r_w_bias = self.r_w_bias * self.scale
# Shapes batch_size x n_head x seq_len x context_len
content_score = tf.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head)
positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask)
token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask)
# merge attention scores
attn_score = content_score + positional_attn + token_type_attn
# perform masking
if attention_mask is not None:
attention_mask = tf.cast(attention_mask, dtype=attn_score.dtype)
attn_score = attn_score - (INF * (1 - attention_mask[:, None, None]))
# attention probability
attn_prob = stable_softmax(attn_score, axis=-1)
attn_prob = self.attention_dropout(attn_prob, training=training)
# attention output, shape batch_size x seq_len x n_head x d_head
attn_vec = tf.einsum("bnij,bjnd->bind", attn_prob, v_head)
# Shape shape batch_size x seq_len x d_model
attn_out = self.post_proj(tf.reshape(attn_vec, [batch_size, seq_len, n_head * d_head]))
attn_out = self.hidden_dropout(attn_out, training=training)
output = self.layer_norm(query + attn_out)
return (output, attn_prob) if output_attentions else (output,)
class TFFunnelPositionwiseFFN(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
initializer = get_initializer(config.initializer_range)
self.linear_1 = keras.layers.Dense(config.d_inner, kernel_initializer=initializer, name="linear_1")
self.activation_function = get_tf_activation(config.hidden_act)
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
self.linear_2 = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_2")
self.dropout = keras.layers.Dropout(config.hidden_dropout)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.config = config
def call(self, hidden, training=False):
h = self.linear_1(hidden)
h = self.activation_function(h)
h = self.activation_dropout(h, training=training)
h = self.linear_2(h)
h = self.dropout(h, training=training)
return self.layer_norm(hidden + h)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "linear_1", None) is not None:
with tf.name_scope(self.linear_1.name):
self.linear_1.build([None, None, self.config.d_model])
if getattr(self, "linear_2", None) is not None:
with tf.name_scope(self.linear_2.name):
self.linear_2.build([None, None, self.config.d_inner])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.d_model])
class TFFunnelLayer(keras.layers.Layer):
def __init__(self, config, block_index, **kwargs):
super().__init__(**kwargs)
self.attention = TFFunnelRelMultiheadAttention(config, block_index, name="attention")
self.ffn = TFFunnelPositionwiseFFN(config, name="ffn")
def call(self, query, key, value, attention_inputs, output_attentions=False, training=False):
attn = self.attention(
query, key, value, attention_inputs, output_attentions=output_attentions, training=training
)
output = self.ffn(attn[0], training=training)
return (output, attn[1]) if output_attentions else (output,)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "ffn", None) is not None:
with tf.name_scope(self.ffn.name):
self.ffn.build(None)
class TFFunnelEncoder(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.separate_cls = config.separate_cls
self.pool_q_only = config.pool_q_only
self.block_repeats = config.block_repeats
self.attention_structure = TFFunnelAttentionStructure(config)
self.blocks = [
[TFFunnelLayer(config, block_index, name=f"blocks_._{block_index}_._{i}") for i in range(block_size)]
for block_index, block_size in enumerate(config.block_sizes)
]
def call(
self,
inputs_embeds,
attention_mask=None,
token_type_ids=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
training=False,
):
# The pooling is not implemented on long tensors, so we convert this mask.
# attention_mask = tf.cast(attention_mask, inputs_embeds.dtype)
attention_inputs = self.attention_structure.init_attention_inputs(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
training=training,
)
hidden = inputs_embeds
all_hidden_states = (inputs_embeds,) if output_hidden_states else None
all_attentions = () if output_attentions else None
for block_index, block in enumerate(self.blocks):
pooling_flag = shape_list(hidden)[1] > (2 if self.separate_cls else 1)
pooling_flag = pooling_flag and block_index > 0
pooled_hidden = tf.zeros(shape_list(hidden))
if pooling_flag:
pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling(
hidden, attention_inputs
)
for layer_index, layer in enumerate(block):
for repeat_index in range(self.block_repeats[block_index]):
do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag
if do_pooling:
query = pooled_hidden
key = value = hidden if self.pool_q_only else pooled_hidden
else:
query = key = value = hidden
layer_output = layer(
query, key, value, attention_inputs, output_attentions=output_attentions, training=training
)
hidden = layer_output[0]
if do_pooling:
attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs)
if output_attentions:
all_attentions = all_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden,)
if not return_dict:
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
for block in self.blocks:
for layer in block:
with tf.name_scope(layer.name):
layer.build(None)
def upsample(x, stride, target_len, separate_cls=True, truncate_seq=False):
"""
Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension.
"""
if stride == 1:
return x
if separate_cls:
cls = x[:, :1]
x = x[:, 1:]
output = tf.repeat(x, repeats=stride, axis=1)
if separate_cls:
if truncate_seq:
output = tf.pad(output, [[0, 0], [0, stride - 1], [0, 0]])
output = output[:, : target_len - 1]
output = tf.concat([cls, output], axis=1)
else:
output = output[:, :target_len]
return output
class TFFunnelDecoder(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.separate_cls = config.separate_cls
self.truncate_seq = config.truncate_seq
self.stride = 2 ** (len(config.block_sizes) - 1)
self.attention_structure = TFFunnelAttentionStructure(config)
self.layers = [TFFunnelLayer(config, 0, name=f"layers_._{i}") for i in range(config.num_decoder_layers)]
def call(
self,
final_hidden,
first_block_hidden,
attention_mask=None,
token_type_ids=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
training=False,
):
upsampled_hidden = upsample(
final_hidden,
stride=self.stride,
target_len=shape_list(first_block_hidden)[1],
separate_cls=self.separate_cls,
truncate_seq=self.truncate_seq,
)
hidden = upsampled_hidden + first_block_hidden
all_hidden_states = (hidden,) if output_hidden_states else None
all_attentions = () if output_attentions else None
attention_inputs = self.attention_structure.init_attention_inputs(
hidden,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
training=training,
)
for layer in self.layers:
layer_output = layer(
hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions, training=training
)
hidden = layer_output[0]
if output_attentions:
all_attentions = all_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden,)
if not return_dict:
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFFunnelBaseLayer(keras.layers.Layer):
"""Base model without decoder"""
config_class = FunnelConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.embeddings = TFFunnelEmbeddings(config, name="embeddings")
self.encoder = TFFunnelEncoder(config, name="encoder")
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(input_shape, 1)
if token_type_ids is None:
token_type_ids = tf.fill(input_shape, 0)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids, training=training)
encoder_outputs = self.encoder(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return encoder_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
@keras_serializable
class TFFunnelMainLayer(keras.layers.Layer):
"""Base model with decoder"""
config_class = FunnelConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.block_sizes = config.block_sizes
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.embeddings = TFFunnelEmbeddings(config, name="embeddings")
self.encoder = TFFunnelEncoder(config, name="encoder")
self.decoder = TFFunnelDecoder(config, name="decoder")
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(input_shape, 1)
if token_type_ids is None:
token_type_ids = tf.fill(input_shape, 0)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids, training=training)
encoder_outputs = self.encoder(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
training=training,
)
decoder_outputs = self.decoder(
final_hidden=encoder_outputs[0],
first_block_hidden=encoder_outputs[1][self.block_sizes[0]],
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
idx = 0
outputs = (decoder_outputs[0],)
if output_hidden_states:
idx += 1
outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],)
if output_attentions:
idx += 1
outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],)
return outputs
return TFBaseModelOutput(
last_hidden_state=decoder_outputs[0],
hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states)
if output_hidden_states
else None,
attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
class TFFunnelDiscriminatorPredictions(keras.layers.Layer):
"""Prediction module for the discriminator, made up of two dense layers."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
initializer = get_initializer(config.initializer_range)
self.dense = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="dense")
self.activation_function = get_tf_activation(config.hidden_act)
self.dense_prediction = keras.layers.Dense(1, kernel_initializer=initializer, name="dense_prediction")
self.config = config
def call(self, discriminator_hidden_states):
hidden_states = self.dense(discriminator_hidden_states)
hidden_states = self.activation_function(hidden_states)
logits = tf.squeeze(self.dense_prediction(hidden_states))
return logits
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.d_model])
if getattr(self, "dense_prediction", None) is not None:
with tf.name_scope(self.dense_prediction.name):
self.dense_prediction.build([None, None, self.config.d_model])
class TFFunnelMaskedLMHead(keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.input_embeddings = input_embeddings
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def get_output_embeddings(self):
return self.input_embeddings
def set_output_embeddings(self, value):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states, training=False):
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
class TFFunnelClassificationHead(keras.layers.Layer):
def __init__(self, config, n_labels, **kwargs):
super().__init__(**kwargs)
initializer = get_initializer(config.initializer_range)
self.linear_hidden = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_hidden")
self.dropout = keras.layers.Dropout(config.hidden_dropout)
self.linear_out = keras.layers.Dense(n_labels, kernel_initializer=initializer, name="linear_out")
self.config = config
def call(self, hidden, training=False):
hidden = self.linear_hidden(hidden)
hidden = keras.activations.tanh(hidden)
hidden = self.dropout(hidden, training=training)
return self.linear_out(hidden)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "linear_hidden", None) is not None:
with tf.name_scope(self.linear_hidden.name):
self.linear_hidden.build([None, None, self.config.d_model])
if getattr(self, "linear_out", None) is not None:
with tf.name_scope(self.linear_out.name):
self.linear_out.build([None, None, self.config.d_model])
class TFFunnelPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FunnelConfig
base_model_prefix = "funnel"
@property
def dummy_inputs(self):
# Funnel misbehaves with very small inputs, so we override and make them a bit bigger
return {"input_ids": tf.ones((1, 3), dtype=tf.int32)}
@dataclass
class TFFunnelForPreTrainingOutput(ModelOutput):
"""
Output type of [`FunnelForPreTraining`].
Args:
logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the head (scores for each token before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: Optional[tf.Tensor] = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
FUNNEL_START_DOCSTRING = r"""
The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`XxxConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FUNNEL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"""
The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called
decoder) or any task-specific head on top.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelBaseModel(TFFunnelPreTrainedModel):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelBaseLayer(config, name="funnel")
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
return self.funnel(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
def serving_output(self, output):
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFBaseModelOutput(
last_hidden_state=output.last_hidden_state,
hidden_states=output.hidden_states,
attentions=output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
@add_start_docstrings(
"The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.",
FUNNEL_START_DOCSTRING,
)
class TFFunnelModel(TFFunnelPreTrainedModel):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelMainLayer(config, name="funnel")
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
return self.funnel(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
def serving_output(self, output):
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFBaseModelOutput(
last_hidden_state=output.last_hidden_state,
hidden_states=output.hidden_states,
attentions=output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
@add_start_docstrings(
"""
Funnel model with a binary classification head on top as used during pretraining for identifying generated tokens.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForPreTraining(TFFunnelPreTrainedModel):
def __init__(self, config: FunnelConfig, **kwargs) -> None:
super().__init__(config, **kwargs)
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.discriminator_predictions = TFFunnelDiscriminatorPredictions(config, name="discriminator_predictions")
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFFunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFFunnelForPreTrainingOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, TFFunnelForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = TFFunnelForPreTraining.from_pretrained("funnel-transformer/small")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(inputs).logits
```"""
discriminator_hidden_states = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
discriminator_sequence_output = discriminator_hidden_states[0]
logits = self.discriminator_predictions(discriminator_sequence_output)
if not return_dict:
return (logits,) + discriminator_hidden_states[1:]
return TFFunnelForPreTrainingOutput(
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
def serving_output(self, output):
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFFunnelForPreTrainingOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "discriminator_predictions", None) is not None:
with tf.name_scope(self.discriminator_predictions.name):
self.discriminator_predictions.build(None)
@add_start_docstrings("""Funnel Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING)
class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.lm_head = TFFunnelMaskedLMHead(config, self.funnel.embeddings, name="lm_head")
def get_lm_head(self) -> TFFunnelMaskedLMHead:
return self.lm_head
def get_prefix_bias_name(self) -> str:
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.lm_head.name
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFMaskedLMOutput(logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
@add_start_docstrings(
"""
Funnel Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.funnel = TFFunnelBaseLayer(config, name="funnel")
self.classifier = TFFunnelClassificationHead(config, config.num_labels, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = outputs[0]
pooled_output = last_hidden_state[:, 0]
logits = self.classifier(pooled_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFSequenceClassifierOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
Funnel Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelBaseLayer(config, name="funnel")
self.classifier = TFFunnelClassificationHead(config, 1, name="classifier")
@property
def dummy_inputs(self):
return {"input_ids": tf.ones((3, 3, 4), dtype=tf.int32)}
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
outputs = self.funnel(
flat_input_ids,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = outputs[0]
pooled_output = last_hidden_state[:, 0]
logits = self.classifier(pooled_output, training=training)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFMultipleChoiceModelOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
Funnel Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.dropout = keras.layers.Dropout(config.hidden_dropout)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFTokenClassifierOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Funnel Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.qa_outputs = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions, "end_position": end_positions}
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFQuestionAnsweringModelOutput(
start_logits=output.start_logits,
end_logits=output.end_logits,
hidden_states=output.hidden_states,
attentions=output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
__all__ = [
"TFFunnelBaseModel",
"TFFunnelForMaskedLM",
"TFFunnelForMultipleChoice",
"TFFunnelForPreTraining",
"TFFunnelForQuestionAnswering",
"TFFunnelForSequenceClassification",
"TFFunnelForTokenClassification",
"TFFunnelModel",
"TFFunnelPreTrainedModel",
]
```
|
=========================================================================================================================================
SOURCE CODE FILE: tokenization_funnel.py
LINES: 3
SIZE: 22.19 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\funnel\tokenization_funnel.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for Funnel Transformer."""
import collections
import os
import unicodedata
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
_model_names = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
# Copied from transformers.models.bert.tokenization_bert.load_vocab
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class FunnelTokenizer(PreTrainedTokenizer):
r"""
Construct a Funnel Transformer tokenizer. Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"<sep>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<cls>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sentence token.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
cls_token_type_id: int = 2
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="<unk>",
sep_token="<sep>",
pad_token="<pad>",
cls_token="<cls>",
mask_token="<mask>",
bos_token="<s>",
eos_token="</s>",
tokenize_chinese_chars=True,
strip_accents=None,
clean_up_tokenization_spaces=True,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = FunnelTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
bos_token=bos_token,
eos_token=eos_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size
def vocab_size(self):
return len(self.vocab)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize
def _tokenize(self, text, split_special_tokens=False):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(
text, never_split=self.all_special_tokens if not split_special_tokens else None
):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel
Transformer sequence pair mask has the following format:
```
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0]
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
__all__ = ["FunnelTokenizer"]
```
|
==============================================================================================================================================
SOURCE CODE FILE: tokenization_funnel_fast.py
LINES: 1
SIZE: 8.48 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\funnel\tokenization_funnel_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for Funnel Transformer."""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_model_names = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
class FunnelTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" Funnel Transformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"<sep>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<cls>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
bos_token (`str`, `optional`, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, `optional`, defaults to `"</s>"`):
The end of sentence token.
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = FunnelTokenizer
cls_token_type_id: int = 2
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="<unk>",
sep_token="<sep>",
pad_token="<pad>",
cls_token="<cls>",
mask_token="<mask>",
bos_token="<s>",
eos_token="</s>",
clean_text=True,
tokenize_chinese_chars=True,
strip_accents=None,
wordpieces_prefix="##",
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
bos_token=bos_token,
eos_token=eos_token,
clean_text=clean_text,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
wordpieces_prefix=wordpieces_prefix,
**kwargs,
)
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
self.do_lower_case = do_lower_case
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens with BERT->Funnel
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A Funnel sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1 is not None:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel
Transformer sequence pair mask has the following format:
```
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0]
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["FunnelTokenizerFast"]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.04 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fuyu\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_fuyu import *
from .image_processing_fuyu import *
from .modeling_fuyu import *
from .processing_fuyu import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_fuyu.py
LINES: 1
SIZE: 9.75 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fuyu\configuration_fuyu.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Adept AI and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fuyu model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
class FuyuConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`FuyuForCausalLM`]. It is used to instantiate an
Fuyu model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 262144):
Vocabulary size of the Fuyu model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`FuyuForCausalLM`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 16384):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 36):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that this model might ever be used with.
image_size (`int`, *optional*, defaults to 300):
The input image size.
patch_size (`int`, *optional*, defaults to 30):
The input vision transformer encoding patch size.
num_channels (`int`, *optional*, defaults to 3):
The input image number of channels.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie input and output embeddings.
rope_theta (`float`, *optional*, defaults to 25000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalFuyu/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
qk_layernorm (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the Queries and Keys after projecting the hidden states
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after applying the MLP to the hidden states.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
Percentage of the query and keys which will have rotary embedding.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the *beginning-of-sequence* token.
eos_token_id (`Union[int, List[int]]`, *optional*, defaults to 2):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize the `language``[`Aut`].
```python
>>> from transformers import FuyuConfig
>>> # Initializing a Fuyu fuyu-7b style configuration
>>> configuration = FuyuConfig()
```"""
model_type = "fuyu"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=262144,
hidden_size=4096,
intermediate_size=16384,
num_hidden_layers=36,
num_attention_heads=64,
hidden_act="relu2",
max_position_embeddings=16384,
image_size=300,
patch_size=30,
num_channels=3,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=25000.0,
rope_scaling=None,
qk_layernorm=True,
hidden_dropout=0.0,
attention_dropout=0.0,
partial_rotary_factor=0.5,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
text_config=None,
**kwargs,
):
if text_config is None:
text_config = {
"vocab_size": vocab_size,
"max_position_embeddings": max_position_embeddings,
"hidden_size": hidden_size,
"intermediate_size": intermediate_size,
"num_hidden_layers": num_hidden_layers,
"num_attention_heads": num_attention_heads,
"hidden_act": hidden_act,
"initializer_range": initializer_range,
"layer_norm_eps": layer_norm_eps,
"use_cache": use_cache,
"rope_theta": rope_theta,
"rope_scaling": rope_scaling,
"qk_layernorm": qk_layernorm,
"hidden_dropout": hidden_dropout,
"attention_dropout": attention_dropout,
"partial_rotary_factor": partial_rotary_factor,
"pad_token_id": pad_token_id,
"bos_token_id": bos_token_id,
"eos_token_id": eos_token_id,
"tie_word_embeddings": tie_word_embeddings,
}
logger.info("text_config is None. initializing the text model with default values.")
text_model_type = text_config["model_type"] if "model_type" in text_config else "persimmon"
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
self._vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.qk_layernorm = qk_layernorm
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.partial_rotary_factor = partial_rotary_factor
self._rope_scaling_validation()
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
f"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
__all__ = ["FuyuConfig"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: image_processing_fuyu.py
LINES: 1
SIZE: 32.73 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fuyu\image_processing_fuyu.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Fuyu."""
import math
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
pad,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
is_valid_image,
make_list_of_images,
to_numpy_array,
validate_preprocess_arguments,
)
from ...utils import (
TensorType,
filter_out_non_signature_kwargs,
is_torch_available,
is_torch_device,
is_torch_dtype,
logging,
requires_backends,
)
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
def make_list_of_list_of_images(
images: Union[List[List[ImageInput]], List[ImageInput], ImageInput],
) -> List[List[ImageInput]]:
if is_valid_image(images):
return [[images]]
if isinstance(images, list) and all(isinstance(image, list) for image in images):
return images
if isinstance(images, list):
return [make_list_of_images(image) for image in images]
raise ValueError("images must be a list of list of images or a list of images or an image.")
class FuyuBatchFeature(BatchFeature):
"""
BatchFeature class for Fuyu image processor and processor.
The outputs dictionary from the processors contains a mix of tensors and lists of tensors.
"""
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
"""
Convert the inner content to tensors.
Args:
tensor_type (`str` or [`~utils.TensorType`], *optional*):
The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If
`None`, no modification is done.
"""
if tensor_type is None:
return self
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type=tensor_type)
def _convert_tensor(elem):
if is_tensor(elem):
return elem
return as_tensor(elem)
def _safe_convert_tensor(elem):
try:
return _convert_tensor(elem)
except: # noqa E722
if key == "overflowing_values":
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
raise ValueError(
"Unable to create tensor, you should probably activate padding "
"with 'padding=True' to have batched tensors with the same length."
)
# Do the tensor conversion in batch
for key, value in self.items():
if isinstance(value, list) and isinstance(value[0], list):
# List[List[Any]] -> List[List[Tensor]]
self[key] = [[_safe_convert_tensor(elem) for elem in elems] for elems in value]
elif isinstance(value, list):
# List[Any] -> List[Tensor]
self[key] = [_safe_convert_tensor(elem) for elem in value]
else:
# Any -> Tensor
self[key] = _safe_convert_tensor(value)
return self
def to(self, *args, **kwargs) -> "BatchFeature":
"""
Send all values to device by calling `v.to(*args, **kwargs)` (PyTorch only). This should support casting in
different `dtypes` and sending the `BatchFeature` to a different `device`.
Args:
args (`Tuple`):
Will be passed to the `to(...)` function of the tensors.
kwargs (`Dict`, *optional*):
Will be passed to the `to(...)` function of the tensors.
Returns:
[`BatchFeature`]: The same instance after modification.
"""
requires_backends(self, ["torch"])
import torch # noqa
new_data = {}
device = kwargs.get("device")
# Check if the args are a device or a dtype
if device is None and len(args) > 0:
# device should be always the first argument
arg = args[0]
if is_torch_dtype(arg):
# The first argument is a dtype
pass
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
device = arg
else:
# it's something else
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
def _to(elem):
# check if v is a floating point
if torch.is_floating_point(elem):
# cast and send to device
return elem.to(*args, **kwargs)
if device is not None:
return elem.to(device=device)
return elem
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
for k, v in self.items():
if isinstance(v, list) and isinstance(v[0], list):
# Data structure is a list of lists
new_v = []
for elems in v:
new_v.append([_to(elem) for elem in elems])
new_data[k] = new_v
elif isinstance(v, list):
# Data structure is a list
new_data[k] = [_to(elem) for elem in v]
else:
new_data[k] = _to(v)
self.data = new_data
return self
class FuyuImageProcessor(BaseImageProcessor):
"""
This class should handle the image processing part before the main FuyuForCausalLM. In particular, it should
handle:
- Processing Images:
Taking a batch of images as input. If the images are variable-sized, it resizes them based on the desired patch
dimensions. The image output is always img_h, img_w of (1080, 1920)
Then, it patches up these images using the patchify_image function.
- Creating Image Input IDs:
For each patch, a placeholder ID is given to identify where these patches belong in a token sequence. For
variable-sized images, each line of patches is terminated with a newline ID.
- Image Patch Indices:
For each image patch, the code maintains an index where these patches should be inserted in a token stream.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image to `size`.
size (`Dict[str, int]`, *optional*, defaults to `{"height": 1080, "width": 1920}`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the image to `size`.
padding_value (`float`, *optional*, defaults to 1.0):
The value to pad the image with.
padding_mode (`str`, *optional*, defaults to `"constant"`):
The padding mode to use when padding the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
image_mean (`float`, *optional*, defaults to 0.5):
The mean to use when normalizing the image.
image_std (`float`, *optional*, defaults to 0.5):
The standard deviation to use when normalizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `1 / 255`):
The factor to use when rescaling the image.
patch_size (`Dict[str, int]`, *optional*, defaults to `{"height": 30, "width": 30}`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
"""
model_input_names = [
"images",
"image_input_ids",
"image_patches",
"image_patch_indices_per_batch",
"image_patch_indices_per_subsequence",
]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_pad: bool = True,
padding_value: float = 1.0,
padding_mode: str = "constant",
do_normalize: bool = True,
image_mean: Union[float, List[float]] = 0.5,
image_std: Union[float, List[float]] = 0.5,
do_rescale: bool = True,
rescale_factor: float = 1 / 255,
patch_size: Optional[Dict[str, int]] = None,
**kwargs,
):
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size if size is not None else {"height": 1080, "width": 1920}
self.resample = resample
self.do_pad = do_pad
self.padding_value = padding_value
self.padding_mode = padding_mode
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.patch_size = patch_size if patch_size is not None else {"height": 30, "width": 30}
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
image_height, image_width = get_image_size(image, input_data_format)
target_height, target_width = size["height"], size["width"]
if image_width <= target_width and image_height <= target_height:
return image
height_scale_factor = target_height / image_height
width_scale_factor = target_width / image_width
optimal_scale_factor = min(height_scale_factor, width_scale_factor)
new_height = int(image_height * optimal_scale_factor)
new_width = int(image_width * optimal_scale_factor)
scaled_image = resize(
image=image,
size=(new_height, new_width),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return scaled_image
def pad_image(
self,
image: np.ndarray,
size: Dict[str, int],
mode: str = "constant",
constant_values: float = 1.0,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Pad an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to pad.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
data_format (`ChannelDimension` or `str`, *optional*):
The data format of the output image. If unset, the same format as the input image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
image_height, image_width = get_image_size(image, input_data_format)
target_height, target_width = size["height"], size["width"]
padding_top = 0
padding_left = 0
padding_bottom = target_height - image_height
padding_right = target_width - image_width
padded_image = pad(
image,
padding=((padding_top, padding_bottom), (padding_left, padding_right)),
mode=mode,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
return padded_image
@filter_out_non_signature_kwargs()
def preprocess(
self,
images,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: Optional[PILImageResampling] = None,
do_pad: Optional[bool] = None,
padding_value: Optional[float] = None,
padding_mode: Optional[str] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[float] = None,
image_std: Optional[float] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
patch_size: Optional[Dict[str, int]] = None,
data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
return_tensors: Optional[TensorType] = None,
):
"""
Utility function to preprocess the images and extract necessary information about original formats.
Args:
images (`ImageInput`):
Images to preprocess. Expects a single image, a list or images or a list of lists of images. Pixel
values range from 0 to 255, or between 0 and 1 if `do_rescale` is `False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image to `size`.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
do_pad (`bool`, *optional*, defaults to `self.do_pad`):
Whether to pad the image to `size`.
padding_value (`float`, *optional*, defaults to `self.padding_value`):
The value to pad the image with.
padding_mode (`str`, *optional*, defaults to `self.padding_mode`):
The padding mode to use when padding the image.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float`, *optional*, defaults to `self.image_mean`):
The mean to use when normalizing the image.
image_std (`float`, *optional*, defaults to `self.image_std`):
The standard deviation to use when normalizing the image.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
The factor to use when rescaling the image.
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format of the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_pad = do_pad if do_pad is not None else self.do_pad
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
padding_value = padding_value if padding_value is not None else self.padding_value
padding_mode = padding_mode if padding_mode is not None else self.padding_mode
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
patch_size = patch_size if patch_size is not None else self.patch_size
if isinstance(images, list) and any(isinstance(elem, list) and len(elem) >= 2 for elem in images):
raise ValueError("Multiple images for a single sample are not yet supported.")
batch_images = make_list_of_list_of_images(images)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_pad=do_pad,
size_divisibility=size, # There is no pad divisibility in this processor, but pad requires the size arg.
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
batch_images = [[to_numpy_array(image) for image in images] for images in batch_images]
if do_rescale and is_scaled_image(batch_images[0][0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(batch_images[0][0])
original_image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
size = get_size_dict(size) # for BC
if do_resize:
batch_images = [
[self.resize(image, size=size, input_data_format=input_data_format) for image in images]
for images in batch_images
]
image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
image_unpadded_heights = [[image_size[0]] for image_size in image_sizes]
image_unpadded_widths = [[image_size[1]] for image_size in image_sizes]
# scale_h is the same as scale_w
image_scale_factors = [
[resized_size[0] / original_size[0]]
for original_size, resized_size in zip(original_image_sizes, image_sizes)
]
if do_pad:
batch_images = [
[
self.pad_image(
image,
size=size,
mode=padding_mode,
constant_values=padding_value,
input_data_format=input_data_format,
)
for image in images
]
for images in batch_images
]
if do_rescale:
batch_images = [
[self.rescale(image, scale=rescale_factor, input_data_format=input_data_format) for image in images]
for images in batch_images
]
if do_normalize:
batch_images = [
[
self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
for images in batch_images
]
if data_format is not None:
batch_images = [
[to_channel_dimension_format(image, data_format, input_data_format) for image in images]
for images in batch_images
]
data = {
"images": batch_images,
"image_unpadded_heights": image_unpadded_heights,
"image_unpadded_widths": image_unpadded_widths,
"image_scale_factors": image_scale_factors,
}
return FuyuBatchFeature(data=data, tensor_type=return_tensors)
def get_num_patches(self, image_height: int, image_width: int, patch_size: Dict[str, int] = None) -> int:
"""
Calculate number of patches required to encode an image.
Args:
image_height (`int`):
Height of the image.
image_width (`int`):
Width of the image.
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
"""
patch_size = patch_size if patch_size is not None else self.patch_size
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]
if image_height % patch_height != 0:
raise ValueError(f"{image_height=} must be divisible by {patch_height}")
if image_width % patch_width != 0:
raise ValueError(f"{image_width=} must be divisible by {patch_width}")
num_patches_per_dim_h = image_height // patch_height
num_patches_per_dim_w = image_width // patch_width
num_patches = num_patches_per_dim_h * num_patches_per_dim_w
return num_patches
def patchify_image(self, image: "torch.Tensor", patch_size: Optional[Dict[str, int]] = None) -> "torch.Tensor":
"""
Convert an image into a tensor of patches.
Args:
image (`torch.Tensor`):
Image to convert. Shape: [batch, channels, height, width]
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the patches.
"""
requires_backends(self, ["torch"])
patch_size = patch_size if patch_size is not None else self.patch_size
patch_height, patch_width = patch_size["height"], patch_size["width"]
# TODO refer to https://github.com/ArthurZucker/transformers/blob/0f0a3fe5ca5697ee58faeb5b53f049af720b5e98/src/transformers/models/vit_mae/modeling_vit_mae.py#L871
# torch implementation is faster but does not handle non-squares
batch_size, channels, _, _ = image.shape
unfolded_along_height = image.unfold(2, patch_height, patch_height)
patches = unfolded_along_height.unfold(3, patch_width, patch_width)
patches = patches.contiguous()
patches = patches.view(batch_size, channels, -1, patch_height, patch_width)
patches = patches.permute(0, 2, 3, 4, 1)
patches = patches.reshape(batch_size, -1, channels * patch_height * patch_width)
return patches
def preprocess_with_tokenizer_info(
self,
image_input: "torch.Tensor",
image_present: "torch.Tensor",
image_unpadded_h: "torch.Tensor",
image_unpadded_w: "torch.Tensor",
image_placeholder_id: int,
image_newline_id: int,
variable_sized: bool,
patch_size: Optional[Dict[str, int]] = None,
) -> FuyuBatchFeature:
"""Process images for model input. In particular, variable-sized images are handled here.
Args:
image_input (`torch.Tensor` of shape [batch_size, subsequence_size, num_channels, height, width]):
Tensor of images padded to model input size.
image_present (`torch.Tensor` of shape [batch_size, subsequence_size, num_images]):
Tensor of 1s and 0s indicating whether an image is present.
image_unpadded_h (`torch.Tensor` of shape [batch_size, subsequence_size]):
Tensor of unpadded image heights.
image_unpadded_w (`torch.Tensor` of shape [batch_size, subsequence_size]):
Tensor of unpadded image widths.
image_placeholder_id (int):
The id of the image placeholder token. Comes from an associated tokenizer.
image_newline_id (int):
The id of the image newline token. Comes from an associated tokenizer.
variable_sized (bool):
Whether to process images as variable-sized.
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
Size of the patches.
"""
requires_backends(self, ["torch"])
patch_size = patch_size if patch_size is not None else self.patch_size
patch_height, patch_width = patch_size["height"], patch_size["width"]
# Only images that are present.
images: List[List[torch.Tensor]] = []
batch_image_patches: List[List[torch.Tensor]] = []
# Image input ids for every subsequence, including ones with no image present.
batch_image_input_ids: List[List[torch.Tensor]] = []
for batch_index in range(image_input.shape[0]):
image_input_ids = []
image_patches = []
for subseq_index in range(image_input.shape[1]):
if image_present[batch_index, subseq_index]:
image = image_input[batch_index, subseq_index]
image_height, image_width = image.shape[1], image.shape[2]
if variable_sized:
# The min() is required here due to floating point issues:
# math.ceil(torch.tensor(300).cuda() / 30) == 11
new_h = min(
image_height,
math.ceil(image_unpadded_h[batch_index, subseq_index] / patch_height) * patch_height,
)
new_w = min(
image_width,
math.ceil(image_unpadded_w[batch_index, subseq_index] / patch_width) * patch_width,
)
image = image[:, :new_h, :new_w]
image_height, image_width = new_h, new_w
num_patches = self.get_num_patches(image_height=image_height, image_width=image_width)
tensor_of_image_ids = torch.full(
[num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
)
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
assert num_patches == patches.shape[0]
if variable_sized:
# Now terminate each line with |NEWLINE|.
tensor_of_image_ids = tensor_of_image_ids.reshape(-1, image_width // patch_width)
newline_ids = torch.full(
[tensor_of_image_ids.shape[0], 1],
image_newline_id,
dtype=torch.int32,
device=image_input.device,
)
tensor_of_image_ids = torch.cat([tensor_of_image_ids, newline_ids], dim=1)
tensor_of_image_ids = tensor_of_image_ids.reshape(-1)
images.append([image])
image_input_ids.append(tensor_of_image_ids)
image_patches.append(patches)
else:
image_input_ids.append(torch.tensor([], dtype=torch.int32, device=image_input.device))
batch_image_input_ids.append(image_input_ids)
batch_image_patches.append(image_patches)
# Create image_patch_input_indices, where non-negative values correspond to image patches to be inserted in
# the stream.
image_patch_indices_per_batch: List[List[torch.Tensor]] = []
image_patch_indices_per_subsequence: List[List[torch.Tensor]] = []
for sample_image_input_ids in batch_image_input_ids:
index_offset = 0
per_batch_indices = []
per_subsequence_indices = []
for subseq_image_input_ids in sample_image_input_ids:
# Indices of image patches.
patches_mask = subseq_image_input_ids == image_placeholder_id
num_patches = torch.count_nonzero(patches_mask)
indices = torch.arange(num_patches, dtype=torch.int64, device=subseq_image_input_ids.device).type_as(
subseq_image_input_ids
)
# Place those indices in the image input ids token stream, with -1 representing non-index tokens.
indices_in_stream_per_batch = torch.full_like(subseq_image_input_ids, -1)
indices_in_stream_per_subsequence = torch.full_like(subseq_image_input_ids, -1)
patches_inds = torch.nonzero(patches_mask, as_tuple=True)[0]
indices_in_stream_per_batch[patches_inds] = indices + index_offset
indices_in_stream_per_subsequence[patches_inds] = indices
per_batch_indices.append(indices_in_stream_per_batch)
per_subsequence_indices.append(indices_in_stream_per_subsequence)
index_offset += num_patches
image_patch_indices_per_batch.append(per_batch_indices)
image_patch_indices_per_subsequence.append(per_subsequence_indices)
return FuyuBatchFeature(
data={
"images": images,
"image_input_ids": batch_image_input_ids,
"image_patches": batch_image_patches,
"image_patch_indices_per_batch": image_patch_indices_per_batch,
"image_patch_indices_per_subsequence": image_patch_indices_per_subsequence,
}
)
__all__ = ["FuyuImageProcessor"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_fuyu.py
LINES: 2
SIZE: 17.71 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fuyu\modeling_fuyu.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Fuyu model."""
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...generation import GenerationMixin
from ...modeling_outputs import CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...models.auto.modeling_auto import AutoModelForCausalLM
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_fuyu import FuyuConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "FuyuConfig"
FUYU_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FuyuConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Fuyu Model outputting raw hidden-states without any specific head on top.",
FUYU_START_DOCSTRING,
)
class FuyuPreTrainedModel(PreTrainedModel):
config_class = FuyuConfig
base_model_prefix = "fuyu"
supports_gradient_checkpointing = True
_no_split_modules = []
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
FUYU_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
image_patches (`torch.FloatTensor` of shape `(batch_size, num_total_patches, patch_size_ x patch_size x num_channels)`, *optional*):
Image patches to be used as continuous embeddings. The patches are flattened and then projected to the
hidden size of the model.
image_patches_indices (`torch.LongTensor` of shape `(batch_size, num_total_patches + number_of_newline_tokens + number_of_text_tokens, patch_size_ x patch_size x num_channels )`, *optional*):
Indices indicating at which position the image_patches have to be inserted in input_embeds.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"Fuyu Model with a language modeling head on top for causal language model conditioned on image patches and text.",
FUYU_START_DOCSTRING,
)
class FuyuForCausalLM(FuyuPreTrainedModel, GenerationMixin):
def __init__(self, config: FuyuConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
self.vision_embed_tokens = nn.Linear(
config.patch_size * config.patch_size * config.num_channels, config.hidden_size
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def gather_continuous_embeddings(
self,
word_embeddings: torch.Tensor,
continuous_embeddings: List[torch.Tensor],
image_patch_input_indices: torch.Tensor,
) -> torch.Tensor:
"""This function places the continuous_embeddings into the word_embeddings at the locations
indicated by image_patch_input_indices. Different batch elements can have different numbers of continuous
embeddings.
Args:
word_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Tensor of word embeddings.
continuous_embeddings (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`):
Tensor of continuous embeddings. The length of the list is the batch size. Each entry is shape
[num_image_embeddings, hidden], and num_image_embeddings needs to match the number of non-negative
indices in image_patch_input_indices for that batch element.
image_patch_input_indices (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Tensor of indices of the image patches in the input_ids tensor.
"""
if not (word_embeddings.shape[0] == len(continuous_embeddings)):
raise ValueError(
f"Batch sizes must match! Got {len(continuous_embeddings)=} and {word_embeddings.shape[0]=}"
)
output_embeddings = word_embeddings.clone()
for batch_idx in range(word_embeddings.shape[0]):
# First, find the positions of all the non-negative values in image_patch_input_indices, those are the
# positions in word_embeddings that we want to replace with content from continuous_embeddings.
dst_indices = torch.nonzero(image_patch_input_indices[batch_idx] >= 0, as_tuple=True)[0]
# Next look up those indices in image_patch_input_indices to find the indices in continuous_embeddings that we
# want to use to replace the values in word_embeddings.
src_indices = image_patch_input_indices[batch_idx][dst_indices]
# Check if we have more indices than embeddings. Note that we could have fewer indices if images got truncated.
if src_indices.shape[0] > continuous_embeddings[batch_idx].shape[0]:
raise ValueError(
f"Number of continuous embeddings {continuous_embeddings[batch_idx].shape=} does not match "
f"number of continuous token ids {src_indices.shape=} in batch element {batch_idx}."
)
output_embeddings[batch_idx, dst_indices] = continuous_embeddings[batch_idx][src_indices]
return output_embeddings
@add_start_docstrings_to_model_forward(FUYU_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
image_patches: Optional[
torch.Tensor
] = None, # [batch_size, num_total_patches, patch_size_ x patch_size x num_channels ]
image_patches_indices: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
Returns:
Examples:
```python
>>> from transformers import FuyuProcessor, FuyuForCausalLM
>>> from PIL import Image
>>> import requests
>>> processor = FuyuProcessor.from_pretrained("adept/fuyu-8b")
>>> model = FuyuForCausalLM.from_pretrained("adept/fuyu-8b")
>>> url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/bus.png"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> prompt = "Generate a coco-style caption.\n"
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
>>> outputs = model(**inputs)
>>> generated_ids = model.generate(**inputs, max_new_tokens=7)
>>> generation_text = processor.batch_decode(generated_ids[:, -7:], skip_special_tokens=True)
>>> print(generation_text[0])
A blue bus parked on the side of a road.
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_is or inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
if image_patches is not None and past_key_values is None:
patch_embeddings = [
self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype))
.squeeze(0)
.to(inputs_embeds.device)
for patch in image_patches
]
inputs_embeds = self.gather_continuous_embeddings(
word_embeddings=inputs_embeds,
continuous_embeddings=patch_embeddings,
image_patch_input_indices=image_patches_indices,
)
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
labels=labels,
use_cache=use_cache,
return_dict=return_dict,
**kwargs,
)
return outputs
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
image_patches=None,
image_patches_indices=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
image_patches=image_patches,
image_patches_indices=image_patches_indices,
**kwargs,
)
if past_key_values is not None:
model_inputs["image_patches_indices"] = None
model_inputs["image_patches"] = None
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = ["FuyuForCausalLM", "FuyuPreTrainedModel"]
```
|
===================================================================================================================================
SOURCE CODE FILE: processing_fuyu.py
LINES: 1
SIZE: 32.77 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\fuyu\processing_fuyu.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for GIT
"""
import re
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import is_torch_available, logging, requires_backends
if is_torch_available():
from .image_processing_fuyu import FuyuBatchFeature
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
TEXT_REPR_BBOX_OPEN = "<box>"
TEXT_REPR_BBOX_CLOSE = "</box>"
TEXT_REPR_POINT_OPEN = "<point>"
TEXT_REPR_POINT_CLOSE = "</point>"
TOKEN_BBOX_OPEN_STRING = "<0x00>" # <bbox>
TOKEN_BBOX_CLOSE_STRING = "<0x01>" # </bbox>
TOKEN_POINT_OPEN_STRING = "<0x02>" # <point>
TOKEN_POINT_CLOSE_STRING = "<0x03>" # </point>
BEGINNING_OF_ANSWER_STRING = "<0x04>" # <boa>
class FuyuProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"add_special_tokens": True,
"padding": False,
"stride": 0,
"return_attention_mask": True,
"return_overflowing_tokens": False,
"return_special_tokens_mask": False,
"return_offsets_mapping": False,
"return_token_type_ids": False,
"return_length": False,
"verbose": True,
},
"images_kwargs": {},
}
def full_unpacked_stream_to_tensor(
all_bi_tokens_to_place: List[int],
full_unpacked_stream: List["torch.Tensor"],
fill_value: int,
batch_size: int,
new_seq_len: int,
offset: int,
) -> "torch.Tensor":
"""Takes an unpacked stream of tokens (i.e. a list of tensors, one for each item in the batch) and does
the required padding to create a single tensor for the batch of shape batch_size x new_seq_len.
"""
assert len(all_bi_tokens_to_place) == batch_size
assert len(full_unpacked_stream) == batch_size
# Create padded tensors for the full batch.
new_padded_tensor = torch.full(
[batch_size, new_seq_len],
fill_value=fill_value,
dtype=full_unpacked_stream[0].dtype,
device=full_unpacked_stream[0].device,
)
# Place each batch entry into the batch tensor.
for bi in range(batch_size):
tokens_to_place = all_bi_tokens_to_place[bi]
new_padded_tensor[bi, :tokens_to_place] = full_unpacked_stream[bi][offset : tokens_to_place + offset]
return new_padded_tensor
def construct_full_unpacked_stream(
num_real_text_tokens: Union[List[List[int]], "torch.Tensor"],
input_stream: "torch.Tensor",
image_tokens: List[List["torch.Tensor"]],
batch_size: int,
num_sub_sequences: int,
) -> List["torch.Tensor"]:
"""Takes an input_stream tensor of shape B x S x ?. For each subsequence, adds any required
padding to account for images and then unpacks the subsequences to create a single sequence per item in the batch.
Returns a list of tensors, one for each item in the batch."""
all_bi_stream = []
for batch_index in range(batch_size):
all_si_stream = []
# First, construct full token stream (including image placeholder tokens) and loss mask for each subsequence
# and append to lists. We use lists rather than tensors because each subsequence is variable-sized.
# TODO Remove this logic in a subsequent release since subsequences are not supported.
image_adjustment = image_tokens[batch_index][0]
subsequence_stream = torch.cat([image_adjustment, input_stream[batch_index, 0]], dim=0)
num_real_tokens = image_adjustment.shape[0] + num_real_text_tokens[batch_index][0]
all_si_stream.append(subsequence_stream[:num_real_tokens])
all_bi_stream.append(torch.cat(all_si_stream, dim=0))
return all_bi_stream
def _replace_string_repr_with_token_tags(prompt: str) -> str:
prompt = prompt.replace(TEXT_REPR_POINT_OPEN, TOKEN_POINT_OPEN_STRING)
prompt = prompt.replace(TEXT_REPR_POINT_CLOSE, TOKEN_POINT_CLOSE_STRING)
prompt = prompt.replace(TEXT_REPR_BBOX_OPEN, TOKEN_BBOX_OPEN_STRING)
prompt = prompt.replace(TEXT_REPR_BBOX_CLOSE, TOKEN_BBOX_CLOSE_STRING)
return prompt
def _segment_prompt_into_text_token_conversions(prompt: str) -> List:
"""
Given a string prompt, converts the prompt into a list of TextTokenConversions.
"""
# Wherever, we notice the [TOKEN_OPEN_STRING, TOKEN_CLOSE_STRING], we split the prompt
prompt_text_list: List = []
regex_pattern = re.compile(
f"({TOKEN_BBOX_OPEN_STRING}|{TOKEN_BBOX_CLOSE_STRING}|{TOKEN_POINT_OPEN_STRING}|{TOKEN_POINT_CLOSE_STRING})"
)
# Split by the regex pattern
prompt_split = regex_pattern.split(prompt)
for i, elem in enumerate(prompt_split):
if len(elem) == 0 or elem in [
TOKEN_BBOX_OPEN_STRING,
TOKEN_BBOX_CLOSE_STRING,
TOKEN_POINT_OPEN_STRING,
TOKEN_POINT_CLOSE_STRING,
]:
continue
prompt_text_list.append(
(elem, i > 1 and prompt_split[i - 1] in [TOKEN_BBOX_OPEN_STRING, TOKEN_POINT_OPEN_STRING])
)
return prompt_text_list
def _transform_coordinates_and_tokenize(prompt: str, scale_factor: float, tokenizer) -> List[int]:
"""
This function transforms the prompt in the following fashion:
- <box> <point> and </box> </point> to their respective token mappings
- extract the coordinates from the tag
- transform the coordinates into the transformed image space
- return the prompt tokens with the transformed coordinates and new tags
Bounding boxes and points MUST be in the following format: <box>y1, x1, y2, x2</box> <point>x, y</point> The spaces
and punctuation added above are NOT optional.
"""
# Make a namedtuple that stores "text" and "is_bbox"
# We want to do the following: Tokenize the code normally -> when we see a point or box, tokenize using the tokenize_within_tag function
# When point or box close tag, continue tokenizing normally
# First, we replace the point and box tags with their respective tokens
prompt = _replace_string_repr_with_token_tags(prompt)
# Tokenize the prompt
# Convert prompt into a list split
prompt_text_list = _segment_prompt_into_text_token_conversions(prompt)
transformed_prompt_tokens: List[int] = []
for elem in prompt_text_list:
if elem[1]:
# This is a location, we need to tokenize it
within_tag_tokenized = _transform_within_tags(elem[0], scale_factor, tokenizer)
# Surround the text with the open and close tags
transformed_prompt_tokens.extend(within_tag_tokenized)
else:
transformed_prompt_tokens.extend(tokenizer(elem[0], add_special_tokens=False).input_ids)
return transformed_prompt_tokens
def _transform_within_tags(text: str, scale_factor: float, tokenizer) -> List[int]:
"""
Given a bounding box of the fashion <box>1, 2, 3, 4</box> | <point>1, 2</point> This function is responsible for
converting 1, 2, 3, 4 into tokens of 1 2 3 4 without any commas.
"""
# Convert the text into a list of strings.
num_int_strs = text.split(",")
if len(num_int_strs) == 2:
# If there are any open or close tags, remove them.
token_space_open_string = tokenizer.vocab[TOKEN_POINT_OPEN_STRING]
token_space_close_string = tokenizer.vocab[TOKEN_POINT_CLOSE_STRING]
else:
token_space_open_string = tokenizer.vocab[TOKEN_BBOX_OPEN_STRING]
token_space_close_string = tokenizer.vocab[TOKEN_BBOX_CLOSE_STRING]
# Remove all spaces from num_ints
num_ints = [float(num.strip()) for num in num_int_strs]
# scale to transformed image siz
if len(num_ints) == 2:
num_ints_translated = scale_point_to_transformed_image(x=num_ints[0], y=num_ints[1], scale_factor=scale_factor)
elif len(num_ints) == 4:
num_ints_translated = scale_bbox_to_transformed_image(
top=num_ints[0],
left=num_ints[1],
bottom=num_ints[2],
right=num_ints[3],
scale_factor=scale_factor,
)
else:
raise ValueError(f"Invalid number of ints: {len(num_ints)}")
# Tokenize the text, skipping the
tokens = [tokenizer.vocab[str(num)] for num in num_ints_translated]
return [token_space_open_string] + tokens + [token_space_close_string]
def _tokenize_prompts_with_image_and_batch(
tokenizer,
prompts: List[List[str]],
scale_factors: Optional[List[List["torch.Tensor"]]],
max_tokens_to_generate: int,
max_position_embeddings: int,
add_BOS: bool, # Same issue with types as above
add_beginning_of_answer_token: bool,
) -> Tuple["torch.Tensor", "torch.Tensor"]:
"""
Given a set of prompts and number of tokens to generate:
- tokenize prompts
- set the sequence length to be the max of length of prompts plus the number of tokens we would like to generate
- pad all the sequences to this length so we can convert them into a 3D tensor.
"""
# If not tool use, tranform the coordinates while tokenizing
if scale_factors is not None:
transformed_prompt_tokens = []
for prompt_seq, scale_factor_seq in zip(prompts, scale_factors):
transformed_prompt_tokens.append(
[
_transform_coordinates_and_tokenize(prompt, scale_factor.item(), tokenizer)
for prompt, scale_factor in zip(prompt_seq, scale_factor_seq)
]
)
else:
transformed_prompt_tokens = [[tokenizer.tokenize(prompt) for prompt in prompt_seq] for prompt_seq in prompts]
prompts_tokens = transformed_prompt_tokens
if add_BOS:
bos_token = tokenizer.vocab["<s>"]
else:
bos_token = tokenizer.vocab["|ENDOFTEXT|"]
prompts_tokens = [[[bos_token] + x for x in prompt_seq] for prompt_seq in prompts_tokens]
if add_beginning_of_answer_token:
beginning_of_answer = tokenizer.vocab[BEGINNING_OF_ANSWER_STRING]
# Only add bbox open token to the last subsequence since that is what will be completed
for token_seq in prompts_tokens:
token_seq[-1].append(beginning_of_answer)
# Now we have a list of list of tokens which each list has a different
# size. We want to extend this list to:
# - incorporate the tokens that need to be generated
# - make all the sequences equal length.
# Get the prompts length.
prompts_length = [[len(x) for x in prompts_tokens_seq] for prompts_tokens_seq in prompts_tokens]
# Get the max prompts length.
max_prompt_len: int = np.max(prompts_length)
# Number of tokens in the each sample of the batch.
samples_length = min(max_prompt_len + max_tokens_to_generate, max_position_embeddings)
if max_prompt_len + max_tokens_to_generate > max_position_embeddings:
logger.warning(
f"Max subsequence prompt length of {max_prompt_len} + max tokens to generate {max_tokens_to_generate}",
f"exceeds context length of {max_position_embeddings}. Will generate as many tokens as possible.",
)
# Now update the list of list to be of the same size: samples_length.
for prompt_tokens_seq, prompts_length_seq in zip(prompts_tokens, prompts_length):
for prompt_tokens, prompt_length in zip(prompt_tokens_seq, prompts_length_seq):
if len(prompt_tokens) > samples_length:
raise ValueError("Length of subsequence prompt exceeds sequence length.")
padding_size = samples_length - prompt_length
prompt_tokens.extend([tokenizer.vocab["|ENDOFTEXT|"]] * padding_size)
# Now we are in a structured format, we can convert to tensors.
prompts_tokens_tensor = torch.tensor(prompts_tokens, dtype=torch.int64)
prompts_length_tensor = torch.tensor(prompts_length, dtype=torch.int64)
return prompts_tokens_tensor, prompts_length_tensor
# Simplified assuming self.crop_top = self.padding_top = 0
def original_to_transformed_h_coords(original_coords, scale_h):
return np.round(original_coords * scale_h).astype(np.int32)
# Simplified assuming self.crop_left = self.padding_left = 0
def original_to_transformed_w_coords(original_coords, scale_w):
return np.round(original_coords * scale_w).astype(np.int32)
def scale_point_to_transformed_image(x: float, y: float, scale_factor: float) -> List[int]:
x_scaled = original_to_transformed_w_coords(np.array([x / 2]), scale_factor)[0]
y_scaled = original_to_transformed_h_coords(np.array([y / 2]), scale_factor)[0]
return [x_scaled, y_scaled]
def scale_bbox_to_transformed_image(
top: float, left: float, bottom: float, right: float, scale_factor: float
) -> List[int]:
top_scaled = original_to_transformed_w_coords(np.array([top / 2]), scale_factor)[0]
left_scaled = original_to_transformed_h_coords(np.array([left / 2]), scale_factor)[0]
bottom_scaled = original_to_transformed_w_coords(np.array([bottom / 2]), scale_factor)[0]
right_scaled = original_to_transformed_h_coords(np.array([right / 2]), scale_factor)[0]
return [top_scaled, left_scaled, bottom_scaled, right_scaled]
class FuyuProcessor(ProcessorMixin):
r"""
Constructs a Fuyu processor which wraps a Fuyu image processor and a Llama tokenizer into a single processor.
[`FuyuProcessor`] offers all the functionalities of [`FuyuImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~FuyuProcessor.__call__`] and [`~FuyuProcessor.decode`] for more information.
Args:
image_processor ([`FuyuImageProcessor`]):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = []
image_processor_class = "FuyuImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer, **kwargs):
super().__init__(image_processor=image_processor, tokenizer=tokenizer)
self.image_processor = image_processor
self.tokenizer = tokenizer
self.max_tokens_to_generate = 10
self.max_position_embeddings = 16384 # TODO Can't derive this from model files: where to set it?
self.pad_token_id = 0
self.dummy_image_index = -1
def _left_pad_inputs_with_attention_mask(self, model_inputs: List[Dict], return_attention_mask: bool):
max_length_input_ids = max(entry["input_ids"].shape[1] for entry in model_inputs)
max_length_image_patch_indices = max(entry["image_patches_indices"].shape[1] for entry in model_inputs)
batched_inputs = {"input_ids": [], "image_patches": [], "image_patches_indices": [], "attention_mask": []}
for entry in model_inputs:
for key, tensor in entry.items():
if key == "input_ids":
num_padding_tokens = max_length_input_ids - tensor.shape[1]
padded_input_ids = torch.cat(
[
torch.full((tensor.shape[0], num_padding_tokens), self.pad_token_id, dtype=torch.long),
tensor,
],
dim=1,
)
batched_inputs[key].append(padded_input_ids)
attention_mask = torch.cat(
[torch.zeros(tensor.shape[0], num_padding_tokens, dtype=torch.long), torch.ones_like(tensor)],
dim=1,
)
batched_inputs["attention_mask"].append(attention_mask)
elif key == "image_patches":
# For image_patches, we don't pad but just append them to the list.
batched_inputs[key].append(tensor)
else: # for image_patches_indices
num_padding_indices = max_length_image_patch_indices - tensor.shape[1]
padded_indices = torch.cat(
[
torch.full(
(tensor.shape[0], num_padding_indices), self.dummy_image_index, dtype=torch.long
),
tensor,
],
dim=1,
)
batched_inputs[key].append(padded_indices)
batched_keys = ["input_ids", "image_patches_indices"]
if return_attention_mask:
batched_keys.append("attention_mask")
for key in batched_keys:
batched_inputs[key] = torch.cat(batched_inputs[key], dim=0)
return batched_inputs
def get_sample_encoding(
self,
prompts,
scale_factors,
image_unpadded_heights,
image_unpadded_widths,
image_placeholder_id,
image_newline_id,
tensor_batch_images,
):
image_present = torch.ones(1, 1, 1)
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
image_input=tensor_batch_images,
image_present=image_present,
image_unpadded_h=image_unpadded_heights,
image_unpadded_w=image_unpadded_widths,
image_placeholder_id=image_placeholder_id,
image_newline_id=image_newline_id,
variable_sized=True,
)
# FIXME max_tokens_to_generate is embedded into this processor's call.
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
tokenizer=self.tokenizer,
prompts=prompts,
scale_factors=scale_factors,
max_tokens_to_generate=self.max_tokens_to_generate,
max_position_embeddings=self.max_position_embeddings,
add_BOS=True,
add_beginning_of_answer_token=True,
)
image_padded_unpacked_tokens = construct_full_unpacked_stream(
num_real_text_tokens=prompts_length,
input_stream=prompt_tokens,
image_tokens=model_image_input["image_input_ids"],
batch_size=1,
num_sub_sequences=self.subsequence_length,
)
# Construct inputs for image patch indices.
unpacked_image_patch_indices_per_batch = construct_full_unpacked_stream(
num_real_text_tokens=prompts_length,
input_stream=torch.full_like(prompt_tokens, -1),
image_tokens=model_image_input["image_patch_indices_per_batch"],
batch_size=1,
num_sub_sequences=self.subsequence_length,
)
max_prompt_length = max(x.shape[-1] for x in image_padded_unpacked_tokens)
max_seq_len_batch = min(max_prompt_length + self.max_tokens_to_generate, self.max_position_embeddings)
tokens_to_place = min(max_seq_len_batch, max(0, image_padded_unpacked_tokens[0].shape[0]))
# Use same packing logic for the image patch indices.
image_patch_input_indices = full_unpacked_stream_to_tensor(
all_bi_tokens_to_place=[tokens_to_place],
full_unpacked_stream=unpacked_image_patch_indices_per_batch,
fill_value=-1,
batch_size=1,
new_seq_len=max_seq_len_batch,
offset=0,
)
image_patches_tensor = torch.stack([img[0] for img in model_image_input["image_patches"]])
batch_encoding = {
"input_ids": image_padded_unpacked_tokens[0].unsqueeze(0),
"image_patches": image_patches_tensor,
"image_patches_indices": image_patch_input_indices,
}
return batch_encoding
def __call__(
self,
images: ImageInput = None,
text: Optional[Union[str, List[str], TextInput, PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[FuyuProcessorKwargs],
) -> "FuyuBatchFeature":
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to
encode the text. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to
FuyuImageProcessor's [`~FuyuImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `List[PIL.Image.Image]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
Returns:
[`FuyuBatchEncoding`]: A [`FuyuBatchEncoding`] with the following fields:
- **input_ids** -- Tensor of token ids to be fed to a model. Returned when `text` is not `None`.
- **image_patches** -- List of Tensor of image patches. Returned when `images` is not `None`.
- **image_patches_indices** -- Tensor of indices where patch embeddings have to be inserted by the model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model when
`return_attention_mask=True`.
"""
requires_backends(self, ["torch"])
# --- Check input validity ---
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be None.")
# check if images and text inputs are reversed for BC
images, text = _validate_images_text_input_order(images, text)
output_kwargs = self._merge_kwargs(
FuyuProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if not output_kwargs["text_kwargs"].setdefault("return_attention_mask", True):
raise ValueError("`return_attention_mask=False` is not supported for this model.")
if text is not None and images is None:
logger.warning("You are processing a text with no associated image. Make sure it is intended.")
self.current_processor = self.tokenizer
text_encoding = self.tokenizer(text, **output_kwargs["text_kwargs"])
return text_encoding
if text is None and images is not None:
logger.warning("You are processing an image with no associated text. Make sure it is intended.")
prompts = [[""]]
if text is not None and images is not None:
if isinstance(text, str):
prompts = [[text]]
elif isinstance(text, list):
prompts = [[text_seq] for text_seq in text]
# --- Preprocess images using self.image_processor ---
# FIXME - We hard code "pt" here because the rest of the processing assumes torch tensors
output_kwargs["images_kwargs"]["return_tensors"] = "pt"
image_encoding = self.image_processor.preprocess(images, **output_kwargs["images_kwargs"])
batch_images = image_encoding["images"]
image_unpadded_heights = image_encoding["image_unpadded_heights"]
image_unpadded_widths = image_encoding["image_unpadded_widths"]
scale_factors = image_encoding["image_scale_factors"]
self.subsequence_length = 1 # Each batch contains only one sequence.
self.batch_size = len(batch_images)
# --- Use self.tokenizer to get the ids of special tokens to insert into image ids ---
image_placeholder_id = self.tokenizer("|SPEAKER|", add_special_tokens=False)["input_ids"][1]
image_newline_id = self.tokenizer("|NEWLINE|", add_special_tokens=False)["input_ids"][1]
tensor_batch_images = torch.stack([img[0] for img in batch_images]).unsqueeze(1)
# --- Use self.image_processor again to obtain the full token ids and batch inputs ---
all_encodings = []
for prompt, scale_factor, image_unpadded_height, image_unpadded_width, tensor_batch_image in zip(
prompts, scale_factors, image_unpadded_heights, image_unpadded_widths, tensor_batch_images
):
sample_encoding = self.get_sample_encoding(
prompts=[prompt],
scale_factors=[scale_factor],
image_unpadded_heights=torch.tensor([image_unpadded_height]),
image_unpadded_widths=torch.tensor([image_unpadded_width]),
image_placeholder_id=image_placeholder_id,
image_newline_id=image_newline_id,
tensor_batch_images=tensor_batch_image.unsqueeze(0),
)
all_encodings.append(sample_encoding)
batch_encoding = self._left_pad_inputs_with_attention_mask(
model_inputs=all_encodings, return_attention_mask=True
)
return FuyuBatchFeature(data=batch_encoding)
def post_process_box_coordinates(self, outputs, target_sizes=None):
"""
Transforms raw coordinates detected by [`FuyuForCausalLM`] to the original images' coordinate space.
Coordinates will be returned in "box" format, with the following pattern:
`<box>top, left, bottom, right</box>`
Point coordinates are not supported yet.
Args:
outputs ([`GenerateOutput`]):
Raw outputs from `generate`.
target_sizes (`torch.Tensor`, *optional*):
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
the batch. If set, found coordinates in the output sequence are rescaled to the target sizes. If left
to None, coordinates will not be rescaled.
Returns:
`GenerateOutput`: Same output type returned by `generate`, with output token ids replaced with
boxed and possible rescaled coordinates.
"""
def scale_factor_to_fit(original_size, target_size=None):
height, width = original_size
if target_size is None:
max_height = self.image_processor.size["height"]
max_width = self.image_processor.size["width"]
else:
max_height, max_width = target_size
if width <= max_width and height <= max_height:
return 1.0
return min(max_height / height, max_width / width)
def find_delimiters_pair(tokens, start_token, end_token):
start_id = self.tokenizer.convert_tokens_to_ids(start_token)
end_id = self.tokenizer.convert_tokens_to_ids(end_token)
starting_positions = (tokens == start_id).nonzero(as_tuple=True)[0]
ending_positions = (tokens == end_id).nonzero(as_tuple=True)[0]
if torch.any(starting_positions) and torch.any(ending_positions):
return (starting_positions[0], ending_positions[0])
return (None, None)
def tokens_to_boxes(tokens, original_size):
while (pair := find_delimiters_pair(tokens, TOKEN_BBOX_OPEN_STRING, TOKEN_BBOX_CLOSE_STRING)) != (
None,
None,
):
start, end = pair
if end != start + 5:
continue
# Retrieve transformed coordinates from tokens
coords = self.tokenizer.convert_ids_to_tokens(tokens[start + 1 : end])
# Scale back to original image size and multiply by 2
scale = scale_factor_to_fit(original_size)
top, left, bottom, right = [2 * int(float(c) / scale) for c in coords]
# Replace the IDs so they get detokenized right
replacement = f" {TEXT_REPR_BBOX_OPEN}{top}, {left}, {bottom}, {right}{TEXT_REPR_BBOX_CLOSE}"
replacement = self.tokenizer.tokenize(replacement)[1:]
replacement = self.tokenizer.convert_tokens_to_ids(replacement)
replacement = torch.tensor(replacement).to(tokens)
tokens = torch.cat([tokens[:start], replacement, tokens[end + 1 :]], 0)
return tokens
def tokens_to_points(tokens, original_size):
while (pair := find_delimiters_pair(tokens, TOKEN_POINT_OPEN_STRING, TOKEN_POINT_CLOSE_STRING)) != (
None,
None,
):
start, end = pair
if end != start + 3:
continue
# Retrieve transformed coordinates from tokens
coords = self.tokenizer.convert_ids_to_tokens(tokens[start + 1 : end])
# Scale back to original image size and multiply by 2
scale = scale_factor_to_fit(original_size)
x, y = [2 * int(float(c) / scale) for c in coords]
# Replace the IDs so they get detokenized right
replacement = f" {TEXT_REPR_POINT_OPEN}{x}, {y}{TEXT_REPR_POINT_CLOSE}"
replacement = self.tokenizer.tokenize(replacement)[1:]
replacement = self.tokenizer.convert_tokens_to_ids(replacement)
replacement = torch.tensor(replacement).to(tokens)
tokens = torch.cat([tokens[:start], replacement, tokens[end + 1 :]], 0)
return tokens
if target_sizes is None:
target_sizes = ((self.image_processor.size["height"], self.image_processor.size["width"]),) * len(outputs)
elif target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
if len(outputs) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as output sequences")
results = []
for seq, size in zip(outputs, target_sizes):
seq = tokens_to_boxes(seq, size)
seq = tokens_to_points(seq, size)
results.append(seq)
return results
def post_process_image_text_to_text(self, generated_outputs, skip_special_tokens=True, **kwargs):
"""
Post-processes the output of `FuyuForConditionalGeneration` to only return the text output.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
containing the token ids of the generated sequences.
skip_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
**kwargs:
Additional arguments to be passed to the tokenizer's `batch_decode method`.
Returns:
`List[str]`: The decoded text output.
"""
beginning_of_answer = self.tokenizer.convert_tokens_to_ids(BEGINNING_OF_ANSWER_STRING)
# get boa index for each outputted sequence tensor
# start all generated sequences from the beginning of the answer token, pad to have consistent length
unpadded_output_sequences = [
seq[(seq == beginning_of_answer).nonzero(as_tuple=True)[0] + 1 :] for seq in generated_outputs
]
max_len = max(len(seq) for seq in unpadded_output_sequences)
# convert to torch and pad sequences
padded_output_sequences = torch.full((len(unpadded_output_sequences), max_len), self.pad_token_id)
for i, seq in enumerate(unpadded_output_sequences):
padded_output_sequences[i, : len(seq)] = torch.tensor(seq)
return self.batch_decode(padded_output_sequences, skip_special_tokens=skip_special_tokens, **kwargs)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
__all__ = ["FuyuProcessor"]
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma2\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_gemma2 import *
from .modeling_gemma2 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==========================================================================================================================================
SOURCE CODE FILE: configuration_gemma2.py
LINES: 1
SIZE: 9.10 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma2\configuration_gemma2.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gemma2/modular_gemma2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gemma2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
class Gemma2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma2Model`]. It is used to instantiate an Gemma2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma2-7B.
e.g. [google/gemma2-7b](https://huggingface.co/google/gemma2-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Gemma2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Gemma2Model`]
hidden_size (`int`, *optional*, defaults to 2304):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 9216):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 26):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
query_pre_attn_scalar (`float`, *optional*, defaults to 256): scaling factor used on the attention scores
sliding_window (`int`, *optional*, defaults to 4096): in Gemma2, every other layer uses sliding window attention. This is the
size of the sliding window.
final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits.
attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores.
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
```python
>>> from transformers import Gemma2Model, Gemma2Config
>>> # Initializing a Gemma2 gemma2-7b style configuration
>>> configuration = Gemma2Config()
>>> # Initializing a model from the gemma2-7b style configuration
>>> model = Gemma2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma2"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=256000,
hidden_size=2304,
intermediate_size=9216,
num_hidden_layers=26,
num_attention_heads=8,
num_key_value_heads=4,
head_dim=256,
hidden_activation="gelu_pytorch_tanh",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
query_pre_attn_scalar=256,
sliding_window=4096,
final_logit_softcapping=30.0,
attn_logit_softcapping=50.0,
cache_implementation="hybrid",
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.hidden_activation = hidden_activation
self.query_pre_attn_scalar = query_pre_attn_scalar
self.sliding_window = sliding_window
self.final_logit_softcapping = final_logit_softcapping
self.attn_logit_softcapping = attn_logit_softcapping
self.cache_implementation = cache_implementation
__all__ = ["Gemma2Config"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: modeling_gemma2.py
LINES: 1
SIZE: 50.07 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma2\modeling_gemma2.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gemma2/modular_gemma2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gemma2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
from ...activations import ACT2FN
from ...cache_utils import Cache, HybridCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_gemma2 import Gemma2Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/gemma2-7b"
_CONFIG_FOR_DOC = "Gemma2Config"
class Gemma2RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
# Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = output * (1.0 + self.weight.float())
return output.type_as(x)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
class Gemma2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_activation]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
dropout: float = 0.0,
scaling: Optional[float] = None,
softcap: Optional[float] = None,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
if scaling is None:
scaling = module.head_dim**-0.5
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if softcap is not None:
attn_weights = attn_weights / softcap
attn_weights = torch.tanh(attn_weights)
attn_weights = attn_weights * softcap
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Gemma2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Gemma2Config, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = config.query_pre_attn_scalar**-0.5
self.attention_dropout = self.config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.attn_logit_softcapping = self.config.attn_logit_softcapping
self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {
"sin": sin,
"cos": cos,
"cache_position": cache_position,
"sliding_window": self.sliding_window,
}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Here we need to slice as we use a static cache by default, but FA2 does not support it
if attention_mask is not None and self.config._attn_implementation == "flash_attention_2":
seq_len = attention_mask.shape[-1]
key_states, value_states = key_states[:, :, :seq_len, :], value_states[:, :, :seq_len, :]
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=self.scaling,
sliding_window=self.sliding_window,
softcap=self.attn_logit_softcapping,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Gemma2DecoderLayer(nn.Module):
def __init__(self, config: Gemma2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.config = config
self.is_sliding = not bool(layer_idx % 2)
self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx)
self.mlp = Gemma2MLP(config)
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.sliding_window = config.sliding_window
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
last_cache_position: int = 0,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
# In prefill, we may be larger than sliding window
effective_seq_len = max(cache_position.shape[0], self.sliding_window)
# For FA2, the mask is 2D and is of shape [bs, processed_tokens] (not [bs, max_cache_len]),
# thus we must slice from the right (at most `effective_seq_len` elements)
if self.config._attn_implementation == "flash_attention_2":
attention_mask = attention_mask[:, -effective_seq_len:]
# Otherwise, the mask is 4D of shape [bs, 1, query_len, max_cache_len] thus we must slice
# from the left, with an offset if we are beyond the sliding window
else:
min_dtype = torch.finfo(attention_mask.dtype).min
sliding_window_mask = torch.tril(
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
)
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
# In case we are beyond the sliding window, we need to correctly offset the mask slicing
# `last_cache_position` is equivalent to `cache_position[-1]` but without breaking dynamo
offset = last_cache_position - effective_seq_len
# Should only be used when beyond the sliding window (i.e. offset > 0)
offset = max(0, offset)
attention_mask = attention_mask[:, :, :, offset : offset + effective_seq_len]
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Gemma2RotaryEmbedding(nn.Module):
def __init__(self, config: Gemma2Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
GEMMA2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Gemma2Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
GEMMA2_START_DOCSTRING,
)
class Gemma2PreTrainedModel(PreTrainedModel):
config_class = Gemma2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Gemma2DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
GEMMA2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
GEMMA2_START_DOCSTRING,
)
class Gemma2Model(Gemma2PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Gemma2DecoderLayer`]
Args:
config: Gemma2Config
"""
def __init__(self, config: Gemma2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Gemma2RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
last_cache_position: Optional[int] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None and not self.training:
batch_size, seq_len, _ = inputs_embeds.shape
# NOTE: ideally, `HybridCache` should be initialized outside the model with `layer_device_map`
past_key_values = HybridCache(
self.config,
max_batch_size=batch_size,
max_cache_len=seq_len,
dtype=inputs_embeds.dtype,
device=self.device,
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing
# (retrieving the same value from `cache_position` later on would crash dynamo)
if last_cache_position is None:
last_cache_position = 0
if attention_mask is not None:
# In case a 4d mask is passed directly without using `generate`, we have to rely on cache_position
# It will break dynamo tracing but there are no way around it (and it should never happen in practice)
last_cache_position = (
attention_mask.shape[-1] if attention_mask.dim() == 2 else cache_position[-1].item()
)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# normalized
# Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
position_embeddings,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
last_cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
last_cache_position=last_cache_position,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@torch.no_grad()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: HybridCache,
output_attentions: bool,
):
# Flash Attention currently doesn't support static cache but Gemma2 work only with static cache.
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
# as it doesn't cause dynamic control issues.
if self.config._attn_implementation == "flash_attention_2":
return attention_mask
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if isinstance(past_key_values, (HybridCache, StaticCache)):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class Gemma2ForCausalLM(Gemma2PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = Gemma2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Gemma2ForCausalLM
>>> model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
if self.training and self.config._attn_implementation != "eager":
logger.warning_once(
"It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**loss_kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
if self.config.final_logit_softcapping is not None:
logits = logits / self.config.final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * self.config.final_logit_softcapping
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
logits_to_keep=None,
**kwargs,
):
# Overwritten: has a special cache type, `HybridCache`
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
**kwargs,
)
# This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing
# (retrieving the same value from `cache_position` later on would crash dynamo)
model_inputs["last_cache_position"] = attention_mask.shape[-1] if attention_mask is not None else 0
if logits_to_keep is None:
_ = model_inputs.pop("logits_to_keep", None)
if (
isinstance(past_key_values, HybridCache)
and attention_mask.ndim == 2
and not self.config._attn_implementation == "flash_attention_2"
):
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_cache_shape(),
dtype=self.lm_head.weight.dtype,
device=device,
cache_position=cache_position,
batch_size=batch_size,
)
model_inputs["attention_mask"] = attention_mask
return model_inputs
@add_start_docstrings(
"""
The Gemma2 Model transformer with a sequence classification head on top (linear layer).
[`Gemma2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GEMMA2_START_DOCSTRING,
)
class Gemma2ForSequenceClassification(Gemma2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Gemma2Model(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Gemma2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
GEMMA2_START_DOCSTRING,
)
class Gemma2ForTokenClassification(Gemma2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Gemma2Model(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"Gemma2ForCausalLM",
"Gemma2Model",
"Gemma2PreTrainedModel",
"Gemma2ForSequenceClassification",
"Gemma2ForTokenClassification",
]
```
|
====================================================================================================================================
SOURCE CODE FILE: modular_gemma2.py
LINES: 1
SIZE: 32.80 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma2\modular_gemma2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from ...activations import ACT2FN
from ...cache_utils import Cache, HybridCache, StaticCache
from ...configuration_utils import PretrainedConfig
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import logging
from ..gemma.modeling_gemma import (
GemmaAttention,
GemmaForCausalLM,
GemmaForSequenceClassification,
GemmaForTokenClassification,
GemmaMLP,
GemmaModel,
GemmaRMSNorm,
apply_rotary_pos_emb,
repeat_kv,
)
_CHECKPOINT_FOR_DOC = "google/gemma2-7b"
logger = logging.get_logger(__name__)
class Gemma2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma2Model`]. It is used to instantiate an Gemma2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma2-7B.
e.g. [google/gemma2-7b](https://huggingface.co/google/gemma2-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Gemma2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Gemma2Model`]
hidden_size (`int`, *optional*, defaults to 2304):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 9216):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 26):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
query_pre_attn_scalar (`float`, *optional*, defaults to 256): scaling factor used on the attention scores
sliding_window (`int`, *optional*, defaults to 4096): in Gemma2, every other layer uses sliding window attention. This is the
size of the sliding window.
final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits.
attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores.
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
```python
>>> from transformers import Gemma2Model, Gemma2Config
>>> # Initializing a Gemma2 gemma2-7b style configuration
>>> configuration = Gemma2Config()
>>> # Initializing a model from the gemma2-7b style configuration
>>> model = Gemma2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma2"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=256000,
hidden_size=2304,
intermediate_size=9216,
num_hidden_layers=26,
num_attention_heads=8,
num_key_value_heads=4,
head_dim=256,
hidden_activation="gelu_pytorch_tanh",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
query_pre_attn_scalar=256,
sliding_window=4096,
final_logit_softcapping=30.0,
attn_logit_softcapping=50.0,
cache_implementation="hybrid",
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.hidden_activation = hidden_activation
self.query_pre_attn_scalar = query_pre_attn_scalar
self.sliding_window = sliding_window
self.final_logit_softcapping = final_logit_softcapping
self.attn_logit_softcapping = attn_logit_softcapping
self.cache_implementation = cache_implementation
class Gemma2RMSNorm(GemmaRMSNorm):
pass
class Gemma2MLP(GemmaMLP):
def __init__(self, config):
super().__init__()
self.act_fn = ACT2FN[config.hidden_activation]
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
dropout: float = 0.0,
scaling: Optional[float] = None,
softcap: Optional[float] = None,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
if scaling is None:
scaling = module.head_dim**-0.5
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if softcap is not None:
attn_weights = attn_weights / softcap
attn_weights = torch.tanh(attn_weights)
attn_weights = attn_weights * softcap
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Gemma2Attention(GemmaAttention):
def __init__(self, config: Gemma2Config, layer_idx: int):
super().__init__(config, layer_idx)
self.attn_logit_softcapping = self.config.attn_logit_softcapping
self.attention_dropout = self.config.attention_dropout
self.is_causal = True
self.scaling = config.query_pre_attn_scalar**-0.5
self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {
"sin": sin,
"cos": cos,
"cache_position": cache_position,
"sliding_window": self.sliding_window,
}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Here we need to slice as we use a static cache by default, but FA2 does not support it
if attention_mask is not None and self.config._attn_implementation == "flash_attention_2":
seq_len = attention_mask.shape[-1]
key_states, value_states = key_states[:, :, :seq_len, :], value_states[:, :, :seq_len, :]
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=self.scaling,
sliding_window=self.sliding_window,
softcap=self.attn_logit_softcapping,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Gemma2DecoderLayer(nn.Module):
def __init__(self, config: Gemma2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.config = config
self.is_sliding = not bool(layer_idx % 2)
self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx)
self.mlp = Gemma2MLP(config)
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.sliding_window = config.sliding_window
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
last_cache_position: int = 0,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
# In prefill, we may be larger than sliding window
effective_seq_len = max(cache_position.shape[0], self.sliding_window)
# For FA2, the mask is 2D and is of shape [bs, processed_tokens] (not [bs, max_cache_len]),
# thus we must slice from the right (at most `effective_seq_len` elements)
if self.config._attn_implementation == "flash_attention_2":
attention_mask = attention_mask[:, -effective_seq_len:]
# Otherwise, the mask is 4D of shape [bs, 1, query_len, max_cache_len] thus we must slice
# from the left, with an offset if we are beyond the sliding window
else:
min_dtype = torch.finfo(attention_mask.dtype).min
sliding_window_mask = torch.tril(
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
)
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
# In case we are beyond the sliding window, we need to correctly offset the mask slicing
# `last_cache_position` is equivalent to `cache_position[-1]` but without breaking dynamo
offset = last_cache_position - effective_seq_len
# Should only be used when beyond the sliding window (i.e. offset > 0)
offset = max(0, offset)
attention_mask = attention_mask[:, :, :, offset : offset + effective_seq_len]
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Gemma2Model(GemmaModel):
def __init__(self, config: Gemma2Config):
super().__init__(config)
self.layers = nn.ModuleList(
[Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
last_cache_position: Optional[int] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None and not self.training:
batch_size, seq_len, _ = inputs_embeds.shape
# NOTE: ideally, `HybridCache` should be initialized outside the model with `layer_device_map`
past_key_values = HybridCache(
self.config,
max_batch_size=batch_size,
max_cache_len=seq_len,
dtype=inputs_embeds.dtype,
device=self.device,
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing
# (retrieving the same value from `cache_position` later on would crash dynamo)
if last_cache_position is None:
last_cache_position = 0
if attention_mask is not None:
# In case a 4d mask is passed directly without using `generate`, we have to rely on cache_position
# It will break dynamo tracing but there are no way around it (and it should never happen in practice)
last_cache_position = (
attention_mask.shape[-1] if attention_mask.dim() == 2 else cache_position[-1].item()
)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# normalized
# Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
position_embeddings,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
last_cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
last_cache_position=last_cache_position,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@torch.no_grad()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: HybridCache,
output_attentions: bool,
):
# Flash Attention currently doesn't support static cache but Gemma2 work only with static cache.
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
# as it doesn't cause dynamic control issues.
if self.config._attn_implementation == "flash_attention_2":
return attention_mask
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if isinstance(past_key_values, (HybridCache, StaticCache)):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
return causal_mask
class Gemma2ForCausalLM(GemmaForCausalLM):
def __init__(self, config):
super().__init__(config)
self.model = Gemma2Model(config)
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Gemma2ForCausalLM
>>> model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
if self.training and self.config._attn_implementation != "eager":
logger.warning_once(
"It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**loss_kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
if self.config.final_logit_softcapping is not None:
logits = logits / self.config.final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * self.config.final_logit_softcapping
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
logits_to_keep=None,
**kwargs,
):
# Overwritten: has a special cache type, `HybridCache`
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
**kwargs,
)
# This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing
# (retrieving the same value from `cache_position` later on would crash dynamo)
model_inputs["last_cache_position"] = attention_mask.shape[-1] if attention_mask is not None else 0
if logits_to_keep is None:
_ = model_inputs.pop("logits_to_keep", None)
if (
isinstance(past_key_values, HybridCache)
and attention_mask.ndim == 2
and not self.config._attn_implementation == "flash_attention_2"
):
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_cache_shape(),
dtype=self.lm_head.weight.dtype,
device=device,
cache_position=cache_position,
batch_size=batch_size,
)
model_inputs["attention_mask"] = attention_mask
return model_inputs
class Gemma2ForSequenceClassification(GemmaForSequenceClassification):
def __init__(self, config):
super().__init__(config)
self.model = Gemma2Model(config)
self.post_init()
class Gemma2ForTokenClassification(GemmaForTokenClassification):
def __init__(self, config):
super().__init__(config)
self.model = Gemma2Model(config)
self.post_init()
__all__ = [
"Gemma2Config",
"Gemma2ForCausalLM",
"Gemma2Model",
"Gemma2PreTrainedModel", # noqa: F822
"Gemma2ForSequenceClassification",
"Gemma2ForTokenClassification",
]
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.09 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma3\__init__.py
ENCODING: utf-8
```py
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_gemma3 import *
from .image_processing_gemma3 import *
from .image_processing_gemma3_fast import *
from .modeling_gemma3 import *
from .processing_gemma3 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==========================================================================================================================================
SOURCE CODE FILE: configuration_gemma3.py
LINES: 1
SIZE: 16.90 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma3\configuration_gemma3.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gemma3/modular_gemma3.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gemma3.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
from ..siglip import SiglipVisionConfig
logger = logging.get_logger(__name__)
class Gemma3TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma3TextModel`]. It is used to instantiate an Gemma3Text
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma3Text-7B.
e.g. [google/gemma3_text-7b](https://huggingface.co/google/gemma3_text-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 262208):
Vocabulary size of the Gemma3Text model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Gemma3TextModel`]
hidden_size (`int`, *optional*, defaults to 2304):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 9216):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 26):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
query_pre_attn_scalar (`float`, *optional*, defaults to 256):
Scaling factor used on the attention scores
sliding_window (`int`, *optional*, defaults to 4096): in Gemma3Text, every other layer uses sliding window attention. This is the
size of the sliding window.
final_logit_softcapping (`float`, *optional*):
Scaling factor when applying tanh softcapping on the logits.
attn_logit_softcapping (`float`, *optional*):
Scaling factor when applying tanh softcapping on the attention scores.
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings used in gloabl attention. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
rope_local_base_freq (float, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings for local attention.
sliding_window_pattern (`int`, *optional*, defaults to 6):
Pattern for the sliding window attention.
```python
>>> from transformers import Gemma3TextModel, Gemma3TextConfig
>>> # Initializing a Gemma3Text gemma3_text-7b style configuration
>>> configuration = Gemma3TextConfig()
>>> # Initializing a model from the gemma3_text-7b style configuration
>>> model = Gemma3TextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
rope_local_base_freq (float, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings for local attention.
sliding_window_pattern (`int`, *optional*, defaults to 6):
Pattern for the sliding window attention.
"""
model_type = "gemma3_text"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=262_208,
hidden_size=2304,
intermediate_size=9216,
num_hidden_layers=26,
num_attention_heads=8,
num_key_value_heads=4,
head_dim=256,
hidden_activation="gelu_pytorch_tanh",
max_position_embeddings=131_072,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=1_000_000.0,
attention_bias=False,
attention_dropout=0.0,
query_pre_attn_scalar=256,
sliding_window=4096,
final_logit_softcapping=None,
attn_logit_softcapping=None,
cache_implementation="hybrid",
rope_scaling=None,
rope_local_base_freq=10_000.0,
sliding_window_pattern=6,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.hidden_activation = hidden_activation
self.query_pre_attn_scalar = query_pre_attn_scalar
self.sliding_window = sliding_window
self.final_logit_softcapping = final_logit_softcapping
self.attn_logit_softcapping = attn_logit_softcapping
self.cache_implementation = cache_implementation
self.rope_local_base_freq = rope_local_base_freq
# For configuring HybridCache to work with 5:1 attention pattern
self.sliding_window_pattern = sliding_window_pattern
self.rope_scaling = rope_scaling
rope_config_validation(self)
class Gemma3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma3ForConditionalGeneration`]. It is used to instantiate an
Gemma3ForConditionalGeneration according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the PaliGemma-2B.
e.g. [google/gemma-3-4b](https://huggingface.co/google/gemma-3-4b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`Union[Gemma3TextConfig, dict]`, *optional*):
The config object of the text backbone.
vision_config (`Union[AutoConfig, dict]`, *optional*):
Custom vision config or dict.
mm_tokens_per_image (`int`, *optional*, defaults to 256):
The number of tokens per image embedding.
boi_token_index (`int`, *optional*, defaults to 255999):
The begin-of-image token index to wrap the image prompt.
eoi_token_index (`int`, *optional*, defaults to 256000):
The end-of-image token index to wrap the image prompt.
image_token_index (`int`, *optional*, defaults to 262144):
The image token index to encode the image prompt.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import Gemma3ForConditionalGeneration, Gemma3Config, SiglipVisionConfig, Gemma3TextConfig
>>> # Initializing a Siglip-like vision config
>>> vision_config = SiglipVisionConfig()
>>> # Initializing a Gemma3 Text config
>>> text_config = Gemma3TextConfig()
>>> # Initializing a Gemma3 gemma-3-4b style configuration
>>> configuration = Gemma3Config(vision_config, text_config)
>>> # Initializing a model from the gemma-3-4b style configuration
>>> model = Gemma3TextConfig(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma3"
sub_configs = {
"text_config": Gemma3TextConfig,
"vision_config": SiglipVisionConfig,
}
def __init__(
self,
text_config: Optional[Union[Gemma3TextConfig, Dict[str, Any]]] = None,
vision_config: Optional[Union[SiglipVisionConfig, Dict[str, Any]]] = None,
mm_tokens_per_image: int = 256,
boi_token_index: int = 255_999,
eoi_token_index: int = 256_000,
image_token_index: int = 262_144,
initializer_range: float = 0.02,
**kwargs,
):
if text_config is None:
text_config = Gemma3TextConfig()
logger.info("text_config is None, using default Gemma3TextConfig text config.")
elif isinstance(text_config, dict):
text_config = Gemma3TextConfig(**text_config)
if isinstance(vision_config, dict):
vision_config = SiglipVisionConfig(**vision_config)
elif vision_config is None:
vision_config = SiglipVisionConfig()
logger.info("vision_config is None, using default SiglipVisionConfig vision config.")
self.text_config = text_config
self.vision_config = vision_config
self.mm_tokens_per_image = mm_tokens_per_image
self.boi_token_index = boi_token_index
self.eoi_token_index = eoi_token_index
self.image_token_index = image_token_index
self.initializer_range = initializer_range
super().__init__(**kwargs)
__all__ = ["Gemma3Config", "Gemma3TextConfig"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: image_processing_gemma3.py
LINES: 1
SIZE: 19.61 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma3\image_processing_gemma3.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Gemma3."""
import itertools
import math
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
convert_to_rgb,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_flat_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
logger = logging.get_logger(__name__)
if is_vision_available():
import PIL
class Gemma3ImageProcessor(BaseImageProcessor):
r"""
Constructs a SigLIP image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
`do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
do_pan_and_scan (`bool`, *optional*):
Whether to apply `pan_and_scan` to images.
pan_and_scan_min_crop_size (`int`, *optional*):
Minimum size of each crop in pan and scan.
pan_and_scan_max_num_crops (`int`, *optional*):
Maximum number of crops per image in pan and scan.
pan_and_scan_min_ratio_to_activate (`float`, *optional*):
Minimum aspect ratio to activate pan and scan.
"""
model_input_names = ["pixel_values", "num_crops"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: Optional[bool] = None,
do_pan_and_scan: Optional[bool] = None,
pan_and_scan_min_crop_size: Optional[int] = None,
pan_and_scan_max_num_crops: Optional[int] = None,
pan_and_scan_min_ratio_to_activate: Optional[float] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size, default_to_square=True)
image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
self.do_pan_and_scan = do_pan_and_scan
self.pan_and_scan_min_crop_size = pan_and_scan_min_crop_size
self.pan_and_scan_max_num_crops = pan_and_scan_max_num_crops
self.pan_and_scan_min_ratio_to_activate = pan_and_scan_min_ratio_to_activate
def pan_and_scan(
self,
image: np.ndarray,
pan_and_scan_min_crop_size: int,
pan_and_scan_max_num_crops: int,
pan_and_scan_min_ratio_to_activate: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Pan and Scan and image, by cropping into smaller images when the aspect ratio exceeds
minumum allowed ratio.
Args:
image (`np.ndarray`):
Image to resize.
pan_and_scan_min_crop_size (`int`, *optional*):
Minimum size of each crop in pan and scan.
pan_and_scan_max_num_crops (`int`, *optional*):
Maximum number of crops per image in pan and scan.
pan_and_scan_min_ratio_to_activate (`float`, *optional*):
Minimum aspect ratio to activate pan and scan.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
height, width = get_image_size(image)
# Square or landscape image.
if width >= height:
# Only apply PaS if the image is sufficiently exaggerated
if width / height < pan_and_scan_min_ratio_to_activate:
return []
# Select ideal number of crops close to the image aspect ratio and such that crop_size > min_crop_size.
num_crops_w = int(math.floor(width / height + 0.5)) # Half round up rounding.
num_crops_w = min(int(math.floor(width / pan_and_scan_min_crop_size)), num_crops_w)
# Make sure the number of crops is in range [2, pan_and_scan_max_num_crops].
num_crops_w = max(2, num_crops_w)
num_crops_w = min(pan_and_scan_max_num_crops, num_crops_w)
num_crops_h = 1
# Portrait image.
else:
# Only apply PaS if the image is sufficiently exaggerated
if height / width < pan_and_scan_min_ratio_to_activate:
return []
# Select ideal number of crops close to the image aspect ratio and such that crop_size > min_crop_size.
num_crops_h = int(math.floor(height / width + 0.5))
num_crops_h = min(int(math.floor(height / pan_and_scan_min_crop_size)), num_crops_h)
# Make sure the number of crops is in range [2, pan_and_scan_max_num_crops].
num_crops_h = max(2, num_crops_h)
num_crops_h = min(pan_and_scan_max_num_crops, num_crops_h)
num_crops_w = 1
crop_size_w = int(math.ceil(width / num_crops_w))
crop_size_h = int(math.ceil(height / num_crops_h))
# Don't apply PaS if crop size is too small.
if min(crop_size_w, crop_size_h) < pan_and_scan_min_crop_size:
return []
crop_positions_w = [crop_size_w * i for i in range(num_crops_w)]
crop_positions_h = [crop_size_h * i for i in range(num_crops_h)]
if input_data_format == ChannelDimension.LAST:
image_crops = [
image[pos_h : pos_h + crop_size_h, pos_w : pos_w + crop_size_w]
for pos_h, pos_w in itertools.product(crop_positions_h, crop_positions_w)
]
else:
image_crops = [
image[:, pos_h : pos_h + crop_size_h, pos_w : pos_w + crop_size_w]
for pos_h, pos_w in itertools.product(crop_positions_h, crop_positions_w)
]
return image_crops
def _process_images_for_pan_and_scan(
self,
images: List[np.ndarray],
do_pan_and_scan: bool,
pan_and_scan_min_crop_size: int,
pan_and_scan_max_num_crops: int,
pan_and_scan_min_ratio_to_activate: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
pas_images_list = []
num_crops = []
for image in images:
pas_images = self.pan_and_scan(
image=image,
pan_and_scan_min_crop_size=pan_and_scan_min_crop_size,
pan_and_scan_max_num_crops=pan_and_scan_max_num_crops,
pan_and_scan_min_ratio_to_activate=pan_and_scan_min_ratio_to_activate,
data_format=data_format,
input_data_format=input_data_format,
)
pas_images_list.extend([image] + pas_images)
num_crops.append(len(pas_images))
return pas_images_list, num_crops
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
do_convert_rgb: Optional[bool] = None,
do_pan_and_scan: Optional[bool] = None,
pan_and_scan_min_crop_size: Optional[int] = None,
pan_and_scan_max_num_crops: Optional[int] = None,
pan_and_scan_min_ratio_to_activate: Optional[float] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
do_pan_and_scan (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to apply `pan_and_scan` to images.
pan_and_scan_min_crop_size (`int`, *optional*, defaults to `self.pan_and_scan_min_crop_size`):
Minimum size of each crop in pan and scan.
pan_and_scan_max_num_crops (`int`, *optional*, defaults to `self.pan_and_scan_max_num_crops`):
Maximum number of crops per image in pan and scan.
pan_and_scan_min_ratio_to_activate (`float`, *optional*, defaults to `self.pan_and_scan_min_ratio_to_activate`):
Minimum aspect ratio to activate pan and scan.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, param_name="size", default_to_square=False)
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
do_pan_and_scan = do_pan_and_scan if do_pan_and_scan is not None else self.do_pan_and_scan
pan_and_scan_min_crop_size = (
pan_and_scan_min_crop_size if pan_and_scan_min_crop_size is not None else self.pan_and_scan_min_crop_size
)
pan_and_scan_max_num_crops = (
pan_and_scan_max_num_crops if pan_and_scan_max_num_crops is not None else self.pan_and_scan_max_num_crops
)
pan_and_scan_min_ratio_to_activate = (
pan_and_scan_min_ratio_to_activate
if pan_and_scan_min_ratio_to_activate is not None
else self.pan_and_scan_min_ratio_to_activate
)
images = make_flat_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_pan_and_scan:
images, num_crops = self._process_images_for_pan_and_scan(
images=images,
do_pan_and_scan=do_pan_and_scan,
pan_and_scan_min_crop_size=pan_and_scan_min_crop_size,
pan_and_scan_max_num_crops=pan_and_scan_max_num_crops,
pan_and_scan_min_ratio_to_activate=pan_and_scan_min_ratio_to_activate,
data_format=data_format,
input_data_format=input_data_format,
)
else:
num_crops = [0 for _ in images]
processed_images = []
for image in images:
if do_resize:
height, width = size["height"], size["width"]
image = resize(
image=image, size=(height, width), resample=resample, input_data_format=input_data_format
)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
processed_images.append(image)
data = {"pixel_values": processed_images, "num_crops": num_crops}
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["Gemma3ImageProcessor"]
```
|
==================================================================================================================================================
SOURCE CODE FILE: image_processing_gemma3_fast.py
LINES: 1
SIZE: 11.77 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma3\image_processing_gemma3_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Image processor class for SigLIP."""
import itertools
import math
from typing import List, Optional, Union
from ...image_processing_utils_fast import (
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
BaseImageProcessorFast,
BatchFeature,
DefaultFastImageProcessorKwargs,
group_images_by_shape,
reorder_images,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ImageInput,
SizeDict,
)
from ...processing_utils import Unpack
from ...utils import (
TensorType,
add_start_docstrings,
is_torch_available,
is_torchvision_available,
is_torchvision_v2_available,
is_vision_available,
logging,
)
if is_vision_available():
from ...image_utils import PILImageResampling
if is_torch_available():
import torch
if is_torchvision_available():
if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F
logger = logging.get_logger(__name__)
class Gemma3FastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
do_pan_and_scan: Optional[bool]
pan_and_scan_min_crop_size: Optional[int]
pan_and_scan_max_num_crops: Optional[int]
pan_and_scan_min_ratio_to_activate: Optional[float]
@add_start_docstrings(
"Constructs a fast ConvNeXT image processor. Based on [`SiglipImageProcessor`] with incorporation of Pan adn Scan cropping method.",
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
"""
do_pan_and_scan (`bool`, *optional*):
Whether to apply `pan_and_scan` to images.
pan_and_scan_min_crop_size (`int`, *optional*):
Minimum size of each crop in pan and scan.
pan_and_scan_max_num_crops (`int`, *optional*):
Maximum number of crops per image in pan and scan.
pan_and_scan_min_ratio_to_activate (`float`, *optional*):
Minimum aspect ratio to activate pan and scan.
""",
)
class Gemma3ImageProcessorFast(BaseImageProcessorFast):
resample = PILImageResampling.BILINEAR
image_mean = IMAGENET_STANDARD_MEAN
image_std = IMAGENET_STANDARD_STD
size = {"height": 224, "width": 224}
default_to_square = True
do_resize = True
do_rescale = True
do_normalize = True
do_pan_and_scan = None
pan_and_scan_min_crop_size = None
pan_and_scan_max_num_crops = None
pan_and_scan_min_ratio_to_activate = None
valid_kwargs = Gemma3FastImageProcessorKwargs
def __init__(self, **kwargs: Unpack[Gemma3FastImageProcessorKwargs]):
super().__init__(**kwargs)
def pan_and_scan_batched(
self,
images: "torch.Tensor",
pan_and_scan_min_crop_size: int,
pan_and_scan_max_num_crops: int,
pan_and_scan_min_ratio_to_activate: float,
):
"""
Pan and Scan an image, by cropping into smaller images when the aspect ratio exceeds
minumum allowed ratio.
Args:
image (`torch.Tensor`):
Image to resize.
pan_and_scan_min_crop_size (`int`, *optional*):
Minimum size of each crop in pan and scan.
pan_and_scan_max_num_crops (`int`, *optional*):
Maximum number of crops per image in pan and scan.
pan_and_scan_min_ratio_to_activate (`float`, *optional*):
Minimum aspect ratio to activate pan and scan.
"""
height, width = images.shape[-2:]
# Square or landscape image.
if width >= height:
# Only apply PaS if the image is sufficiently exaggerated
if width / height < pan_and_scan_min_ratio_to_activate:
return []
# Select ideal number of crops close to the image aspect ratio and such that crop_size > min_crop_size.
num_crops_w = int(math.floor(width / height + 0.5)) # Half round up rounding.
num_crops_w = min(int(math.floor(width / pan_and_scan_min_crop_size)), num_crops_w)
# Make sure the number of crops is in range [2, pan_and_scan_max_num_crops].
num_crops_w = max(2, num_crops_w)
num_crops_w = min(pan_and_scan_max_num_crops, num_crops_w)
num_crops_h = 1
# Portrait image.
else:
# Only apply PaS if the image is sufficiently exaggerated
if height / width < pan_and_scan_min_ratio_to_activate:
return []
# Select ideal number of crops close to the image aspect ratio and such that crop_size > min_crop_size.
num_crops_h = int(math.floor(height / width + 0.5))
num_crops_h = min(int(math.floor(height / pan_and_scan_min_crop_size)), num_crops_h)
# Make sure the number of crops is in range [2, pan_and_scan_max_num_crops].
num_crops_h = max(2, num_crops_h)
num_crops_h = min(pan_and_scan_max_num_crops, num_crops_h)
num_crops_w = 1
crop_size_w = int(math.ceil(width / num_crops_w))
crop_size_h = int(math.ceil(height / num_crops_h))
# Don't apply PaS if crop size is too small.
if min(crop_size_w, crop_size_h) < pan_and_scan_min_crop_size:
return []
crop_positions_w = [crop_size_w * i for i in range(num_crops_w)]
crop_positions_h = [crop_size_h * i for i in range(num_crops_h)]
return [
images[..., pos_h : pos_h + crop_size_h, pos_w : pos_w + crop_size_w]
for pos_h, pos_w in itertools.product(crop_positions_h, crop_positions_w)
]
def _process_images_for_pan_and_scan(
self,
images: List["torch.Tensor"],
do_pan_and_scan: bool,
pan_and_scan_min_crop_size: int,
pan_and_scan_max_num_crops: int,
pan_and_scan_min_ratio_to_activate: float,
):
pas_images = self.pan_and_scan_batched(
images=images,
pan_and_scan_min_crop_size=pan_and_scan_min_crop_size,
pan_and_scan_max_num_crops=pan_and_scan_max_num_crops,
pan_and_scan_min_ratio_to_activate=pan_and_scan_min_ratio_to_activate,
)
num_crops = [len(pas_images) for _ in images]
return pas_images, num_crops
@add_start_docstrings(
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
"""
do_pan_and_scan (`bool`, *optional*):
Whether to apply `pan_and_scan` to images.
pan_and_scan_min_crop_size (`int`, *optional*):
Minimum size of each crop in pan and scan.
pan_and_scan_max_num_crops (`int`, *optional*):
Maximum number of crops per image in pan and scan.
pan_and_scan_min_ratio_to_activate (`float`, *optional*):
Minimum aspect ratio to activate pan and scan.
""",
)
def preprocess(
self,
images: ImageInput,
**kwargs: Unpack[Gemma3FastImageProcessorKwargs],
) -> BatchFeature:
return super().preprocess(images, **kwargs)
def _preprocess(
self,
images: List[List["torch.Tensor"]],
do_resize: bool,
size: SizeDict,
do_pan_and_scan: Optional[bool],
pan_and_scan_min_crop_size: Optional[int],
pan_and_scan_max_num_crops: Optional[int],
pan_and_scan_min_ratio_to_activate: Optional[float],
interpolation: Optional["F.InterpolationMode"],
do_center_crop: bool,
crop_size: SizeDict,
do_rescale: bool,
rescale_factor: float,
do_normalize: bool,
image_mean: Optional[Union[float, List[float]]],
image_std: Optional[Union[float, List[float]]],
return_tensors: Optional[Union[str, TensorType]],
) -> BatchFeature:
# Group images by size for batched processing
processed_images_grouped = {}
num_crops_grouped = {}
grouped_images, grouped_images_index = group_images_by_shape(images)
for shape_images, stacked_images in grouped_images.items():
if do_pan_and_scan:
pas_images, num_crops = self._process_images_for_pan_and_scan(
images=stacked_images,
do_pan_and_scan=do_pan_and_scan,
pan_and_scan_min_crop_size=pan_and_scan_min_crop_size,
pan_and_scan_max_num_crops=pan_and_scan_max_num_crops,
pan_and_scan_min_ratio_to_activate=pan_and_scan_min_ratio_to_activate,
)
# Add the thumbnails to the image patches
stacked_images = [stacked_images] + pas_images
# Group images by size for batched resizing (this will typically group thumbnails together and cropped patches together)
processed_image_patches_grouped = {}
grouped_image_patches, grouped_image_patches_index = group_images_by_shape(stacked_images)
for shape, stacked_image_patches in grouped_image_patches.items():
stacked_image_patches = self.resize(
image=stacked_image_patches,
size=size,
interpolation=interpolation,
)
processed_image_patches_grouped[shape] = stacked_image_patches
processed_image_patches = reorder_images(processed_image_patches_grouped, grouped_image_patches_index)
# Transpose to have the thumbnails with their corresponding patches
stacked_images = torch.stack(processed_image_patches, dim=0).transpose(0, 1).contiguous()
else:
num_crops = [0 for _ in stacked_images]
if do_resize:
stacked_images = self.resize(
image=stacked_images,
size=size,
interpolation=interpolation,
)
num_crops_grouped[shape_images] = num_crops
processed_images_grouped[shape_images] = stacked_images
resized_images = reorder_images(processed_images_grouped, grouped_images_index)
# If pan and scan is enabled, we need to flatten the list of images
if do_pan_and_scan:
resized_images = [image for images_list in resized_images for image in images_list]
num_crops = reorder_images(num_crops_grouped, grouped_images_index)
# Group images by size for further processing
# Needed in case do_resize is False, or resize returns images with different sizes
grouped_images, grouped_images_index = group_images_by_shape(resized_images)
processed_images_grouped = {}
for shape, stacked_images in grouped_images.items():
# Fused rescale and normalize
stacked_images = self.rescale_and_normalize(
stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std
)
processed_images_grouped[shape] = stacked_images
processed_images = reorder_images(processed_images_grouped, grouped_images_index)
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
return BatchFeature(
data={"pixel_values": processed_images, "num_crops": num_crops}, tensor_type=return_tensors
)
__all__ = ["Gemma3ImageProcessorFast"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: modeling_gemma3.py
LINES: 10
SIZE: 65.05 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma3\modeling_gemma3.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gemma3/modular_gemma3.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gemma3.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from collections.abc import Callable
from dataclasses import dataclass
from functools import partial
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from ...activations import ACT2FN
from ...cache_utils import Cache, HybridCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ..auto import AutoModel, AutoModelForCausalLM
from .configuration_gemma3 import Gemma3Config, Gemma3TextConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Gemma3Config"
@dataclass
class Gemma3CausalLMOutputWithPast(ModelOutput):
"""
Base class for Gemma3 causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
class Gemma3TextScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: float = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.register_buffer("embed_scale", torch.tensor(embed_scale), persistent=False)
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale.to(self.weight.dtype)
class Gemma3MLP(nn.Module):
def __init__(self, config: Gemma3TextConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_activation]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class Gemma3RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
# Llama does x.to(float16) * w whilst Gemma3 is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = output * (1.0 + self.weight.float())
return output.type_as(x)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
class Gemma3RotaryEmbedding(nn.Module):
def __init__(self, config: Gemma3TextConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
dropout: float = 0.0,
scaling: Optional[float] = None,
softcap: Optional[float] = None,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
if scaling is None:
scaling = module.head_dim**-0.5
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if softcap is not None:
attn_weights = attn_weights / softcap
attn_weights = torch.tanh(attn_weights)
attn_weights = attn_weights * softcap
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Gemma3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Gemma3TextConfig, layer_idx: int):
super().__init__()
self.is_sliding = bool((layer_idx + 1) % config.sliding_window_pattern)
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = config.query_pre_attn_scalar**-0.5
self.attention_dropout = self.config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.attn_logit_softcapping = self.config.attn_logit_softcapping
self.sliding_window = config.sliding_window if self.is_sliding else None
self.q_norm = Gemma3RMSNorm(dim=config.head_dim, eps=config.rms_norm_eps)
self.k_norm = Gemma3RMSNorm(dim=config.head_dim, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: torch.Tensor,
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {
"sin": sin,
"cos": cos,
"cache_position": cache_position,
"sliding_window": self.sliding_window,
}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Here we need to slice as we use a static cache by default, but FA2 does not support it
if attention_mask is not None and self.config._attn_implementation == "flash_attention_2":
seq_len = attention_mask.shape[-1]
key_states, value_states = key_states[:, :, :seq_len, :], value_states[:, :, :seq_len, :]
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. "
"Falling back to eager attention. This warning can be removed using the argument "
'`attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
if attention_mask is not None:
# backwards compatibility
attention_mask = attention_mask.to(query_states)
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=self.scaling,
sliding_window=self.sliding_window,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Gemma3DecoderLayer(nn.Module):
def __init__(self, config: Gemma3TextConfig, layer_idx: int):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.layer_idx = layer_idx
self.self_attn = Gemma3Attention(config=config, layer_idx=layer_idx)
self.mlp = Gemma3MLP(config)
self.input_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.pre_feedforward_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.is_sliding = self.self_attn.is_sliding
self.sliding_window = config.sliding_window
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings_global: torch.Tensor,
position_embeddings_local: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
last_cache_position: int = 0,
**kwargs,
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
# In prefill, we may be larger than sliding window
effective_seq_len = max(cache_position.shape[0], self.sliding_window)
# For FA2, the mask is 2D and is of shape [bs, processed_tokens] (not [bs, max_cache_len]),
# thus we must slice from the right (at most `effective_seq_len` elements)
if self.config._attn_implementation == "flash_attention_2":
attention_mask = attention_mask[:, -effective_seq_len:]
# Otherwise, the mask is 4D of shape [bs, 1, query_len, max_cache_len] thus we must slice
# from the left, with an offset if we are beyond the sliding window
else:
min_dtype = torch.finfo(attention_mask.dtype).min
sliding_window_mask = torch.tril(
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
)
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
# In case we are beyond the sliding window, we need to correctly offset the mask slicing
# `last_cache_position` is equivalent to `cache_position[-1]` but without breaking dynamo
offset = last_cache_position - effective_seq_len
# Should only be used when beyond the sliding window (i.e. offset > 0)
offset = max(0, offset)
attention_mask = attention_mask[:, :, :, offset : offset + effective_seq_len]
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# apply global RoPE to non-sliding layer only
if self.self_attn.is_sliding:
position_embeddings = position_embeddings_local
else:
position_embeddings = position_embeddings_global
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
GEMMA3_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Gemma3Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Gemma3 Model outputting raw hidden-states without any specific head on top.",
GEMMA3_START_DOCSTRING,
)
class Gemma3PreTrainedModel(PreTrainedModel):
config_class = Gemma3Config
base_model_prefix = "language_model"
supports_gradient_checkpointing = True
_no_split_modules = [
"Gemma3DecoderLayer",
"SiglipVisionEmbeddings",
"SiglipEncoderLayer",
"SiglipMultiheadAttentionPoolingHead",
]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
# important: this ported version of Gemma2 isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
GEMMA3_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Gemma3Text Model outputting raw hidden-states without any specific head on top.",
GEMMA3_START_DOCSTRING,
)
class Gemma3TextModel(Gemma3PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Gemma3TextDecoderLayer`]
Args:
config: Gemma3TextConfig
"""
config_class = Gemma3TextConfig
def __init__(self, config: Gemma3TextConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
# Gemma3 downcasts the below to bfloat16, causing sqrt(3072)=55.4256 to become 55.5. See https://github.com/huggingface/transformers/pull/29402
self.embed_tokens = Gemma3TextScaledWordEmbedding(
config.vocab_size, config.hidden_size, self.padding_idx, embed_scale=self.config.hidden_size**0.5
)
self.layers = nn.ModuleList(
[Gemma3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Gemma3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Gemma3RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# TODO: raushan fix this after RoPE refactor. For now we hack it by reassigning thetas
# when we want to create a local RoPE layer. Config defaults should hold values for global RoPE
config = copy.deepcopy(config)
config.rope_theta = config.rope_local_base_freq
config.rope_scaling = {"rope_type": "default"}
self.rotary_emb_local = Gemma3RotaryEmbedding(config=config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GEMMA3_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
last_cache_position: Optional[int] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None and not self.training:
batch_size, seq_len, _ = inputs_embeds.shape
past_key_values = HybridCache(
self.config,
max_batch_size=batch_size,
max_cache_len=seq_len,
dtype=inputs_embeds.dtype,
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing
# (retrieving the same value from `cache_position` later on would crash dynamo)
if last_cache_position is None:
last_cache_position = 0
if attention_mask is not None:
# In case a 4d mask is passed directly without using `generate`, we have to rely on cache_position
# It will break dynamo tracing but there are no way around it (and it should never happen in practice)
last_cache_position = (
attention_mask.shape[-1] if attention_mask.dim() == 2 else cache_position[-1].item()
)
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values,
output_attentions,
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings_global = self.rotary_emb(hidden_states, position_ids)
position_embeddings_local = self.rotary_emb_local(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
position_embeddings_global,
position_embeddings_local,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
last_cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
position_embeddings_global=position_embeddings_global,
position_embeddings_local=position_embeddings_local,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
last_cache_position=last_cache_position,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@torch.no_grad()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: HybridCache,
output_attentions: bool,
):
# Flash Attention currently doesn't support static cache but Gemma3Text work only with static cache.
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
# as it doesn't cause dynamic control issues.
if self.config._attn_implementation == "flash_attention_2":
return attention_mask
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if isinstance(past_key_values, (HybridCache, StaticCache)):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class Gemma3ForCausalLM(Gemma3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
config_class = Gemma3TextConfig
base_model_prefix = "language_model"
def __init__(self, config: Gemma3TextConfig):
super().__init__(config)
self.model = Gemma3TextModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(GEMMA3_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Gemma3ForCausalLM
>>> model = Gemma3ForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
if self.training and self.config._attn_implementation != "eager":
logger.warning_once(
"It is strongly recommended to train Gemma3 models with the `eager` attention implementation "
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**loss_kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
if self.config.final_logit_softcapping is not None:
logits = logits / self.config.final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * self.config.final_logit_softcapping
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
logits_to_keep=None,
**kwargs,
):
# Overwritten: has a special cache type, `HybridCache`
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
**kwargs,
)
# This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing
# (retrieving the same value from `cache_position` later on would crash dynamo)
model_inputs["last_cache_position"] = attention_mask.shape[-1] if attention_mask is not None else 0
if logits_to_keep is None:
_ = model_inputs.pop("logits_to_keep", None)
if (
isinstance(past_key_values, HybridCache)
and attention_mask.ndim == 2
and not self.config._attn_implementation == "flash_attention_2"
):
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_cache_shape(),
dtype=self.lm_head.weight.dtype,
device=device,
cache_position=cache_position,
batch_size=batch_size,
)
model_inputs["attention_mask"] = attention_mask
return model_inputs
class Gemma3MultiModalProjector(nn.Module):
def __init__(self, config: Gemma3Config):
super().__init__()
self.mm_input_projection_weight = nn.Parameter(
torch.zeros(config.vision_config.hidden_size, config.text_config.hidden_size)
)
self.mm_soft_emb_norm = Gemma3RMSNorm(
config.vision_config.hidden_size, eps=config.vision_config.layer_norm_eps
)
self.patches_per_image = int(config.vision_config.image_size // config.vision_config.patch_size)
self.tokens_per_side = int(config.mm_tokens_per_image**0.5)
self.kernel_size = self.patches_per_image // self.tokens_per_side
self.avg_pool = nn.AvgPool2d(kernel_size=self.kernel_size, stride=self.kernel_size)
def forward(self, vision_outputs: torch.Tensor):
batch_size, _, seq_length = vision_outputs.shape
reshaped_vision_outputs = vision_outputs.transpose(1, 2)
reshaped_vision_outputs = reshaped_vision_outputs.reshape(
batch_size, seq_length, self.patches_per_image, self.patches_per_image
)
reshaped_vision_outputs = reshaped_vision_outputs.contiguous()
pooled_vision_outputs = self.avg_pool(reshaped_vision_outputs)
pooled_vision_outputs = pooled_vision_outputs.flatten(2)
pooled_vision_outputs = pooled_vision_outputs.transpose(1, 2)
normed_vision_outputs = self.mm_soft_emb_norm(pooled_vision_outputs)
projected_vision_outputs = torch.matmul(normed_vision_outputs, self.mm_input_projection_weight)
return projected_vision_outputs.type_as(vision_outputs)
@add_start_docstrings(
"""The GEMMA3 model which consists of a vision backbone and a language model.""",
GEMMA3_START_DOCSTRING,
)
class Gemma3ForConditionalGeneration(Gemma3PreTrainedModel, GenerationMixin):
def __init__(self, config: Gemma3Config):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config=config.vision_config)
self.multi_modal_projector = Gemma3MultiModalProjector(config)
self.vocab_size = config.text_config.vocab_size
language_model = AutoModelForCausalLM.from_config(config=config.text_config)
if language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
self.language_model = language_model
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def _update_causal_mask(
self,
attention_mask,
token_type_ids,
past_key_values,
cache_position,
input_tensor,
is_training: bool = False,
):
if self.config.text_config._attn_implementation == "flash_attention_2":
return attention_mask
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted
# form and requires no inversion or slicing.
return attention_mask
using_static_cache = isinstance(past_key_values, StaticCache)
min_dtype = torch.finfo(self.dtype).min
inputs_lead_dim, sequence_length = input_tensor.shape[:2]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
elif isinstance(past_key_values, HybridCache):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else cache_position[0] + sequence_length + 1
)
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
return attention_mask
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device
)
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
# Apply bidirectional mask on images if token type ids are provided
if token_type_ids is not None and sequence_length != 1:
token_type_mask = token_type_ids.unsqueeze(1) == token_type_ids.unsqueeze(2)
token_type_mask[token_type_ids == 0] = False # if text token do not change anything
token_type_mask = token_type_mask.unsqueeze(1).to(causal_mask.device, dtype=torch.bool)
causal_mask = causal_mask.clone()
causal_mask[:, :, :, :sequence_length] = causal_mask[:, :, :, :sequence_length].masked_fill(
token_type_mask, 0.0
)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
# Then apply padding mask (will mask pad tokens)
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
def get_image_features(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
Projects the last hidden state from the vision model into language model space.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
The tensors corresponding to the input images.
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
"""
vision_outputs = self.vision_tower(pixel_values=pixel_values).last_hidden_state
image_features = self.multi_modal_projector(vision_outputs)
return image_features
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(GEMMA3_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Gemma3CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**lm_kwargs,
) -> Union[Tuple, Gemma3CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration
>>> model = Gemma3ForConditionalGeneration.from_pretrained("google/gemma-3-4b-it")
>>> processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it")
>>> messages = [
... {
... "role": "system",
... "content": [
... {"type": "text", "text": "You are a helpful assistant."}
... ]
... },
... {
... "role": "user", "content": [
... {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
... {"type": "text", "text": "Where is the cat standing?"},
... ]
... },
... ]
>>> inputs = processor.apply_chat_template(
... messages,
... tokenizer=True,
... return_dict=True,
... return_tensors="pt",
... add_generation_prompt=True
... )
>>> # Generate
>>> generate_ids = model.generate(**inputs)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"user\nYou are a helpful assistant.\n\n\n\n\n\nWhere is the cat standing?\nmodel\nBased on the image, the cat is standing in a snowy area, likely outdoors. It appears to"
```
"""
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
is_training = token_type_ids is not None and labels is not None
# Replace image id woth PAD if the image token if OOV, to avoid index-errors
if input_ids is not None and self.config.image_token_index >= self.vocab_size:
special_image_mask = input_ids == self.config.image_token_index
llm_input_ids = input_ids.clone()
llm_input_ids[special_image_mask] = 0
else:
llm_input_ids = input_ids
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(llm_input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
# Merge text and images
if pixel_values is not None:
image_features = self.get_image_features(pixel_values)
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device)
)
else:
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
raise ValueError(
f"Number of images does not match number of special image tokens in the input text. "
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
"tokens from image embeddings."
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
# mask out pad-token-ids in labels for BC
if labels is not None and self.pad_token_id in labels:
logger.warning_once(
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. "
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
)
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
causal_mask = self._update_causal_mask(
attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training
)
outputs: CausalLMOutputWithPast = self.language_model(
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**lm_kwargs,
)
logits = outputs.logits
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
shift_logits = logits[..., :-1, :]
shift_labels = labels[..., 1:]
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
else:
shift_logits = shift_logits.contiguous()
shift_labels = shift_labels.contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
flat_labels = shift_labels.view(-1).to(shift_logits.device)
loss = loss_fct(flat_logits, flat_labels)
return Gemma3CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
pixel_values=None,
attention_mask=None,
token_type_ids=None,
use_cache=True,
logits_to_keep=None,
labels=None,
**kwargs,
):
# Overwritten -- custom `position_ids` and `pixel_values` handling
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
cache_position=cache_position,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
token_type_ids=token_type_ids,
**kwargs,
)
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
is_training = token_type_ids is not None and labels is not None
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
input_tensor = inputs_embeds if inputs_embeds is not None else input_ids
causal_mask = self._update_causal_mask(
attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training
)
model_inputs["attention_mask"] = causal_mask
return model_inputs
def tie_weights(self):
return self.language_model.tie_weights()
__all__ = ["Gemma3PreTrainedModel", "Gemma3TextModel", "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration"]
```
|
====================================================================================================================================
SOURCE CODE FILE: modular_gemma3.py
LINES: 10
SIZE: 50.41 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma3\modular_gemma3.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from collections.abc import Callable
from dataclasses import dataclass
from functools import partial
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from ...cache_utils import Cache, HybridCache, StaticCache
from ...configuration_utils import PretrainedConfig
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
ModelOutput,
)
from ...modeling_rope_utils import rope_config_validation
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import (
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ..gemma2.configuration_gemma2 import Gemma2Config
from ..gemma2.modeling_gemma2 import (
Gemma2Attention,
Gemma2ForCausalLM,
Gemma2MLP,
Gemma2Model,
Gemma2PreTrainedModel,
Gemma2RMSNorm,
Gemma2RotaryEmbedding,
apply_rotary_pos_emb,
eager_attention_forward,
)
from ..paligemma.modeling_paligemma import PaliGemmaForConditionalGeneration
from ..siglip import SiglipVisionConfig
_CHECKPOINT_FOR_DOC = "google/gemma-3-4b"
_CONFIG_FOR_DOC = "Gemma3Config"
logger = logging.get_logger(__name__)
GEMMA3_INPUTS_DOCSTRING = None # Will be picked up by modular
class Gemma3TextConfig(Gemma2Config):
r"""
This is the configuration class to store the configuration of a [`Gemma3TextModel`]. It is used to instantiate an Gemma3Text
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma3Text-7B.
e.g. [google/gemma3_text-7b](https://huggingface.co/google/gemma3_text-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 262208):
Vocabulary size of the Gemma3Text model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Gemma3TextModel`]
hidden_size (`int`, *optional*, defaults to 2304):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 9216):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 26):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
query_pre_attn_scalar (`float`, *optional*, defaults to 256):
Scaling factor used on the attention scores
sliding_window (`int`, *optional*, defaults to 4096): in Gemma3Text, every other layer uses sliding window attention. This is the
size of the sliding window.
final_logit_softcapping (`float`, *optional*):
Scaling factor when applying tanh softcapping on the logits.
attn_logit_softcapping (`float`, *optional*):
Scaling factor when applying tanh softcapping on the attention scores.
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings used in gloabl attention. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
rope_local_base_freq (float, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings for local attention.
sliding_window_pattern (`int`, *optional*, defaults to 6):
Pattern for the sliding window attention.
```python
>>> from transformers import Gemma3TextModel, Gemma3TextConfig
>>> # Initializing a Gemma3Text gemma3_text-7b style configuration
>>> configuration = Gemma3TextConfig()
>>> # Initializing a model from the gemma3_text-7b style configuration
>>> model = Gemma3TextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
rope_local_base_freq (float, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings for local attention.
sliding_window_pattern (`int`, *optional*, defaults to 6):
Pattern for the sliding window attention.
"""
model_type = "gemma3_text"
def __init__(
self,
vocab_size=262_208,
rope_theta=1_000_000.0,
rope_scaling=None,
rope_local_base_freq=10_000.0,
sliding_window_pattern=6,
max_position_embeddings=131_072,
final_logit_softcapping=None,
attn_logit_softcapping=None,
**super_kwargs,
):
super().__init__(self, **super_kwargs)
self.rope_local_base_freq = rope_local_base_freq
# For configuring HybridCache to work with 5:1 attention pattern
self.sliding_window_pattern = sliding_window_pattern
self.rope_scaling = rope_scaling
rope_config_validation(self)
class Gemma3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma3ForConditionalGeneration`]. It is used to instantiate an
Gemma3ForConditionalGeneration according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the PaliGemma-2B.
e.g. [google/gemma-3-4b](https://huggingface.co/google/gemma-3-4b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`Union[Gemma3TextConfig, dict]`, *optional*):
The config object of the text backbone.
vision_config (`Union[AutoConfig, dict]`, *optional*):
Custom vision config or dict.
mm_tokens_per_image (`int`, *optional*, defaults to 256):
The number of tokens per image embedding.
boi_token_index (`int`, *optional*, defaults to 255999):
The begin-of-image token index to wrap the image prompt.
eoi_token_index (`int`, *optional*, defaults to 256000):
The end-of-image token index to wrap the image prompt.
image_token_index (`int`, *optional*, defaults to 262144):
The image token index to encode the image prompt.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import Gemma3ForConditionalGeneration, Gemma3Config, SiglipVisionConfig, Gemma3TextConfig
>>> # Initializing a Siglip-like vision config
>>> vision_config = SiglipVisionConfig()
>>> # Initializing a Gemma3 Text config
>>> text_config = Gemma3TextConfig()
>>> # Initializing a Gemma3 gemma-3-4b style configuration
>>> configuration = Gemma3Config(vision_config, text_config)
>>> # Initializing a model from the gemma-3-4b style configuration
>>> model = Gemma3TextConfig(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma3"
sub_configs = {
"text_config": Gemma3TextConfig,
"vision_config": SiglipVisionConfig,
}
def __init__(
self,
text_config: Optional[Union[Gemma3TextConfig, Dict[str, Any]]] = None,
vision_config: Optional[Union[SiglipVisionConfig, Dict[str, Any]]] = None,
mm_tokens_per_image: int = 256,
boi_token_index: int = 255_999,
eoi_token_index: int = 256_000,
image_token_index: int = 262_144,
initializer_range: float = 0.02,
**kwargs,
):
if text_config is None:
text_config = Gemma3TextConfig()
logger.info("text_config is None, using default Gemma3TextConfig text config.")
elif isinstance(text_config, dict):
text_config = Gemma3TextConfig(**text_config)
if isinstance(vision_config, dict):
vision_config = SiglipVisionConfig(**vision_config)
elif vision_config is None:
vision_config = SiglipVisionConfig()
logger.info("vision_config is None, using default SiglipVisionConfig vision config.")
self.text_config = text_config
self.vision_config = vision_config
self.mm_tokens_per_image = mm_tokens_per_image
self.boi_token_index = boi_token_index
self.eoi_token_index = eoi_token_index
self.image_token_index = image_token_index
self.initializer_range = initializer_range
super().__init__(**kwargs)
@dataclass
class Gemma3CausalLMOutputWithPast(ModelOutput):
"""
Base class for Gemma3 causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
class Gemma3TextScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: float = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.register_buffer("embed_scale", torch.tensor(embed_scale), persistent=False)
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale.to(self.weight.dtype)
class Gemma3MLP(Gemma2MLP):
def __init__(self, config: Gemma3TextConfig):
super().__init__(config)
class Gemma3RMSNorm(Gemma2RMSNorm):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
class Gemma3RotaryEmbedding(Gemma2RotaryEmbedding):
def __init__(self, config: Gemma3TextConfig, device=None):
super().__init__(config)
# Weird way to inherit but otherwise the sliding window gets defined first and can't access `is_sliding`
class Gemma3Attention(Gemma2Attention):
def __init__(self, config: Gemma3TextConfig, layer_idx: int):
self.is_sliding = bool((layer_idx + 1) % config.sliding_window_pattern)
super().__init__()
self.sliding_window = config.sliding_window if self.is_sliding else None
self.q_norm = Gemma3RMSNorm(dim=config.head_dim, eps=config.rms_norm_eps)
self.k_norm = Gemma3RMSNorm(dim=config.head_dim, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: torch.Tensor,
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {
"sin": sin,
"cos": cos,
"cache_position": cache_position,
"sliding_window": self.sliding_window,
}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Here we need to slice as we use a static cache by default, but FA2 does not support it
if attention_mask is not None and self.config._attn_implementation == "flash_attention_2":
seq_len = attention_mask.shape[-1]
key_states, value_states = key_states[:, :, :seq_len, :], value_states[:, :, :seq_len, :]
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. "
"Falling back to eager attention. This warning can be removed using the argument "
'`attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
if attention_mask is not None:
# backwards compatibility
attention_mask = attention_mask.to(query_states)
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=self.scaling,
sliding_window=self.sliding_window,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Gemma3DecoderLayer(nn.Module):
def __init__(self, config: Gemma3TextConfig, layer_idx: int):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.layer_idx = layer_idx
self.self_attn = Gemma3Attention(config=config, layer_idx=layer_idx)
self.mlp = Gemma3MLP(config)
self.input_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.pre_feedforward_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Gemma3RMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.is_sliding = self.self_attn.is_sliding
self.sliding_window = config.sliding_window
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings_global: torch.Tensor,
position_embeddings_local: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
last_cache_position: int = 0,
**kwargs,
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
# In prefill, we may be larger than sliding window
effective_seq_len = max(cache_position.shape[0], self.sliding_window)
# For FA2, the mask is 2D and is of shape [bs, processed_tokens] (not [bs, max_cache_len]),
# thus we must slice from the right (at most `effective_seq_len` elements)
if self.config._attn_implementation == "flash_attention_2":
attention_mask = attention_mask[:, -effective_seq_len:]
# Otherwise, the mask is 4D of shape [bs, 1, query_len, max_cache_len] thus we must slice
# from the left, with an offset if we are beyond the sliding window
else:
min_dtype = torch.finfo(attention_mask.dtype).min
sliding_window_mask = torch.tril(
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
)
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
# In case we are beyond the sliding window, we need to correctly offset the mask slicing
# `last_cache_position` is equivalent to `cache_position[-1]` but without breaking dynamo
offset = last_cache_position - effective_seq_len
# Should only be used when beyond the sliding window (i.e. offset > 0)
offset = max(0, offset)
attention_mask = attention_mask[:, :, :, offset : offset + effective_seq_len]
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# apply global RoPE to non-sliding layer only
if self.self_attn.is_sliding:
position_embeddings = position_embeddings_local
else:
position_embeddings = position_embeddings_global
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
GEMMA3_START_DOCSTRING = None
class Gemma3PreTrainedModel(Gemma2PreTrainedModel):
base_model_prefix = "language_model"
_no_split_modules = [
"Gemma3DecoderLayer",
"SiglipVisionEmbeddings",
"SiglipEncoderLayer",
"SiglipMultiheadAttentionPoolingHead",
]
def _init_weights(self, module):
# important: this ported version of Gemma2 isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class Gemma3TextModel(Gemma2Model):
config_class = Gemma3TextConfig
def __init__(self, config: Gemma3TextConfig):
super().__init__(config)
# Gemma3 downcasts the below to bfloat16, causing sqrt(3072)=55.4256 to become 55.5. See https://github.com/huggingface/transformers/pull/29402
self.embed_tokens = Gemma3TextScaledWordEmbedding(
config.vocab_size, config.hidden_size, self.padding_idx, embed_scale=self.config.hidden_size**0.5
)
# TODO: raushan fix this after RoPE refactor. For now we hack it by reassigning thetas
# when we want to create a local RoPE layer. Config defaults should hold values for global RoPE
config = copy.deepcopy(config)
config.rope_theta = config.rope_local_base_freq
config.rope_scaling = {"rope_type": "default"}
self.rotary_emb_local = Gemma3RotaryEmbedding(config=config)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
last_cache_position: Optional[int] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None and not self.training:
batch_size, seq_len, _ = inputs_embeds.shape
past_key_values = HybridCache(
self.config,
max_batch_size=batch_size,
max_cache_len=seq_len,
dtype=inputs_embeds.dtype,
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# This is needed to correctly slice the mask without data-dependent slicing later on if using dynamo tracing
# (retrieving the same value from `cache_position` later on would crash dynamo)
if last_cache_position is None:
last_cache_position = 0
if attention_mask is not None:
# In case a 4d mask is passed directly without using `generate`, we have to rely on cache_position
# It will break dynamo tracing but there are no way around it (and it should never happen in practice)
last_cache_position = (
attention_mask.shape[-1] if attention_mask.dim() == 2 else cache_position[-1].item()
)
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values,
output_attentions,
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings_global = self.rotary_emb(hidden_states, position_ids)
position_embeddings_local = self.rotary_emb_local(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
position_embeddings_global,
position_embeddings_local,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
last_cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
position_embeddings_global=position_embeddings_global,
position_embeddings_local=position_embeddings_local,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
last_cache_position=last_cache_position,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class Gemma3ForCausalLM(Gemma2ForCausalLM):
config_class = Gemma3TextConfig
base_model_prefix = "language_model"
def __init__(self, config: Gemma3TextConfig):
super().__init__(config)
self.model = Gemma3TextModel(config)
class Gemma3MultiModalProjector(nn.Module):
def __init__(self, config: Gemma3Config):
super().__init__()
self.mm_input_projection_weight = nn.Parameter(
torch.zeros(config.vision_config.hidden_size, config.text_config.hidden_size)
)
self.mm_soft_emb_norm = Gemma3RMSNorm(
config.vision_config.hidden_size, eps=config.vision_config.layer_norm_eps
)
self.patches_per_image = int(config.vision_config.image_size // config.vision_config.patch_size)
self.tokens_per_side = int(config.mm_tokens_per_image**0.5)
self.kernel_size = self.patches_per_image // self.tokens_per_side
self.avg_pool = nn.AvgPool2d(kernel_size=self.kernel_size, stride=self.kernel_size)
def forward(self, vision_outputs: torch.Tensor):
batch_size, _, seq_length = vision_outputs.shape
reshaped_vision_outputs = vision_outputs.transpose(1, 2)
reshaped_vision_outputs = reshaped_vision_outputs.reshape(
batch_size, seq_length, self.patches_per_image, self.patches_per_image
)
reshaped_vision_outputs = reshaped_vision_outputs.contiguous()
pooled_vision_outputs = self.avg_pool(reshaped_vision_outputs)
pooled_vision_outputs = pooled_vision_outputs.flatten(2)
pooled_vision_outputs = pooled_vision_outputs.transpose(1, 2)
normed_vision_outputs = self.mm_soft_emb_norm(pooled_vision_outputs)
projected_vision_outputs = torch.matmul(normed_vision_outputs, self.mm_input_projection_weight)
return projected_vision_outputs.type_as(vision_outputs)
class Gemma3ForConditionalGeneration(PaliGemmaForConditionalGeneration):
def tie_weights(self):
return self.language_model.tie_weights()
def get_image_features(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
Projects the last hidden state from the vision model into language model space.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
The tensors corresponding to the input images.
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
"""
vision_outputs = self.vision_tower(pixel_values=pixel_values).last_hidden_state
image_features = self.multi_modal_projector(vision_outputs)
return image_features
def _update_causal_mask(
self,
attention_mask,
token_type_ids,
past_key_values,
cache_position,
input_tensor,
is_training: bool = False,
):
if self.config.text_config._attn_implementation == "flash_attention_2":
return attention_mask
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted
# form and requires no inversion or slicing.
return attention_mask
using_static_cache = isinstance(past_key_values, StaticCache)
min_dtype = torch.finfo(self.dtype).min
inputs_lead_dim, sequence_length = input_tensor.shape[:2]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
elif isinstance(past_key_values, HybridCache):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else cache_position[0] + sequence_length + 1
)
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
return attention_mask
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device
)
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
# Apply bidirectional mask on images if token type ids are provided
if token_type_ids is not None and sequence_length != 1:
token_type_mask = token_type_ids.unsqueeze(1) == token_type_ids.unsqueeze(2)
token_type_mask[token_type_ids == 0] = False # if text token do not change anything
token_type_mask = token_type_mask.unsqueeze(1).to(causal_mask.device, dtype=torch.bool)
causal_mask = causal_mask.clone()
causal_mask[:, :, :, :sequence_length] = causal_mask[:, :, :, :sequence_length].masked_fill(
token_type_mask, 0.0
)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
# Then apply padding mask (will mask pad tokens)
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(GEMMA3_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Gemma3CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**lm_kwargs,
) -> Union[Tuple, Gemma3CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration
>>> model = Gemma3ForConditionalGeneration.from_pretrained("google/gemma-3-4b-it")
>>> processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it")
>>> messages = [
... {
... "role": "system",
... "content": [
... {"type": "text", "text": "You are a helpful assistant."}
... ]
... },
... {
... "role": "user", "content": [
... {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
... {"type": "text", "text": "Where is the cat standing?"},
... ]
... },
... ]
>>> inputs = processor.apply_chat_template(
... messages,
... tokenizer=True,
... return_dict=True,
... return_tensors="pt",
... add_generation_prompt=True
... )
>>> # Generate
>>> generate_ids = model.generate(**inputs)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"user\nYou are a helpful assistant.\n\n\n\n\n\nWhere is the cat standing?\nmodel\nBased on the image, the cat is standing in a snowy area, likely outdoors. It appears to"
```
"""
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
is_training = token_type_ids is not None and labels is not None
# Replace image id woth PAD if the image token if OOV, to avoid index-errors
if input_ids is not None and self.config.image_token_index >= self.vocab_size:
special_image_mask = input_ids == self.config.image_token_index
llm_input_ids = input_ids.clone()
llm_input_ids[special_image_mask] = 0
else:
llm_input_ids = input_ids
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(llm_input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
# Merge text and images
if pixel_values is not None:
image_features = self.get_image_features(pixel_values)
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device)
)
else:
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
raise ValueError(
f"Number of images does not match number of special image tokens in the input text. "
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
"tokens from image embeddings."
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
# mask out pad-token-ids in labels for BC
if labels is not None and self.pad_token_id in labels:
logger.warning_once(
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. "
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
)
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
causal_mask = self._update_causal_mask(
attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training
)
outputs: CausalLMOutputWithPast = self.language_model(
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**lm_kwargs,
)
logits = outputs.logits
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
shift_logits = logits[..., :-1, :]
shift_labels = labels[..., 1:]
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
else:
shift_logits = shift_logits.contiguous()
shift_labels = shift_labels.contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
flat_labels = shift_labels.view(-1).to(shift_logits.device)
loss = loss_fct(flat_logits, flat_labels)
return Gemma3CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
pixel_values=None,
attention_mask=None,
token_type_ids=None,
use_cache=True,
logits_to_keep=None,
labels=None,
**kwargs,
):
# Overwritten -- custom `position_ids` and `pixel_values` handling
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
cache_position=cache_position,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
token_type_ids=token_type_ids,
**kwargs,
)
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
is_training = token_type_ids is not None and labels is not None
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
input_tensor = inputs_embeds if inputs_embeds is not None else input_ids
causal_mask = self._update_causal_mask(
attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training
)
model_inputs["attention_mask"] = causal_mask
return model_inputs
__all__ = [
"Gemma3Config",
"Gemma3TextConfig",
"Gemma3PreTrainedModel", # noqa: F822
"Gemma3TextModel",
"Gemma3ForCausalLM",
"Gemma3ForConditionalGeneration",
]
```
|
=======================================================================================================================================
SOURCE CODE FILE: processing_gemma3.py
LINES: 5
SIZE: 7.23 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma3\processing_gemma3.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput, make_nested_list_of_images
from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import to_py_obj
class Gemma3ImagesKwargs(ImagesKwargs):
do_pan_and_scan: Optional[bool]
pan_and_scan_min_crop_size: Optional[int]
pan_and_scan_max_num_crops: Optional[int]
pan_and_scan_min_ratio_to_activate: Optional[float]
do_convert_rgb: Optional[bool]
class Gemma3ProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: Gemma3ImagesKwargs
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {
"do_pan_and_scan": False,
"pan_and_scan_min_crop_size": 256,
"pan_and_scan_max_num_crops": 4,
"pan_and_scan_min_ratio_to_activate": 1.2,
},
}
class Gemma3Processor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template", "image_seq_length"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor,
tokenizer,
chat_template=None,
image_seq_length: int = 256,
**kwargs,
):
self.image_seq_length = image_seq_length
self.image_token_id = tokenizer.image_token_id
self.boi_token = tokenizer.boi_token
self.image_token = tokenizer.boi_token
image_tokens_expanded = "".join([tokenizer.image_token] * image_seq_length)
self.full_image_sequence = f"\n\n{tokenizer.boi_token}{image_tokens_expanded}{tokenizer.eoi_token}\n\n"
super().__init__(
image_processor=image_processor,
tokenizer=tokenizer,
chat_template=chat_template,
**kwargs,
)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
videos=None,
audio=None,
**kwargs: Unpack[Gemma3ProcessorKwargs],
) -> BatchFeature:
if text is None and images is None:
raise ValueError("Provide at least one of `text` or `images`.")
output_kwargs = self._merge_kwargs(
Gemma3ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
image_inputs = {}
if images is not None:
batched_images = make_nested_list_of_images(images)
image_inputs = self.image_processor(batched_images, **output_kwargs["images_kwargs"])
# Create empty text to be replaced with placeholders
if not text:
text = [" ".join([self.boi_token] * len(images)) for images in batched_images]
if len(batched_images) != len(text):
raise ValueError(
f"Received inconsistently sized batches of images ({len(batched_images)}) and text ({len(text)})."
)
# Replace image tokens by the full expanded sequence
num_crops = to_py_obj(image_inputs.pop("num_crops"))
batch_num_crops = [[num_crops.pop(0) for _ in range(len(images))] for images in batched_images]
for batch_idx, (prompt, images, num_crops) in enumerate(zip(text, batched_images, batch_num_crops)):
image_indexes = [m.start() for m in re.finditer(self.boi_token, prompt)]
if len(images) != len(image_indexes):
raise ValueError(
f"Prompt contained {len(image_indexes)} image tokens but received {len(images)} images."
)
# Insert additional image tokens for Pan-and-Scan crops
for num, idx in reversed(list(zip(num_crops, image_indexes))):
if num:
formatted_image_text = (
f"Here is the original image {self.boi_token} and here are some crops to help you see better "
+ " ".join([self.boi_token] * num)
)
prompt = prompt[:idx] + formatted_image_text + prompt[idx + len(self.boi_token) :]
text[batch_idx] = prompt
# Expand placeholder image tokens to the full image token sequence
text = [prompt.replace(self.boi_token, self.full_image_sequence) for prompt in text]
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
text_inputs = self.tokenizer(text=text, **output_kwargs["text_kwargs"], return_tensors="np")
# Add token type ids manually, as tokenizer can't do arbitrary position token types
array_ids = text_inputs["input_ids"]
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
mm_token_type_ids[array_ids == self.image_token_id] = 1
text_inputs = {k: v.tolist() for k, v in text_inputs.items()} # in case user requested list inputs
text_inputs["token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names + ["token_type_ids"]
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["Gemma3Processor"]
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.08 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_gemma import *
from .modeling_flax_gemma import *
from .modeling_gemma import *
from .tokenization_gemma import *
from .tokenization_gemma_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================
SOURCE CODE FILE: configuration_gemma.py
LINES: 1
SIZE: 8.17 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma\configuration_gemma.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gemma/modular_gemma.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gemma.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
class GemmaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma-7B.
e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GemmaModel`]
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The legacy activation function. It is overwritten by the `hidden_activation`.
hidden_activation (`str` or `function`, *optional*):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import GemmaModel, GemmaConfig
>>> # Initializing a Gemma gemma-7b style configuration
>>> configuration = GemmaConfig()
>>> # Initializing a model from the gemma-7b style configuration
>>> model = GemmaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=256000,
hidden_size=3072,
intermediate_size=24576,
num_hidden_layers=28,
num_attention_heads=16,
num_key_value_heads=16,
head_dim=256,
hidden_act="gelu_pytorch_tanh",
hidden_activation=None,
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.hidden_activation = hidden_activation
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["GemmaConfig"]
```
|
========================================================================================================================================
SOURCE CODE FILE: modeling_flax_gemma.py
LINES: 1
SIZE: 31.66 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma\modeling_flax_gemma.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Google Inc., and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax Gemma model."""
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_gemma import GemmaConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "GemmaConfig"
_CHECKPOINT_FOR_DOC = "google/gemma-2b"
_REAL_CHECKPOINT_FOR_DOC = "openlm-research/open_llama_3b_v2"
GEMMA_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`GemmaConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16`, or
`jax.numpy.bfloat16`.
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
GEMMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def create_sinusoidal_positions(num_pos, dim):
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2)[: (dim // 2)] / dim))
freqs = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32")
emb = np.concatenate((freqs, freqs), axis=-1)
out = np.concatenate((np.sin(emb)[:, None, :], np.cos(emb)[:, None, :]), axis=-1)
return jnp.array(out[:, :, :num_pos])
# Copied from transformers.models.llama.modeling_flax_llama.rotate_half
def rotate_half(tensor):
"""Rotates half the hidden dims of the input."""
rotate_half_tensor = jnp.concatenate(
(-tensor[..., tensor.shape[-1] // 2 :], tensor[..., : tensor.shape[-1] // 2]), axis=-1
)
return rotate_half_tensor
# Copied from transformers.models.llama.modeling_flax_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(tensor, sin_pos, cos_pos):
return (tensor * cos_pos) + (rotate_half(tensor) * sin_pos)
class FlaxGemmaRMSNorm(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.epsilon = self.config.rms_norm_eps
self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size)
def __call__(self, hidden_states):
variance = jnp.asarray(hidden_states, dtype=jnp.float32)
variance = jnp.power(variance, 2)
variance = variance.mean(-1, keepdims=True)
# use `jax.numpy.sqrt` as `jax.lax.rsqrt` does not match `torch.rsqrt`
hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon)
return (1 + self.weight) * jnp.asarray(hidden_states, dtype=self.dtype)
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaRotaryEmbedding with Llama->Gemma
class FlaxGemmaRotaryEmbedding(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
# Ignore copy
def setup(self):
head_dim = self.config.head_dim
self.sincos = create_sinusoidal_positions(self.config.max_position_embeddings, head_dim)
def __call__(self, key, query, position_ids):
sincos = self.sincos[position_ids]
sin_pos, cos_pos = jnp.split(sincos, 2, axis=-1)
key = apply_rotary_pos_emb(key, sin_pos, cos_pos)
query = apply_rotary_pos_emb(query, sin_pos, cos_pos)
key = jnp.asarray(key, dtype=self.dtype)
query = jnp.asarray(query, dtype=self.dtype)
return key, query
class FlaxGemmaAttention(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
causal: bool = True
is_cross_attention: bool = False
def setup(self):
config = self.config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.head_dim
self.attention_softmax_in_fp32 = self.dtype is not jnp.float32
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
kernel = jax.nn.initializers.normal(self.config.initializer_range)
self.q_proj = nn.Dense(
self.num_heads * self.head_dim, use_bias=config.attention_bias, dtype=self.dtype, kernel_init=kernel
)
self.k_proj = nn.Dense(
self.num_key_value_heads * self.head_dim,
use_bias=config.attention_bias,
dtype=self.dtype,
kernel_init=kernel,
)
self.v_proj = nn.Dense(
self.num_key_value_heads * self.head_dim,
use_bias=config.attention_bias,
dtype=self.dtype,
kernel_init=kernel,
)
self.o_proj = nn.Dense(self.embed_dim, use_bias=config.attention_bias, dtype=self.dtype, kernel_init=kernel)
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
self.rotary_emb = FlaxGemmaRotaryEmbedding(config, dtype=self.dtype)
def _split_heads(self, hidden_states, num_heads):
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads * self.head_dim,))
@nn.compact
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slightly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
position_ids,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query, self.num_heads)
key = self._split_heads(key, self.num_key_value_heads)
value = self._split_heads(value, self.num_key_value_heads)
key, query = self.rotary_emb(key, query, position_ids)
query_length, key_length = query.shape[1], key.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
batch_size = hidden_states.shape[0]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
dropout_rng = None
if not deterministic and self.config.attention_dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.has_variable("cache", "cached_key") or init_cache:
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
# transform boolean mask into float mask
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
key = jnp.repeat(key, repeats=self.num_key_value_groups, axis=2)
value = jnp.repeat(value, repeats=self.num_key_value_groups, axis=2)
# usual dot product attention
attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_dropout,
deterministic=deterministic,
dtype=attention_dtype,
)
if self.attention_softmax_in_fp32:
attn_weights = attn_weights.astype(self.dtype)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.o_proj(attn_output)
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxGemmaMLP(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.hidden_size
inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
if self.config.hidden_activation is None:
logger.warning_once(
"Gemma's activation function should be approximate GeLU and not exact GeLU. "
"Changing the activation function to `gelu_pytorch_tanh`."
f"if you want to use the legacy `{self.config.hidden_act}`, "
f"edit the `model.config` to set `hidden_activation={self.config.hidden_act}` "
" instead of `hidden_act`. See https://github.com/huggingface/transformers/pull/29402 for more details."
)
hidden_activation = "gelu_pytorch_tanh"
else:
hidden_activation = self.config.hidden_activation
self.act = ACT2FN[hidden_activation]
self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
def __call__(self, hidden_states):
up_proj_states = self.up_proj(hidden_states)
gate_states = self.act(self.gate_proj(hidden_states))
hidden_states = self.down_proj(up_proj_states * gate_states)
return hidden_states
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaDecoderLayer with Llama->Gemma
class FlaxGemmaDecoderLayer(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.input_layernorm = FlaxGemmaRMSNorm(self.config, dtype=self.dtype)
self.self_attn = FlaxGemmaAttention(self.config, dtype=self.dtype)
self.post_attention_layernorm = FlaxGemmaRMSNorm(self.config, dtype=self.dtype)
self.mlp = FlaxGemmaMLP(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
outputs = self.self_attn(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
# residual connection
attn_output = outputs[0]
hidden_states = residual + attn_output
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + hidden_states
return (hidden_states,) + outputs[1:]
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel with GPTNeo->Gemma, GPT_NEO->GEMMA, transformer->model
class FlaxGemmaPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GemmaConfig
base_model_prefix = "model"
module_class: nn.Module = None
def __init__(
self,
config: GemmaConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length))
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
params: dict = None,
past_key_values: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_ids.shape
if position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGemmaAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
False,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaLayerCollection with Llama->Gemma
class FlaxGemmaLayerCollection(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.blocks = [
FlaxGemmaDecoderLayer(self.config, dtype=self.dtype, name=str(i))
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for block in self.blocks:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = block(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
# this contains possible `None` values - `FlaxGemmaModule` will filter them out
outputs = (hidden_states, all_hidden_states, all_attentions)
return outputs
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaModule with Llama->Gemma
class FlaxGemmaModule(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.hidden_size = self.config.hidden_size
embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range)
self.embed_tokens = nn.Embed(
self.config.vocab_size,
self.hidden_size,
embedding_init=embedding_init,
dtype=self.dtype,
)
self.layers = FlaxGemmaLayerCollection(self.config, dtype=self.dtype)
self.norm = FlaxGemmaRMSNorm(self.config, dtype=self.dtype)
# Ignore copy
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
deterministic=True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
input_embeds = self.embed_tokens(input_ids.astype("i4"))
input_embeds = input_embeds * (self.config.hidden_size**0.5)
outputs = self.layers(
input_embeds,
position_ids=position_ids,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states = outputs[1] + (hidden_states,)
outputs = (hidden_states, all_hidden_states) + outputs[2:]
else:
outputs = (hidden_states,) + outputs[1:]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=outputs[1],
attentions=outputs[-1],
)
@add_start_docstrings(
"The bare Gemma Model transformer outputting raw hidden-states without any specific head on top.",
GEMMA_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaModel with Llama->Gemma
class FlaxGemmaModel(FlaxGemmaPreTrainedModel):
module_class = FlaxGemmaModule
append_call_sample_docstring(
FlaxGemmaModel,
_CHECKPOINT_FOR_DOC,
FlaxBaseModelOutput,
_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaForCausalLMModule with Llama->Gemma
class FlaxGemmaForCausalLMModule(nn.Module):
config: GemmaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.model = FlaxGemmaModule(self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
# Ignore copy
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.model(
input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_kernel = self.model.variables["params"]["embed_tokens"]["embedding"].T
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
@add_start_docstrings(
"""
The Gemma Model transformer with a language modeling head (linear layer) on top.
""",
GEMMA_START_DOCSTRING,
)
# Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJForCausalLM with GPTJ->Gemma
class FlaxGemmaForCausalLM(FlaxGemmaPreTrainedModel):
module_class = FlaxGemmaForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since Gemma uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxGemmaForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutput,
_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
__all__ = ["FlaxGemmaForCausalLM", "FlaxGemmaModel", "FlaxGemmaPreTrainedModel"]
```
|
===================================================================================================================================
SOURCE CODE FILE: modeling_gemma.py
LINES: 1
SIZE: 44.88 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma\modeling_gemma.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gemma/modular_gemma.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gemma.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Tuple, Union
import torch
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_gemma import GemmaConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/gemma-7b"
_CONFIG_FOR_DOC = "GemmaConfig"
class GemmaRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
# Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = output * (1.0 + self.weight.float())
return output.type_as(x)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
class GemmaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class GemmaRotaryEmbedding(nn.Module):
def __init__(self, config: GemmaConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class GemmaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GemmaConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class GemmaDecoderLayer(nn.Module):
def __init__(self, config: GemmaConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = GemmaAttention(config=config, layer_idx=layer_idx)
self.mlp = GemmaMLP(config)
self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
GEMMA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GemmaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Gemma Model outputting raw hidden-states without any specific head on top.",
GEMMA_START_DOCSTRING,
)
class GemmaPreTrainedModel(PreTrainedModel):
config_class = GemmaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["GemmaDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
GEMMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Gemma Model outputting raw hidden-states without any specific head on top.",
GEMMA_START_DOCSTRING,
)
class GemmaModel(GemmaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
Args:
config: GemmaConfig
"""
def __init__(self, config: GemmaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[GemmaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = GemmaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs, # NOOP kwarg for now
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# normalized
# Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class GemmaForCausalLM(GemmaPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = GemmaModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GemmaForCausalLM
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The Gemma Model transformer with a sequence classification head on top (linear layer).
[`GemmaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GEMMA_START_DOCSTRING,
)
class GemmaForSequenceClassification(GemmaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = GemmaModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Gemma Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
GEMMA_START_DOCSTRING,
)
class GemmaForTokenClassification(GemmaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = GemmaModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GEMMA_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"GemmaModel",
"GemmaForCausalLM",
"GemmaForSequenceClassification",
"GemmaForTokenClassification",
"GemmaPreTrainedModel",
]
```
|
==================================================================================================================================
SOURCE CODE FILE: modular_gemma.py
LINES: 1
SIZE: 22.62 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma\modular_gemma.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
import sentencepiece as spm
import torch
import torch.utils.checkpoint
from torch import nn
from ...cache_utils import Cache, DynamicCache
from ...configuration_utils import PretrainedConfig
from ...modeling_outputs import BaseModelOutputWithPast
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
from ..llama.modeling_llama import (
LlamaForCausalLM,
LlamaForSequenceClassification,
LlamaForTokenClassification,
LlamaMLP,
LlamaModel,
)
from ..llama.tokenization_llama import LlamaTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
SPIECE_UNDERLINE = "▁"
_CHECKPOINT_FOR_DOC = "google/gemma-7b"
logger = logging.get_logger(__name__)
class GemmaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GemmaModel`]. It is used to instantiate an Gemma
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma-7B.
e.g. [google/gemma-7b](https://huggingface.co/google/gemma-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Gemma model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GemmaModel`]
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 28):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The legacy activation function. It is overwritten by the `hidden_activation`.
hidden_activation (`str` or `function`, *optional*):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import GemmaModel, GemmaConfig
>>> # Initializing a Gemma gemma-7b style configuration
>>> configuration = GemmaConfig()
>>> # Initializing a model from the gemma-7b style configuration
>>> model = GemmaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=256000,
hidden_size=3072,
intermediate_size=24576,
num_hidden_layers=28,
num_attention_heads=16,
num_key_value_heads=16,
head_dim=256,
hidden_act="gelu_pytorch_tanh",
hidden_activation=None,
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.hidden_activation = hidden_activation
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class GemmaTokenizer(LlamaTokenizer, PreTrainedTokenizer):
"""
Construct a Gemma tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
no padding token in the original model.
Args:
vocab_file (`str`):
Path to the vocabulary file.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<pad>"`):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for Gemma should be used.
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to add spaces between special tokens.
"""
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<bos>",
eos_token="<eos>",
pad_token="<pad>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
use_default_system_prompt=False,
spaces_between_special_tokens=False,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.use_default_system_prompt = use_default_system_prompt
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
PreTrainedTokenizer.__init__(
self,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
sp_model_kwargs=sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
use_default_system_prompt=use_default_system_prompt,
spaces_between_special_tokens=spaces_between_special_tokens,
**kwargs,
)
def get_spm_processor(self):
raise AttributeError("Not needed for Gemma")
def unk_token_length(self):
raise AttributeError("Not needed for Gemma")
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
"""
Args:
text: TextInput
Simply calls PreTrainedTokenizer's method
"""
return PreTrainedTokenizer.tokenize(self, text, **kwargs)
def _tokenize(self, text, **kwargs):
"""
Args:
text: TextInput
Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
"""
return self.sp_model.encode(text, out_type=str)
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
spaces_between_special_tokens: bool = False,
**kwargs,
) -> str:
sub_texts = []
current_sub_text = []
for ids in token_ids:
if skip_special_tokens and ids in self.all_special_ids:
continue
if ids in self._added_tokens_decoder:
if current_sub_text:
sub_texts.append(self.sp_model.decode(current_sub_text))
sub_texts.append(self._added_tokens_decoder[ids].content)
current_sub_text = []
else:
current_sub_text.append(ids)
if current_sub_text:
sub_texts.append(self.sp_model.decode(current_sub_text))
if spaces_between_special_tokens:
sub_texts = " ".join(sub_texts)
else:
sub_texts = "".join(sub_texts)
return sub_texts.replace(SPIECE_UNDERLINE, " ")
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self._added_tokens_encoder:
out_string += self.sp_model.decode(current_sub_tokens) + token
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += self.sp_model.decode(current_sub_tokens)
return out_string
class GemmaRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
# Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = output * (1.0 + self.weight.float())
return output.type_as(x)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
class GemmaMLP(LlamaMLP):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
class GemmaModel(LlamaModel):
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs, # NOOP kwarg for now
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# normalized
# Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class GemmaForCausalLM(LlamaForCausalLM):
def forward(**super_kwargs):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GemmaForCausalLM
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-7b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
return super().forward(**super_kwargs)
class GemmaForSequenceClassification(LlamaForSequenceClassification):
pass
class GemmaForTokenClassification(LlamaForTokenClassification):
pass
__all__ = [
"GemmaConfig",
"GemmaTokenizer",
"GemmaModel",
"GemmaForCausalLM",
"GemmaForSequenceClassification",
"GemmaForTokenClassification",
"GemmaPreTrainedModel", # noqa: F822
]
```
|
=======================================================================================================================================
SOURCE CODE FILE: tokenization_gemma.py
LINES: 1
SIZE: 13.83 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma\tokenization_gemma.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gemma/modular_gemma.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gemma.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
SPIECE_UNDERLINE = "▁"
class GemmaTokenizer(PreTrainedTokenizer):
"""
Construct a Gemma tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
no padding token in the original model.
Args:
vocab_file (`str`):
Path to the vocabulary file.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<pad>"`):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for Gemma should be used.
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to add spaces between special tokens.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<bos>",
eos_token="<eos>",
pad_token="<pad>",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
use_default_system_prompt=False,
spaces_between_special_tokens=False,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.use_default_system_prompt = use_default_system_prompt
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
sp_model_kwargs=sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
use_default_system_prompt=use_default_system_prompt,
spaces_between_special_tokens=spaces_between_special_tokens,
**kwargs,
)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
def __setstate__(self, d):
self.__dict__.update(d)
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
"""
Args:
text: TextInput
Simply calls PreTrainedTokenizer's method
"""
return super().tokenize(text, **kwargs)
def _tokenize(self, text, **kwargs):
"""
Args:
text: TextInput
Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self._added_tokens_encoder:
out_string += self.sp_model.decode(current_sub_tokens) + token
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += self.sp_model.decode(current_sub_tokens)
return out_string
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
spaces_between_special_tokens: bool = False,
**kwargs,
) -> str:
sub_texts = []
current_sub_text = []
for ids in token_ids:
if skip_special_tokens and ids in self.all_special_ids:
continue
if ids in self._added_tokens_decoder:
if current_sub_text:
sub_texts.append(self.sp_model.decode(current_sub_text))
sub_texts.append(self._added_tokens_decoder[ids].content)
current_sub_text = []
else:
current_sub_text.append(ids)
if current_sub_text:
sub_texts.append(self.sp_model.decode(current_sub_text))
if spaces_between_special_tokens:
sub_texts = " ".join(sub_texts)
else:
sub_texts = "".join(sub_texts)
return sub_texts.replace(SPIECE_UNDERLINE, " ")
__all__ = ["GemmaTokenizer"]
```
|
============================================================================================================================================
SOURCE CODE FILE: tokenization_gemma_fast.py
LINES: 1
SIZE: 8.13 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gemma\tokenization_gemma_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import Optional, Tuple
from tokenizers import processors
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
from ...utils.versions import require_version
require_version("tokenizers>=0.13.3")
if is_sentencepiece_available():
from .tokenization_gemma import GemmaTokenizer
else:
GemmaTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
class GemmaTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a Gemma tokenizer fast. Based on byte-level Byte-Pair-Encoding.
This uses notably ByteFallback and no prefix space. Normalization is applied to replace `" "` with `"▁"`
```python
>>> from transformers import GemmaTokenizerFast
>>> tokenizer = GemmaTokenizerFast.from_pretrained("hf-internal-testing/dummy-gemma")
>>> tokenizer.encode("Hello this is a test")
[2, 4521, 736, 603, 476, 2121]
```
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
contains the vocabulary necessary to instantiate a tokenizer.
tokenizer_file (`str`, *optional*):
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The padding token
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = GemmaTokenizer
padding_side = "left"
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
clean_up_tokenization_spaces=False,
unk_token="<unk>",
bos_token="<bos>",
eos_token="<eos>",
pad_token="<pad>",
add_bos_token=True,
add_eos_token=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError("add_bos_token = True but bos_token = None")
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError("add_eos_token = True but eos_token = None")
single = f"{(bos + ':0 ') if self.add_bos_token else ''}$A:0{(' ' + eos + ':0') if self.add_eos_token else ''}"
pair = f"{single}{(' ' + bos + ':1') if self.add_bos_token else ''} $B:1{(' ' + eos + ':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
__all__ = ["GemmaTokenizerFast"]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.00 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\git\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_git import *
from .modeling_git import *
from .processing_git import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_git.py
LINES: 1
SIZE: 10.19 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\git\configuration_git.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class GitVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GitVisionModel`]. It is used to instantiate a GIT
vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the vision encoder of the GIT
[microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import GitVisionConfig, GitVisionModel
>>> # Initializing a GitVisionConfig with microsoft/git-base style configuration
>>> configuration = GitVisionConfig()
>>> # Initializing a GitVisionModel (with random weights) from the microsoft/git-base style configuration
>>> model = GitVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "git_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=16,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
class GitConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GitModel`]. It is used to instantiate a GIT model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the GIT
[microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`GitVisionConfig`].
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the GIT model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GitModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
num_image_with_embedding (`int`, *optional*):
The number of temporal embeddings to add, in case the model is used for video captioning/VQA.
Examples:
```python
>>> from transformers import GitConfig, GitModel
>>> # Initializing a GIT microsoft/git-base style configuration
>>> configuration = GitConfig()
>>> # Initializing a model (with random weights) from the microsoft/git-base style configuration
>>> model = GitModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "git"
sub_configs = {"vision_config": GitVisionConfig}
def __init__(
self,
vision_config=None,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=6,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=1024,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
use_cache=True,
tie_word_embeddings=False,
bos_token_id=101,
eos_token_id=102,
num_image_with_embedding=None,
**kwargs,
):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
if vision_config is None:
vision_config = {}
logger.info("vision_config is None. initializing the GitVisionConfig with default values.")
self.vision_config = GitVisionConfig(**vision_config)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
self.num_image_with_embedding = num_image_with_embedding
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
__all__ = ["GitConfig", "GitVisionConfig"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_git.py
LINES: 1
SIZE: 71.86 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\git\modeling_git.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GIT model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...file_utils import ModelOutput
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
BaseModelOutputWithPooling,
CausalLMOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
torch_int,
)
from .configuration_git import GitConfig, GitVisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/git-base"
_CONFIG_FOR_DOC = "GitConfig"
@dataclass
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Git
class GitVisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class GitEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if inputs_embeds is None:
embeddings = self.word_embeddings(input_ids)
else:
embeddings = inputs_embeds
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class GitSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None, layer_idx=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.image_patch_tokens = int((config.vision_config.image_size / config.vision_config.patch_size) ** 2 + 1)
if config.num_image_with_embedding is not None:
self.image_patch_tokens *= config.num_image_with_embedding
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
cutoff = self.image_patch_tokens if pixel_values_present else 0
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
if past_key_value is not None:
# NOTE: like in other caches, we store the text component. In GIT it means we discard the image component.
key_layer_past, value_layer_past = past_key_value.update(
key_layer[:, :, cutoff:, :], value_layer[:, :, cutoff:, :], self.layer_idx
)
key_layer = torch.cat([key_layer[:, :, :cutoff, :], key_layer_past], dim=2)
value_layer = torch.cat([value_layer[:, :, :cutoff, :], value_layer_past], dim=2)
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if past_key_value is not None:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in GitModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class GitSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
GIT_SELF_ATTENTION_CLASSES = {
"eager": GitSelfAttention,
}
class GitAttention(nn.Module):
def __init__(self, config, position_embedding_type=None, layer_idx=None):
super().__init__()
self.self = GIT_SELF_ATTENTION_CLASSES[config._attn_implementation](
config, position_embedding_type=position_embedding_type, layer_idx=layer_idx
)
self.output = GitSelfOutput(config)
self.pruned_heads = set()
# Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
past_key_value,
output_attentions,
pixel_values_present,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class GitIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class GitOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class GitLayer(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = GitAttention(config, layer_idx=layer_idx)
self.intermediate = GitIntermediate(config)
self.output = GitOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=past_key_value,
pixel_values_present=pixel_values_present,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class GitEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([GitLayer(config, i) for i in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
pixel_values_present: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
next_decoder_cache = None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
past_key_values,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
past_key_values,
output_attentions,
pixel_values_present,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[-1]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class GitPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GitConfig
base_model_prefix = "git"
supports_gradient_checkpointing = True
_supports_cache_class = True
_supports_quantized_cache = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, GitVisionEmbeddings):
nn.init.normal_(module.class_embedding, mean=0.0, std=self.config.initializer_range)
nn.init.normal_(module.patch_embedding.weight, std=self.config.initializer_range)
nn.init.normal_(module.position_embedding.weight, std=self.config.initializer_range)
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
GIT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GitConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GIT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`CLIPImageProcessor.__call__`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Git
class GitVisionEmbeddings(nn.Module):
def __init__(self, config: GitVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
position_embedding = self.position_embedding.weight.unsqueeze(0)
num_positions = position_embedding.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embedding(self.position_ids)
class_pos_embed = position_embedding[:, :1]
patch_pos_embed = position_embedding[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size}*{self.image_size})."
)
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPMLP
class GitVisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->GitVision
class GitVisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer with AltCLIP->GitVision
class GitVisionEncoderLayer(nn.Module):
def __init__(self, config: GitVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = GitVisionAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = GitVisionMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->GitVision, CLIPConfig
class GitVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`GitVisionEncoderLayer`].
Args:
config: GitVisionConfig
"""
def __init__(self, config: GitVisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([GitVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
GIT_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class GitVisionTransformer(nn.Module):
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPVisionTransformer.__init__ with AltCLIPEncoder->GitVisionEncoder, AltCLIP->Git
def __init__(self, config: GitVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = GitVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = GitVisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
if not return_dict:
return (last_hidden_state,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=last_hidden_state,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""The vision model from CLIP, used in GIT, without any head or projection on top.""",
GIT_START_DOCSTRING,
)
class GitVisionModel(GitPreTrainedModel):
config_class = GitVisionConfig
main_input_name = "pixel_values"
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP->Git
def __init__(self, config: GitVisionConfig):
super().__init__(config)
self.vision_model = GitVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(GIT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=GitVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, GitVisionModel
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
>>> model = GitVisionModel.from_pretrained("microsoft/git-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
class GitProjection(nn.Module):
def __init__(self, config: GitConfig):
super().__init__()
self.config = config
self.visual_projection = nn.Sequential(
nn.Linear(config.vision_config.hidden_size, config.hidden_size),
nn.LayerNorm(config.hidden_size, eps=config.vision_config.layer_norm_eps),
)
def forward(self, embeddings: torch.Tensor) -> torch.Tensor:
return self.visual_projection(embeddings)
@add_start_docstrings(
"The bare GIT Model transformer consisting of a CLIP image encoder and text decoder outputting raw hidden-states"
" without any specific head on top.",
GIT_START_DOCSTRING,
)
class GitModel(GitPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = GitEmbeddings(config)
self.image_encoder = GitVisionModel(config.vision_config)
self.encoder = GitEncoder(config)
self.visual_projection = GitProjection(config)
if config.num_image_with_embedding is not None:
self.img_temperal_embedding = nn.ParameterList(
nn.Parameter(torch.zeros(1, 1, config.vision_config.hidden_size))
for _ in range(config.num_image_with_embedding)
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def _generate_future_mask(self, size: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
# Default mask is for forward direction. Flip for backward direction.
mask = torch.triu(torch.ones(size, size, device=device, dtype=dtype), diagonal=1)
mask = mask.masked_fill(mask == 1, float("-inf"))
return mask
def create_attention_mask(self, tgt, memory, tgt_mask, past_key_values_length, memory_key_padding_mask=None):
num_tgt = tgt.shape[1]
num_memory = memory.shape[1]
device = tgt.device
dtype = tgt.dtype
top_left = torch.zeros((num_memory, num_memory), device=device, dtype=dtype)
top_right = torch.full(
(num_memory, num_tgt + past_key_values_length),
float("-inf"),
device=tgt.device,
dtype=dtype,
)
bottom_left = torch.zeros(
(num_tgt, num_memory),
dtype=dtype,
device=tgt_mask.device,
)
if past_key_values_length > 0:
tgt_mask = torch.zeros(
(tgt_mask.shape[0], tgt_mask.shape[0] + past_key_values_length),
dtype=dtype,
device=tgt_mask.device,
)
left = torch.cat((top_left, bottom_left), dim=0)
right = torch.cat((top_right, tgt_mask.to(dtype)), dim=0)
full_attention_mask = torch.cat((left, right), dim=1)[None, :]
if memory_key_padding_mask is None:
memory_key_padding_mask = torch.full((memory.shape[0], memory.shape[1]), fill_value=False, device=device)
# if it is False, it means valid. That is, it is not a padding
if memory_key_padding_mask.dtype != torch.bool:
raise ValueError("Memory key padding mask must be a boolean tensor.")
zero_negative_infinity = torch.zeros_like(memory_key_padding_mask, dtype=tgt.dtype)
zero_negative_infinity[memory_key_padding_mask] = float("-inf")
full_attention_mask = full_attention_mask.expand(
(memory_key_padding_mask.shape[0], num_memory + num_tgt, num_memory + past_key_values_length + num_tgt)
)
full_attention_mask = full_attention_mask.clone()
origin_left = full_attention_mask[:, :, :num_memory]
update = zero_negative_infinity[:, None, :]
full_attention_mask[:, :, :num_memory] = origin_left + update
# add axis for multi-head
full_attention_mask = full_attention_mask[:, None, :, :]
return full_attention_mask
@add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
r"""
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, AutoModel
>>> import requests
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base")
>>> model = AutoModel.from_pretrained("microsoft/git-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "this is an image of two cats"
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
seq_length = input_shape[1]
# past_key_values_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = (
past_key_values[0][0].shape[2]
if not isinstance(past_key_values, Cache)
else past_key_values.get_seq_length()
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
projected_visual_features = None
if pixel_values is not None:
if pixel_values.ndim == 4:
# here we assume pixel_values is of shape (batch_size, num_channels, height, width)
visual_features = self.image_encoder(
pixel_values, interpolate_pos_encoding=interpolate_pos_encoding
).last_hidden_state
elif pixel_values.ndim == 5:
# here we assume pixel_values is of shape (batch_size, num_frames, num_channels, height, width)
visual_features = []
for frame_idx in range(pixel_values.shape[1]):
visual_features_frame = self.image_encoder(
pixel_values[:, frame_idx, :, :], interpolate_pos_encoding=interpolate_pos_encoding
).last_hidden_state
visual_features_frame += self.img_temperal_embedding[frame_idx]
visual_features.append(visual_features_frame)
# finally, concatenate all features along sequence dimension
visual_features = torch.cat(visual_features, dim=1)
else:
raise ValueError("pixel_values must be of rank 4 or 5")
projected_visual_features = self.visual_projection(visual_features)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
if projected_visual_features is None:
projected_visual_features = torch.zeros(
(embedding_output.shape[0], 0, embedding_output.shape[2]),
dtype=embedding_output.dtype,
device=embedding_output.device,
)
# Repeat visual features to match embedding batch size.
projected_visual_features = projected_visual_features.repeat(
embedding_output.size(0) // projected_visual_features.size(0), 1, 1
)
# concatenate patch token and text token embeddings
hidden_states = torch.cat((projected_visual_features, embedding_output), dim=1)
# By default, an additive causal mask is created
# for masking the future (one direction).
tgt_mask = self._generate_future_mask(seq_length, embedding_output.dtype, embedding_output.device)
# Create an attention mask of shape (batch_size, 1, tgt_seq_len, src_seq_len)
combined_attention_mask = self.create_attention_mask(
tgt=embedding_output,
memory=projected_visual_features,
tgt_mask=tgt_mask,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# if the user provides an attention mask, we add it to the default one
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _prepare_4d_attention_mask(
attention_mask, embedding_output.dtype, tgt_len=input_shape[-1]
).to(embedding_output.device)
if past_key_values_length > 0:
expanded_attn_mask = expanded_attn_mask[:, :, -past_key_values_length:, :]
else:
combined_attention_mask[:, :, -input_shape[1] :, -input_shape[1] :] += expanded_attn_mask
encoder_outputs = self.encoder(
hidden_states,
attention_mask=combined_attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
pixel_values_present=pixel_values is not None,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPast(
last_hidden_state=sequence_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""GIT Model with a `language modeling` head on top for autoregressive language modeling.""", GIT_START_DOCSTRING
)
class GitForCausalLM(GitPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["output.weight"]
def __init__(self, config):
super().__init__(config)
self.git = GitModel(config)
self.output = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.output
def set_output_embeddings(self, new_embeddings):
self.output = new_embeddings
@add_start_docstrings_to_model_forward(GIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
pixel_values: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Examples:
Image captioning example:
```python
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> import requests
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
>>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
>>> generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_caption)
two cats sleeping on a pink blanket next to remotes.
```
Visual question answering (VQA) example:
```python
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> from huggingface_hub import hf_hub_download
>>> from PIL import Image
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa")
>>> file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
>>> image = Image.open(file_path).convert("RGB")
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
>>> question = "what does the front of the bus say at the top?"
>>> input_ids = processor(text=question, add_special_tokens=False).input_ids
>>> input_ids = [processor.tokenizer.cls_token_id] + input_ids
>>> input_ids = torch.tensor(input_ids).unsqueeze(0)
>>> generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
>>> print(processor.batch_decode(generated_ids, skip_special_tokens=True))
['what does the front of the bus say at the top? special']
```
Video captioning example:
```python
>>> import av
>>> import numpy as np
>>> from PIL import Image
>>> from huggingface_hub import hf_hub_download
>>> from transformers import AutoProcessor, AutoModelForCausalLM
>>> processor = AutoProcessor.from_pretrained("microsoft/git-base-vatex")
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vatex")
>>> # set seed for reproducability
>>> np.random.seed(45)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # load video
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample frames
>>> num_frames = model.config.num_image_with_embedding
>>> indices = sample_frame_indices(
... clip_len=num_frames, frame_sample_rate=4, seg_len=container.streams.video[0].frames
... )
>>> frames = read_video_pyav(container, indices)
>>> pixel_values = processor(images=list(frames), return_tensors="pt").pixel_values
>>> generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
>>> print("Generated caption:", processor.batch_decode(generated_ids, skip_special_tokens=True))
Generated caption: ['a woman is sitting at a table and she is talking about the food she is holding.']
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.git(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
pixel_values=pixel_values,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.output(sequence_output)
loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
num_image_tokens = self.git.encoder.layer[0].attention.self.image_patch_tokens
shifted_logits = logits[:, num_image_tokens:-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss = self.loss_function(
shifted_logits.view(-1, self.config.vocab_size),
labels.view(-1),
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
):
# Overwritten -- `git` has special cache handling and doesn't support generating from `inputs_embeds` atm
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
past_length = past_key_values.get_seq_length()
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
input_shape = input_ids.shape
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": kwargs.get("pixel_values", None),
"past_key_values": past_key_values,
"use_cache": use_cache,
}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = ["GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel"]
```
|
=================================================================================================================================
SOURCE CODE FILE: processing_git.py
LINES: 1
SIZE: 6.07 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\git\processing_git.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for GIT
"""
from typing import List, Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
class GitProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {}
logger = logging.get_logger(__name__)
class GitProcessor(ProcessorMixin):
r"""
Constructs a GIT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor.
[`GitProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the
[`~GitProcessor.__call__`] and [`~GitProcessor.decode`] for more information.
Args:
image_processor ([`AutoImageProcessor`]):
The image processor is a required input.
tokenizer ([`AutoTokenizer`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[GitProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`, *optional*):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
# check if images and text inputs are reversed for BC
images, text = _validate_images_text_input_order(images, text)
output_kwargs = self._merge_kwargs(
GitProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
data = {}
if text is not None:
text_features = self.tokenizer(text, **output_kwargs["text_kwargs"])
data.update(text_features)
if images is not None:
image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
data.update(image_features)
return BatchFeature(data=data, tensor_type=output_kwargs["common_kwargs"].get("return_tensors"))
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
return ["input_ids", "attention_mask", "pixel_values"]
__all__ = ["GitProcessor"]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glm4\__init__.py
ENCODING: utf-8
```py
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_glm4 import *
from .modeling_glm4 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_glm4.py
LINES: 1
SIZE: 7.39 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glm4\configuration_glm4.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2025 The GLM4 & ZhipuAI team and HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
class Glm4Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Glm4Model`]. It is used to instantiate an Glm4
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Glm4-4-9b-chat.
e.g. [THUDM/glm-4-0414-9b-chat-chat](https://huggingface.co/THUDM/glm-4-0414-9b-chat-chat)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151552):
Vocabulary size of the Glm4 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Glm4Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 13696):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 40):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 2):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
partial_rotary_factor (`float`, *optional*, defaults to 0.5): The factor of the partial rotary position.
head_dim (`int`, *optional*, defaults to 128):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The legacy activation function. It is overwritten by the `hidden_activation`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1.5625e-07):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
pad_token_id (`int`, *optional*, defaults to 151329):
Padding token id.
eos_token_id (`int` | `list`, *optional*, defaults to `[151329, 151336, 151338]`):
End of stream token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `True`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
```python
>>> from transformers import Glm4Model, Glm4Config
>>> # Initializing a Glm4 glm4-4-9b-chat style configuration
>>> configuration = Glm4Config()
>>> # Initializing a model from the glm4-4-9b-chat style configuration
>>> model = Glm4Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "glm4"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_up_proj": "colwise_rep", # we need to replicate here due to the `chunk` operation
"layers.*.mlp.down_proj": "rowwise_rep", # we need to replicate here due to the `chunk` operation
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=151552,
hidden_size=4096,
intermediate_size=13696,
num_hidden_layers=40,
num_attention_heads=32,
num_key_value_heads=2,
partial_rotary_factor=0.5,
head_dim=128,
hidden_act="silu",
attention_dropout=0.0,
max_position_embeddings=131072,
initializer_range=0.02,
rms_norm_eps=0.00000015625,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
pad_token_id=151329,
eos_token_id=[151329, 151336, 151338],
bos_token_id=None,
attention_bias=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.partial_rotary_factor = partial_rotary_factor
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["Glm4Config"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_glm4.py
LINES: 2
SIZE: 45.85 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glm4\modeling_glm4.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/glm4/modular_glm4.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_glm4.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 The GLM4 & ZhipuAI team and HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_glm4 import Glm4Config
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "THUDM/GLM-4-9B-Chat-0414"
_CONFIG_FOR_DOC = "Glm4Config"
class Glm4MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.activation_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
up_states = self.gate_up_proj(hidden_states)
gate, up_states = up_states.chunk(2, dim=-1)
up_states = up_states * self.activation_fn(gate)
return self.down_proj(up_states)
class Glm4DecoderLayer(nn.Module):
def __init__(self, config: Glm4Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Glm4Attention(config=config, layer_idx=layer_idx)
self.mlp = Glm4MLP(config)
self.input_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_self_attn_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_mlp_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.post_self_attn_layernorm(hidden_states)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_mlp_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., 0::2]
x2 = x[..., 1::2]
return torch.stack((-x2, x1), dim=-1).flatten(-2)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Interleave them instead of usual shape
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
# Keep half or full tensor for later concatenation
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
# Apply rotary embeddings on the first half or full tensor
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
# Concatenate back to full shape
q_embed = torch.cat([q_embed, q_pass], dim=-1)
k_embed = torch.cat([k_embed, k_pass], dim=-1)
return q_embed, k_embed
class Glm4Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Glm4Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class Glm4RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Glm4RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Glm4RotaryEmbedding(nn.Module):
def __init__(self, config: Glm4Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
GLM4_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Glm4Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Glm4 Model outputting raw hidden-states without any specific head on top.",
GLM4_START_DOCSTRING,
)
class Glm4PreTrainedModel(PreTrainedModel):
config_class = Glm4Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Glm4DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
GLM4_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Glm4 Model outputting raw hidden-states without any specific head on top.",
GLM4_START_DOCSTRING,
)
class Glm4Model(Glm4PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Glm4DecoderLayer`]
Args:
config: Glm4Config
"""
def __init__(self, config: Glm4Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Glm4DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Glm4RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GLM4_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class Glm4ForCausalLM(Glm4PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = Glm4Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(GLM4_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Glm4ForCausalLM
>>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-Chat-0414")
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-Chat-0414")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The Glm4 Model transformer with a sequence classification head on top (linear layer).
[`Glm4ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GLM4_START_DOCSTRING,
)
class Glm4ForSequenceClassification(Glm4PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Glm4Model(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GLM4_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Glm4 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
GLM4_START_DOCSTRING,
)
class Glm4ForTokenClassification(Glm4PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Glm4Model(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GLM4_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"Glm4PreTrainedModel",
"Glm4Model",
"Glm4ForCausalLM",
"Glm4ForSequenceClassification",
"Glm4ForTokenClassification",
]
```
|
================================================================================================================================
SOURCE CODE FILE: modular_glm4.py
LINES: 2
SIZE: 6.12 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glm4\modular_glm4.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2025 The GLM4 & ZhipuAI team and HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import torch.nn as nn
import torch.utils.checkpoint
from ...cache_utils import Cache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import CausalLMOutputWithPast
from ...processing_utils import Unpack
from ...utils import LossKwargs, logging
from ..glm.modeling_glm import (
GlmAttention,
GlmForCausalLM,
GlmForSequenceClassification,
GlmForTokenClassification,
)
from ..phi3.modeling_phi3 import Phi3MLP
from .configuration_glm4 import Glm4Config
from .modeling_glm4 import Glm4RMSNorm
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "THUDM/GLM-4-9B-Chat-0414"
class Glm4MLP(Phi3MLP):
pass
class Glm4DecoderLayer(nn.Module):
def __init__(self, config: Glm4Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Glm4Attention(config=config, layer_idx=layer_idx)
self.mlp = Glm4MLP(config)
self.input_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_self_attn_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_mlp_layernorm = Glm4RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.post_self_attn_layernorm(hidden_states)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_mlp_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Glm4Attention(GlmAttention):
pass
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class Glm4ForCausalLM(GlmForCausalLM):
def forward(
self,
**super_kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Glm4ForCausalLM
>>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-Chat-0414")
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-Chat-0414")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
return super().forward(**super_kwargs)
class Glm4ForSequenceClassification(GlmForSequenceClassification):
pass
class Glm4ForTokenClassification(GlmForTokenClassification):
pass
__all__ = [
"Glm4PreTrainedModel", # noqa: F822
"Glm4Model", # noqa: F822
"Glm4ForCausalLM",
"Glm4ForSequenceClassification",
"Glm4ForTokenClassification",
]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.96 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glm\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_glm import *
from .modeling_glm import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_glm.py
LINES: 1
SIZE: 7.35 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glm\configuration_glm.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The GLM & ZhipuAI team and HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
class GlmConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GlmModel`]. It is used to instantiate an Glm
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Glm-4-9b-chat.
e.g. [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151552):
Vocabulary size of the Glm model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GlmModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 13696):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 40):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 2):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
partial_rotary_factor (`float`, *optional*, defaults to 0.5): The factor of the partial rotary position.
head_dim (`int`, *optional*, defaults to 128):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The legacy activation function. It is overwritten by the `hidden_activation`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1.5625e-07):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
pad_token_id (`int`, *optional*, defaults to 151329):
Padding token id.
eos_token_id (`int` | `list`, *optional*, defaults to `[151329, 151336, 151338]`):
End of stream token id.
bos_token_id (`int`, *optional*):
Beginning of stream token id.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `True`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
```python
>>> from transformers import GlmModel, GlmConfig
>>> # Initializing a Glm glm-4-9b-chat style configuration
>>> configuration = GlmConfig()
>>> # Initializing a model from the glm-4-9b-chat style configuration
>>> model = GlmModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "glm"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_up_proj": "colwise_rep", # we need to replicate here due to the `chunk` operation
"layers.*.mlp.down_proj": "rowwise_rep", # we need to replicate here due to the `chunk` operation
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=151552,
hidden_size=4096,
intermediate_size=13696,
num_hidden_layers=40,
num_attention_heads=32,
num_key_value_heads=2,
partial_rotary_factor=0.5,
head_dim=128,
hidden_act="silu",
attention_dropout=0.0,
max_position_embeddings=131072,
initializer_range=0.02,
rms_norm_eps=0.00000015625,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
pad_token_id=151329,
eos_token_id=[151329, 151336, 151338],
bos_token_id=None,
attention_bias=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.partial_rotary_factor = partial_rotary_factor
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["GlmConfig"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_glm.py
LINES: 2
SIZE: 45.45 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glm\modeling_glm.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/glm/modular_glm.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_glm.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 The GLM & ZhipuAI team and HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_glm import GlmConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "THUDM/glm-4-9b"
_CONFIG_FOR_DOC = "GlmConfig"
class GlmMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.activation_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
up_states = self.gate_up_proj(hidden_states)
gate, up_states = up_states.chunk(2, dim=-1)
up_states = up_states * self.activation_fn(gate)
return self.down_proj(up_states)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., 0::2]
x2 = x[..., 1::2]
return torch.stack((-x2, x1), dim=-1).flatten(-2)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Interleave them instead of usual shape
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
# Keep half or full tensor for later concatenation
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
# Apply rotary embeddings on the first half or full tensor
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
# Concatenate back to full shape
q_embed = torch.cat([q_embed, q_pass], dim=-1)
k_embed = torch.cat([k_embed, k_pass], dim=-1)
return q_embed, k_embed
class GlmAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GlmConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class GlmRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
GlmRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class GlmRotaryEmbedding(nn.Module):
def __init__(self, config: GlmConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class GlmDecoderLayer(nn.Module):
def __init__(self, config: GlmConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = GlmAttention(config=config, layer_idx=layer_idx)
self.mlp = GlmMLP(config)
self.input_layernorm = GlmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = GlmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
GLM_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GlmConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Glm Model outputting raw hidden-states without any specific head on top.",
GLM_START_DOCSTRING,
)
class GlmPreTrainedModel(PreTrainedModel):
config_class = GlmConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["GlmDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
GLM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Glm Model outputting raw hidden-states without any specific head on top.",
GLM_START_DOCSTRING,
)
class GlmModel(GlmPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GlmDecoderLayer`]
Args:
config: GlmConfig
"""
def __init__(self, config: GlmConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[GlmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = GlmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = GlmRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class GlmForCausalLM(GlmPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = GlmModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GlmForCausalLM
>>> model = GlmForCausalLM.from_pretrained("meta-glm/Glm-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-glm/Glm-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The Glm Model transformer with a sequence classification head on top (linear layer).
[`GlmForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GLM_START_DOCSTRING,
)
class GlmForSequenceClassification(GlmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = GlmModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Glm Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
GLM_START_DOCSTRING,
)
class GlmForTokenClassification(GlmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = GlmModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"GlmPreTrainedModel",
"GlmModel",
"GlmForCausalLM",
"GlmForSequenceClassification",
"GlmForTokenClassification",
]
```
|
==============================================================================================================================
SOURCE CODE FILE: modular_glm.py
LINES: 1
SIZE: 4.00 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glm\modular_glm.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The GLM & ZhipuAI team and HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
import torch.nn as nn
import torch.utils.checkpoint
from ...utils import logging
from ..llama.modeling_llama import (
LlamaAttention,
LlamaForCausalLM,
LlamaForSequenceClassification,
LlamaForTokenClassification,
)
from ..phi3.modeling_phi3 import Phi3MLP
from .configuration_glm import GlmConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "THUDM/glm-4-9b"
class GlmMLP(Phi3MLP):
pass
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., 0::2]
x2 = x[..., 1::2]
return torch.stack((-x2, x1), dim=-1).flatten(-2)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Interleave them instead of usual shape
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
# Keep half or full tensor for later concatenation
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
# Apply rotary embeddings on the first half or full tensor
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
# Concatenate back to full shape
q_embed = torch.cat([q_embed, q_pass], dim=-1)
k_embed = torch.cat([k_embed, k_pass], dim=-1)
return q_embed, k_embed
class GlmAttention(LlamaAttention):
def __init__(self, config: GlmConfig, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
class GlmForCausalLM(LlamaForCausalLM):
pass
class GlmForSequenceClassification(LlamaForSequenceClassification):
pass
class GlmForTokenClassification(LlamaForTokenClassification):
pass
__all__ = [
"GlmPreTrainedModel", # noqa: F822
"GlmModel", # noqa: F822
"GlmForCausalLM",
"GlmForSequenceClassification",
"GlmForTokenClassification",
]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.05 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glpn\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_glpn import *
from .feature_extraction_glpn import *
from .image_processing_glpn import *
from .modeling_glpn import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_glpn.py
LINES: 1
SIZE: 5.86 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glpn\configuration_glpn.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GLPN model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class GLPNConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GLPNModel`]. It is used to instantiate an GLPN
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the GLPN
[vinvino02/glpn-kitti](https://huggingface.co/vinvino02/glpn-kitti) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
num_encoder_blocks (`int`, *optional*, defaults to 4):
The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
The number of layers in each encoder block.
sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
Sequence reduction ratios in each encoder block.
hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`):
Dimension of each of the encoder blocks.
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
Patch size before each encoder block.
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
Stride before each encoder block.
num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
Number of attention heads for each attention layer in each block of the Transformer encoder.
mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`):
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
encoder blocks.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
drop_path_rate (`float`, *optional*, defaults to 0.1):
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
decoder_hidden_size (`int`, *optional*, defaults to 64):
The dimension of the decoder.
max_depth (`int`, *optional*, defaults to 10):
The maximum depth of the decoder.
head_in_index (`int`, *optional*, defaults to -1):
The index of the features to use in the head.
Example:
```python
>>> from transformers import GLPNModel, GLPNConfig
>>> # Initializing a GLPN vinvino02/glpn-kitti style configuration
>>> configuration = GLPNConfig()
>>> # Initializing a model from the vinvino02/glpn-kitti style configuration
>>> model = GLPNModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "glpn"
def __init__(
self,
num_channels=3,
num_encoder_blocks=4,
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
hidden_sizes=[32, 64, 160, 256],
patch_sizes=[7, 3, 3, 3],
strides=[4, 2, 2, 2],
num_attention_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
drop_path_rate=0.1,
layer_norm_eps=1e-6,
decoder_hidden_size=64,
max_depth=10,
head_in_index=-1,
**kwargs,
):
super().__init__(**kwargs)
self.num_channels = num_channels
self.num_encoder_blocks = num_encoder_blocks
self.depths = depths
self.sr_ratios = sr_ratios
self.hidden_sizes = hidden_sizes
self.patch_sizes = patch_sizes
self.strides = strides
self.mlp_ratios = mlp_ratios
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.drop_path_rate = drop_path_rate
self.layer_norm_eps = layer_norm_eps
self.decoder_hidden_size = decoder_hidden_size
self.max_depth = max_depth
self.head_in_index = head_in_index
__all__ = ["GLPNConfig"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: feature_extraction_glpn.py
LINES: 1
SIZE: 1.18 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glpn\feature_extraction_glpn.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for GLPN."""
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
logger = logging.get_logger(__name__)
class GLPNFeatureExtractor(GLPNImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use GLPNImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
__all__ = ["GLPNFeatureExtractor"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: image_processing_glpn.py
LINES: 1
SIZE: 12.39 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glpn\image_processing_glpn.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for GLPN."""
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
if TYPE_CHECKING:
from ...modeling_outputs import DepthEstimatorOutput
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
is_torch_available,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, logging, requires_backends
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class GLPNImageProcessor(BaseImageProcessor):
r"""
Constructs a GLPN image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions, rounding them down to the closest multiple of
`size_divisor`. Can be overridden by `do_resize` in `preprocess`.
size_divisor (`int`, *optional*, defaults to 32):
When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest
multiple of `size_divisor`. Can be overridden by `size_divisor` in `preprocess`.
resample (`PIL.Image` resampling filter, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Can be
overridden by `do_rescale` in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size_divisor: int = 32,
resample=PILImageResampling.BILINEAR,
do_rescale: bool = True,
**kwargs,
) -> None:
self.do_resize = do_resize
self.do_rescale = do_rescale
self.size_divisor = size_divisor
self.resample = resample
super().__init__(**kwargs)
def resize(
self,
image: np.ndarray,
size_divisor: int,
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image, rounding the (height, width) dimensions down to the closest multiple of size_divisor.
If the image is of dimension (3, 260, 170) and size_divisor is 32, the image will be resized to (3, 256, 160).
Args:
image (`np.ndarray`):
The image to resize.
size_divisor (`int`):
The image is resized so its height and width are rounded down to the closest multiple of
`size_divisor`.
resample:
`PIL.Image` resampling filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If `None`, the channel dimension format of the input
image is used. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not set, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The resized image.
"""
height, width = get_image_size(image, channel_dim=input_data_format)
# Rounds the height and width down to the closest multiple of size_divisor
new_h = height // size_divisor * size_divisor
new_w = width // size_divisor * size_divisor
image = resize(
image,
(new_h, new_w),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return image
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]],
do_resize: Optional[bool] = None,
size_divisor: Optional[int] = None,
resample=None,
do_rescale: Optional[bool] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
"""
Preprocess the given images.
Args:
images (`PIL.Image.Image` or `TensorType` or `List[np.ndarray]` or `List[TensorType]`):
Images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_normalize=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the input such that the (height, width) dimensions are a multiple of `size_divisor`.
size_divisor (`int`, *optional*, defaults to `self.size_divisor`):
When `do_resize` is `True`, images are resized so their height and width are rounded down to the
closest multiple of `size_divisor`.
resample (`PIL.Image` resampling filter, *optional*, defaults to `self.resample`):
`PIL.Image` resampling filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.).
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- `None`: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
size_divisor = size_divisor if size_divisor is not None else self.size_divisor
resample = resample if resample is not None else self.resample
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# Here, the rescale() method uses a constant rescale_factor. It does not need to be validated
# with a rescale_factor.
validate_preprocess_arguments(
do_resize=do_resize,
size=size_divisor, # Here, size_divisor is used as a parameter for optimal resizing instead of size.
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(img) for img in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, scale=1 / 255, input_data_format=input_data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process_depth_estimation(
self,
outputs: "DepthEstimatorOutput",
target_sizes: Optional[Union[TensorType, List[Tuple[int, int]], None]] = None,
) -> List[Dict[str, TensorType]]:
"""
Converts the raw output of [`DepthEstimatorOutput`] into final depth predictions and depth PIL images.
Only supports PyTorch.
Args:
outputs ([`DepthEstimatorOutput`]):
Raw outputs of the model.
target_sizes (`TensorType` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
(height, width) of each image in the batch. If left to None, predictions will not be resized.
Returns:
`List[Dict[str, TensorType]]`: A list of dictionaries of tensors representing the processed depth
predictions.
"""
requires_backends(self, "torch")
predicted_depth = outputs.predicted_depth
if (target_sizes is not None) and (len(predicted_depth) != len(target_sizes)):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the predicted depth"
)
results = []
target_sizes = [None] * len(predicted_depth) if target_sizes is None else target_sizes
for depth, target_size in zip(predicted_depth, target_sizes):
if target_size is not None:
depth = depth[None, None, ...]
depth = torch.nn.functional.interpolate(depth, size=target_size, mode="bicubic", align_corners=False)
depth = depth.squeeze()
results.append({"predicted_depth": depth})
return results
__all__ = ["GLPNImageProcessor"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_glpn.py
LINES: 1
SIZE: 30.77 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\glpn\modeling_glpn.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GLPN model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, DepthEstimatorOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_glpn import GLPNConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "GLPNConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "vinvino02/glpn-kitti"
_EXPECTED_OUTPUT_SHAPE = [1, 512, 15, 20]
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.segformer.modeling_segformer.SegformerDropPath
class GLPNDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Copied from transformers.models.segformer.modeling_segformer.SegformerOverlapPatchEmbeddings
class GLPNOverlapPatchEmbeddings(nn.Module):
"""Construct the overlapping patch embeddings."""
def __init__(self, patch_size, stride, num_channels, hidden_size):
super().__init__()
self.proj = nn.Conv2d(
num_channels,
hidden_size,
kernel_size=patch_size,
stride=stride,
padding=patch_size // 2,
)
self.layer_norm = nn.LayerNorm(hidden_size)
def forward(self, pixel_values):
embeddings = self.proj(pixel_values)
_, _, height, width = embeddings.shape
# (batch_size, num_channels, height, width) -> (batch_size, num_channels, height*width) -> (batch_size, height*width, num_channels)
# this can be fed to a Transformer layer
embeddings = embeddings.flatten(2).transpose(1, 2)
embeddings = self.layer_norm(embeddings)
return embeddings, height, width
# Copied from transformers.models.segformer.modeling_segformer.SegformerEfficientSelfAttention
class GLPNEfficientSelfAttention(nn.Module):
"""SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT
paper](https://arxiv.org/abs/2102.12122)."""
def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
super().__init__()
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
f"heads ({self.num_attention_heads})"
)
self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(self.hidden_size, self.all_head_size)
self.key = nn.Linear(self.hidden_size, self.all_head_size)
self.value = nn.Linear(self.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.sr_ratio = sequence_reduction_ratio
if sequence_reduction_ratio > 1:
self.sr = nn.Conv2d(
hidden_size, hidden_size, kernel_size=sequence_reduction_ratio, stride=sequence_reduction_ratio
)
self.layer_norm = nn.LayerNorm(hidden_size)
def transpose_for_scores(self, hidden_states):
new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
hidden_states = hidden_states.view(new_shape)
return hidden_states.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
height,
width,
output_attentions=False,
):
query_layer = self.transpose_for_scores(self.query(hidden_states))
if self.sr_ratio > 1:
batch_size, seq_len, num_channels = hidden_states.shape
# Reshape to (batch_size, num_channels, height, width)
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
# Apply sequence reduction
hidden_states = self.sr(hidden_states)
# Reshape back to (batch_size, seq_len, num_channels)
hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1)
hidden_states = self.layer_norm(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.segformer.modeling_segformer.SegformerSelfOutput
class GLPNSelfOutput(nn.Module):
def __init__(self, config, hidden_size):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.segformer.modeling_segformer.SegformerAttention with Segformer->GLPN
class GLPNAttention(nn.Module):
def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
super().__init__()
self.self = GLPNEfficientSelfAttention(
config=config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
sequence_reduction_ratio=sequence_reduction_ratio,
)
self.output = GLPNSelfOutput(config, hidden_size=hidden_size)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, height, width, output_attentions=False):
self_outputs = self.self(hidden_states, height, width, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.segformer.modeling_segformer.SegformerDWConv
class GLPNDWConv(nn.Module):
def __init__(self, dim=768):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, hidden_states, height, width):
batch_size, seq_len, num_channels = hidden_states.shape
hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width)
hidden_states = self.dwconv(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
return hidden_states
# Copied from transformers.models.segformer.modeling_segformer.SegformerMixFFN with Segformer->GLPN
class GLPNMixFFN(nn.Module):
def __init__(self, config, in_features, hidden_features=None, out_features=None):
super().__init__()
out_features = out_features or in_features
self.dense1 = nn.Linear(in_features, hidden_features)
self.dwconv = GLPNDWConv(hidden_features)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.dense2 = nn.Linear(hidden_features, out_features)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, height, width):
hidden_states = self.dense1(hidden_states)
hidden_states = self.dwconv(hidden_states, height, width)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense2(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.segformer.modeling_segformer.SegformerLayer with Segformer->GLPN
class GLPNLayer(nn.Module):
"""This corresponds to the Block class in the original implementation."""
def __init__(self, config, hidden_size, num_attention_heads, drop_path, sequence_reduction_ratio, mlp_ratio):
super().__init__()
self.layer_norm_1 = nn.LayerNorm(hidden_size)
self.attention = GLPNAttention(
config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
sequence_reduction_ratio=sequence_reduction_ratio,
)
self.drop_path = GLPNDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.layer_norm_2 = nn.LayerNorm(hidden_size)
mlp_hidden_size = int(hidden_size * mlp_ratio)
self.mlp = GLPNMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size)
def forward(self, hidden_states, height, width, output_attentions=False):
self_attention_outputs = self.attention(
self.layer_norm_1(hidden_states), # in GLPN, layernorm is applied before self-attention
height,
width,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection (with stochastic depth)
attention_output = self.drop_path(attention_output)
hidden_states = attention_output + hidden_states
mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width)
# second residual connection (with stochastic depth)
mlp_output = self.drop_path(mlp_output)
layer_output = mlp_output + hidden_states
outputs = (layer_output,) + outputs
return outputs
class GLPNEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
# patch embeddings
embeddings = []
for i in range(config.num_encoder_blocks):
embeddings.append(
GLPNOverlapPatchEmbeddings(
patch_size=config.patch_sizes[i],
stride=config.strides[i],
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
hidden_size=config.hidden_sizes[i],
)
)
self.patch_embeddings = nn.ModuleList(embeddings)
# Transformer blocks
blocks = []
cur = 0
for i in range(config.num_encoder_blocks):
# each block consists of layers
layers = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i]):
layers.append(
GLPNLayer(
config,
hidden_size=config.hidden_sizes[i],
num_attention_heads=config.num_attention_heads[i],
drop_path=dpr[cur + j],
sequence_reduction_ratio=config.sr_ratios[i],
mlp_ratio=config.mlp_ratios[i],
)
)
blocks.append(nn.ModuleList(layers))
self.block = nn.ModuleList(blocks)
# Layer norms
self.layer_norm = nn.ModuleList(
[nn.LayerNorm(config.hidden_sizes[i]) for i in range(config.num_encoder_blocks)]
)
def forward(
self,
pixel_values,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
batch_size = pixel_values.shape[0]
hidden_states = pixel_values
for idx, x in enumerate(zip(self.patch_embeddings, self.block, self.layer_norm)):
embedding_layer, block_layer, norm_layer = x
# first, obtain patch embeddings
hidden_states, height, width = embedding_layer(hidden_states)
# second, send embeddings through blocks
for i, blk in enumerate(block_layer):
layer_outputs = blk(hidden_states, height, width, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
# third, apply layer norm
hidden_states = norm_layer(hidden_states)
# fourth, optionally reshape back to (batch_size, num_channels, height, width)
hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class GLPNPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GLPNConfig
base_model_prefix = "glpn"
main_input_name = "pixel_values"
_no_split_modules = []
# Copied from transformers.models.segformer.modeling_segformer.SegformerPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
GLPN_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`GLPNConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GLPN_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`GLPNImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare GLPN encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.",
GLPN_START_DOCSTRING,
)
class GLPNModel(GLPNPreTrainedModel):
# Copied from transformers.models.segformer.modeling_segformer.SegformerModel.__init__ with Segformer->GLPN
def __init__(self, config):
super().__init__(config)
self.config = config
# hierarchical Transformer encoder
self.encoder = GLPNEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(GLPN_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
# Copied from transformers.models.segformer.modeling_segformer.SegformerModel.forward
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class GLPNSelectiveFeatureFusion(nn.Module):
"""
Selective Feature Fusion module, as explained in the [paper](https://arxiv.org/abs/2201.07436) (section 3.4). This
module adaptively selects and integrates local and global features by attaining an attention map for each feature.
"""
def __init__(self, in_channel=64):
super().__init__()
self.convolutional_layer1 = nn.Sequential(
nn.Conv2d(in_channels=int(in_channel * 2), out_channels=in_channel, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(in_channel),
nn.ReLU(),
)
self.convolutional_layer2 = nn.Sequential(
nn.Conv2d(in_channels=in_channel, out_channels=int(in_channel / 2), kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(int(in_channel / 2)),
nn.ReLU(),
)
self.convolutional_layer3 = nn.Conv2d(
in_channels=int(in_channel / 2), out_channels=2, kernel_size=3, stride=1, padding=1
)
self.sigmoid = nn.Sigmoid()
def forward(self, local_features, global_features):
# concatenate features along the channel dimension
features = torch.cat((local_features, global_features), dim=1)
# pass through convolutional layers
features = self.convolutional_layer1(features)
features = self.convolutional_layer2(features)
features = self.convolutional_layer3(features)
# apply sigmoid to get two-channel attention map
attn = self.sigmoid(features)
# construct hybrid features by adding element-wise
hybrid_features = local_features * attn[:, 0, :, :].unsqueeze(1) + global_features * attn[
:, 1, :, :
].unsqueeze(1)
return hybrid_features
class GLPNDecoderStage(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
should_skip = in_channels == out_channels
self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1) if not should_skip else nn.Identity()
self.fusion = GLPNSelectiveFeatureFusion(out_channels)
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
def forward(self, hidden_state, residual=None):
hidden_state = self.convolution(hidden_state)
if residual is not None:
hidden_state = self.fusion(hidden_state, residual)
hidden_state = self.upsample(hidden_state)
return hidden_state
hidden_state = self.upsample(hidden_state)
return hidden_state
class GLPNDecoder(nn.Module):
def __init__(self, config):
super().__init__()
# we use features from end -> start
reserved_hidden_sizes = config.hidden_sizes[::-1]
out_channels = config.decoder_hidden_size
self.stages = nn.ModuleList(
[GLPNDecoderStage(hidden_size, out_channels) for hidden_size in reserved_hidden_sizes]
)
# don't fuse in first stage
self.stages[0].fusion = None
self.final_upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
def forward(self, hidden_states: List[torch.Tensor]) -> List[torch.Tensor]:
stage_hidden_states = []
stage_hidden_state = None
for hidden_state, stage in zip(hidden_states[::-1], self.stages):
stage_hidden_state = stage(hidden_state, stage_hidden_state)
stage_hidden_states.append(stage_hidden_state)
stage_hidden_states[-1] = self.final_upsample(stage_hidden_state)
return stage_hidden_states
class SiLogLoss(nn.Module):
r"""
Implements the Scale-invariant log scale loss [Eigen et al., 2014](https://arxiv.org/abs/1406.2283).
$$L=\frac{1}{n} \sum_{i} d_{i}^{2}-\frac{1}{2 n^{2}}\left(\sum_{i} d_{i}^{2}\right)$$ where $d_{i}=\log y_{i}-\log
y_{i}^{*}$.
"""
def __init__(self, lambd=0.5):
super().__init__()
self.lambd = lambd
def forward(self, pred, target):
valid_mask = (target > 0).detach()
diff_log = torch.log(target[valid_mask]) - torch.log(pred[valid_mask])
loss = torch.sqrt(torch.pow(diff_log, 2).mean() - self.lambd * torch.pow(diff_log.mean(), 2))
return loss
class GLPNDepthEstimationHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
channels = config.decoder_hidden_size
self.head = nn.Sequential(
nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(channels, 1, kernel_size=3, stride=1, padding=1),
)
def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor:
# use last features of the decoder
hidden_states = hidden_states[self.config.head_in_index]
hidden_states = self.head(hidden_states)
predicted_depth = torch.sigmoid(hidden_states) * self.config.max_depth
predicted_depth = predicted_depth.squeeze(dim=1)
return predicted_depth
@add_start_docstrings(
"""GLPN Model transformer with a lightweight depth estimation head on top e.g. for KITTI, NYUv2.""",
GLPN_START_DOCSTRING,
)
class GLPNForDepthEstimation(GLPNPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.glpn = GLPNModel(config)
self.decoder = GLPNDecoder(config)
self.head = GLPNDepthEstimationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GLPN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
labels: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
r"""
labels (`torch.FloatTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth depth estimation maps for computing the loss.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, GLPNForDepthEstimation
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("vinvino02/glpn-kitti")
>>> model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-kitti")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # interpolate to original size
>>> post_processed_output = image_processor.post_process_depth_estimation(
... outputs,
... target_sizes=[(image.height, image.width)],
... )
>>> # visualize the prediction
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
>>> depth = predicted_depth * 255 / predicted_depth.max()
>>> depth = depth.detach().cpu().numpy()
>>> depth = Image.fromarray(depth.astype("uint8"))
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.glpn(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
out = self.decoder(hidden_states)
predicted_depth = self.head(out)
loss = None
if labels is not None:
loss_fct = SiLogLoss()
loss = loss_fct(predicted_depth, labels)
if not return_dict:
if output_hidden_states:
output = (predicted_depth,) + outputs[1:]
else:
output = (predicted_depth,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return DepthEstimatorOutput(
loss=loss,
predicted_depth=predicted_depth,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
__all__ = ["GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel"]
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.11 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\got_ocr2\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_got_ocr2 import *
from .image_processing_got_ocr2 import *
from .image_processing_got_ocr2_fast import *
from .modeling_got_ocr2 import *
from .processing_got_ocr2 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==============================================================================================================================================
SOURCE CODE FILE: configuration_got_ocr2.py
LINES: 1
SIZE: 9.19 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\got_ocr2\configuration_got_ocr2.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/got_ocr2/modular_got_ocr2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_got_ocr2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ..auto import CONFIG_MAPPING, AutoConfig
class GotOcr2VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GotOcr2VisionModel`]. It is used to instantiate a GOT_OCR2
vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
defaults will yield a similar configuration to that of the SAM ViT-h
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
output_channels (`int`, *optional*, defaults to 256):
Dimensionality of the output channels in the Patch Encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input image.
image_size (`int`, *optional*, defaults to 1024):
Expected resolution. Target size of the resized input image.
patch_size (`int`, *optional*, defaults to 16):
Size of the patches to be extracted from the input image.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string)
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 1e-10):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to query, key, value projections.
use_abs_pos (`bool`, *optional*, defaults to `True`):
Whether to use absolute position embedding.
use_rel_pos (`bool`, *optional*, defaults to `True`):
Whether to use relative position embedding.
window_size (`int`, *optional*, defaults to 14):
Window size for relative position.
global_attn_indexes (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`):
The indexes of the global attention layers.
mlp_dim (`int`, *optional*, defaults to 3072):
The dimensionality of the MLP layer in the Transformer encoder.
"""
base_config_key = "vision_config"
def __init__(
self,
hidden_size=768,
output_channels=256,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=1024,
patch_size=16,
hidden_act="gelu",
layer_norm_eps=1e-06,
attention_dropout=0.0,
initializer_range=1e-10,
qkv_bias=True,
use_abs_pos=True,
use_rel_pos=True,
window_size=14,
global_attn_indexes=[2, 5, 8, 11],
mlp_dim=3072,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.output_channels = output_channels
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.qkv_bias = qkv_bias
self.use_abs_pos = use_abs_pos
self.use_rel_pos = use_rel_pos
self.window_size = window_size
self.global_attn_indexes = global_attn_indexes
self.mlp_dim = mlp_dim
class GotOcr2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GotOcr2ForConditionalGeneration`]. It is used to instantiate a
GotOcr2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of GOT-OCR-2.0.
e.g [stepfun-ai/GOT-OCR-2.0-hf](https://huggingface.co/stepfun-ai/GOT-OCR-2.0-hf)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
The config object or dictionary of the text backbone.
image_token_index (`int`, *optional*, defaults to 151859):
The image token index to encode the image prompt.
image_seq_length (`int`, *optional*, defaults to 576):
Sequence length of one image embedding.
pad_token_id (`int`, *optional*, defaults to -1):
Padding token id.
```python
>>> from transformers import GotOcr2ForConditionalGeneration, GotOcr2Config
>>> # Initializing a GotOcr2 style configuration
>>> configuration = GotOcr2Config()
>>> # Initializing a model from the Qwen2-VL-7B style configuration
>>> model = GotOcr2ForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "got_ocr2"
sub_configs = {"text_config": AutoConfig, "vision_config": GotOcr2VisionConfig}
def __init__(
self,
vision_config=None,
text_config=None,
image_token_index=151859,
image_seq_length=576,
pad_token_id=-1,
**kwargs,
):
self.image_token_index = image_token_index
self.image_seq_length = image_seq_length
self.pad_token_id = pad_token_id
if vision_config is None:
self.vision_config = GotOcr2VisionConfig()
elif isinstance(vision_config, dict):
self.vision_config = GotOcr2VisionConfig(**vision_config)
elif isinstance(vision_config, GotOcr2VisionConfig):
self.vision_config = vision_config
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["qwen2"](
vocab_size=151860,
hidden_size=1024,
intermediate_size=2816,
num_hidden_layers=24,
num_attention_heads=16,
num_key_value_heads=16,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=True,
rope_theta=1000000.0,
rope_scaling=None,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=21,
attention_dropout=0.0,
)
self.text_config = text_config
super().__init__(**kwargs)
__all__ = ["GotOcr2VisionConfig", "GotOcr2Config"]
```
|
=================================================================================================================================================
SOURCE CODE FILE: image_processing_got_ocr2.py
LINES: 1
SIZE: 23.81 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\got_ocr2\image_processing_got_ocr2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Got-OCR-2."""
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
convert_to_rgb,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_flat_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
# Similar to image_processing_mllama.get_all_supported_aspect_ratios
@lru_cache(maxsize=10)
def get_all_supported_aspect_ratios(min_image_tiles: int, max_image_tiles: int) -> List[Tuple[int, int]]:
"""
Computes all allowed aspect ratios for a given minimum and maximum number of input tiles.
This function calculates all possible arrangements of tiles that can be formed
within the constraint of the minimum and maximum number of tiles. Each arrangement is
represented by its aspect ratio (width/height) and the corresponding tile configuration.
Args:
min_image_tiles (`int`):
The minimum number of tiles allowed.
max_image_tiles (`int`):
The maximum number of tiles allowed.
Returns:
`List[Tuple[int, int]]`: A list of tuples, each tuple representing a valid (width, height)
configuration in terms of number of tiles.
Example:
>>> get_all_supported_aspect_ratios(1, 4)
[(1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (2, 2), (4, 1)]
"""
aspect_ratios = []
for width in range(1, max_image_tiles + 1):
for height in range(1, max_image_tiles + 1):
if width * height <= max_image_tiles and width * height >= min_image_tiles:
aspect_ratios.append((width, height))
aspect_ratios = sorted(aspect_ratios, key=lambda x: x[0] * x[1])
return aspect_ratios
@lru_cache(maxsize=100)
def get_optimal_tiled_canvas(
original_image_size: Tuple[int, int],
target_tile_size: Tuple[int, int],
min_image_tiles: int,
max_image_tiles: int,
) -> Tuple[int, int]:
"""
Given a minimum and maximum number of tiles, find the canvas with the closest aspect ratio to the
original image aspect ratio.
In case of tie-breaking condition when two canvases have the same aspect ratio difference, we favor the canvas with
more tiles, until the area covered by the tiles is more than twice the target area, in order to avoid unnecessarily
excessive tiling.
"""
possible_tile_arrangements = get_all_supported_aspect_ratios(min_image_tiles, max_image_tiles)
original_height, original_width = original_image_size
target_tile_height, target_tile_width = target_tile_size
aspect_ratio = original_width / original_height
area = original_width * original_height
# find the grid with the best aspect ratio
best_ratio_diff = float("inf")
best_grid = (1, 1)
for grid in possible_tile_arrangements:
grid_aspect_ratio = grid[0] / grid[1]
ratio_diff = abs(aspect_ratio - grid_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_grid = grid
elif ratio_diff == best_ratio_diff:
# if the aspect ratio difference is the same, we favor the grid with more patches
# until the area covered by the patches is more than twice the original image area
if area > 0.5 * target_tile_height * target_tile_width * grid[0] * grid[1]:
best_grid = grid
return best_grid
class GotOcr2ImageProcessor(BaseImageProcessor):
r"""
Constructs a GOT_OCR2 image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
crop_to_patches (`bool`, *optional*, defaults to `False`):
Whether to crop the image to patches. Can be overridden by the `crop_to_patches` parameter in the
`preprocess` method.
min_patches (`int`, *optional*, defaults to 1):
The minimum number of patches to be extracted from the image. Only has an effect if `crop_to_patches` is
set to `True`. Can be overridden by the `min_patches` parameter in the `preprocess` method.
max_patches (`int`, *optional*, defaults to 12):
The maximum number of patches to be extracted from the image. Only has an effect if `crop_to_patches` is
set to `True`. Can be overridden by the `max_patches` parameter in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
overridden by the `resample` parameter in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
`do_rescale` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
overridden by the `rescale_factor` parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
crop_to_patches: bool = False,
min_patches: int = 1,
max_patches: int = 12,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 384, "width": 384}
size = get_size_dict(size, default_to_square=True)
self.do_resize = do_resize
self.size = size
self.crop_to_patches = crop_to_patches
self.min_patches = min_patches
self.max_patches = max_patches
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.do_convert_rgb = do_convert_rgb
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
crop_to_patches: Optional[bool] = None,
min_patches: Optional[int] = None,
max_patches: Optional[int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
do_convert_rgb: Optional[bool] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Controls the size of the image after `resize`. The shortest edge of the image is resized to
`size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
crop_to_patches (`bool`, *optional*, defaults to `self.crop_to_patches`):
Whether to crop the image to patches.
min_patches (`int`, *optional*, defaults to `self.min_patches`):
The minimum number of patches to be extracted from the image. Only has an effect if `crop_to_patches` is
set to `True`.
max_patches (`int`, *optional*, defaults to `self.max_patches`):
The maximum number of patches to be extracted from the image. Only has an effect if `crop_to_patches` is
set to `True`.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to normalize the image by if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
crop_to_patches = crop_to_patches if crop_to_patches is not None else self.crop_to_patches
min_patches = min_patches if min_patches is not None else self.min_patches
max_patches = max_patches if max_patches is not None else self.max_patches
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
images = make_flat_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
# PIL RGBA images are converted to RGB
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if crop_to_patches and max_patches > 1:
images = [
self.crop_image_to_patches(
image,
min_patches=min_patches,
max_patches=max_patches,
patch_size=size,
data_format=input_data_format,
)
for image in images
]
num_patches = np.array([len(image) for image in images])
images = [image for images_list in images for image in images_list]
else:
num_patches = np.array([1] * len(images))
for i, image in enumerate(images):
if do_resize:
images[i] = self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
if do_rescale:
images[i] = self.rescale(image=images[i], scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
images[i] = self.normalize(
image=images[i],
mean=image_mean,
std=image_std,
input_data_format=input_data_format,
)
images[i] = to_channel_dimension_format(images[i], data_format, input_channel_dim=input_data_format)
encoded_outputs = BatchFeature(
data={"pixel_values": images, "num_patches": num_patches}, tensor_type=return_tensors
)
return encoded_outputs
def crop_image_to_patches(
self,
images: np.ndarray,
min_patches: int,
max_patches: int,
use_thumbnail: bool = True,
patch_size: Union[Tuple, int, dict] = None,
data_format: ChannelDimension = None,
):
"""
Crop the image to patches and return a list of cropped images.
The number of patches and their grid arrangement are determined by the original image size,
the target patch size and the minimum and maximum number of patches.
The aspect ratio of the patches grid is chosen to be the closest to the original image aspect ratio.
Args:
images (`np.ndarray`):
The image to be cropped.
min_patches (`int`):
The minimum number of patches to be extracted from the image.
max_patches (`int`):
The maximum number of patches to be extracted from the image.
use_thumbnail (`bool`, *optional*, defaults to `True`):
Whether to add a thumbnail image to the list of cropped patches.
patch_size (`int`, `Tuple[int, int]`, `dict`, *optional*):
The size of the output patches.
data_format (`ChannelDimension`, *optional*):
The format of the image data. If `None`, the format is inferred from the input image.
Returns:
List[`PIL.Image.Image`] or List[np.ndarray]: The list of cropped images.
"""
if data_format is None:
data_format = infer_channel_dimension_format(images)
images = to_channel_dimension_format(images, ChannelDimension.FIRST, data_format)
patch_size_height, patch_size_width = patch_size["height"], patch_size["width"]
original_height, original_width = images.shape[-2:]
# find the closest aspect ratio to the target
num_columns, num_rows = get_optimal_tiled_canvas(
(original_height, original_width), (patch_size_height, patch_size_width), min_patches, max_patches
)
# calculate the target width and height
target_width = patch_size_width * num_columns
target_height = patch_size_height * num_rows
num_blocks = num_columns * num_rows
# resize the image so that each patch is of patch_size
resized_image = self.resize(
images,
{"height": target_height, "width": target_width},
data_format=ChannelDimension.FIRST,
input_data_format=ChannelDimension.FIRST,
)
# split the image into patches
processed_images = []
for i in range(num_blocks):
column = i % num_columns
row = i // num_columns
box = (
column * patch_size_width,
row * patch_size_height,
(column + 1) * patch_size_width,
(row + 1) * patch_size_height,
)
# split the image
patch_image = resized_image[..., box[1] : box[3], box[0] : box[2]]
patch_image = to_channel_dimension_format(patch_image, data_format, ChannelDimension.FIRST)
processed_images.append(patch_image)
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = self.resize(
images, patch_size, data_format=data_format, input_data_format=ChannelDimension.FIRST
)
processed_images.append(thumbnail_img)
return processed_images
__all__ = ["GotOcr2ImageProcessor"]
```
|
======================================================================================================================================================
SOURCE CODE FILE: image_processing_got_ocr2_fast.py
LINES: 1
SIZE: 10.32 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\got_ocr2\image_processing_got_ocr2_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Image processor class for Got-OCR-2."""
from typing import List, Optional, Tuple, Union
from ...image_processing_utils import BatchFeature
from ...image_processing_utils_fast import (
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
BaseImageProcessorFast,
DefaultFastImageProcessorKwargs,
group_images_by_shape,
reorder_images,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ImageInput,
PILImageResampling,
SizeDict,
)
from ...processing_utils import Unpack
from ...utils import (
TensorType,
add_start_docstrings,
is_torch_available,
is_torchvision_available,
is_torchvision_v2_available,
)
from .image_processing_got_ocr2 import get_optimal_tiled_canvas
if is_torch_available():
import torch
if is_torchvision_available():
if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F
class GotOcr2ImageProcessorKwargs(DefaultFastImageProcessorKwargs):
crop_to_patches: Optional[bool]
min_patches: Optional[int]
max_patches: Optional[int]
@add_start_docstrings(
"Constructs a fast GotOcr2 image processor.",
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
"""
crop_to_patches (`bool`, *optional*, defaults to `False`):
Whether to crop the image to patches. Can be overridden by the `crop_to_patches` parameter in the
`preprocess` method.
min_patches (`int`, *optional*, defaults to 1):
The minimum number of patches to be extracted from the image. Only has an effect if `crop_to_patches` is
set to `True`. Can be overridden by the `min_patches` parameter in the `preprocess` method.
max_patches (`int`, *optional*, defaults to 12):
The maximum number of patches to be extracted from the image. Only has an effect if `crop_to_patches` is
set to `True`. Can be overridden by the `max_patches` parameter in the `preprocess` method.
""",
)
class GotOcr2ImageProcessorFast(BaseImageProcessorFast):
resample = PILImageResampling.BICUBIC
image_mean = OPENAI_CLIP_MEAN
image_std = OPENAI_CLIP_STD
size = {"height": 384, "width": 384}
do_resize = True
do_rescale = True
do_normalize = True
do_convert_rgb = True
crop_to_patches = False
min_patches = 1
max_patches = 12
valid_kwargs = GotOcr2ImageProcessorKwargs
def __init__(self, **kwargs: Unpack[valid_kwargs]):
super().__init__(**kwargs)
@add_start_docstrings(
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
"""
crop_to_patches (`bool`, *optional*, defaults to `False`):
Whether to crop the image to patches. Can be overridden by the `crop_to_patches` parameter in the
`preprocess` method.
min_patches (`int`, *optional*, defaults to 1):
The minimum number of patches to be extracted from the image. Only has an effect if `crop_to_patches` is
set to `True`. Can be overridden by the `min_patches` parameter in the `preprocess` method.
max_patches (`int`, *optional*, defaults to 12):
The maximum number of patches to be extracted from the image. Only has an effect if `crop_to_patches` is
set to `True`. Can be overridden by the `max_patches` parameter in the `preprocess` method.
""",
)
def preprocess(self, images: ImageInput, **kwargs: Unpack[valid_kwargs]) -> BatchFeature:
return super().preprocess(images, **kwargs)
def crop_image_to_patches(
self,
images: "torch.Tensor",
min_patches: int,
max_patches: int,
use_thumbnail: bool = True,
patch_size: Union[Tuple, int, dict] = None,
interpolation: Optional["F.InterpolationMode"] = None,
):
"""
Crop the images to patches and return a list of cropped images.
The number of patches and their grid arrangement are determined by the original image size,
the target patch size and the minimum and maximum number of patches.
The aspect ratio of the patches grid is chosen to be the closest to the original image aspect ratio.
Args:
images (`torch.Tensor`):
The images to be cropped.
min_patches (`int`):
The minimum number of patches to be extracted from the image.
max_patches (`int`):
The maximum number of patches to be extracted from the image.
use_thumbnail (`bool`, *optional*, defaults to `True`):
Whether to add a thumbnail image to the list of cropped patches.
patch_size (`int`, `Tuple[int, int]`, `dict`, *optional*):
The size of the output patches.
The format of the image data. If `None`, the format is inferred from the input image.
Returns:
List[`PIL.Image.Image`] or List[np.ndarray]: The list of cropped images.
"""
patch_size_height, patch_size_width = patch_size.height, patch_size.width
original_height, original_width = images.shape[-2:]
# find the closest aspect ratio to the target
num_columns, num_rows = get_optimal_tiled_canvas(
(original_height, original_width), (patch_size_height, patch_size_width), min_patches, max_patches
)
# calculate the target width and height
target_width = patch_size_width * num_columns
target_height = patch_size_height * num_rows
num_blocks = num_columns * num_rows
# resize the image so that each patch is of patch_size
resized_image = self.resize(
images, SizeDict(height=target_height, width=target_width), interpolation=interpolation
)
# split the image into patches
processed_images = []
for i in range(num_blocks):
column = i % num_columns
row = i // num_columns
box = (
column * patch_size_width,
row * patch_size_height,
(column + 1) * patch_size_width,
(row + 1) * patch_size_height,
)
# split the image
patch_image = resized_image[..., box[1] : box[3], box[0] : box[2]]
processed_images.append(patch_image)
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = self.resize(images, patch_size, interpolation=interpolation)
processed_images.append(thumbnail_img)
processed_images = torch.stack(processed_images, dim=0).transpose(0, 1).contiguous()
return processed_images
def _preprocess(
self,
images: List["torch.Tensor"],
do_resize: bool,
size: SizeDict,
crop_to_patches: bool,
min_patches: int,
max_patches: int,
interpolation: Optional["F.InterpolationMode"],
do_center_crop: bool,
crop_size: SizeDict,
do_rescale: bool,
rescale_factor: float,
do_normalize: bool,
image_mean: Optional[Union[float, List[float]]],
image_std: Optional[Union[float, List[float]]],
return_tensors: Optional[Union[str, TensorType]],
) -> BatchFeature:
if crop_to_patches:
grouped_images, grouped_images_index = group_images_by_shape(images)
processed_images_grouped = {}
num_patches = {}
for shape, stacked_images in grouped_images.items():
stacked_images = self.crop_image_to_patches(
stacked_images,
min_patches,
max_patches,
patch_size=size,
interpolation=interpolation,
)
processed_images_grouped[shape] = stacked_images
num_patches[shape] = [stacked_images.shape[1]] * stacked_images.shape[0]
images = reorder_images(processed_images_grouped, grouped_images_index)
images = [image for images_list in images for image in images_list]
num_patches = reorder_images(num_patches, grouped_images_index)
else:
num_patches = [1] * len(images)
# Group images by size for batched resizing
grouped_images, grouped_images_index = group_images_by_shape(images)
resized_images_grouped = {}
for shape, stacked_images in grouped_images.items():
if do_resize:
stacked_images = self.resize(image=stacked_images, size=size, interpolation=interpolation)
resized_images_grouped[shape] = stacked_images
resized_images = reorder_images(resized_images_grouped, grouped_images_index)
# Group images by size for further processing
# Needed in case do_resize is False, or resize returns images with different sizes
grouped_images, grouped_images_index = group_images_by_shape(resized_images)
processed_images_grouped = {}
for shape, stacked_images in grouped_images.items():
if do_center_crop:
stacked_images = self.center_crop(stacked_images, crop_size)
# Fused rescale and normalize
stacked_images = self.rescale_and_normalize(
stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std
)
processed_images_grouped[shape] = stacked_images
processed_images = reorder_images(processed_images_grouped, grouped_images_index)
processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images
return BatchFeature(
data={"pixel_values": processed_images, "num_patches": num_patches}, tensor_type=return_tensors
)
__all__ = ["GotOcr2ImageProcessorFast"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: modeling_got_ocr2.py
LINES: 1
SIZE: 41.59 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\got_ocr2\modeling_got_ocr2.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/got_ocr2/modular_got_ocr2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_got_ocr2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.modeling_outputs import CausalLMOutputWithPast
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_outputs import ModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
replace_return_docstrings,
)
from ..auto import AutoModelForCausalLM
from .configuration_got_ocr2 import GotOcr2Config, GotOcr2VisionConfig
_CONFIG_FOR_DOC = "GotOcr2Config"
class GotOcr2MLPBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim)
self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size)
self.act = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.lin1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.lin2(hidden_states)
return hidden_states
class GotOcr2VisionAttention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(self, config, window_size):
super().__init__()
input_size = (
(config.image_size // config.patch_size, config.image_size // config.patch_size)
if window_size == 0
else (window_size, window_size)
)
self.num_attention_heads = config.num_attention_heads
head_dim = config.hidden_size // config.num_attention_heads
self.scale = head_dim**-0.5
self.dropout = config.attention_dropout
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias)
self.proj = nn.Linear(config.hidden_size, config.hidden_size)
self.use_rel_pos = config.use_rel_pos
if self.use_rel_pos:
if input_size is None:
raise ValueError("Input size must be provided if using relative positional encoding.")
# initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
"""
Get relative positional embeddings according to the relative positions of
query and key sizes.
Args:
q_size (int):
size of the query.
k_size (int):
size of key k.
rel_pos (`torch.Tensor`):
relative position embeddings (L, channel).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos.
rel_pos_resized = F.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def get_decomposed_rel_pos(
self,
query: torch.Tensor,
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
q_size: Tuple[int, int],
k_size: Tuple[int, int],
) -> torch.Tensor:
"""
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
Args:
query (`torch.Tensor`):
query q in the attention layer with shape (batch_size, query_height * query_width, channel).
rel_pos_h (`torch.Tensor`):
relative position embeddings (Lh, channel) for height axis.
rel_pos_w (`torch.Tensor`):
relative position embeddings (Lw, channel) for width axis.
q_size (tuple):
spatial sequence size of query q with (query_height, query_width).
k_size (tuple):
spatial sequence size of key k with (key_height, key_width).
Returns:
decomposed_rel_pos (`torch.Tensor`):
decomposed relative position embeddings.
"""
query_height, query_width = q_size
key_height, key_width = k_size
relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h)
relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w)
batch_size, _, dim = query.shape
reshaped_query = query.reshape(batch_size, query_height, query_width, dim)
rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height)
rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width)
decomposed_rel_pos = rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
return decomposed_rel_pos
def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor:
batch_size, height, width, _ = hidden_states.shape
# qkv with shape (3, batch_size, nHead, height * width, channel)
qkv = (
self.qkv(hidden_states)
.reshape(batch_size, height * width, 3, self.num_attention_heads, -1)
.permute(2, 0, 3, 1, 4)
)
# q, k, v with shape (batch_size * nHead, height * width, channel)
query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(0)
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
if self.use_rel_pos:
decomposed_rel_pos = self.get_decomposed_rel_pos(
query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
)
decomposed_rel_pos = decomposed_rel_pos.reshape_as(attn_weights)
attn_weights = attn_weights + decomposed_rel_pos
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1)
attn_output = self.proj(attn_output)
if output_attentions:
outputs = (attn_output, attn_weights)
else:
outputs = (attn_output, None)
return outputs
class GotOcr2VisionLayer(nn.Module):
def __init__(self, config, window_size):
super().__init__()
self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attn = GotOcr2VisionAttention(config, window_size)
self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = GotOcr2MLPBlock(config)
self.window_size = window_size
def window_partition(self, hidden_states: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
"""
Args:
Partition into non-overlapping windows with padding if needed.
hidden_states (tensor): input tokens with [batch_size, height, width, channel]. window_size (int): window
size.
Returns:
windows: windows after partition with [batch_size * num_windows, window_size, window_size, channel].
(pad_height, pad_width): padded height and width before partition
"""
batch_size, height, width, channel = hidden_states.shape
pad_h = (window_size - height % window_size) % window_size
pad_w = (window_size - width % window_size) % window_size
hidden_states = F.pad(hidden_states, (0, 0, 0, pad_w, 0, pad_h))
pad_height, pad_width = height + pad_h, width + pad_w
hidden_states = hidden_states.reshape(
batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel
)
windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(-1, window_size, window_size, channel)
return windows, (pad_height, pad_width)
def window_unpartition(
self, windows: torch.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int]
) -> torch.Tensor:
"""
Args:
Window unpartition into original sequences and removing padding.
hidden_states (tensor):
input tokens with [batch_size * num_windows, window_size, window_size, channel].
window_size (int):
window size.
padding_shape (Tuple):
padded height and width (pad_height, pad_width).
original_shape (Tuple): original height and width (height, width) before padding.
Returns:
hidden_states: unpartitioned sequences with [batch_size, height, width, channel].
"""
pad_height, pad_width = padding_shape
height, width = original_shape
batch_size = windows.shape[0] // (pad_height * pad_width // window_size // window_size)
hidden_states = windows.reshape(
batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1
)
hidden_states = (
hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(batch_size, pad_height, pad_width, -1)
)
hidden_states = hidden_states[:, :height, :width, :].contiguous()
return hidden_states
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
# Window partition
if self.window_size > 0:
height, width = hidden_states.shape[1], hidden_states.shape[2]
hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size)
hidden_states, attn_weights = self.attn(
hidden_states=hidden_states,
output_attentions=output_attentions,
)
# Reverse window partition
if self.window_size > 0:
hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width))
hidden_states = residual + hidden_states
layernorm_output = self.layer_norm2(hidden_states)
hidden_states = hidden_states + self.mlp(layernorm_output)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
@dataclass
class GotOcr2VisionEncoderOutput(ModelOutput):
"""
Base class for got_ocr2 vision model's outputs that also contains image embeddings obtained by applying the projection
layer to the pooler_output.
Args:
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class GotOcr2PatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values):
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
embeddings = self.projection(pixel_values).permute(0, 2, 3, 1)
return embeddings
class GotOcr2LayerNorm(nn.Module):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
self.normalized_shape = (normalized_shape,)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.data_format == "channels_last":
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
input_dtype = x.dtype
x = x.float()
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = x.to(dtype=input_dtype)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class GotOcr2VisionNeck(nn.Module):
def __init__(self, config: GotOcr2VisionConfig):
super().__init__()
self.config = config
self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False)
self.layer_norm1 = GotOcr2LayerNorm(config.output_channels, data_format="channels_first")
self.conv2 = nn.Conv2d(config.output_channels, config.output_channels, kernel_size=3, padding=1, bias=False)
self.layer_norm2 = GotOcr2LayerNorm(config.output_channels, data_format="channels_first")
def forward(self, hidden_states):
hidden_states = hidden_states.permute(0, 3, 1, 2)
hidden_states = self.conv1(hidden_states)
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.layer_norm2(hidden_states)
return hidden_states
class GotOcr2VisionEncoder(nn.Module):
def __init__(self, config: GotOcr2VisionConfig):
super().__init__()
self.config = config
self.image_size = config.image_size
self.patch_embed = GotOcr2PatchEmbeddings(config)
self.pos_embed = None
if config.use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(
torch.zeros(
1,
config.image_size // config.patch_size,
config.image_size // config.patch_size,
config.hidden_size,
)
)
self.layers = nn.ModuleList()
for i in range(config.num_hidden_layers):
layer = GotOcr2VisionLayer(
config,
window_size=config.window_size if i not in config.global_attn_indexes else 0,
)
self.layers.append(layer)
self.neck = GotOcr2VisionNeck(config)
self.gradient_checkpointing = False
def get_input_embeddings(self):
return self.patch_embed
@can_return_tuple
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> GotOcr2VisionEncoderOutput:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.patch_embed(pixel_values)
if self.pos_embed is not None:
hidden_states = hidden_states + self.pos_embed
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
)
else:
layer_outputs = layer_module(hidden_states, output_attentions=output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = self.neck(hidden_states)
return GotOcr2VisionEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class GotOcr2MultiModalProjector(nn.Module):
def __init__(self, config: GotOcr2Config):
super().__init__()
vision_output_channels = config.vision_config.output_channels
language_hidden_size = config.text_config.hidden_size
self.conv_upsampler1 = nn.Conv2d(
vision_output_channels, vision_output_channels * 2, kernel_size=3, stride=2, padding=1, bias=False
)
self.conv_upsampler2 = nn.Conv2d(
vision_output_channels * 2, language_hidden_size, kernel_size=3, stride=2, padding=1, bias=False
)
self.multimodal_projector = nn.Linear(language_hidden_size, language_hidden_size)
def forward(self, vision_embeddings: torch.Tensor) -> torch.Tensor:
hidden_state = self.conv_upsampler1(vision_embeddings)
hidden_state = self.conv_upsampler2(hidden_state)
hidden_state = hidden_state.flatten(2).permute(0, 2, 1)
hidden_state = self.multimodal_projector(hidden_state)
return hidden_state
@dataclass
class GotOcr2CausalLMOutputWithPast(ModelOutput):
"""
Base class for GotOcr2 causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size (batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
GOT_OCR2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GotOcr2Config`] or [`GotOcr2VisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
GOT_OCR2_START_DOCSTRING,
)
class GotOcr2PreTrainedModel(PreTrainedModel):
config_class = GotOcr2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["GotOcr2VisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_cache_class = True
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
# important: this ported version of GotOcr2 isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
# https://github.com/haotian-liu/GotOcr2/tree/main/got_ocr2 should serve for that purpose
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
GOT_OCR2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(seq_length, num_channels * image_size * image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`GotOcr2ImageProcessor.__call__`] for details. [`GotOcr2Processor`] uses
[`GotOcr2ImageProcessor`] for processing images.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"""The GOT_OCR2 model which consists of a vision backbone and a language model.""",
GOT_OCR2_START_DOCSTRING,
)
class GotOcr2ForConditionalGeneration(GotOcr2PreTrainedModel, GenerationMixin):
def __init__(self, config: GotOcr2Config):
super().__init__(config)
self.vision_tower = GotOcr2VisionEncoder(config.vision_config)
self.multi_modal_projector = GotOcr2MultiModalProjector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
self.pad_token_id = config.pad_token_id
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def get_image_features(
self,
pixel_values: torch.FloatTensor,
):
"""
Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
"""
image_outputs = self.vision_tower(pixel_values).last_hidden_state
return self.multi_modal_projector(image_outputs)
@can_return_tuple
@add_start_docstrings_to_model_forward(GOT_OCR2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=GotOcr2CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> GotOcr2CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, GotOcr2ForConditionalGeneration, TextStreamer
>>> model = GotOcr2ForConditionalGeneration.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf").to("cuda")
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")
>>> url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(image, return_tensors="pt", color="green").to("cuda")
>>> # Generate
>>> streamer = TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
>>> generate_ids = model.generate(
... **inputs,
... do_sample=False,
... tokenizer = processor.tokenizer,
... stop_strings='<|im_end|>',
... streamer=streamer,
... max_new_tokens=4096,
... )
"You should keep in mind what features from the module should be used, especially
when you're planning to sell a template."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if pixel_values is not None:
image_features = self.get_image_features(pixel_values=pixel_values.to(inputs_embeds.dtype))
n_image_tokens = (input_ids == self.config.image_token_index).sum()
n_image_features = image_features.shape[0] * image_features.shape[1]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
outputs: CausalLMOutputWithPast = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
return GotOcr2CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
attention_mask=None,
cache_position=None,
logits_to_keep=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**kwargs,
)
if cache_position[0] == 0:
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model
model_inputs["pixel_values"] = pixel_values
return model_inputs
__all__ = ["GotOcr2PreTrainedModel", "GotOcr2ForConditionalGeneration"]
```
|
========================================================================================================================================
SOURCE CODE FILE: modular_got_ocr2.py
LINES: 1
SIZE: 23.36 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\got_ocr2\modular_got_ocr2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.models.llava.modeling_llava import (
LlavaCausalLMOutputWithPast,
LlavaForConditionalGeneration,
LlavaPreTrainedModel,
)
from transformers.models.sam.modeling_sam import SamMLPBlock, SamVisionAttention, SamVisionEncoder, SamVisionLayer
from ...configuration_utils import PretrainedConfig
from ...utils import (
add_start_docstrings_to_model_forward,
can_return_tuple,
is_vision_available,
logging,
replace_return_docstrings,
)
from ..auto import CONFIG_MAPPING, AutoConfig, AutoModelForCausalLM
if is_vision_available():
pass
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "GotOcr2Config"
class GotOcr2VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GotOcr2VisionModel`]. It is used to instantiate a GOT_OCR2
vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
defaults will yield a similar configuration to that of the SAM ViT-h
[facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
output_channels (`int`, *optional*, defaults to 256):
Dimensionality of the output channels in the Patch Encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input image.
image_size (`int`, *optional*, defaults to 1024):
Expected resolution. Target size of the resized input image.
patch_size (`int`, *optional*, defaults to 16):
Size of the patches to be extracted from the input image.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string)
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 1e-10):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to query, key, value projections.
use_abs_pos (`bool`, *optional*, defaults to `True`):
Whether to use absolute position embedding.
use_rel_pos (`bool`, *optional*, defaults to `True`):
Whether to use relative position embedding.
window_size (`int`, *optional*, defaults to 14):
Window size for relative position.
global_attn_indexes (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`):
The indexes of the global attention layers.
mlp_dim (`int`, *optional*, defaults to 3072):
The dimensionality of the MLP layer in the Transformer encoder.
"""
base_config_key = "vision_config"
def __init__(
self,
hidden_size=768,
output_channels=256,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=1024,
patch_size=16,
hidden_act="gelu",
layer_norm_eps=1e-06,
attention_dropout=0.0,
initializer_range=1e-10,
qkv_bias=True,
use_abs_pos=True,
use_rel_pos=True,
window_size=14,
global_attn_indexes=[2, 5, 8, 11],
mlp_dim=3072,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.output_channels = output_channels
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.qkv_bias = qkv_bias
self.use_abs_pos = use_abs_pos
self.use_rel_pos = use_rel_pos
self.window_size = window_size
self.global_attn_indexes = global_attn_indexes
self.mlp_dim = mlp_dim
class GotOcr2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GotOcr2ForConditionalGeneration`]. It is used to instantiate a
GotOcr2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of GOT-OCR-2.0.
e.g [stepfun-ai/GOT-OCR-2.0-hf](https://huggingface.co/stepfun-ai/GOT-OCR-2.0-hf)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
The config object or dictionary of the text backbone.
image_token_index (`int`, *optional*, defaults to 151859):
The image token index to encode the image prompt.
image_seq_length (`int`, *optional*, defaults to 576):
Sequence length of one image embedding.
pad_token_id (`int`, *optional*, defaults to -1):
Padding token id.
```python
>>> from transformers import GotOcr2ForConditionalGeneration, GotOcr2Config
>>> # Initializing a GotOcr2 style configuration
>>> configuration = GotOcr2Config()
>>> # Initializing a model from the Qwen2-VL-7B style configuration
>>> model = GotOcr2ForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "got_ocr2"
sub_configs = {"text_config": AutoConfig, "vision_config": GotOcr2VisionConfig}
def __init__(
self,
vision_config=None,
text_config=None,
image_token_index=151859,
image_seq_length=576,
pad_token_id=-1,
**kwargs,
):
self.image_token_index = image_token_index
self.image_seq_length = image_seq_length
self.pad_token_id = pad_token_id
if vision_config is None:
self.vision_config = GotOcr2VisionConfig()
elif isinstance(vision_config, dict):
self.vision_config = GotOcr2VisionConfig(**vision_config)
elif isinstance(vision_config, GotOcr2VisionConfig):
self.vision_config = vision_config
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["qwen2"](
vocab_size=151860,
hidden_size=1024,
intermediate_size=2816,
num_hidden_layers=24,
num_attention_heads=16,
num_key_value_heads=16,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=True,
rope_theta=1000000.0,
rope_scaling=None,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=21,
attention_dropout=0.0,
)
self.text_config = text_config
super().__init__(**kwargs)
class GotOcr2MLPBlock(SamMLPBlock):
pass
class GotOcr2VisionAttention(SamVisionAttention):
pass
class GotOcr2VisionLayer(SamVisionLayer):
def __init__(self, config, window_size):
super().__init__()
self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attn = GotOcr2VisionAttention(config, window_size)
self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = GotOcr2MLPBlock(config)
self.window_size = window_size
class GotOcr2VisionEncoder(SamVisionEncoder):
pass
class GotOcr2MultiModalProjector(nn.Module):
def __init__(self, config: GotOcr2Config):
super().__init__()
vision_output_channels = config.vision_config.output_channels
language_hidden_size = config.text_config.hidden_size
self.conv_upsampler1 = nn.Conv2d(
vision_output_channels, vision_output_channels * 2, kernel_size=3, stride=2, padding=1, bias=False
)
self.conv_upsampler2 = nn.Conv2d(
vision_output_channels * 2, language_hidden_size, kernel_size=3, stride=2, padding=1, bias=False
)
self.multimodal_projector = nn.Linear(language_hidden_size, language_hidden_size)
def forward(self, vision_embeddings: torch.Tensor) -> torch.Tensor:
hidden_state = self.conv_upsampler1(vision_embeddings)
hidden_state = self.conv_upsampler2(hidden_state)
hidden_state = hidden_state.flatten(2).permute(0, 2, 1)
hidden_state = self.multimodal_projector(hidden_state)
return hidden_state
class GotOcr2CausalLMOutputWithPast(LlavaCausalLMOutputWithPast):
pass
class GotOcr2PreTrainedModel(LlavaPreTrainedModel):
pass
GOT_OCR2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(seq_length, num_channels * image_size * image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`GotOcr2ImageProcessor.__call__`] for details. [`GotOcr2Processor`] uses
[`GotOcr2ImageProcessor`] for processing images.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
class GotOcr2ForConditionalGeneration(LlavaForConditionalGeneration):
def __init__(self, config: GotOcr2Config):
super().__init__(config)
self.vision_tower = GotOcr2VisionEncoder(config.vision_config)
self.multi_modal_projector = GotOcr2MultiModalProjector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
self.pad_token_id = config.pad_token_id
self.post_init()
def get_image_features(
self,
pixel_values: torch.FloatTensor,
):
"""
Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
"""
image_outputs = self.vision_tower(pixel_values).last_hidden_state
return self.multi_modal_projector(image_outputs)
@can_return_tuple
@add_start_docstrings_to_model_forward(GOT_OCR2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=GotOcr2CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> GotOcr2CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, GotOcr2ForConditionalGeneration, TextStreamer
>>> model = GotOcr2ForConditionalGeneration.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf").to("cuda")
>>> processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR-2.0-hf")
>>> url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_got_ocr/resolve/main/multi_box.png"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(image, return_tensors="pt", color="green").to("cuda")
>>> # Generate
>>> streamer = TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
>>> generate_ids = model.generate(
... **inputs,
... do_sample=False,
... tokenizer = processor.tokenizer,
... stop_strings='<|im_end|>',
... streamer=streamer,
... max_new_tokens=4096,
... )
"You should keep in mind what features from the module should be used, especially
when you're planning to sell a template."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if pixel_values is not None:
image_features = self.get_image_features(pixel_values=pixel_values.to(inputs_embeds.dtype))
n_image_tokens = (input_ids == self.config.image_token_index).sum()
n_image_features = image_features.shape[0] * image_features.shape[1]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
outputs: CausalLMOutputWithPast = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
return GotOcr2CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
)
__all__ = [
"GotOcr2VisionConfig",
"GotOcr2Config",
"GotOcr2PreTrainedModel",
"GotOcr2ForConditionalGeneration",
]
```
|
===========================================================================================================================================
SOURCE CODE FILE: processing_got_ocr2.py
LINES: 5
SIZE: 12.84 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\got_ocr2\processing_got_ocr2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import numpy as np
from transformers.processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...utils import is_vision_available, logging
if is_vision_available():
from ...image_utils import load_images
logger = logging.get_logger(__name__)
class GotOcr2TextKwargs(TextKwargs, total=False):
format: Optional[bool]
class GotOcr2ImagesKwargs(ImagesKwargs, total=False):
box: Optional[Union[List, Tuple[float, float], Tuple[float, float, float, float]]]
color: Optional[str]
num_image_tokens: Optional[int]
multi_page: Optional[bool]
crop_to_patches: Optional[bool]
min_patches: Optional[int]
max_patches: Optional[int]
class GotOcr2ProcessorKwargs(ProcessingKwargs, total=False):
text_kwargs: GotOcr2TextKwargs
images_kwargs: GotOcr2ImagesKwargs
_defaults = {
"text_kwargs": {
"padding": False,
"format": False,
},
"images_kwargs": {
"num_image_tokens": 256,
"multi_page": False,
"crop_to_patches": False,
"min_patches": 1,
"max_patches": 12,
},
}
def preprocess_box_annotation(box: Union[List, Tuple], image_size: Tuple[int, int]) -> List:
"""
Convert box annotation to the format [x1, y1, x2, y2] in the range [0, 1000].
"""
width, height = image_size
if len(box) == 4:
box[0] = int(box[0] / width * 1000)
box[1] = int(box[1] / height * 1000)
box[2] = int(box[2] / width * 1000)
box[3] = int(box[3] / height * 1000)
else:
raise ValueError("Box must be a list or tuple of lists in the form [x1, y1, x2, y2].")
return list(box)
class GotOcr2Processor(ProcessorMixin):
r"""
Constructs a GotOcr2 processor which wraps a [`GotOcr2ImageProcessor`] and
[`PretrainedTokenizerFast`] tokenizer into a single processor that inherits both the image processor and
tokenizer functionalities. See the [`~GotOcr2Processor.__call__`] and [`~GotOcr2Processor.decode`] for more information.
Args:
image_processor ([`GotOcr2ImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "PreTrainedTokenizerFast"
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
super().__init__(image_processor, tokenizer, chat_template=chat_template)
self.message_start_token = "<|im_start|>"
self.message_end_token = "<|im_end|>"
self.img_start_token = "<img>"
self.img_end_token = "</img>"
self.img_pad_token = "<imgpad>"
self.system_query = "system\nYou should follow the instructions carefully and explain your answers in detail."
def _make_list_of_inputs(self, images, text, box, color, multi_page):
if not isinstance(images, (list, tuple)):
images = [images]
if multi_page:
logger.warning("Multi-page inference is enabled but only one image is passed.")
images = [images]
elif isinstance(images[0], (list, tuple)) and not multi_page:
raise ValueError("Nested images are only supported with `multi_page` set to `True`.")
elif not isinstance(images[0], (list, tuple)) and multi_page:
images = [images]
if isinstance(text, str):
text = [text]
if not isinstance(box[0], (list, tuple)):
# Use the same box for all images
box = [box for _ in range(len(images))]
if not isinstance(color, (list, tuple)):
color = [color for _ in range(len(images))]
return images, text, box, color
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
audio=None,
videos=None,
**kwargs: Unpack[GotOcr2ProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] to encode the text if `text`
is not `None`, otherwise encode default OCR queries which depends on the `format`, `box`, `color`, `multi_page` and
`crop_to_patches` arguments. To prepare the vision inputs, this method forwards the `images` and `kwrags` arguments to
GotOcr2ImageProcessor's [`~GotOcr2ImageProcessor.__call__`] if `images` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
format (`bool`, *optional*):
If set, will add the format token to the query, and the model will return the OCR result with formatting.
box (`List[float]`, `List[Tuple[float, float]]`, `List[Tuple[float, float, float, float]]`, *optional*):
The box annotation to be added to the query. If a list of floats or a tuple of floats is provided, it
will be interpreted as [x1, y1, x2, y2]. If a list of tuples is provided, each tuple should be in the
form (x1, y1, x2, y2).
color (`str`, *optional*):
The color annotation to be added to the query. The model will return the OCR result within the box with
the specified color.
multi_page (`bool`, *optional*):
If set, will enable multi-page inference. The model will return the OCR result across multiple pages.
crop_to_patches (`bool`, *optional*):
If set, will crop the image to patches. The model will return the OCR result upon the patch reference.
min_patches (`int`, *optional*):
The minimum number of patches to be cropped from the image. Only used when `crop_to_patches` is set to
`True`.
max_patches (`int`, *optional*):
The maximum number of patches to be cropped from the image. Only used when `crop_to_patches` is set to
`True`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
GotOcr2ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
format_output = output_kwargs["text_kwargs"].pop("format")
num_image_tokens = output_kwargs["images_kwargs"].pop("num_image_tokens")
box = output_kwargs["images_kwargs"].pop("box", [None])
color = output_kwargs["images_kwargs"].pop("color", None)
multi_page = output_kwargs["images_kwargs"].pop("multi_page")
crop_to_patches = output_kwargs["images_kwargs"].get("crop_to_patches")
images, text, box, color = self._make_list_of_inputs(images, text, box, color, multi_page)
if multi_page:
# save the number of pages per batch
num_pages_per_batch = [len(image_group) for image_group in images]
# flatten the list of images
images = [image for image_group in images for image in image_group]
else:
num_pages_per_batch = [1 for _ in range(len(images))]
# Load images as we need to know the image size
images = load_images(images)
image_sizes = [image.size for image in images]
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
num_patches_array = image_inputs.pop("num_patches")
if text is None:
text = []
patch_indices = np.cumsum(num_pages_per_batch)
for index, (num_pages, box_single, color_single) in enumerate(zip(num_pages_per_batch, box, color)):
current_patch_index = patch_indices[index - 1] if index > 0 else 0
num_patches = sum(num_patches_array[current_patch_index : current_patch_index + num_pages])
if box_single[0] is not None:
box_single = preprocess_box_annotation(box_single, image_sizes[index])
query = (
f"{f'[{color_single}] ' if color_single is not None else ''}"
f"{str(box_single) if box_single[0] is not None else ''} "
"OCR"
f"{' with format' if format_output else ''}"
f"{' across multi pages' if multi_page else ''}"
f"{' upon the patch reference' if crop_to_patches else ''}"
": "
)
prompt = (
self.message_start_token
+ self.system_query
+ self.message_end_token
+ self.message_start_token
+ "user\n"
+ self.img_start_token
+ self.img_pad_token * num_image_tokens * num_patches
+ self.img_end_token
+ "\n"
+ query
+ self.message_end_token
+ self.message_start_token
+ "assistant\n"
)
text.append(prompt)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(tokenizer_input_names) + list(image_processor_input_names)
__all__ = ["GotOcr2Processor"]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.15 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt2\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_gpt2 import *
from .modeling_flax_gpt2 import *
from .modeling_gpt2 import *
from .modeling_tf_gpt2 import *
from .tokenization_gpt2 import *
from .tokenization_gpt2_fast import *
from .tokenization_gpt2_tf import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_gpt2.py
LINES: 1
SIZE: 11.75 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt2\configuration_gpt2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OpenAI GPT-2 configuration"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
logger = logging.get_logger(__name__)
class GPT2Config(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to
instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the GPT-2
[openai-community/gpt2](https://huggingface.co/openai-community/gpt2) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
n_positions (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (`int`, *optional*):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
summary_type (`string`, *optional*, defaults to `"cls_index"`):
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
[`TFGPT2DoubleHeadsModel`].
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
[`TFGPT2DoubleHeadsModel`].
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Argument used when doing sequence summary. Used in for the multiple choice head in
[`GPT2DoubleHeadsModel`].
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
[`TFGPT2DoubleHeadsModel`].
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
summary_first_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
[`TFGPT2DoubleHeadsModel`].
The dropout ratio to be used after the projection and activation.
scale_attn_weights (`bool`, *optional*, defaults to `True`):
Scale attention weights by dividing by sqrt(hidden_size)..
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
bos_token_id (`int`, *optional*, defaults to 50256):
Id of the beginning of sentence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 50256):
Id of the end of sentence token in the vocabulary.
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
dot-product/softmax to float() when training with mixed precision.
Example:
```python
>>> from transformers import GPT2Config, GPT2Model
>>> # Initializing a GPT2 configuration
>>> configuration = GPT2Config()
>>> # Initializing a model (with random weights) from the configuration
>>> model = GPT2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gpt2"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=50257,
n_positions=1024,
n_embd=768,
n_layer=12,
n_head=12,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
scale_attn_by_inverse_layer_idx=False,
reorder_and_upcast_attn=False,
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_first_dropout = summary_first_dropout
self.summary_proj_to_labels = summary_proj_to_labels
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
self.reorder_and_upcast_attn = reorder_and_upcast_attn
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
class GPT2OnnxConfig(OnnxConfigWithPast):
def __init__(
self,
config: PretrainedConfig,
task: str = "default",
patching_specs: List[PatchingSpec] = None,
use_past: bool = False,
):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
if not getattr(self._config, "pad_token_id", None):
# TODO: how to do that better?
self._config.pad_token_id = 0
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
else:
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def num_layers(self) -> int:
return self._config.n_layer
@property
def num_attention_heads(self) -> int:
return self._config.n_head
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
# We need to order the input in the way they appears in the forward()
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
past_shape = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
ordered_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
]
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
if self.use_past:
mask_dtype = ordered_inputs["attention_mask"].dtype
ordered_inputs["attention_mask"] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
return ordered_inputs
@property
def default_onnx_opset(self) -> int:
return 13
__all__ = ["GPT2Config", "GPT2OnnxConfig"]
```
|
======================================================================================================================================
SOURCE CODE FILE: modeling_flax_gpt2.py
LINES: 1
SIZE: 31.34 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt2\modeling_flax_gpt2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import (
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
)
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_gpt2 import GPT2Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "openai-community/gpt2"
_CONFIG_FOR_DOC = "GPT2Config"
GPT2_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
GPT2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxConv1D(nn.Module):
features: int
use_bias: bool = True
dtype: Any = jnp.float32
precision: Any = None
@nn.compact
def __call__(self, inputs):
inputs = jnp.asarray(inputs, self.dtype)
kernel = self.param("kernel", jax.nn.initializers.normal(stddev=0.02), (self.features, inputs.shape[-1]))
kernel = jnp.asarray(kernel.transpose(), self.dtype)
y = lax.dot_general(inputs, kernel, (((inputs.ndim - 1,), (0,)), ((), ())), precision=self.precision)
if self.use_bias:
bias = self.param("bias", jax.nn.initializers.zeros, (self.features,))
bias = jnp.asarray(bias, self.dtype)
y = y + bias
return y
class FlaxGPT2Attention(nn.Module):
config: GPT2Config
dtype: jnp.dtype = jnp.float32
causal: bool = True
is_cross_attention: bool = False
def setup(self):
config = self.config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.is_cross_attention:
self.c_attn = FlaxConv1D(2 * self.embed_dim, dtype=self.dtype)
self.q_attn = FlaxConv1D(self.embed_dim, dtype=self.dtype)
else:
self.c_attn = FlaxConv1D(3 * self.embed_dim, dtype=self.dtype)
self.c_proj = FlaxConv1D(self.embed_dim, dtype=self.dtype)
self.resid_dropout = nn.Dropout(rate=config.resid_pdrop)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slightly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
if not is_cross_attention:
qkv_out = self.c_attn(hidden_states)
query, key, value = jnp.split(qkv_out, 3, axis=2)
else:
q_out = self.q_attn(hidden_states)
(query,) = jnp.split(q_out, 1, axis=2)
kv_out = self.c_attn(key_value_states)
key, value = jnp.split(kv_out, 2, axis=2)
query = self._split_heads(query)
key = self._split_heads(key)
value = self._split_heads(value)
query_length, key_length = query.shape[1], key.shape[1]
if self.causal:
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
dropout_rng = None
if not deterministic and self.config.attn_pdrop > 0.0:
dropout_rng = self.make_rng("dropout")
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
# transform boolean mask into float mask
if attention_mask is not None:
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
# usual dot product attention
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attn_pdrop,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxGPT2MLP(nn.Module):
config: GPT2Config
intermediate_size: int
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.hidden_size
self.c_fc = FlaxConv1D(self.intermediate_size, dtype=self.dtype)
self.c_proj = FlaxConv1D(embed_dim, dtype=self.dtype)
self.act = ACT2FN[self.config.activation_function]
self.dropout = nn.Dropout(rate=self.config.resid_pdrop)
def __call__(self, hidden_states, deterministic: bool = True):
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxGPT2Block(nn.Module):
config: GPT2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
hidden_size = self.config.hidden_size
inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
self.attn = FlaxGPT2Attention(self.config, dtype=self.dtype)
self.ln_2 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
if self.config.add_cross_attention:
self.crossattention = FlaxGPT2Attention(
config=self.config, dtype=self.dtype, causal=False, is_cross_attention=True
)
self.ln_cross_attn = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
self.mlp = FlaxGPT2MLP(self.config, inner_dim, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask=None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
# residual connection
attn_output = attn_outputs[0] # output_attn: a, (attentions)
outputs = attn_outputs[1:]
# residual connection
hidden_states = attn_output + residual
# Cross-Attention Block
if encoder_hidden_states is not None:
# add one self-attention block for cross-attention
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
"cross-attention layers by setting `config.add_cross_attention=True`"
)
residual = hidden_states
hidden_states = self.ln_cross_attn(hidden_states)
cross_attn_outputs = self.crossattention(
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
)
attn_output = cross_attn_outputs[0]
# residual connection
hidden_states = residual + attn_output
outputs = outputs + cross_attn_outputs[1:] # add cross attentions if we output attention weights
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
# residual connection
hidden_states = residual + feed_forward_hidden_states
outputs = (hidden_states,) + outputs
return outputs
class FlaxGPT2PreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPT2Config
base_model_prefix = "transformer"
module_class: nn.Module = None
def __init__(
self,
config: GPT2Config,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length))
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
params: dict = None,
past_key_values: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if encoder_hidden_states is not None and encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = input_ids.shape
if position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPT2Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
encoder_hidden_states,
encoder_attention_mask,
not train,
False,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
class FlaxGPT2BlockCollection(nn.Module):
config: GPT2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.blocks = [
FlaxGPT2Block(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for block in self.blocks:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = block(
hidden_states,
attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# this contains possible `None` values - `FlaxGPT2Module` will filter them out
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
return outputs
class FlaxGPT2Module(nn.Module):
config: GPT2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.embed_dim = self.config.hidden_size
self.wte = nn.Embed(
self.config.vocab_size,
self.embed_dim,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.wpe = nn.Embed(
self.config.max_position_embeddings,
self.embed_dim,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.embd_pdrop)
self.h = FlaxGPT2BlockCollection(self.config, dtype=self.dtype)
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic=True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
input_embeds = self.wte(input_ids.astype("i4"))
position_embeds = self.wpe(position_ids.astype("i4"))
hidden_states = input_embeds + position_embeds
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
outputs = self.h(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.ln_f(hidden_states)
if output_hidden_states:
all_hidden_states = outputs[1] + (hidden_states,)
outputs = (hidden_states, all_hidden_states) + outputs[2:]
else:
outputs = (hidden_states,) + outputs[1:]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=outputs[1],
attentions=outputs[2],
cross_attentions=outputs[3],
)
@add_start_docstrings(
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
GPT2_START_DOCSTRING,
)
class FlaxGPT2Model(FlaxGPT2PreTrainedModel):
module_class = FlaxGPT2Module
append_call_sample_docstring(
FlaxGPT2Model,
_CHECKPOINT_FOR_DOC,
FlaxBaseModelOutputWithPastAndCrossAttentions,
_CONFIG_FOR_DOC,
)
class FlaxGPT2LMHeadModule(nn.Module):
config: GPT2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.transformer = FlaxGPT2Module(self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.transformer(
input_ids,
attention_mask,
position_ids,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
GPT2_START_DOCSTRING,
)
class FlaxGPT2LMHeadModel(FlaxGPT2PreTrainedModel):
module_class = FlaxGPT2LMHeadModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since GPT2 uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(
extended_attention_mask, attention_mask.astype("i4"), (0, 0)
)
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxGPT2LMHeadModel,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
__all__ = ["FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPT2PreTrainedModel"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_gpt2.py
LINES: 1
SIZE: 74.13 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt2\modeling_gpt2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT-2 model."""
import math
import os
import warnings
from dataclasses import dataclass
from typing import Callable, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel, SequenceSummary
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.model_parallel_utils import assert_device_map, get_device_map
from .configuration_gpt2 import GPT2Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "openai-community/gpt2"
_CONFIG_FOR_DOC = "GPT2Config"
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
"""Load tf checkpoints in a pytorch model"""
try:
import re
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(gpt2_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array.squeeze())
for name, array in zip(names, arrays):
name = name[6:] # skip "model/"
name = name.split("/")
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
scope_names = re.split(r"(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "w" or scope_names[0] == "g":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "b":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
pointer = getattr(pointer, scope_names[0])
pointer = getattr(pointer, "weight")
else:
pointer = getattr(pointer, scope_names[0])
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
try:
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
except ValueError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
def eager_attention_forward(module, query, key, value, attention_mask, head_mask=None, **kwargs):
attn_weights = torch.matmul(query, key.transpose(-1, -2))
if module.scale_attn_weights:
attn_weights = attn_weights / torch.full(
[], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
)
# Layer-wise attention scaling
if module.scale_attn_by_inverse_layer_idx:
attn_weights = attn_weights / float(module.layer_idx + 1)
if not module.is_cross_attention:
# if only "normal" attention layer implements causal mask
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = module.bias[:, :, key_length - query_length : key_length, :key_length]
mask_value = torch.finfo(attn_weights.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
attn_weights = attn_weights.type(value.dtype)
attn_weights = module.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2)
return attn_output, attn_weights
class GPT2Attention(nn.Module):
def __init__(self, config, is_cross_attention=False, layer_idx=None):
super().__init__()
self.config = config
max_positions = config.max_position_embeddings
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
1, 1, max_positions, max_positions
),
persistent=False,
)
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.split_size = self.embed_dim
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale_attn_weights = config.scale_attn_weights
self.is_cross_attention = is_cross_attention
# Layer-wise attention scaling, reordering, and upcasting
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
self.layer_idx = layer_idx
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
if self.is_cross_attention:
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
else:
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.is_causal = True
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
# Prune conv1d layers
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
# Update hyper params
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
self.num_heads = self.num_heads - len(heads)
self.pruned_heads = self.pruned_heads.union(heads)
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
bsz, num_heads, q_seq_len, dk = query.size()
_, _, k_seq_len, _ = key.size()
# Preallocate attn_weights for `baddbmm`
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
# Compute Scale Factor
scale_factor = 1.0
if self.scale_attn_weights:
scale_factor /= float(value.size(-1)) ** 0.5
if self.scale_attn_by_inverse_layer_idx:
scale_factor /= float(self.layer_idx + 1)
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
with torch.amp.autocast(query.device.type, enabled=False):
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
if not self.is_cross_attention:
# if only "normal" attention layer implements causal mask
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
mask_value = torch.finfo(attn_weights.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
if attn_weights.dtype != torch.float32:
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
attn_weights = attn_weights.type(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2)
return attn_output, attn_weights
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
if encoder_hidden_states is not None:
if not hasattr(self, "q_attn"):
raise ValueError(
"If class is used as cross attention, the weights `q_attn` have to be defined. "
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
)
query_states = self.q_attn(hidden_states)
key_states, value_states = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
attention_mask = encoder_attention_mask
else:
query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2)
shape_q = (*query_states.shape[:-1], -1, self.head_dim)
shape_kv = (*key_states.shape[:-1], -1, self.head_dim)
query_states = query_states.view(shape_q).transpose(1, 2)
key_states = key_states.view(shape_kv).transpose(1, 2)
value_states = value_states.view(shape_kv).transpose(1, 2)
if layer_past is not None:
past_key, past_value = layer_past
key_states = torch.cat((past_key, key_states), dim=-2)
value_states = torch.cat((past_value, value_states), dim=-2)
if use_cache is True:
present = (key_states, value_states)
else:
present = None
is_cross_attention = encoder_hidden_states is not None
is_causal = attention_mask is None and query_states.shape[-2] > 1 and not is_cross_attention
using_eager = self.config._attn_implementation == "eager"
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and (output_attentions or head_mask is not None):
using_eager = True
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
# Attention functions are consistent with previous equivalent attention classes, however they do not support some options
# (e.g. layer scaling, head mask) that eager supports. These implementations are thus equivalent to previous code, but
# not necessarily to eager (if mentionned options are provided).
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
if using_eager and self.reorder_and_upcast_attn:
attn_output, attn_weights = self._upcast_and_reordered_attn(
query_states, key_states, value_states, attention_mask, head_mask
)
else:
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
head_mask=head_mask,
dropout=self.attn_dropout.p if self.training else 0.0,
is_causal=is_causal,
**kwargs,
)
attn_output = attn_output.reshape(*attn_output.shape[:-2], -1).contiguous()
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs # a, present, (attentions)
class GPT2MLP(nn.Module):
def __init__(self, intermediate_size, config):
super().__init__()
embed_dim = config.hidden_size
self.c_fc = Conv1D(intermediate_size, embed_dim)
self.c_proj = Conv1D(embed_dim, intermediate_size)
self.act = ACT2FN[config.activation_function]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class GPT2Block(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
hidden_size = config.hidden_size
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = GPT2Attention(config=config, layer_idx=layer_idx)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
if config.add_cross_attention:
self.crossattention = GPT2Attention(config=config, is_cross_attention=True, layer_idx=layer_idx)
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = GPT2MLP(inner_dim, config)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
outputs = attn_outputs[1:]
# residual connection
hidden_states = attn_output + residual
if encoder_hidden_states is not None:
# add one self-attention block for cross-attention
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
"cross-attention layers by setting `config.add_cross_attention=True`"
)
residual = hidden_states
hidden_states = self.ln_cross_attn(hidden_states)
cross_attn_outputs = self.crossattention(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
attn_output = cross_attn_outputs[0]
# residual connection
hidden_states = residual + attn_output
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present, (attentions, cross_attentions)
class GPT2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPT2Config
load_tf_weights = load_tf_weights_in_gpt2
base_model_prefix = "transformer"
is_parallelizable = True
supports_gradient_checkpointing = True
_no_split_modules = ["GPT2Block"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, Conv1D)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name == "c_proj.weight":
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
@dataclass
class GPT2DoubleHeadsModelOutput(ModelOutput):
"""
Base class for outputs of models predicting if two sentences are consecutive or not.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
Multiple choice classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
GPT2Attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
mc_loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
mc_logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
GPT2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GPT2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
sequence tokens in the vocabulary.
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
their past given to this model should not be passed as `input_ids` as they have already been computed.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
`past_key_values`. In other words, the `attention_mask` always has to have the length:
`len(past_key_values) + len(input_ids)`
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
`past_key_values`).
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
PARALLELIZE_DOCSTRING = r"""
This is an experimental feature and is a subject to change at a moment's notice.
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
it will evenly distribute blocks across all devices.
Args:
device_map (`Dict[int, list]`, *optional*):
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
automatically mapped to the first device (for esoteric reasons). That means that the first device should
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
following number of attention modules:
- openai-community/gpt2: 12
- openai-community/gpt2-medium: 24
- openai-community/gpt2-large: 36
- openai-community/gpt2-xl: 48
Example:
```python
# Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2-xl")
device_map = {
0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
}
model.parallelize(device_map)
```
"""
DEPARALLELIZE_DOCSTRING = r"""
Moves the model to cpu from a model parallel state.
Example:
```python
# On a 4 GPU machine with openai-community/gpt2-large:
model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2-large")
device_map = {
0: [0, 1, 2, 3, 4, 5, 6, 7],
1: [8, 9, 10, 11, 12, 13, 14, 15],
2: [16, 17, 18, 19, 20, 21, 22, 23],
3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
}
model.parallelize(device_map) # Splits the model across several devices
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
```
"""
@add_start_docstrings(
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
GPT2_START_DOCSTRING,
)
class GPT2Model(GPT2PreTrainedModel):
_supports_param_buffer_assignment = False
def __init__(self, config):
super().__init__(config)
self.embed_dim = config.hidden_size
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
self._attn_implementation = config._attn_implementation
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
# Check validity of device_map
warnings.warn(
"`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
" ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
)
assert_device_map(self.device_map, len(self.h))
self.model_parallel = True
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
self.last_device = "cuda:" + str(max(self.device_map.keys()))
self.wte = self.wte.to(self.first_device)
self.wpe = self.wpe.to(self.first_device)
# Load onto devices
for k, v in self.device_map.items():
for block in v:
cuda_device = "cuda:" + str(k)
self.h[block] = self.h[block].to(cuda_device)
# ln_f to last
self.ln_f = self.ln_f.to(self.last_device)
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.model_parallel = False
self.device_map = None
self.first_device = "cpu"
self.last_device = "cpu"
self.wte = self.wte.to("cpu")
self.wpe = self.wpe.to("cpu")
for index in range(len(self.h)):
self.h[index] = self.h[index].to("cpu")
self.ln_f = self.ln_f.to("cpu")
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
for layer, heads in heads_to_prune.items():
self.h[layer].attn.prune_heads(heads)
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
# Attention mask.
_use_sdpa = self._attn_implementation == "sdpa" and output_attentions is False and head_mask is None
attention_mask = attention_mask.view(batch_size, -1) if attention_mask is not None else None
if self._attn_implementation == "flash_attention_2":
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif _use_sdpa:
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask=attention_mask,
input_shape=(batch_size, input_shape[-1]),
inputs_embeds=inputs_embeds,
past_key_values_length=past_length,
)
else:
if attention_mask is not None:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.add_cross_attention and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
if _use_sdpa:
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
mask=encoder_attention_mask, dtype=inputs_embeds.dtype, tgt_len=input_shape[-1]
)
elif not self._attn_implementation == "flash_attention_2":
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i in range(len(self.h)):
block, layer_past = self.h[i], past_key_values[i]
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure layer_past is on same device as hidden_states (might not be correct)
if layer_past is not None:
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
use_cache,
output_attentions,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"""
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
GPT2_START_DOCSTRING,
)
class GPT2LMHeadModel(GPT2PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = GPT2Model(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
" 0, 'transformer.h.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.transformer.h))
self.transformer.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.transformer.first_device)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.transformer.deparallelize()
self.transformer = self.transformer.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
torch.cuda.empty_cache()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Flatten the tokens
loss = self.loss_function(
lm_logits,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past_key_values
)
@add_start_docstrings(
"""
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
input embeddings, the classification head takes as input the input of a specified classification token index in the
input sequence).
""",
GPT2_START_DOCSTRING,
)
class GPT2DoubleHeadsModel(GPT2PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 1
self.transformer = GPT2Model(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.multiple_choice_head = SequenceSummary(config)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`GPT2DoubleHeadsModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should"
" load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your"
" own `device_map` but it needs to be a dictionary module_name to device, so for instance"
" {'transformer.h.0': 0, 'transformer.h.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.transformer.h))
self.transformer.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.transformer.first_device)
self.multiple_choice_head = self.multiple_choice_head.to(self.transformer.first_device)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.transformer.deparallelize()
self.transformer = self.transformer.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.multiple_choice_head = self.multiple_choice_head.to("cpu")
self.model_parallel = False
torch.cuda.empty_cache()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
mc_token_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
mc_labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, GPT2DoubleHeadsModelOutput]:
r"""
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
1]`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to
`-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`
mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
Return:
Example:
```python
>>> import torch
>>> from transformers import AutoTokenizer, GPT2DoubleHeadsModel
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> model = GPT2DoubleHeadsModel.from_pretrained("openai-community/gpt2")
>>> # Add a [CLS] to the vocabulary (we should train it also!)
>>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"})
>>> # Update the model embeddings with the new vocabulary size
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer))
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
>>> lm_logits = outputs.logits
>>> mc_logits = outputs.mc_logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
lm_logits = self.lm_head(hidden_states)
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
mc_loss = None
if mc_labels is not None:
loss_fct = CrossEntropyLoss()
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
lm_loss = None
if labels is not None:
labels = labels.to(lm_logits.device)
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (lm_logits, mc_logits) + transformer_outputs[1:]
if mc_loss is not None:
output = (mc_loss,) + output
return ((lm_loss,) + output) if lm_loss is not None else output
return GPT2DoubleHeadsModelOutput(
loss=lm_loss,
mc_loss=mc_loss,
logits=lm_logits,
mc_logits=mc_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past_key_values
)
@add_start_docstrings(
"""
The GPT2 Model transformer with a sequence classification head on top (linear layer).
[`GPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GPT2_START_DOCSTRING,
)
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint="microsoft/DialogRPT-updown",
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
GPT2_START_DOCSTRING,
)
class GPT2ForTokenClassification(GPT2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
classifier_dropout = config.classifier_dropout
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
# fmt: off
@add_code_sample_docstrings(
checkpoint="brad1141/gpt2-finetuned-comp2",
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_loss=0.25,
expected_output=[
"Lead",
"Lead",
"Lead",
"Position",
"Lead",
"Lead",
"Lead",
"Lead",
"Lead",
"Lead",
"Lead",
"Lead",
],
)
# fmt: on
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The GPT-2 Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
GPT2_START_DOCSTRING,
)
class GPT2ForQuestionAnswering(GPT2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
real_checkpoint=_CHECKPOINT_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1).to(start_logits.device)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1).to(end_logits.device)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"GPT2DoubleHeadsModel",
"GPT2ForQuestionAnswering",
"GPT2ForSequenceClassification",
"GPT2ForTokenClassification",
"GPT2LMHeadModel",
"GPT2Model",
"GPT2PreTrainedModel",
"load_tf_weights_in_gpt2",
]
```
|
====================================================================================================================================
SOURCE CODE FILE: modeling_tf_gpt2.py
LINES: 1
SIZE: 55.33 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt2\modeling_tf_gpt2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 OpenAI GPT-2 model."""
from __future__ import annotations
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutputWithPastAndCrossAttentions,
TFCausalLMOutputWithCrossAttentions,
TFSequenceClassifierOutputWithPast,
)
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFConv1D,
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
TFSequenceSummary,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_gpt2 import GPT2Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "openai-community/gpt2"
_CONFIG_FOR_DOC = "GPT2Config"
class TFAttention(keras.layers.Layer):
def __init__(self, nx, config, scale=False, is_cross_attention=False, **kwargs):
super().__init__(**kwargs)
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implementation]
assert n_state % config.n_head == 0
self.n_head = config.n_head
self.split_size = n_state
self.scale = scale
self.output_attentions = config.output_attentions
self.is_cross_attention = is_cross_attention
if self.is_cross_attention:
self.c_attn = TFConv1D(n_state * 2, nx, initializer_range=config.initializer_range, name="c_attn")
self.q_attn = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="q_attn")
else:
self.c_attn = TFConv1D(n_state * 3, nx, initializer_range=config.initializer_range, name="c_attn")
self.c_proj = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_proj")
self.attn_dropout = keras.layers.Dropout(config.attn_pdrop)
self.resid_dropout = keras.layers.Dropout(config.resid_pdrop)
self.pruned_heads = set()
self.embed_dim = n_state
def prune_heads(self, heads):
pass
@staticmethod
def causal_attention_mask(nd, ns, dtype):
"""
1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]),
-1, ns-nd), but doesn't produce garbage on TPUs.
"""
i = tf.range(nd)[:, None]
j = tf.range(ns)
m = i >= j - ns + nd
return tf.cast(m, dtype)
def _attn(self, q, k, v, attention_mask, head_mask, output_attentions, training=False):
# q, k, v have shape [batch, heads, sequence, features]
w = tf.matmul(q, k, transpose_b=True)
if self.scale:
dk = tf.cast(shape_list(k)[-1], dtype=w.dtype) # scale attention_scores
w = w / tf.math.sqrt(dk)
if not self.is_cross_attention:
# if only "normal" attention layer implements causal mask
# w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
_, _, nd, ns = shape_list(w)
b = self.causal_attention_mask(nd, ns, dtype=w.dtype)
b = tf.reshape(b, [1, 1, nd, ns])
w = w * b - 1e4 * (1 - b)
if attention_mask is not None:
# Apply the attention mask
attention_mask = tf.cast(attention_mask, dtype=w.dtype)
w = w + attention_mask
w = stable_softmax(w, axis=-1)
w = self.attn_dropout(w, training=training)
# Mask heads if we want to
if head_mask is not None:
w = w * head_mask
outputs = [tf.matmul(w, v)]
if output_attentions:
outputs.append(w)
return outputs
def merge_heads(self, x):
x = tf.transpose(x, [0, 2, 1, 3])
x_shape = shape_list(x)
new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]]
return tf.reshape(x, new_x_shape)
def split_heads(self, x):
x_shape = shape_list(x)
new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head]
x = tf.reshape(x, new_x_shape)
return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features)
def call(
self,
x,
layer_past,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
use_cache,
output_attentions,
training=False,
):
if encoder_hidden_states is not None:
if not hasattr(self, "q_attn"):
raise ValueError(
"If class is used as cross attention, the weights `q_attn` have to be defined. "
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
)
query = self.q_attn(x)
kv_out = self.c_attn(encoder_hidden_states)
key, value = tf.split(kv_out, 2, axis=2)
attention_mask = encoder_attention_mask
else:
x = self.c_attn(x)
query, key, value = tf.split(x, 3, axis=2)
query = self.split_heads(query)
key = self.split_heads(key)
value = self.split_heads(value)
if layer_past is not None:
past_key, past_value = tf.unstack(layer_past, axis=0, num=2)
key = tf.concat([past_key, key], axis=-2)
value = tf.concat([past_value, value], axis=-2)
# to cope with keras serialization
if use_cache:
present = tf.stack([key, value], axis=0)
else:
present = (None,)
attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions, training=training)
a = attn_outputs[0]
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a, training=training)
outputs = [a, present] + attn_outputs[1:]
return outputs # a, present, (attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if self.is_cross_attention:
c_attn_shape = 2 * self.embed_dim
else:
c_attn_shape = 3 * self.embed_dim
if getattr(self, "c_proj", None) is not None:
with tf.name_scope(self.c_proj.name):
self.c_proj.build([None, None, self.embed_dim])
if getattr(self, "c_attn", None) is not None:
with tf.name_scope(self.c_attn.name):
self.c_attn.build([None, None, c_attn_shape])
if getattr(self, "q_attn", None) is not None:
with tf.name_scope(self.q_attn.name):
self.q_attn.build([None, None, self.embed_dim])
class TFMLP(keras.layers.Layer):
def __init__(self, n_state, config, **kwargs):
super().__init__(**kwargs)
nx = config.n_embd
self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc")
self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj")
self.act = get_tf_activation(config.activation_function)
self.dropout = keras.layers.Dropout(config.resid_pdrop)
self.intermediate_size = n_state
self.embed_dim = nx
def call(self, x, training=False):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
h2 = self.dropout(h2, training=training)
return h2
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "c_fc", None) is not None:
with tf.name_scope(self.c_fc.name):
self.c_fc.build([None, None, self.intermediate_size])
if getattr(self, "c_proj", None) is not None:
with tf.name_scope(self.c_proj.name):
self.c_proj.build([None, None, self.embed_dim])
class TFBlock(keras.layers.Layer):
def __init__(self, config, scale=False, **kwargs):
super().__init__(**kwargs)
nx = config.n_embd
inner_dim = config.n_inner if config.n_inner is not None else 4 * nx
self.ln_1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1")
self.attn = TFAttention(nx, config, scale, name="attn")
self.ln_2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_2")
if config.add_cross_attention:
self.crossattention = TFAttention(nx, config, scale, name="crossattention", is_cross_attention=True)
self.ln_cross_attn = keras.layers.LayerNormalization(
epsilon=config.layer_norm_epsilon, name="ln_cross_attn"
)
self.mlp = TFMLP(inner_dim, config, name="mlp")
self.hidden_size = config.hidden_size
def call(
self,
x,
layer_past,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
use_cache,
output_attentions,
training=False,
):
a = self.ln_1(x)
output_attn = self.attn(
a,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
use_cache=use_cache,
output_attentions=output_attentions,
training=training,
)
a = output_attn[0] # output_attn: a, present, (attentions)
outputs = output_attn[1:]
x = x + a
# Cross-Attention Block
if encoder_hidden_states is not None:
# add one self-attention block for cross-attention
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
"cross-attention layers by setting `config.add_cross_attention=True`"
)
ca = self.ln_cross_attn(x)
output_cross_attn = self.crossattention(
ca,
layer_past=None,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=False,
output_attentions=output_attentions,
training=training,
)
ca = output_cross_attn[0] # output_attn: a, present, (cross_attentions)
x = x + ca
outputs = outputs + output_cross_attn[2:] # add cross attentions if we output attention weights
m = self.ln_2(x)
m = self.mlp(m, training=training)
x = x + m
outputs = [x] + outputs
return outputs # x, present, (attentions, cross_attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "ln_1", None) is not None:
with tf.name_scope(self.ln_1.name):
self.ln_1.build([None, None, self.hidden_size])
if getattr(self, "attn", None) is not None:
with tf.name_scope(self.attn.name):
self.attn.build(None)
if getattr(self, "ln_2", None) is not None:
with tf.name_scope(self.ln_2.name):
self.ln_2.build([None, None, self.hidden_size])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
if getattr(self, "crossattention", None) is not None:
with tf.name_scope(self.crossattention.name):
self.crossattention.build(None)
if getattr(self, "ln_cross_attn", None) is not None:
with tf.name_scope(self.ln_cross_attn.name):
self.ln_cross_attn.build([None, None, self.hidden_size])
@keras_serializable
class TFGPT2MainLayer(keras.layers.Layer):
config_class = GPT2Config
def __init__(self, config, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
self.config = config
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.use_cache = config.use_cache
self.return_dict = config.use_return_dict
self.num_hidden_layers = config.n_layer
self.n_embd = config.n_embd
self.n_positions = config.n_positions
self.initializer_range = config.initializer_range
self.wte = keras.layers.Embedding(
input_dim=config.vocab_size,
output_dim=config.hidden_size,
embeddings_initializer=get_initializer(config.initializer_range),
name="wte",
)
self.wpe = keras.layers.Embedding(
input_dim=config.n_positions,
output_dim=config.n_embd,
embeddings_initializer=get_initializer(config.initializer_range),
name="wpe",
)
self.drop = keras.layers.Dropout(config.embd_pdrop)
self.h = [TFBlock(config, scale=True, name=f"h_._{i}") for i in range(config.n_layer)]
self.ln_f = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_f")
self.embed_dim = config.hidden_size
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if past_key_values is None:
past_length = 0
past_key_values = [None] * len(self.h)
else:
past_length = shape_list(past_key_values[0][0])[-2]
if position_ids is None:
position_ids = tf.expand_dims(tf.range(past_length, input_shape[-1] + past_length), axis=0)
if attention_mask is not None:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask_shape = shape_list(attention_mask)
attention_mask = tf.reshape(attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
one_cst = tf.constant(1.0)
attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype)
attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0))
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
if self.config.add_cross_attention and encoder_attention_mask is not None:
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=encoder_hidden_states.dtype)
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
if num_dims_encoder_attention_mask == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if num_dims_encoder_attention_mask == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
else:
encoder_extended_attention_mask = None
encoder_attention_mask = encoder_extended_attention_mask
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.num_hidden_layers
# head_mask = tf.constant([0] * self.num_hidden_layers)
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
if token_type_ids is not None:
token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
token_type_embeds = self.wte(token_type_ids)
else:
token_type_embeds = tf.constant(0.0)
position_embeds = tf.cast(position_embeds, dtype=inputs_embeds.dtype)
token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
hidden_states = inputs_embeds + position_embeds + token_type_embeds
hidden_states = self.drop(hidden_states, training=training)
output_shape = input_shape + [shape_list(hidden_states)[-1]]
presents = () if use_cache else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)
outputs = block(
hidden_states,
layer_past,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
use_cache,
output_attentions,
training=training,
)
hidden_states, present = outputs[:2]
if use_cache:
presents = presents + (present,)
if output_attentions:
all_attentions = all_attentions + (outputs[2],)
if self.config.add_cross_attention and encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (outputs[3],)
hidden_states = self.ln_f(hidden_states)
hidden_states = tf.reshape(hidden_states, output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if output_attentions:
# let the number of heads free (-1) so we can extract attention even after head pruning
attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
if not return_dict:
return tuple(
v
for v in [hidden_states, presents, all_hidden_states, all_attentions, all_cross_attentions]
if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "wte", None) is not None:
with tf.name_scope(self.wte.name):
self.wte.build(None)
if getattr(self, "wpe", None) is not None:
with tf.name_scope(self.wpe.name):
self.wpe.build(None)
if getattr(self, "ln_f", None) is not None:
with tf.name_scope(self.ln_f.name):
self.ln_f.build([None, None, self.embed_dim])
if getattr(self, "h", None) is not None:
for layer in self.h:
with tf.name_scope(layer.name):
layer.build(None)
class TFGPT2PreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPT2Config
base_model_prefix = "transformer"
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"h.\d+.attn.bias", r"h.\d+.crossattention.bias"]
@property
def input_signature(self):
# Although GPT-2 supports token_type_ids in theory, in practice they are rarely used, and the implementation
# means that passing token_type_ids=0 yields different outputs from token_type_ids=None.
# Therefore, we remove the token_type_ids argument by default, even though it would usually be included.
return {
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
}
@dataclass
class TFGPT2DoubleHeadsModelOutput(ModelOutput):
"""
Base class for outputs of models predicting if two sentences are consecutive or not.
Args:
logits (`tf.Tensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
mc_logits (`tf.Tensor` of shape `(batch_size, num_choices)`):
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: Optional[tf.Tensor] = None
mc_logits: Optional[tf.Tensor] = None
past_key_values: List[tf.Tensor] | None = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
GPT2_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GPT2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0].shape[-2]`
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
If `past_key_values` is used, only input IDs that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`List[tf.Tensor]` of length `config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
`past_key_values` output below). Can be used to speed up sequential decoding. The token ids which have
their past given to this model should not be passed as input ids as they have already been computed.
attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
`past_key_values`. In other words, the `attention_mask` always has to have the length:
`len(past_key_values) + len(input_ids)`
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
GPT2_START_DOCSTRING,
)
class TFGPT2Model(TFGPT2PreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFGPT2MainLayer(config, name="transformer")
@unpack_inputs
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have
their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past`). Set to `False` during training, `True` during generation
"""
outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
@add_start_docstrings(
"""
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
GPT2_START_DOCSTRING,
)
class TFGPT2LMHeadModel(TFGPT2PreTrainedModel, TFCausalLanguageModelingLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.transformer = TFGPT2MainLayer(config, name="transformer")
def get_output_embeddings(self):
return self.get_input_embeddings()
def set_output_embeddings(self, value):
self.set_input_embeddings(value)
def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
inputs = tf.expand_dims(inputs[:, -1], -1)
if token_type_ids is not None:
token_type_ids = tf.expand_dims(token_type_ids[:, -1], -1)
position_ids = kwargs.get("position_ids", None)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None and position_ids is None:
position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True)
if past_key_values:
position_ids = tf.expand_dims(position_ids[:, -1], -1)
return {
"input_ids": inputs,
"attention_mask": attention_mask,
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"token_type_ids": token_type_ids,
}
@unpack_inputs
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have
their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past`). Set to `False` during training, `True` during generation
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
config.vocab_size - 1]`.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = transformer_outputs[0]
logits = tf.matmul(hidden_states, self.transformer.wte.weights, transpose_b=True)
loss = None
if labels is not None:
# shift labels to the left and cut last logit token
shifted_logits = logits[:, :-1]
labels = labels[:, 1:]
loss = self.hf_compute_loss(labels, shifted_logits)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
@add_start_docstrings(
"""
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
input embeddings, the classification head takes as input the input of a specified classification token index in the
input sequence).
""",
GPT2_START_DOCSTRING,
)
class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
config.num_labels = 1
self.transformer = TFGPT2MainLayer(config, name="transformer")
self.multiple_choice_head = TFSequenceSummary(
config, initializer_range=config.initializer_range, name="multiple_choice_head"
)
@unpack_inputs
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFGPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
mc_token_ids: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFGPT2DoubleHeadsModelOutput, Tuple[tf.Tensor]]:
r"""
mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
1]`.
Return:
Examples:
```python
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFGPT2DoubleHeadsModel
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> model = TFGPT2DoubleHeadsModel.from_pretrained("openai-community/gpt2")
>>> # Add a [CLS] to the vocabulary (we should train it also!)
>>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"})
>>> embedding_layer = model.resize_token_embeddings(
... len(tokenizer)
... ) # Update the model embeddings with the new vocabulary size
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
>>> input_ids = tf.constant(encoded_choices)[None, :] # Batch size: 1, number of choices: 2
>>> mc_token_ids = tf.constant([cls_token_location]) # Batch size: 1
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
```"""
if input_ids is not None:
input_shapes = shape_list(input_ids)
else:
input_shapes = shape_list(inputs_embeds)[:-1]
seq_length = input_shapes[-1]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
transformer_outputs = self.transformer(
input_ids=flat_input_ids,
past_key_values=past_key_values,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
position_ids=flat_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=None,
encoder_attention_mask=None,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = transformer_outputs[0]
hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:])
if return_dict and output_hidden_states:
# We do this to match the slightly odd PT behaviour - the final hidden state is reshaped to rank 4 when the
# input is rank 3, but all other hidden states remain at rank-3 (with the first 2 dims merged)
all_hidden_states = transformer_outputs.hidden_states[:-1] + (hidden_states,)
else:
all_hidden_states = None
lm_logits = tf.matmul(hidden_states, self.transformer.wte.weights, transpose_b=True)
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids, training=training)
mc_logits = tf.squeeze(mc_logits, axis=-1)
if not return_dict:
return (lm_logits, mc_logits) + transformer_outputs[1:]
return TFGPT2DoubleHeadsModelOutput(
logits=lm_logits,
mc_logits=mc_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=all_hidden_states,
attentions=transformer_outputs.attentions,
)
@property
def input_signature(self):
return {
"input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"),
"mc_token_ids": tf.TensorSpec((None, None), tf.int32, name="mc_token_ids"),
}
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
if getattr(self, "multiple_choice_head", None) is not None:
with tf.name_scope(self.multiple_choice_head.name):
self.multiple_choice_head.build(None)
@add_start_docstrings(
"""
The GPT2 Model transformer with a sequence classification head on top (linear layer).
[`TFGPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GPT2_START_DOCSTRING,
)
class TFGPT2ForSequenceClassification(TFGPT2PreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.score = keras.layers.Dense(
config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="score",
use_bias=False,
)
self.transformer = TFGPT2MainLayer(config, name="transformer")
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint="microsoft/DialogRPT-updown",
output_type=TFSequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutputWithPast, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
config.vocab_size - 1]`.
"""
transformer_outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
logits_shape = shape_list(logits)
batch_size = logits_shape[0]
if self.config.pad_token_id is None:
last_non_pad_token = tf.fill((batch_size,), value=logits_shape[1] - 1)
else:
if input_ids is not None:
token_indices = tf.range(shape_list(input_ids)[-1])
non_pad_mask = tf.cast(input_ids != self.config.pad_token_id, token_indices.dtype)
last_non_pad_token = tf.reduce_max(token_indices * non_pad_mask, axis=-1)
else:
last_non_pad_token = tf.fill((batch_size,), value=logits_shape[1] - 1)
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
loss = None
pooled_logits = tf.gather(logits, last_non_pad_token, batch_dims=1, axis=1)
if labels is not None:
if self.config.pad_token_id is None and logits_shape[0] != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
loss = self.hf_compute_loss(tf.reshape(labels, [-1]), tf.reshape(pooled_logits, [-1, self.num_labels]))
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "score", None) is not None:
with tf.name_scope(self.score.name):
self.score.build([None, None, self.config.n_embd])
if getattr(self, "transformer", None) is not None:
with tf.name_scope(self.transformer.name):
self.transformer.build(None)
__all__ = [
"TFGPT2DoubleHeadsModel",
"TFGPT2ForSequenceClassification",
"TFGPT2LMHeadModel",
"TFGPT2MainLayer",
"TFGPT2Model",
"TFGPT2PreTrainedModel",
]
```
|
=====================================================================================================================================
SOURCE CODE FILE: tokenization_gpt2.py
LINES: 5
SIZE: 12.86 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt2\tokenization_gpt2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
characters the bpe code barfs on.
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
tables between utf-8 bytes and unicode strings.
"""
bs = (
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class GPT2Tokenizer(PreTrainedTokenizer):
"""
Construct a GPT-2 tokenizer. Based on byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import GPT2Tokenizer
>>> tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]
>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
</Tip>
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
pad_token (`str`, *optional*):
The token used for padding, for example when batching sequences of different lengths.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (GPT2 tokenizer detect beginning of words by the preceding space).
add_bos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial beginning of sentence token to the input. This allows to treat the leading
word just as any other word.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
pad_token=None,
add_prefix_space=False,
add_bos_token=False,
**kwargs,
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
self.add_bos_token = add_bos_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
super().__init__(
errors=errors,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_prefix_space=add_prefix_space,
add_bos_token=add_bos_token,
**kwargs,
)
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
if self.add_bos_token:
bos_token_ids = [self.bos_token_id]
else:
bos_token_ids = []
output = bos_token_ids + token_ids_0
if token_ids_1 is None:
return output
return output + bos_token_ids + token_ids_1
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if not self.add_bos_token:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0))
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if is_split_into_words or add_prefix_space:
text = " " + text
return (text, kwargs)
__all__ = ["GPT2Tokenizer"]
```
|
==========================================================================================================================================
SOURCE CODE FILE: tokenization_gpt2_fast.py
LINES: 1
SIZE: 5.16 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt2\tokenization_gpt2_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from typing import Optional, Tuple
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpt2 import GPT2Tokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
class GPT2TokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" GPT-2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import GPT2TokenizerFast
>>> tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]
>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
Path to the vocabulary file.
merges_file (`str`, *optional*):
Path to the merges file.
tokenizer_file (`str`, *optional*):
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (GPT2 tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = GPT2Tokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
add_prefix_space=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
self.add_bos_token = kwargs.pop("add_bos_token", False)
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["GPT2TokenizerFast"]
```
|
========================================================================================================================================
SOURCE CODE FILE: tokenization_gpt2_tf.py
LINES: 1
SIZE: 3.86 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt2\tokenization_gpt2_tf.py
ENCODING: utf-8
```py
import os
from typing import Dict, List, Optional, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from ...modeling_tf_utils import keras
from .tokenization_gpt2 import GPT2Tokenizer
class TFGPT2Tokenizer(keras.layers.Layer):
"""
This is an in-graph tokenizer for GPT2. It should be initialized similarly to other tokenizers, using the
`from_pretrained()` method. It can also be initialized with the `from_tokenizer()` method, which imports settings
from an existing standard tokenizer object.
In-graph tokenizers, unlike other Hugging Face tokenizers, are actually Keras layers and are designed to be run
when the model is called, rather than during preprocessing. As a result, they have somewhat more limited options
than standard tokenizer classes. They are most useful when you want to create an end-to-end model that goes
straight from `tf.string` inputs to outputs.
Args:
vocab (Dict[str, int]): Vocabulary dict for Byte Pair Tokenizer
merges (List[str]): Merges list for Byte Pair Tokenizer
"""
def __init__(
self,
vocab: Dict[str, int],
merges: List[str],
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
):
super().__init__()
self.pad_token_id = pad_token_id
self.max_length = max_length
self.vocab = vocab
self.merges = merges
self.tf_tokenizer = BytePairTokenizer(vocab, merges, sequence_length=max_length)
@classmethod
def from_tokenizer(cls, tokenizer: GPT2Tokenizer, *args, **kwargs):
"""Creates TFGPT2Tokenizer from GPT2Tokenizer
Args:
tokenizer (GPT2Tokenizer)
Examples:
```python
from transformers import AutoTokenizer, TFGPT2Tokenizer
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
tf_tokenizer = TFGPT2Tokenizer.from_tokenizer(tokenizer)
```
"""
merges = [" ".join(m) for m in tokenizer.bpe_ranks.keys()]
vocab = tokenizer.get_vocab()
return cls(vocab, merges, *args, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, **kwargs):
"""Creates TFGPT2Tokenizer from pretrained GPT2Tokenizer
Args:
pretrained_model_name_or_path (Union[str, os.PathLike]): Path to pretrained model
Examples:
```python
from transformers import TFGPT2Tokenizer
tf_tokenizer = TFGPT2Tokenizer.from_pretrained("openai-community/gpt2")
```
"""
tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs)
return cls.from_tokenizer(tokenizer, *init_inputs, **kwargs)
@classmethod
def from_config(cls, config):
"""Creates TFGPT2Tokenizer from configurations
Args:
config (Dict): Dictionary with keys such as stated in `get_config`.
"""
return cls(**config)
def get_config(self):
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def call(self, x, max_length: Optional[int] = None):
input_ids = self.tf_tokenizer(x)
attention_mask = tf.ones_like(input_ids)
if self.pad_token_id is not None:
# pad the tokens up to max length
max_length = max_length if max_length is not None else self.max_length
if max_length is not None:
input_ids, attention_mask = pad_model_inputs(
input_ids, max_seq_length=max_length, pad_value=self.pad_token_id
)
return {"attention_mask": attention_mask, "input_ids": input_ids}
__all__ = ["TFGPT2Tokenizer"]
```
|
===================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_bigcode\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_gpt_bigcode import *
from .modeling_gpt_bigcode import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================================
SOURCE CODE FILE: configuration_gpt_bigcode.py
LINES: 1
SIZE: 6.16 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_bigcode\configuration_gpt_bigcode.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The BigCode team and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GPTBigCode configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class GPTBigCodeConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`GPTBigCodeModel`]. It is used to instantiate a
GPTBigCode model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the GPTBigCode
[gpt_bigcode](https://huggingface.co/gpt_bigcode) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTBigCodeModel`].
n_positions (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (`int`, *optional*, defaults to None):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new",
"gelu_pytorch_tanh"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_attn_weights (`bool`, *optional*, defaults to `True`):
Scale attention weights by dividing by sqrt(hidden_size)..
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
Whether to call the fused softmax in float32.
scale_attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
Whether to scale the attention softmax in float32.
attention_type (`bool`, *optional*, defaults to `True`):
Whether to use Multi-Query Attion (`True`) or Multi-Head Attention (`False`).
Example:
```python
>>> from transformers import GPTBigCodeConfig, GPTBigCodeModel
>>> # Initializing a GPTBigCode configuration
>>> configuration = GPTBigCodeConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = GPTBigCodeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gpt_bigcode"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=50257,
n_positions=1024,
n_embd=768,
n_layer=12,
n_head=12,
n_inner=None,
activation_function="gelu_pytorch_tanh",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
attention_softmax_in_fp32=True,
scale_attention_softmax_in_fp32=True,
multi_query=True,
**kwargs,
):
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
self.multi_query = multi_query
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
__all__ = ["GPTBigCodeConfig"]
```
|
===============================================================================================================================================
SOURCE CODE FILE: modeling_gpt_bigcode.py
LINES: 1
SIZE: 64.31 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_bigcode\modeling_gpt_bigcode.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The Bigcode team and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GPTBigCode model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import is_torch_greater_or_equal_than_2_2
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_gpt_bigcode import GPTBigCodeConfig
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "bigcode/gpt_bigcode-santacoder"
_CONFIG_FOR_DOC = "GPTBigCodeConfig"
# Fused kernels
# Use separate functions for each case because conditionals prevent kernel fusion.
# TODO: Could have better fused kernels depending on scaling, dropout and head mask.
# Is it doable without writing 32 functions?
@torch.jit.script
def upcast_masked_softmax(
x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
):
input_dtype = x.dtype
x = x.to(softmax_dtype) * scale
x = torch.where(mask, x, mask_value)
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
return x
@torch.jit.script
def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
input_dtype = x.dtype
x = x.to(softmax_dtype) * scale
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
return x
@torch.jit.script
def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
x = torch.where(mask, x, mask_value)
x = torch.nn.functional.softmax(x, dim=-1)
return x
class GPTBigCodeAttention(nn.Module):
def __init__(self, config, is_cross_attention=False, layer_idx=None):
super().__init__()
self.config = config
self.mask_value = None
self.multi_query = config.multi_query
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.kv_heads = 1 if self.multi_query else self.num_heads
self.kv_dim = self.kv_heads * self.head_dim
self.split_size = self.embed_dim
self.is_causal = True
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale_attn_weights = config.scale_attn_weights
self.is_cross_attention = is_cross_attention
self.layer_idx = layer_idx
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
self.scale_attention_softmax_in_fp32 = (
config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
)
self.attn_pdrop = config.attn_pdrop
if self.is_cross_attention:
if self.multi_query:
raise NotImplementedError("Multi-Query Attention not supported for cross_attention")
self.c_attn = nn.Linear(self.embed_dim, 2 * self.embed_dim)
self.q_attn = nn.Linear(self.embed_dim, self.embed_dim)
else:
self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
def _get_mask_value(self, device, dtype):
# torch.where expects a tensor. We use a cache to avoid recreating it every time.
if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
return self.mask_value
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
dtype = query.dtype
softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
upcast = dtype != softmax_dtype
unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1
scale_factor = unscale**-1
if self.scale_attn_weights:
scale_factor /= self.head_dim**0.5
# MQA models: (batch_size, query_length, num_heads * head_dim)
# MHA models: (batch_size, num_heads, query_length, head_dim)
query_shape = query.shape
batch_size = query_shape[0]
key_length = key.size(-1)
if self.multi_query:
# (batch_size, query_length, num_heads, head_dim) x (batch_size, head_dim, key_length)
# -> (batch_size, query_length, num_heads, key_length)
query_length = query_shape[1]
attn_shape = (batch_size, query_length, self.num_heads, key_length)
attn_view = (batch_size, query_length * self.num_heads, key_length)
# No copy needed for MQA 2, or when layer_past is provided.
query = query.reshape(batch_size, query_length * self.num_heads, self.head_dim)
else:
# (batch_size, num_heads, query_length, head_dim) x (batch_size, num_heads, head_dim, key_length)
# -> (batch_size, num_heads, query_length, key_length)
query_length = query_shape[2]
attn_shape = (batch_size, self.num_heads, query_length, key_length)
attn_view = (batch_size * self.num_heads, query_length, key_length)
# Always copies
query = query.reshape(batch_size * self.num_heads, query_length, self.head_dim)
# No copy when layer_past is provided.
key = key.reshape(batch_size * self.num_heads, self.head_dim, key_length)
attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype)
if query.device.type == "cpu":
# This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588.
# The bug was fixed in https://github.com/pytorch/pytorch/pull/96086,
# but the fix has not been released as of pytorch version 2.0.0.
attn_weights = torch.zeros_like(attn_weights)
beta = 1
else:
beta = 0
attn_weights = torch.baddbmm(attn_weights, query, key, beta=beta, alpha=scale_factor).view(attn_shape)
if upcast:
# Use a fused kernel to prevent a large overhead from casting and scaling.
# Sub-optimal when the key length is not a multiple of 8.
if attention_mask is None:
attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype)
else:
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype)
else:
if attention_mask is not None:
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
# The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
attn_weights = torch.where(attention_mask, attn_weights, mask_value)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
if self.multi_query:
head_mask = head_mask.transpose(1, 2)
attn_weights = attn_weights * head_mask
if self.multi_query:
attn_output = torch.bmm(attn_weights.view(attn_view), value).view(query_shape)
else:
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def forward(
self,
hidden_states: torch.Tensor,
layer_past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[
Tuple[torch.Tensor, Optional[torch.Tensor]],
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
]:
if encoder_hidden_states is not None:
if not hasattr(self, "q_attn") or not self.is_cross_attention:
raise ValueError(
"If class is used as cross attention, the weights `q_attn` have to be defined. "
"Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`."
)
query = self.q_attn(hidden_states)
key_value = self.c_attn(encoder_hidden_states)
attention_mask = encoder_attention_mask
elif self.multi_query:
query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
else:
# Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
# i.e., the memory layout is not the same as GPT2.
# This makes the concatenation with past_key_value more efficient.
query, key_value = (
self.c_attn(hidden_states)
.view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
.transpose(1, 2)
.split((self.head_dim, 2 * self.head_dim), dim=3)
)
if layer_past is not None:
key_value = torch.cat((layer_past, key_value), dim=-2)
present = key_value if use_cache else None
key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask)
if not self.multi_query:
attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape)
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
if self.multi_query:
# Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
attn_weights = attn_weights.transpose(1, 2)
outputs += (attn_weights,)
return outputs # a, present, (attentions)
class GPTBigCodeFlashAttention2(GPTBigCodeAttention):
"""
GPTBigCode flash attention module. This module inherits from `GPTBigCodeAttention` as the weights of the module
stays untouched. The only required change would be on the forward pass where it needs to correctly call the public
API of flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states: torch.Tensor,
layer_past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[
Tuple[torch.Tensor, Optional[torch.Tensor]],
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
]:
if encoder_hidden_states is not None:
if not hasattr(self, "q_attn") or not self.is_cross_attention:
raise ValueError(
"If class is used as cross attention, the weights `q_attn` have to be defined. "
"Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`."
)
query = self.q_attn(hidden_states)
key_value = self.c_attn(encoder_hidden_states)
attention_mask = encoder_attention_mask
elif self.multi_query:
query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
else:
# Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
# i.e., the memory layout is not the same as GPT2.
# This makes the concatenation with past_key_value more efficient.
query, key_value = (
self.c_attn(hidden_states)
.view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
.transpose(1, 2)
.split((self.head_dim, 2 * self.head_dim), dim=3)
)
if layer_past is not None:
key_value = torch.cat((layer_past, key_value), dim=-2)
present = key_value if use_cache else None
key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
if self.multi_query:
batch_size, query_length, _ = query.shape
query = query.reshape(batch_size, query_length, self.num_heads, self.head_dim)
key = key.unsqueeze(2)
value = value.unsqueeze(2)
else:
query_length = query.shape[2]
batch_size, _, tgt, _ = key.shape
query = query.transpose(1, 2).reshape(batch_size, query_length, self.num_heads, self.head_dim)
key = key.transpose(1, 2).reshape(batch_size, tgt, self.num_heads, self.head_dim)
value = value.transpose(1, 2).reshape(batch_size, tgt, self.num_heads, self.head_dim)
attn_dropout = self.attn_pdrop if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.c_attn.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query = query.to(target_dtype)
key = key.to(target_dtype)
value = value.to(target_dtype)
attn_output = _flash_attention_forward(
query,
key,
value,
attention_mask,
query_length,
dropout=attn_dropout,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_weights_reshaped = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
attn_output = self.c_proj(attn_weights_reshaped)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
if self.multi_query:
# Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
attn_weights_reshaped = attn_weights_reshaped.transpose(1, 2)
else:
attn_weights_reshaped = None
outputs += (attn_weights_reshaped,)
return outputs # a, present, (attentions)
class GPTBigCodeSdpaAttention(GPTBigCodeAttention):
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
if head_mask is not None:
# The super dispatch is done in the forward.
raise ValueError(
"PyTorch SDPA does not support head_mask. Please open an issue in Transformers repository."
)
scale = None
if not self.scale_attn_weights:
scale = 1
# MQA models: (batch_size, query_length, num_heads * head_dim)
# MHA models: (batch_size, num_heads, query_length, head_dim)
query_shape = query.shape
batch_size = query_shape[0]
key.shape[-2]
if self.multi_query:
query_length = query_shape[1]
# SDPA requires the dimension [..., sequence_length, head_dim].
query = query.view(batch_size, query_length, self.num_heads, self.head_dim).transpose(1, 2)
# Without these unsqueeze, SDPA complains as the query and key/value have a different number of dimensions.
key = key.unsqueeze(1)
value = value.unsqueeze(1)
# Although these expand are not numerically useful, PyTorch can not dispatch to memory-efficient backend
# and flash attention backend (No available kernel. Aborting execution.) from the shapes
# query = [batch_size, num_heads, query_length, head_dim]
# key = [batch_size, 1, past_length, head_dim]
# value = [batch_size, 1, past_length, head_dim]
#
# torch==2.1.2 is bugged with non-contiguous inputs with custom attn_mask (https://github.com/pytorch/pytorch/issues/112577), hence the check.
if is_torch_greater_or_equal_than_2_2:
key = key.expand(-1, self.num_heads, -1, -1)
value = value.expand(-1, self.num_heads, -1, -1)
else:
query_length = query_shape[-1]
# See the comment above.
if query.device.type == "cuda" and attention_mask is not None:
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not
# create a causal mask in case query_length == 1.
is_causal = True if self.is_causal and attention_mask is None and query_length > 1 else False
sdpa_result = torch.nn.functional.scaled_dot_product_attention(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=self.attn_pdrop if self.training else 0.0,
is_causal=is_causal,
scale=scale,
)
if self.multi_query:
# (batch_size, num_heads, seq_len, head_dim) --> (batch_size, seq_len, num_heads, head_dim)
sdpa_result = sdpa_result.transpose(1, 2)
# Reshape is kind of expensive here, as it does a memory copy,
# but I did not manage to make away without it (logits do not match when using view)
# (batch_size, seq_len, num_heads, head_dim) --> (batch_size, seq_len, num_heads * head_dim)
sdpa_result = sdpa_result.reshape(query_shape)
return sdpa_result, None
def forward(
self,
hidden_states: torch.Tensor,
layer_past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[
Tuple[torch.Tensor, Optional[torch.Tensor]],
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
]:
if encoder_hidden_states is not None:
if not hasattr(self, "q_attn") or not self.is_cross_attention:
raise ValueError(
"If class is used as cross attention, the weights `q_attn` have to be defined. "
"Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`."
)
query = self.q_attn(hidden_states)
key_value = self.c_attn(encoder_hidden_states)
attention_mask = encoder_attention_mask
elif self.multi_query:
query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
else:
# Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
# i.e., the memory layout is not the same as GPT2.
# This makes the concatenation with past_key_value more efficient.
query, key_value = (
self.c_attn(hidden_states)
.view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
.transpose(1, 2)
.split((self.head_dim, 2 * self.head_dim), dim=3)
)
if layer_past is not None:
key_value = torch.cat((layer_past, key_value), dim=-2)
present = key_value if use_cache else None
key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
if not output_attentions and head_mask is None:
# Difference with the original implementation: there is no need to transpose the key here,
# as SDPA expects seq_length to be at index -2 for the key as well
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
else:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"GPTBigCodeModel is using GPTBigCodeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` and `head_mask` not None."
' Falling back to the manual attention implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
attn_output, attn_weights = super()._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask)
if not self.multi_query:
attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape)
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
if self.multi_query:
# Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
attn_weights = attn_weights.transpose(1, 2)
outputs += (attn_weights,)
return outputs
class GPTBigCodeMLP(nn.Module):
def __init__(self, intermediate_size, config):
super().__init__()
embed_dim = config.hidden_size
self.c_fc = nn.Linear(embed_dim, intermediate_size)
self.c_proj = nn.Linear(intermediate_size, embed_dim)
self.act = ACT2FN[config.activation_function]
self.dropout = nn.Dropout(config.resid_pdrop)
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
GPTBIGCODE_ATTENTION_CLASSES = {
"eager": GPTBigCodeAttention,
"flash_attention_2": GPTBigCodeFlashAttention2,
"sdpa": GPTBigCodeSdpaAttention,
}
class GPTBigCodeBlock(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
hidden_size = config.hidden_size
self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = GPTBIGCODE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
if config.add_cross_attention:
if config.multi_query:
raise NotImplementedError("Cross-attention not implemented for MQA")
self.crossattention = GPTBIGCODE_ATTENTION_CLASSES[config._attn_implementation](
config, is_cross_attention=True, layer_idx=layer_idx
)
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = GPTBigCodeMLP(self.inner_dim, config)
def forward(
self,
hidden_states: Optional[Tuple[torch.Tensor]],
layer_past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Union[
Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
]:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
outputs = attn_outputs[1:]
# residual connection
hidden_states = attn_output + residual
if encoder_hidden_states is not None:
# add one self-attention block for cross-attention
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
"cross-attention layers by setting `config.add_cross_attention=True`"
)
residual = hidden_states
hidden_states = self.ln_cross_attn(hidden_states)
cross_attn_outputs = self.crossattention(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
attn_output = cross_attn_outputs[0]
# residual connection
hidden_states = residual + attn_output
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present, (attentions, cross_attentions)
class GPTBigCodePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTBigCodeConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["GPTBigCodeBlock"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (GPTBigCodeMLP, GPTBigCodeAttention)):
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
module.c_proj.weight.data.normal_(
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
)
module.c_proj._is_hf_initialized = True
elif isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
GPT_BIGCODE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GPTBigCodeConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GPT_BIGCODE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
sequence tokens in the vocabulary.
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`Tuple[torch.Tensor]` of length `config.n_layers`):
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
their past given to this model should not be passed as `input_ids` as they have already been computed.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
`past_key_values`. In other words, the `attention_mask` always has to have the length:
`len(past_key_values) + len(input_ids)`
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
`past_key_values`).
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare GPT_BIGCODE Model transformer outputting raw hidden-states without any specific head on top.",
GPT_BIGCODE_START_DOCSTRING,
)
class GPTBigCodeModel(GPTBigCodePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.multi_query = config.multi_query
self.embed_dim = config.hidden_size
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList([GPTBigCodeBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
max_positions = config.max_position_embeddings
self.register_buffer(
"bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False
)
self.gradient_checkpointing = False
self._use_sdpa = config._attn_implementation == "sdpa"
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0].size(-2)
if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_length > 0:
position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
elif position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0)
# Self-attention mask.
query_length = input_shape[-1]
key_length = past_length + query_length
self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask.bool() if (attention_mask is not None and 0 in attention_mask) else None
encoder_attention_mask = (
encoder_attention_mask.bool()
if (encoder_attention_mask is not None and 0 in encoder_attention_mask)
else None
)
else:
# 4d mask is passed through the layers
if attention_mask is not None:
self_attention_mask = self_attention_mask * attention_mask.view(batch_size, 1, -1).to(
dtype=torch.bool, device=self_attention_mask.device
)
# MQA models: (batch_size, query_length, n_heads, key_length)
# MHA models: (batch_size, n_heads, query_length, key_length)
self_attention_mask = self_attention_mask.unsqueeze(2 if self.multi_query else 1)
if self._use_sdpa and head_mask is None and not output_attentions:
# SDPA with a custom mask is much faster in fp16/fp32 dtype rather than bool. Cast here to floating point instead of at every layer.
dtype = self.wte.weight.dtype
min_dtype = torch.finfo(dtype).min
self_attention_mask = torch.where(
self_attention_mask,
torch.full([], 0.0, dtype=dtype, device=self_attention_mask.device),
torch.full([], min_dtype, dtype=dtype, device=self_attention_mask.device),
)
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
if self.multi_query:
# gpt_bigcode using MQA has the bad taste to use a causal mask with shape
# [batch_size, target_length, 1, source_length], not compatible with SDPA, hence this transpose.
self_attention_mask = self_attention_mask.transpose(1, 2)
if query_length > 1 and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu"]:
# From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
# produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
self_attention_mask = AttentionMaskConverter._unmask_unattended(
self_attention_mask, min_dtype=min_dtype
)
attention_mask = self_attention_mask
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if (
self.config.add_cross_attention
and encoder_hidden_states is not None
and encoder_attention_mask is not None
):
if encoder_attention_mask.dim() == 2:
encoder_attention_mask.unsqueeze(1)
assert encoder_attention_mask.dim() == 3
encoder_attention_mask = encoder_attention_mask.bool().unsqueeze(2 if self.multi_query else 1)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
presents = [] if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
use_cache,
output_attentions,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache:
presents.append(outputs[1])
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"""
The GPT_BIGCODE Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
GPT_BIGCODE_START_DOCSTRING,
)
class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = GPTBigCodeModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
# Overwritten -- `past_key_values` with uncommon shape
token_type_ids = kwargs.get("token_type_ids", None)
# Omit tokens covered by past_key_values
if past_key_values:
if self.config.multi_query:
past_length = past_key_values[0].shape[1]
else:
past_length = past_key_values[0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
else:
position_ids = None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
)
return model_inputs
def _get_initial_cache_position(self, input_ids, model_kwargs):
"""
Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length.
Since gpt bigcode is special, the method is overridden here, other models use it from `generation.utils.py`.
"""
past_length = 0
if "past_key_values" in model_kwargs:
if self.config.multi_query:
past_length = model_kwargs["past_key_values"][0].shape[1]
else:
past_length = model_kwargs["past_key_values"][0].shape[2]
if "inputs_embeds" in model_kwargs:
cur_len = model_kwargs["inputs_embeds"].shape[1]
else:
cur_len = input_ids.shape[-1]
model_kwargs["cache_position"] = torch.arange(past_length, cur_len, device=input_ids.device)
return model_kwargs
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = self.loss_function(
lm_logits,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)
@add_start_docstrings(
"""
The GPTBigCode Model transformer with a sequence classification head on top (linear layer).
[`GPTBigCodeForSequenceClassification`] uses the last token in order to do the classification, as other causal
models (e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GPT_BIGCODE_START_DOCSTRING,
)
class GPTBigCodeForSequenceClassification(GPTBigCodePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPTBigCodeModel(config)
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
GPT_BIGCODE Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
GPT_BIGCODE_START_DOCSTRING,
)
class GPTBigCodeForTokenClassification(GPTBigCodePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPTBigCodeModel(config)
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
classifier_dropout = config.classifier_dropout
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1).to(logits.device))
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
__all__ = [
"GPTBigCodeForSequenceClassification",
"GPTBigCodeForTokenClassification",
"GPTBigCodeForCausalLM",
"GPTBigCodeModel",
"GPTBigCodePreTrainedModel",
]
```
|
===============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.01 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neo\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_gpt_neo import *
from .modeling_flax_gpt_neo import *
from .modeling_gpt_neo import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
============================================================================================================================================
SOURCE CODE FILE: configuration_gpt_neo.py
LINES: 1
SIZE: 11.60 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neo\configuration_gpt_neo.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GPT Neo model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
logger = logging.get_logger(__name__)
class GPTNeoConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTNeoModel`]. It is used to instantiate a GPT
Neo model according to the specified arguments, defining the model architecture. Instantiating a configuration with
the defaults will yield a similar configuration to that of the GPTNeo
[EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the GPT Neo model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTNeoModel`]. Vocabulary size of the model. Defines the different
tokens that can be represented by the *inputs_ids* passed to the forward method of [`GPTNeoModel`].
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_size (`int`, *optional*, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.
num_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
attention_types (`List`, *optional*, defaults to `[[['global', 'local'], 12]]`):
The type of attention for each layer in a `List` of the following format `[[["attention_type"],
num_layerss]]` e.g. for a 24 layer model `[[["global"], 24]]` or `[[["global", "local"], 12]]` Choose the
value of `attention_type` from `["global", "local"]`
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
window_size (`int`, *optional*, defaults to 256):
The size of the sliding window for local attention.
activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
resid_dropout (`float`, *optional*, defaults to 0.0):
Residual dropout used in the attention pattern.
embed_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
classifier_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing token classification, used in the model [`GPTNeoForTokenClassification`]. The
dropout ratio for the hidden layer.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
bos_token_id (`int`, *optional*, defaults to 50256):
The id of the beginning of sentence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 50256):
The id of the end of sentence token in the vocabulary.
Example:
```python
>>> from transformers import GPTNeoConfig, GPTNeoModel
>>> # Initializing a GPTNeo EleutherAI/gpt-neo-1.3B style configuration
>>> configuration = GPTNeoConfig()
>>> # Initializing a model (with random weights) from the EleutherAI/gpt-neo-1.3B style configuration
>>> model = GPTNeoModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gpt_neo"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__(
self,
vocab_size=50257,
max_position_embeddings=2048,
hidden_size=2048,
num_layers=24,
attention_types=[[["global", "local"], 12]],
num_heads=16,
intermediate_size=None,
window_size=256,
activation_function="gelu_new",
resid_dropout=0.0,
embed_dropout=0.0,
attention_dropout=0.0,
classifier_dropout=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_heads = num_heads
self.intermediate_size = intermediate_size
self.window_size = window_size
self.activation_function = activation_function
self.resid_dropout = resid_dropout
self.embed_dropout = embed_dropout
self.attention_dropout = attention_dropout
self.classifier_dropout = classifier_dropout
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.use_cache = use_cache
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.attention_types = attention_types
self.attention_layers = self.expand_attention_types_params(attention_types)
if len(self.attention_layers) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers)}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument."
)
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
@staticmethod
def expand_attention_types_params(attention_types):
attentions = []
for item in attention_types:
for _ in range(item[1]):
attentions.extend(item[0])
return attentions
def custom_unfold(input, dimension, size, step):
"""Custom torch.Tensor.unfold implementation to enable the export to ONNX."""
import torch
shape = input.size()
rank = len(shape)
sizedim = shape[dimension]
low_indices = torch.arange(0, sizedim, step)
min_length = torch.div(sizedim - size, step, rounding_mode="floor") + 1
indices = torch.arange(size) + low_indices[:min_length][:, None]
s = [slice(None)] * rank
s[dimension] = indices
sliced = input[s]
perm = list(range(0, rank + 1))
perm.append(perm.pop(dimension + 1))
return sliced.permute(perm)
def custom_get_block_length_and_num_blocks(seq_length, window_size):
"""
Custom implementation for GPTNeoAttentionMixin._get_block_length_and_num_blocks to enable the export to ONNX as
original implementation uses Python variables and control flow.
"""
import torch
candidates = torch.arange(1, window_size)
remainders = torch.remainder(seq_length, candidates)
divisor_indices = remainders == 0
divisors = candidates[divisor_indices]
largest_divisor = torch.max(divisors)
return largest_divisor, torch.div(seq_length, largest_divisor, rounding_mode="floor")
class GPTNeoOnnxConfig(OnnxConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
else:
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def num_attention_heads(self) -> int:
return self._config.num_heads
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
)
# We need to order the input in the way they appears in the forward()
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
past_shape = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
ordered_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
]
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
if self.use_past:
mask_dtype = ordered_inputs["attention_mask"].dtype
ordered_inputs["attention_mask"] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
return ordered_inputs
@property
def default_onnx_opset(self) -> int:
return 13
__all__ = ["GPTNeoConfig", "GPTNeoOnnxConfig"]
```
|
============================================================================================================================================
SOURCE CODE FILE: modeling_flax_gpt_neo.py
LINES: 1
SIZE: 27.50 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neo\modeling_flax_gpt_neo.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Eleuther AI and The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_gpt_neo import GPTNeoConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "GPTNeoConfig"
_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neo-1.3B"
GPT_NEO_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`GPTNeoConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
GPT_NEO_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxGPTNeoSelfAttention(nn.Module):
config: GPTNeoConfig
attention_type: str
dtype: jnp.dtype = jnp.float32
def setup(self):
config = self.config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and "
f"`num_heads`: {self.num_heads})."
)
self.attn_dropout = nn.Dropout(config.attention_dropout)
self.resid_dropout = nn.Dropout(config.resid_dropout)
dense = partial(
nn.Dense,
self.embed_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.q_proj, self.k_proj, self.v_proj = dense(use_bias=False), dense(use_bias=False), dense(use_bias=False)
self.out_proj = dense()
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
if self.attention_type == "local":
self.causal_mask = self.causal_mask ^ jnp.tril(self.causal_mask, -config.window_size)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slightly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
query = self.q_proj(hidden_states) * jnp.sqrt(self.head_dim).astype(self.dtype)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query)
key = self._split_heads(key)
value = self._split_heads(value)
query_length, key_length = query.shape[1], key.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
batch_size = hidden_states.shape[0]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
dropout_rng = None
if not deterministic and self.config.attention_dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.has_variable("cache", "cached_key") or init_cache:
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
# transform boolean mask into float mask
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
# usual dot product attention
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_dropout,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxGPTNeoAttention(nn.Module):
config: GPTNeoConfig
layer_id: int = 0
dtype: jnp.dtype = jnp.float32
def setup(self):
attention_type = self.config.attention_layers[self.layer_id]
self.attention = FlaxGPTNeoSelfAttention(self.config, attention_type, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
return self.attention(
hidden_states,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
class FlaxGPTNeoMLP(nn.Module):
config: GPTNeoConfig
intermediate_size: int
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.hidden_size
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
self.c_fc = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=kernel_init)
self.c_proj = nn.Dense(embed_dim, dtype=self.dtype, kernel_init=kernel_init)
self.act = ACT2FN[self.config.activation_function]
self.dropout = nn.Dropout(rate=self.config.resid_dropout)
def __call__(self, hidden_states, deterministic: bool = True):
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxGPTNeoBlock(nn.Module):
config: GPTNeoConfig
layer_id: int = 0
dtype: jnp.dtype = jnp.float32
def setup(self):
hidden_size = self.config.hidden_size
inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
self.attn = FlaxGPTNeoAttention(self.config, layer_id=self.layer_id, dtype=self.dtype)
self.ln_2 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
self.mlp = FlaxGPTNeoMLP(self.config, inner_dim, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
outputs = self.attn(
hidden_states,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
# residual connection
attn_output = outputs[0]
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
# residual connection
hidden_states = residual + feed_forward_hidden_states
return (hidden_states,) + outputs[1:]
class FlaxGPTNeoPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTNeoConfig
base_model_prefix = "transformer"
module_class: nn.Module = None
def __init__(
self,
config: GPTNeoConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length))
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
params: dict = None,
past_key_values: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_ids.shape
if position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTNeoAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
False,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
class FlaxGPTNeoBlockCollection(nn.Module):
config: GPTNeoConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.blocks = [
FlaxGPTNeoBlock(self.config, layer_id=i, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for block in self.blocks:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = block(
hidden_states,
attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
# this contains possible `None` values - `FlaxGPTNeoModule` will filter them out
outputs = (hidden_states, all_hidden_states, all_attentions)
return outputs
class FlaxGPTNeoModule(nn.Module):
config: GPTNeoConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.embed_dim = self.config.hidden_size
embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range)
self.wte = nn.Embed(
self.config.vocab_size,
self.embed_dim,
embedding_init=embedding_init,
)
self.wpe = nn.Embed(
self.config.max_position_embeddings,
self.embed_dim,
embedding_init=embedding_init,
)
self.dropout = nn.Dropout(rate=self.config.embed_dropout)
self.h = FlaxGPTNeoBlockCollection(self.config, dtype=self.dtype)
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
deterministic=True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
input_embeds = self.wte(input_ids.astype("i4"))
position_embeds = self.wpe(position_ids.astype("i4"))
hidden_states = input_embeds + position_embeds
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
outputs = self.h(
hidden_states,
attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.ln_f(hidden_states)
hidden_states = outputs[0]
hidden_states = self.ln_f(hidden_states)
if output_hidden_states:
all_hidden_states = outputs[1] + (hidden_states,)
outputs = (hidden_states, all_hidden_states) + outputs[2:]
else:
outputs = (hidden_states,) + outputs[1:]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=outputs[1],
attentions=outputs[-1],
)
@add_start_docstrings(
"The bare GPTNeo Model transformer outputting raw hidden-states without any specific head on top.",
GPT_NEO_START_DOCSTRING,
)
class FlaxGPTNeoModel(FlaxGPTNeoPreTrainedModel):
module_class = FlaxGPTNeoModule
append_call_sample_docstring(FlaxGPTNeoModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
class FlaxGPTNeoForCausalLMModule(nn.Module):
config: GPTNeoConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.transformer = FlaxGPTNeoModule(self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.transformer(
input_ids,
attention_mask,
position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
@add_start_docstrings(
"""
The GPTNeo Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
GPT_NEO_START_DOCSTRING,
)
class FlaxGPTNeoForCausalLM(FlaxGPTNeoPreTrainedModel):
module_class = FlaxGPTNeoForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since GPTNeo uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(FlaxGPTNeoForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC)
__all__ = ["FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: modeling_gpt_neo.py
LINES: 1
SIZE: 58.30 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neo\modeling_gpt_neo.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The Eleuther AI and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GPT Neo model."""
import os
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter, _prepare_4d_causal_attention_mask
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import (
BaseModelOutputWithPast,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_flex_attn_available,
is_torch_fx_available,
logging,
)
from .configuration_gpt_neo import GPTNeoConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
# It means that the function will not be traced through and simply appear as a node in the graph.
if is_torch_fx_available():
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "GPTNeoConfig"
_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neo-1.3B"
def load_tf_weights_in_gpt_neo(model, config, gpt_neo_checkpoint_path):
"""Load tf checkpoints in a pytorch model"""
try:
import re
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(gpt_neo_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
if "global_step" not in name and "adam" not in name:
array = tf.train.load_variable(tf_path, name)
array = tf.dtypes.cast(array.squeeze(), tf.float32).numpy()
name = name.replace("attn/q", "attn/attention/q_proj/w")
name = name.replace("attn/k", "attn/attention/k_proj/w")
name = name.replace("attn/v", "attn/attention/v_proj/w")
name = name.replace("attn/o", "attn/attention/out_proj/w")
name = name.replace("norm_1", "ln_1")
name = name.replace("norm_2", "ln_2")
name = name.replace("attn/compute_output_bias/o_b", "attn/attention/out_proj/b")
name = name.replace("conv1d_main/c_fc/kernel", "c_fc/w")
name = name.replace("conv1d_main/c_fc/bias", "c_fc/b")
name = name.replace("conv1d_main/c_proj/kernel", "c_proj/w")
name = name.replace("conv1d_main/c_proj/bias", "c_proj/b")
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name[5:] # skip "gpt2/"
name = name.split("/")
pointer = model.transformer
for m_name in name:
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
scope_names = re.split(r"(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "w" or scope_names[0] == "g":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "b":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
pointer = getattr(pointer, scope_names[0])
pointer = getattr(pointer, "weight")
else:
pointer = getattr(pointer, scope_names[0])
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if name[-1] == "w" and name[-2] in ["out_proj", "k_proj", "q_proj", "v_proj", "c_proj", "c_fc"]:
array = array.transpose()
if name == ["wte"]:
# if vocab is padded, then trim off the padding embeddings
array = array[: config.vocab_size]
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched {name}")
print(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
# init the final linear layer using word embeddings
embs = model.transformer.wte.weight
lin = nn.Linear(embs.size()[1], embs.size()[0], bias=False)
lin.weight = embs
model.set_output_embeddings(lin)
return model
class GPTNeoSelfAttention(nn.Module):
def __init__(self, config, attention_type, layer_id=None):
super().__init__()
self.config = config
max_positions = config.max_position_embeddings
bias = torch.tril(torch.ones((max_positions, max_positions), dtype=bool)).view(
1, 1, max_positions, max_positions
)
# local causal self attention is a sliding window where each token can only attend to the previous
# window_size tokens. This is implemented by updating the causal mask such that for each token
# all other tokens are masked except the previous window_size tokens.
if attention_type == "local":
bias = torch.bitwise_xor(bias, torch.tril(bias, -config.window_size))
self.register_buffer("bias", bias, persistent=False)
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
self.attn_dropout = nn.Dropout(float(config.attention_dropout))
self.resid_dropout = nn.Dropout(float(config.resid_dropout))
self.is_causal = True
self.layer_id = layer_id
self.embed_dim = config.hidden_size
self.num_heads = config.num_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def _merge_heads(self, tensor, num_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden_size
"""
tensor = tensor.permute(0, 2, 1, 3).contiguous()
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
return tensor.view(new_shape)
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
# Keep the attention weights computation in fp32 to avoid overflow issues
query = query.to(torch.float32)
key = key.to(torch.float32)
attn_weights = torch.matmul(query, key.transpose(-1, -2))
# Apply sliding window masking for local attention layers
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
mask_value = torch.finfo(attn_weights.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_weights = attn_weights.to(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def forward(
self,
hidden_states,
attention_mask=None,
layer_past=None,
head_mask=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
if layer_past is not None:
cache_kwargs = {"cache_position": cache_position}
key, value = layer_past.update(key, value, self.layer_id, cache_kwargs)
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, layer_past)
if output_attentions:
outputs += (attn_weights,)
return outputs # a, past_kv, (attentions)
class GPTNeoFlashAttention2(GPTNeoSelfAttention):
"""
GPTNeo flash attention module. This module inherits from `GPTNeoSelfAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states,
attention_mask=None,
layer_past=None,
head_mask=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
bsz, _, _ = hidden_states.size()
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
if layer_past is not None:
cache_kwargs = {"cache_position": cache_position}
key, value = layer_past.update(key, value, self.layer_id, cache_kwargs)
query_length = query.shape[2]
tgt_len = key.shape[2]
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
query = query.transpose(1, 2).view(bsz, query_length, self.num_heads, self.head_dim)
key = key.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
value = value.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
attn_dropout = self.config.attention_dropout if self.training else 0.0
if attention_mask is not None: # no matter the length, we just slice it
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
if query.dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query = query.to(target_dtype)
key = key.to(target_dtype)
value = value.to(target_dtype)
attn_output = _flash_attention_forward(
query,
key,
value,
attention_mask,
query_length,
dropout=attn_dropout,
softmax_scale=1.0,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_weights_reshaped = attn_output.reshape(bsz, query_length, self.num_heads * self.head_dim)
attn_output = self.out_proj(attn_weights_reshaped)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, layer_past)
if output_attentions:
outputs += (attn_weights_reshaped,)
return outputs
GPT_NEO_ATTENTION_CLASSES = {
"eager": GPTNeoSelfAttention,
"flash_attention_2": GPTNeoFlashAttention2,
}
class GPTNeoAttention(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.layer_id = layer_id
self.attention_layers = config.attention_layers
self.attention_type = self.attention_layers[layer_id]
if self.attention_type in ["global", "local"]:
self.attention = GPT_NEO_ATTENTION_CLASSES[config._attn_implementation](
config, self.attention_type, layer_id
)
else:
raise NotImplementedError(
"Only attn layer types 'global' and 'local' exist, but got `config.attention_layers`: "
f"{config.attention_layers}. Select attn layer types from ['global', 'local'] only."
)
def forward(
self,
hidden_states,
layer_past=None,
attention_mask=None,
head_mask=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
return self.attention(
hidden_states,
attention_mask=attention_mask,
layer_past=layer_past,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
class GPTNeoMLP(nn.Module):
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * hidden_size
super().__init__()
embed_dim = config.hidden_size
self.c_fc = nn.Linear(embed_dim, intermediate_size)
self.c_proj = nn.Linear(intermediate_size, embed_dim)
self.act = ACT2FN[config.activation_function]
self.dropout = nn.Dropout(float(config.resid_dropout))
def forward(self, hidden_states):
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class GPTNeoBlock(nn.Module):
def __init__(self, config, layer_id=None):
super().__init__()
hidden_size = config.hidden_size
inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = GPTNeoAttention(config, layer_id)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = GPTNeoMLP(inner_dim, config)
def forward(
self,
hidden_states,
layer_past=None,
attention_mask=None,
head_mask=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
outputs = attn_outputs[1:]
# residual connection
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, past_kv, attentions
class GPTNeoPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTNeoConfig
load_tf_weights = load_tf_weights_in_gpt_neo
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["GPTNeoBlock"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = False # TODO: needs a HybridCache
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear,)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
GPT_NEO_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GPTNeoConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GPT_NEO_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
sequence tokens in the vocabulary.
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
`past_key_values`).
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare GPT Neo Model transformer outputting raw hidden-states without any specific head on top.",
GPT_NEO_START_DOCSTRING,
)
class GPTNeoModel(GPTNeoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embed_dim = config.hidden_size
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.drop = nn.Dropout(float(config.embed_dropout))
self.h = nn.ModuleList([GPTNeoBlock(config, layer_id=i) for i in range(config.num_layers)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, Tuple[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
seq_length = inputs_embeds.shape[1]
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x num_heads x N x N
# head_mask has shape n_layer x batch x num_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, seq_length)
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = (-1, seq_length, hidden_states.size(-1))
next_decoder_cache = None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, block in enumerate(self.h):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
None,
causal_mask,
head_mask[i],
use_cache,
output_attentions,
cache_position,
)
else:
outputs = block(
hidden_states,
layer_past=past_key_values,
attention_mask=causal_mask,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = outputs[0]
if use_cache:
next_decoder_cache = outputs[1]
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(
v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions] if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
@add_start_docstrings(
"""
The GPT Neo Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
GPT_NEO_START_DOCSTRING,
)
class GPTNeoForCausalLM(GPTNeoPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = GPTNeoModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, Tuple[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Compute loss in fp32 to match with mesh-tf version
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
lm_logits = lm_logits.to(torch.float32)
# Flatten the tokens
loss = self.loss_function(
lm_logits,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past_key_values
)
@add_start_docstrings(
"""
The GPTNeo Model transformer with a sequence classification head on top (linear layer).
[`GPTNeoForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GPT_NEO_START_DOCSTRING,
)
class GPTNeoForSequenceClassification(GPTNeoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPTNeoModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Cache, Tuple[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
GPT Neo model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
GPT_NEO_START_DOCSTRING,
)
class GPTNeoForTokenClassification(GPTNeoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPTNeoModel(config)
self.dropout = nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint="EleutherAI/gpt-neo-125m",
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_loss=0.25,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor]]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The GPT-Neo Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
GPT_NEO_START_DOCSTRING,
)
class GPTNeoForQuestionAnswering(GPTNeoPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPTNeoModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
real_checkpoint=_CHECKPOINT_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"GPTNeoForCausalLM",
"GPTNeoForQuestionAnswering",
"GPTNeoForSequenceClassification",
"GPTNeoForTokenClassification",
"GPTNeoModel",
"GPTNeoPreTrainedModel",
"load_tf_weights_in_gpt_neo",
]
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.02 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neox\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_gpt_neox import *
from .modeling_gpt_neox import *
from .tokenization_gpt_neox_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==============================================================================================================================================
SOURCE CODE FILE: configuration_gpt_neox.py
LINES: 1
SIZE: 10.72 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neox\configuration_gpt_neox.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GPTNeoX model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class GPTNeoXConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the GPTNeoX
[EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50432):
Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTNeoXModel`].
hidden_size (`int`, *optional*, defaults to 6144):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 44):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
rotary_pct (`float`, *optional*, defaults to 0.25):
percentage of hidden dimensions to allocate to rotary embeddings
rotary_emb_base (`int`, *optional*, defaults to 10000)
base for computing rotary embeddings frequency
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio probability of the attention score.
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
hidden states.
classifier_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].
The dropout ratio for the hidden layer.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 1e-5):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
use_parallel_residual (`bool`, *optional*, defaults to `True`):
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
speedup at large scales (e.g. 20B).
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `True`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
Example:
```python
>>> from transformers import GPTNeoXConfig, GPTNeoXModel
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
>>> configuration = GPTNeoXConfig()
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
>>> model = GPTNeoXModel(configuration) # doctest: +SKIP
>>> # Accessing the model configuration
>>> configuration = model.config # doctest: +SKIP
```"""
model_type = "gpt_neox"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.attention.query_key_value": "colwise",
"layers.*.attention.dense": "rowwise",
"layers.*.mlp.dense_h_to_4h": "colwise",
"layers.*.mlp.dense_4h_to_h": "rowwise",
}
base_model_pp_plan = {
"embed_in": (["input_ids"], ["inputs_embeds"]),
"emb_dropout": (["inputs_embeds"], ["hidden_states"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"final_layer_norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=50432,
hidden_size=6144,
num_hidden_layers=44,
num_attention_heads=64,
intermediate_size=24576,
hidden_act="gelu",
rotary_pct=0.25,
rotary_emb_base=10000,
attention_dropout=0.0,
hidden_dropout=0.0,
classifier_dropout=0.1,
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
bos_token_id=0,
eos_token_id=2,
tie_word_embeddings=False,
use_parallel_residual=True,
rope_scaling=None,
attention_bias=True,
**kwargs,
):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.rotary_pct = rotary_pct
self.partial_rotary_factor = rotary_pct
self.rotary_emb_base = rotary_emb_base
self.rope_theta = rotary_emb_base
self.attention_dropout = attention_dropout
self.hidden_dropout = hidden_dropout
self.classifier_dropout = classifier_dropout
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
self.use_parallel_residual = use_parallel_residual
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"The hidden size is not divisble by the number of attention heads! Make sure to update them!"
)
__all__ = ["GPTNeoXConfig"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.04 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neox_japanese\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import *
from .modeling_gpt_neox_japanese import *
from .tokenization_gpt_neox_japanese import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
================================================================================================================================================================
SOURCE CODE FILE: configuration_gpt_neox_japanese.py
LINES: 1
SIZE: 8.91 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neox_japanese\configuration_gpt_neox_japanese.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GPTNeoX Japanese model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class GPTNeoXJapaneseConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTNeoXModelJapanese`]. It is used to instantiate
a GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the GPTNeoXJapanese
[abeja/gpt-neox-japanese-2.7b](https://huggingface.co/abeja/gpt-neox-japanese-2.7b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. Default configs is set as 2.7B model
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the GPTNeoXJapanese model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`GPTNeoXJapanese`].
hidden_size (`int`, *optional*, defaults to 2560):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_multiple_size (`int`, *optional*, defaults to 4):
Dimension of the "intermediate" layer in the Transformer encoder is calculated by hidden_size *
intermediate_multiple_size.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler.
rotary_pct (`float`, *optional*, defaults to 1.00):
percentage of hidden dimensions to allocate to rotary embeddings
rotary_emb_base (`int`, *optional*, defaults to 10000)
base for computing rotary embeddings frequency
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the hidden layer.
Example:
```python
>>> from transformers import GPTNeoXJapaneseConfig, GPTNeoXJapaneseModel
>>> # Initializing a GPTNeoXJapanese gpt-neox-japanese-2.7b style configuration
>>> configuration = GPTNeoXJapaneseConfig()
>>> # Initializing a model (with random weights) from the gpt-neox-japanese-2.7b style configuration
>>> model = GPTNeoXJapaneseModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gpt_neox_japanese"
def __init__(
self,
vocab_size=32000,
hidden_size=2560,
num_hidden_layers=32,
num_attention_heads=32,
intermediate_multiple_size=4,
hidden_act="gelu",
rotary_pct=1.00,
rotary_emb_base=10000,
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
bos_token_id=31996,
eos_token_id=31999,
rope_scaling=None,
attention_dropout=0.1,
hidden_dropout=0.0,
**kwargs,
):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_multiple_size = intermediate_multiple_size
self.hidden_act = hidden_act
self.rotary_pct = rotary_pct
self.partial_rotary_factor = rotary_pct
self.rotary_emb_base = rotary_emb_base
self.rope_theta = rotary_emb_base
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rope_scaling = rope_scaling
self.attention_dropout = attention_dropout
self.hidden_dropout = hidden_dropout
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
__all__ = ["GPTNeoXJapaneseConfig"]
```
|
===========================================================================================================================================================
SOURCE CODE FILE: modeling_gpt_neox_japanese.py
LINES: 1
SIZE: 39.06 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neox_japanese\modeling_gpt_neox_japanese.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GPTNeoX model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...utils import (
is_torch_flex_attn_available,
logging,
)
from .configuration_gpt_neox_japanese import GPTNeoXJapaneseConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "abeja/gpt-neox-japanese-2.7b"
_CONFIG_FOR_DOC = "GPTNeoXJapaneseConfig"
class GPTNeoXJapanesePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTNeoXJapaneseConfig
base_model_prefix = "gpt_neox_japanese"
_no_split_modules = ["GPTNeoXJapaneseLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class GPTNeoXJapaneseAttention(nn.Module):
def __init__(self, config, use_bias=False, layer_idx=None):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_attention_heads
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.layer_idx = layer_idx
self.rotary_ndims = int(self.head_size * config.rotary_pct)
self.rope_theta = config.rotary_emb_base
self.rotary_emb = GPTNeoXJapaneseRotaryEmbedding(config=config)
self.attention_dropout = nn.Dropout(config.attention_dropout)
self.norm_factor = math.sqrt(self.head_size)
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=False)
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
# Activate bias if the last layer
self.use_bias = use_bias
self.dense_bias = nn.Parameter(torch.zeros(config.hidden_size)) if use_bias else None
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
position_ids: torch.LongTensor,
head_mask: Optional[torch.FloatTensor] = None,
layer_past: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
):
# Compute QKV
# Attention heads [batch, seq_len, hidden_size]
# --> [batch, seq_len, (np * 3 * head_size)]
qkv = self.query_key_value(hidden_states)
# [batch, seq_len, (num_heads * 3 * head_size)]
# --> [batch, seq_len, num_heads, 3 * head_size]
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
qkv = qkv.view(*new_qkv_shape)
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
# Compute rotary embeddings on rotary_ndims
query_rot = query[..., : self.rotary_ndims]
query_pass = query[..., self.rotary_ndims :]
key_rot = key[..., : self.rotary_ndims]
key_pass = key[..., self.rotary_ndims :]
cos, sin = position_embeddings
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
query = torch.cat((query, query_pass), dim=-1).contiguous()
key = torch.cat((key, key_pass), dim=-1).contiguous()
# Cache QKV values
if layer_past is not None:
cache_kwargs = {
"sin": sin,
"cos": cos,
"partial_rotation_size": self.rotary_ndims,
"cache_position": cache_position,
}
key, value = layer_past.update(key, value, self.layer_idx, cache_kwargs)
# Compute attention
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
# Reshape outputs
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
attn_output = self.dense(attn_output)
outputs = (attn_output, layer_past)
if output_attentions:
outputs += (attn_weights,)
return outputs, self.dense_bias
@classmethod
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Splits hidden dim into attn_head_size and num_attention_heads
"""
# tensor: [bs, seq_len, hidden_size]
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(new_shape)
# -> [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3)
return tensor
@classmethod
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden dim
"""
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3).contiguous()
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
# -> [bs, seq_len, hidden_size]
return tensor
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
# compute causal mask from causal mask buffer
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
key_length = key.size(-2)
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
# [batch_size * num_heads, q_length, kv_length]
attn_scores = torch.zeros(
batch_size * num_attention_heads,
query_length,
key_length,
dtype=query.dtype,
device=key.device,
)
attention_scores = torch.baddbmm(
attn_scores,
query,
key.transpose(1, 2),
beta=1.0,
alpha=1.0 / self.norm_factor,
)
attention_scores = attention_scores.view(batch_size, num_attention_heads, query_length, -1)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
attention_scores = attention_scores + causal_mask
attn_weights = nn.functional.softmax(attention_scores, dim=-1)
attn_weights = self.attention_dropout(attn_weights)
attn_weights = attn_weights.to(value.dtype)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
# Copied from transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXRotaryEmbedding with GPTNeoX->GPTNeoXJapanese
class GPTNeoXJapaneseRotaryEmbedding(nn.Module):
def __init__(self, config: GPTNeoXJapaneseConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def bias_dropout_add(x: Tensor, bias: Tensor, residual: Optional[Tensor], prob: float, training: bool) -> Tensor:
"""add bias to x, apply dropout and residual connection
Args:
x (Tensor): main path of output
bias (Tensor): None or attn_bias of the last attention layer
residual (Optional[Tensor]): residual value
prob (float): dropout probability
training (bool): whether in training mode or not
Returns:
Tensor: dropout(x + bias) + residual
"""
if bias is not None:
x = x + bias
out = torch.nn.functional.dropout(x, p=prob, training=training)
if residual is not None:
out = residual + out
return out
class GPTNeoXJapaneseMLP(nn.Module):
def __init__(self, config):
super().__init__()
intermediate_size = int(config.hidden_size * config.intermediate_multiple_size)
self.dense_h_to_4h = nn.Linear(config.hidden_size, intermediate_size, bias=False)
# Project back to h.
self.dense_4h_to_h = nn.Linear(intermediate_size, config.hidden_size, bias=False)
self.act = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
intermediate = self.dense_h_to_4h(hidden_states)
intermediate = self.act(intermediate)
output = self.dense_4h_to_h(intermediate)
return output
class GPTNeoXJapaneseLayer(nn.Module):
def __init__(self, config, layer_number):
super().__init__()
self.layer_number = layer_number
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# activate bias only last layer
self.attention = GPTNeoXJapaneseAttention(
config=config, use_bias=layer_number == config.num_hidden_layers - 1, layer_idx=layer_number
)
self.mlp = GPTNeoXJapaneseMLP(config)
self.hidden_dropout = config.hidden_dropout
def forward(
self,
hidden_states: Optional[torch.FloatTensor],
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
layer_past: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
):
residual = hidden_states
ln_out = self.input_layernorm(hidden_states)
attention_layer_outputs, attn_bias = self.attention(
ln_out,
attention_mask=attention_mask,
layer_past=layer_past,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
position_ids=position_ids,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
attn_output = attention_layer_outputs[0] # output_attn: a, present, (attentions)
outputs = attention_layer_outputs[1:]
# attn_output = (atten_output + bias) + residual
attn_output = bias_dropout_add(
attn_output,
bias=attn_bias.expand_as(residual) if attn_bias is not None else attn_bias,
residual=residual,
prob=self.hidden_dropout,
training=self.training,
)
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
# attn_output = (mlp_output + mlp_bias) + atten_output
attn_output = bias_dropout_add(
mlp_output, bias=None, residual=attn_output, prob=self.hidden_dropout, training=self.training
)
if use_cache:
outputs = (attn_output,) + outputs
else:
outputs = (attn_output,) + outputs[1:]
return outputs # hidden_states, present, (attentions)
GPT_NEOX_JAPANESE_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~GPTNeoXJapaneseConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GPT_NEOX_JAPANESE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`].
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare GPTNeoXJapanese Model transformer outputting raw hidden-states without any specific head on top.",
GPT_NEOX_JAPANESE_START_DOCSTRING,
)
class GPTNeoXJapaneseModel(GPTNeoXJapanesePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList(
[GPTNeoXJapaneseLayer(config=config, layer_number=i) for i in range(config.num_hidden_layers)]
)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.rotary_emb = GPTNeoXJapaneseRotaryEmbedding(config=config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_in
def set_input_embeddings(self, value):
self.embed_in = value
@add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GPTNeoXJapaneseModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> model = GPTNeoXJapaneseModel.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_in(input_ids)
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
seq_length = inputs_embeds.shape[1]
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
next_decoder_cache = None
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
head_mask=head_mask[i],
layer_past=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = outputs[0]
if use_cache is True:
next_decoder_cache = outputs[1]
if output_attentions:
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.final_layer_norm(hidden_states)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
@add_start_docstrings(
"""GPTNeoXJapanese Model with a `language modeling` head on top for Classifier Model fine-tuning.""",
GPT_NEOX_JAPANESE_START_DOCSTRING,
)
class GPTNeoXJapaneseForCausalLM(GPTNeoXJapanesePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["embed_out.weight"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.gpt_neox_japanese = GPTNeoXJapaneseModel(config)
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.embed_out
def set_output_embeddings(self, new_embeddings):
self.embed_out = new_embeddings
@add_start_docstrings_to_model_forward(GPT_NEOX_JAPANESE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> config = GPTNeoXJapaneseConfig.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> config.is_decoder = True
>>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b", config=config)
>>> inputs = tokenizer("日本語のGPT-neoxがHugging Faceで使えます😀", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.gpt_neox_japanese(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
lm_logits = self.embed_out(hidden_states)
lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
lm_loss = self.loss_function(
lm_logits,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithPast(
loss=lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
__all__ = [
"GPTNeoXJapaneseForCausalLM",
"GPTNeoXJapaneseLayer",
"GPTNeoXJapaneseModel",
"GPTNeoXJapanesePreTrainedModel",
]
```
|
===============================================================================================================================================================
SOURCE CODE FILE: tokenization_gpt_neox_japanese.py
LINES: 7
SIZE: 16.56 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neox_japanese\tokenization_gpt_neox_japanese.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 ABEJA, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for GPTNeoXJapanese."""
import collections
import json
import os
import re
import sys
from typing import Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
def load_vocab_and_emoji(vocab_file, emoji_file):
"""Loads a vocabulary file and emoji file into a dictionary."""
with open(emoji_file, "r", encoding="utf-8") as f:
emoji = json.loads(f.read())
vocab = collections.OrderedDict()
raw_vocab = collections.OrderedDict()
ids_to_tokens = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as f:
token = f.readlines()
token = [[t.rstrip("\n")] if (t == "," or "," not in t) else t.rstrip("\n").split(",") for t in token]
for idx, b in enumerate(token):
ids_to_tokens[idx] = b
raw_vocab[",".join(b)] = idx
for wd in b:
vocab[wd] = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class GPTNeoXJapaneseTokenizer(PreTrainedTokenizer):
"""
This tokenizer inherits from [`PreTrainedTokenizer`] and is based on Japanese special Sub-Word-Encoding that is
used in this repository (https://github.com/tanreinama/Japanese-BPEEncoder_V2). Check the repository for details.
Japanese has a relatively large vocabulary and there is no separation between words. Furthermore, the language is a
combination of hiragana, katakana, and kanji, and variants such as "1" and "①" are often used. In order to cope
with these, this tokenizer has the following features
- Subword-by-subword segmentation, which is intermediate between byte strings and morphological analysis.
- BPEs are created for each Kanji, Hiragana, and Katakana character, and there are no BPEs that cross character
types, such as Kanji + Hiragana or Hiragana + Katakana.
- All-byte encoding that does not require <unk>.
- Independent of UTF codes such as 2-byte and 3-byte characters
- Conversion of heterographs to the same token_id
- Emoji and Emoticon are grouped into 12 types as special tags.
Example:
```python
>>> from transformers import GPTNeoXJapaneseTokenizer
>>> tokenizer = GPTNeoXJapaneseTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
>>> # You can confirm both 慶応 and 慶應 are encoded to 17749
>>> tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"]
[30014, 26883, 26638, 27228, 25, 26650, 31732, 31679, 27809, 26638, 17749, 31592, 17749, 31593, 321, 1281]
>>> # Both 慶応 and 慶應 are decoded to 慶応
>>> tokenizer.decode(tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"])
'吾輩は猫である🐯。実は慶応(慶応)大学出身'
```
Args:
vocab_file (`str`):
File containing the vocabulary.
emoji_file (`str`):
File containing the emoji.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The token used for padding
bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
do_clean_text (`bool`, *optional*, defaults to `False`):
Whether or not to clean text for URL, EMAIL, TEL, Japanese DATE and Japanese PRICE.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
emoji_file,
unk_token="<|endoftext|>",
pad_token="<|endoftext|>",
bos_token="<|startoftext|>",
eos_token="<|endoftext|>",
do_clean_text=False,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
if not os.path.isfile(emoji_file):
raise ValueError(
f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"
" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.do_clean_text = do_clean_text
self.vocab, self.raw_vocab, self.ids_to_tokens, self.emoji = load_vocab_and_emoji(vocab_file, emoji_file)
self.subword_tokenizer = SubWordJapaneseTokenizer(
vocab=self.vocab, ids_to_tokens=self.ids_to_tokens, emoji=self.emoji
)
super().__init__(
unk_token=unk_token,
pad_token=pad_token,
bos_token=bos_token,
eos_token=eos_token,
do_clean_text=do_clean_text,
**kwargs,
)
@property
def vocab_size(self):
# self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab
return len(self.raw_vocab)
def get_vocab(self):
return dict(self.raw_vocab, **self.added_tokens_encoder)
def _tokenize(self, text):
return self.subword_tokenizer.tokenize(text, clean=self.do_clean_text)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.subword_tokenizer.convert_id_to_token(index)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = "".join(tokens).strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
emoji_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]
)
else:
vocab_file = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
)
emoji_file = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
)
with open(vocab_file, "w", encoding="utf-8") as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(",".join(token) + "\n")
index += 1
with open(emoji_file, "w", encoding="utf-8") as writer:
json.dump(self.emoji, writer)
return vocab_file, emoji_file
class SubWordJapaneseTokenizer:
"""
https://github.com/tanreinama/Japanese-BPEEncoder_V2 This tokenizer class is under MIT Lisence according to the
original repository.
MIT License
Copyright (c) 2020 tanreinama
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of
the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
def __init__(self, vocab, ids_to_tokens, emoji):
self.vocab = vocab # same as swe
self.ids_to_tokens = ids_to_tokens # same as bpe
self.emoji = emoji
self.maxlen = np.max([len(w) for w in self.vocab.keys()])
self.content_repatter1 = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)")
self.content_repatter2 = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*")
self.content_repatter3 = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}")
self.content_repatter4 = re.compile(
r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*"
)
self.content_repatter5 = re.compile(
r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*"
)
# The original version of this regex displays catastrophic backtracking behaviour. We avoid this using
# possessive quantifiers in Py >= 3.11. In versions below this, we avoid the vulnerability using a slightly
# different regex that should generally have the same behaviour in most non-pathological cases.
if sys.version_info >= (3, 11):
self.content_repatter6 = re.compile(
r"(?:\d,\d{3}|[\d億])*+"
r"(?:\d,\d{3}|[\d万])*+"
r"(?:\d,\d{3}|[\d千])*+"
r"(?:千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+"
r"(?:\(税込\)|\(税抜\)|\+tax)*"
)
else:
self.content_repatter6 = re.compile(
r"(?:\d,\d{3}|[\d億万千])*"
r"(?:千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+"
r"(?:\(税込\)|\(税抜\)|\+tax)*"
)
keisen = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
blocks = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
self.content_trans1 = str.maketrans(dict.fromkeys(keisen + blocks, "<BLOCK>"))
def __len__(self):
return len(self.ids_to_tokens)
def clean_text(self, content):
content = self.content_repatter1.sub("<URL>", content)
content = self.content_repatter2.sub("<EMAIL>", content)
content = self.content_repatter3.sub("<TEL>", content)
content = self.content_repatter4.sub("<DATE>", content)
content = self.content_repatter5.sub("<DATE>", content)
content = self.content_repatter6.sub("<PRICE>", content)
content = content.translate(self.content_trans1)
while "<BLOCK><BLOCK>" in content:
content = content.replace("<BLOCK><BLOCK>", "<BLOCK>")
return content
def tokenize(self, text, clean=False):
text = text.replace(" ", "<SP>")
text = text.replace(" ", "<SP>")
text = text.replace("\r\n", "<BR>")
text = text.replace("\n", "<BR>")
text = text.replace("\r", "<BR>")
text = text.replace("\t", "<TAB>")
text = text.replace("—", "ー")
text = text.replace("−", "ー")
for k, v in self.emoji["emoji"].items():
if k in text:
text = text.replace(k, v)
if clean:
text = self.clean_text(text)
def check_simbol(x):
e = x.encode()
if len(x) == 1 and len(e) == 2:
c = (int(e[0]) << 8) + int(e[1])
if (
(c >= 0xC2A1 and c <= 0xC2BF)
or (c >= 0xC780 and c <= 0xC783)
or (c >= 0xCAB9 and c <= 0xCBBF)
or (c >= 0xCC80 and c <= 0xCDA2)
):
return True
return False
def checku2e(x):
e = x.encode()
if len(x) == 1 and len(e) == 3:
c = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2])
if c >= 0xE28080 and c <= 0xE2B07F:
return True
return False
pos = 0
result = []
while pos < len(text):
end = min(len(text), pos + self.maxlen + 1) if text[pos] == "<" else pos + 3
candidates = [] # (token_id, token, pos)
for e in range(end, pos, -1):
wd = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(wd) > 2:
candidates = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e))
if len(candidates) > 0:
# the smallest token_id is adopted
_, wd, e = sorted(candidates, key=lambda x: x[0])[0]
result.append(wd)
pos = e
else:
end = pos + 1
wd = text[pos:end]
if check_simbol(wd):
result.append("<KIGOU>")
elif checku2e(wd):
result.append("<U2000U2BFF>")
else:
for i in wd.encode("utf-8"):
result.append("<|byte%d|>" % i)
pos = end
return result
def convert_id_to_token(self, index, breakline="\n"):
words = []
byte_tokens = []
word = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2]))
else:
if len(byte_tokens) > 0:
words.append(bytearray(byte_tokens).decode("utf-8", errors="replace"))
byte_tokens = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["emoji_inv"][word])
elif word == "<SP>":
words.append(" ")
elif word == "<BR>":
words.append(breakline)
elif word == "<TAB>":
words.append("\t")
elif word == "<BLOCK>":
words.append("▀")
elif word == "<KIGOU>":
words.append("ǀ")
elif word == "<U2000U2BFF>":
words.append("‖")
else:
words.append(word)
if len(byte_tokens) > 0:
words.append(bytearray(byte_tokens).decode("utf-8", errors="replace"))
text = "".join(words)
return text
__all__ = ["GPTNeoXJapaneseTokenizer"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: modeling_gpt_neox.py
LINES: 1
SIZE: 47.11 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neox\modeling_gpt_neox.py
ENCODING: utf-8
```py
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gpt_neox/modular_gpt_neox.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gpt_neox.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional, Tuple, Union
import torch
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from .configuration_gpt_neox import GPTNeoXConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "trl-internal-testing/tiny-random-GPTNeoXForCausalLM"
_CONFIG_FOR_DOC = "GPTNeoXConfig"
class GPTNeoXMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size)
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size)
self.act = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
hidden_states = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dense_4h_to_h(hidden_states)
return hidden_states
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Keep half or full tensor for later concatenation
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
# Apply rotary embeddings on the first half or full tensor
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
# Concatenate back to full shape
q_embed = torch.cat([q_embed, q_pass], dim=-1)
k_embed = torch.cat([k_embed, k_pass], dim=-1)
return q_embed, k_embed
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: torch.Tensor,
scaling: float,
dropout: float = 0.0,
head_mask: Optional[torch.Tensor] = None,
**kwargs,
):
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value)
# Reshape outputs
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class GPTNeoXAttention(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
self.config = config
self.head_size = config.hidden_size // config.num_attention_heads
self.attention_dropout = config.attention_dropout
self.rotary_ndims = int(self.head_size * config.rotary_pct)
self.scaling = self.head_size**-0.5
self.is_causal = True
self.layer_idx = layer_idx
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias)
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
head_mask: Optional[torch.FloatTensor] = None,
layer_past: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
):
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, 3 * self.head_size)
qkv = self.query_key_value(hidden_states).view(hidden_shape).transpose(1, 2)
query_states, key_states, value_states = qkv.chunk(3, dim=-1)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
# Cache QKV values
if layer_past is not None:
cache_kwargs = {
"sin": sin,
"cos": cos,
"partial_rotation_size": self.rotary_ndims,
"cache_position": cache_position,
}
key_states, value_states = layer_past.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Checking for fallbacks in case an unsupported feature is requested
attention_type = self.config._attn_implementation
if (output_attentions or head_mask is not None) and self.config._attn_implementation in [
"sdpa",
"flash_attention_2",
]:
logger.warning_once(
f"Setting `attention_type` to `eager` because `{attention_type}` does not support"
f" `output_attentions=True` or `head_mask`."
)
attention_type = "eager"
elif self.training and self.attention_dropout > 0 and self.config._attn_implementation == "flex_attention":
logger.warning_once(
f"Setting `attention_type` to `eager` because `dropout` is not supported in `{attention_type}`."
)
attention_type = "eager"
attention_interface: Callable = eager_attention_forward
attention_interface = (
ALL_ATTENTION_FUNCTIONS[attention_type] if attention_type != "eager" else attention_interface
)
# Compute attention
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
scaling=self.scaling,
dropout=0.0 if not self.training else self.attention_dropout,
head_mask=head_mask,
**kwargs,
)
# Reshape outputs and final projection
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.dense(attn_output)
return attn_output, attn_weights
class GPTNeoXLayer(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.use_parallel_residual = config.use_parallel_residual
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_dropout = nn.Dropout(config.hidden_dropout)
self.post_mlp_dropout = nn.Dropout(config.hidden_dropout)
self.attention = GPTNeoXAttention(config, layer_idx)
self.mlp = GPTNeoXMLP(config)
def forward(
self,
hidden_states: Optional[torch.FloatTensor],
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
layer_past: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
):
attn_output, attn_weights = self.attention(
self.input_layernorm(hidden_states),
attention_mask=attention_mask,
position_ids=position_ids,
layer_past=layer_past,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
attn_output = self.post_attention_dropout(attn_output)
if self.use_parallel_residual:
# pseudocode:
# x = x + attn(ln1(x)) + mlp(ln2(x))
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
mlp_output = self.post_mlp_dropout(mlp_output)
hidden_states = mlp_output + attn_output + hidden_states
else:
# pseudocode:
# x = x + attn(ln1(x))
# x = x + mlp(ln2(x))
attn_output = attn_output + hidden_states
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
mlp_output = self.post_mlp_dropout(mlp_output)
hidden_states = mlp_output + attn_output
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class GPTNeoXRotaryEmbedding(nn.Module):
def __init__(self, config: GPTNeoXConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
GPT_NEOX_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`GPTNeoXConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare GPTNeoX Model outputting raw hidden-states without any specific head on top.",
GPT_NEOX_START_DOCSTRING,
)
class GPTNeoXPreTrainedModel(PreTrainedModel):
config_class = GPTNeoXConfig
base_model_prefix = "gpt_neox"
supports_gradient_checkpointing = True
_no_split_modules = ["GPTNeoXLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
_keys_to_ignore_on_load_unexpected = [r"attention.bias", r"attention.masked_bias"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neox-20b"
GPT_NEOX_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare GPTNeoX Model outputting raw hidden-states without any specific head on top.",
GPT_NEOX_START_DOCSTRING,
)
class GPTNeoXModel(GPTNeoXPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GPTNeoXDecoderLayer`]
Args:
config: GPTNeoXConfig
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
self.emb_dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([GPTNeoXLayer(config, i) for i in range(config.num_hidden_layers)])
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.rotary_emb = GPTNeoXRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_in
def set_input_embeddings(self, value):
self.embed_in = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_in(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
converted_head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
# Flex Attention converts it to a separate mask
if head_mask is not None:
converted_head_mask = ~converted_head_mask.bool() * torch.finfo(inputs_embeds.dtype).min
converted_head_mask = converted_head_mask.to(dtype=self.dtype, device=self.device)
head_mask = converted_head_mask
hidden_states = self.emb_dropout(inputs_embeds)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
causal_mask,
position_ids,
head_mask[i],
use_cache,
past_key_values,
output_attentions,
cache_position,
position_embeddings,
)
else:
outputs = layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
head_mask=head_mask[i],
layer_past=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = outputs[0]
if output_attentions:
all_attentions = all_attentions + (outputs[1],)
hidden_states = self.final_layer_norm(hidden_states)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
@add_start_docstrings(
"""GPTNeoX Model with a `language modeling` head on top for CLM fine-tuning.""", GPT_NEOX_START_DOCSTRING
)
class GPTNeoXForCausalLM(GPTNeoXPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["embed_out.weight"]
_tp_plan = {"embed_out": "colwise_rep"}
_pp_plan = {"embed_out": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.gpt_neox = GPTNeoXModel(config)
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.embed_out
def set_output_embeddings(self, new_embeddings):
self.embed_out = new_embeddings
@can_return_tuple
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config.is_decoder = True
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
outputs: BaseModelOutputWithPast = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.embed_out(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The GPTNeoX Model transformer with a sequence classification head on top (linear layer).
[`GPTNeoXForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GPT_NEOX_START_DOCSTRING,
)
class GPTNeoXForSequenceClassification(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = outputs.last_hidden_state
logits = self.score(hidden_states)
batch_size = logits.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class GPTNeoXForTokenClassification(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.dropout = nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint="LarsJonasson/pythia-410m-deduped-sft-swedish",
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_loss=0.25,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor]]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.gpt_neox(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = outputs.last_hidden_state
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The GPT-NeoX Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
GPT_NEOX_START_DOCSTRING,
)
class GPTNeoXForQuestionAnswering(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> QuestionAnsweringModelOutput:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs: BaseModelOutputWithPast = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
loss = None
if start_positions is not None and end_positions is not None:
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions)
return QuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"GPTNeoXForCausalLM",
"GPTNeoXForQuestionAnswering",
"GPTNeoXForSequenceClassification",
"GPTNeoXForTokenClassification",
"GPTNeoXLayer",
"GPTNeoXModel",
"GPTNeoXPreTrainedModel",
]
```
|
========================================================================================================================================
SOURCE CODE FILE: modular_gpt_neox.py
LINES: 1
SIZE: 32.69 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neox\modular_gpt_neox.py
ENCODING: utf-8
```py
from typing import Callable, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
)
from ..llama.modeling_llama import (
LlamaModel,
LlamaPreTrainedModel,
LlamaRotaryEmbedding,
rotate_half,
)
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "trl-internal-testing/tiny-random-GPTNeoXForCausalLM"
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neox-20b"
_CONFIG_FOR_DOC = "GPTNeoXConfig"
class GPTNeoXMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size)
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size)
self.act = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
hidden_states = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dense_4h_to_h(hidden_states)
return hidden_states
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Keep half or full tensor for later concatenation
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
# Apply rotary embeddings on the first half or full tensor
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
# Concatenate back to full shape
q_embed = torch.cat([q_embed, q_pass], dim=-1)
k_embed = torch.cat([k_embed, k_pass], dim=-1)
return q_embed, k_embed
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: torch.Tensor,
scaling: float,
dropout: float = 0.0,
head_mask: Optional[torch.Tensor] = None,
**kwargs,
):
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value)
# Reshape outputs
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class GPTNeoXAttention(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
self.config = config
self.head_size = config.hidden_size // config.num_attention_heads
self.attention_dropout = config.attention_dropout
self.rotary_ndims = int(self.head_size * config.rotary_pct)
self.scaling = self.head_size**-0.5
self.is_causal = True
self.layer_idx = layer_idx
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias)
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
head_mask: Optional[torch.FloatTensor] = None,
layer_past: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
):
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, 3 * self.head_size)
qkv = self.query_key_value(hidden_states).view(hidden_shape).transpose(1, 2)
query_states, key_states, value_states = qkv.chunk(3, dim=-1)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
# Cache QKV values
if layer_past is not None:
cache_kwargs = {
"sin": sin,
"cos": cos,
"partial_rotation_size": self.rotary_ndims,
"cache_position": cache_position,
}
key_states, value_states = layer_past.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Checking for fallbacks in case an unsupported feature is requested
attention_type = self.config._attn_implementation
if (output_attentions or head_mask is not None) and self.config._attn_implementation in [
"sdpa",
"flash_attention_2",
]:
logger.warning_once(
f"Setting `attention_type` to `eager` because `{attention_type}` does not support"
f" `output_attentions=True` or `head_mask`."
)
attention_type = "eager"
elif self.training and self.attention_dropout > 0 and self.config._attn_implementation == "flex_attention":
logger.warning_once(
f"Setting `attention_type` to `eager` because `dropout` is not supported in `{attention_type}`."
)
attention_type = "eager"
attention_interface: Callable = eager_attention_forward
attention_interface = (
ALL_ATTENTION_FUNCTIONS[attention_type] if attention_type != "eager" else attention_interface
)
# Compute attention
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
scaling=self.scaling,
dropout=0.0 if not self.training else self.attention_dropout,
head_mask=head_mask,
**kwargs,
)
# Reshape outputs and final projection
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.dense(attn_output)
return attn_output, attn_weights
class GPTNeoXLayer(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.use_parallel_residual = config.use_parallel_residual
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_dropout = nn.Dropout(config.hidden_dropout)
self.post_mlp_dropout = nn.Dropout(config.hidden_dropout)
self.attention = GPTNeoXAttention(config, layer_idx)
self.mlp = GPTNeoXMLP(config)
def forward(
self,
hidden_states: Optional[torch.FloatTensor],
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
layer_past: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
):
attn_output, attn_weights = self.attention(
self.input_layernorm(hidden_states),
attention_mask=attention_mask,
position_ids=position_ids,
layer_past=layer_past,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
attn_output = self.post_attention_dropout(attn_output)
if self.use_parallel_residual:
# pseudocode:
# x = x + attn(ln1(x)) + mlp(ln2(x))
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
mlp_output = self.post_mlp_dropout(mlp_output)
hidden_states = mlp_output + attn_output + hidden_states
else:
# pseudocode:
# x = x + attn(ln1(x))
# x = x + mlp(ln2(x))
attn_output = attn_output + hidden_states
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
mlp_output = self.post_mlp_dropout(mlp_output)
hidden_states = mlp_output + attn_output
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class GPTNeoXRotaryEmbedding(LlamaRotaryEmbedding):
pass
class GPTNeoXPreTrainedModel(LlamaPreTrainedModel):
base_model_prefix = "gpt_neox"
_no_split_modules = ["GPTNeoXLayer"]
_keys_to_ignore_on_load_unexpected = [r"attention.bias", r"attention.masked_bias"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
GPT_NEOX_START_DOCSTRING = None # Will be picked up by modular
GPT_NEOX_INPUTS_DOCSTRING = None # Will be picked up by modular
class GPTNeoXModel(LlamaModel, nn.Module):
def __init__(self, config):
nn.Module.__init__(config)
self.config = config
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
self.emb_dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([GPTNeoXLayer(config, i) for i in range(config.num_hidden_layers)])
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.rotary_emb = GPTNeoXRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_in
def set_input_embeddings(self, value):
self.embed_in = value
@can_return_tuple
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_in(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
converted_head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
# Flex Attention converts it to a separate mask
if head_mask is not None:
converted_head_mask = ~converted_head_mask.bool() * torch.finfo(inputs_embeds.dtype).min
converted_head_mask = converted_head_mask.to(dtype=self.dtype, device=self.device)
head_mask = converted_head_mask
hidden_states = self.emb_dropout(inputs_embeds)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
causal_mask,
position_ids,
head_mask[i],
use_cache,
past_key_values,
output_attentions,
cache_position,
position_embeddings,
)
else:
outputs = layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
head_mask=head_mask[i],
layer_past=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = outputs[0]
if output_attentions:
all_attentions = all_attentions + (outputs[1],)
hidden_states = self.final_layer_norm(hidden_states)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
@add_start_docstrings(
"""GPTNeoX Model with a `language modeling` head on top for CLM fine-tuning.""", GPT_NEOX_START_DOCSTRING
)
class GPTNeoXForCausalLM(GPTNeoXPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["embed_out.weight"]
_tp_plan = {"embed_out": "colwise_rep"}
_pp_plan = {"embed_out": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.gpt_neox = GPTNeoXModel(config)
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.embed_out
def set_output_embeddings(self, new_embeddings):
self.embed_out = new_embeddings
@can_return_tuple
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config.is_decoder = True
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
outputs: BaseModelOutputWithPast = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.embed_out(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The GPTNeoX Model transformer with a sequence classification head on top (linear layer).
[`GPTNeoXForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
GPT_NEOX_START_DOCSTRING,
)
class GPTNeoXForSequenceClassification(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = outputs.last_hidden_state
logits = self.score(hidden_states)
batch_size = logits.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class GPTNeoXForTokenClassification(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.dropout = nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint="LarsJonasson/pythia-410m-deduped-sft-swedish",
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_loss=0.25,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor]]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.gpt_neox(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = outputs.last_hidden_state
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The GPT-NeoX Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
GPT_NEOX_START_DOCSTRING,
)
class GPTNeoXForQuestionAnswering(GPTNeoXPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.gpt_neox = GPTNeoXModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> QuestionAnsweringModelOutput:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs: BaseModelOutputWithPast = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
loss = None
if start_positions is not None and end_positions is not None:
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions)
return QuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"GPTNeoXForCausalLM",
"GPTNeoXForQuestionAnswering",
"GPTNeoXForSequenceClassification",
"GPTNeoXForTokenClassification",
"GPTNeoXLayer",
"GPTNeoXModel",
"GPTNeoXPreTrainedModel",
]
```
|
==================================================================================================================================================
SOURCE CODE FILE: tokenization_gpt_neox_fast.py
LINES: 1
SIZE: 8.79 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_neox\tokenization_gpt_neox_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for GPTNeoX."""
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
class GPTNeoXTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" GPT-NeoX-20B tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import GPTNeoXTokenizerFast
>>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("openai-community/gpt2")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]
>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
The end of sequence token.
pad_token (`str`, *optional*):
Token for padding a sequence.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (GPTNeoX tokenizer detect beginning of words by the preceding space).
add_bos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add a `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
trim_offsets (`bool`, *optional*, defaults to `True`):
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|endoftext|>",
eos_token="<|endoftext|>",
pad_token=None,
add_bos_token=False,
add_eos_token=False,
add_prefix_space=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError("add_bos_token = True but bos_token = None")
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError("add_eos_token = True but eos_token = None")
single = f"{(bos + ':0 ') if self.add_bos_token else ''}$A:0{(' ' + eos + ':0') if self.add_eos_token else ''}"
pair = f"{single}{(' ' + bos + ':1') if self.add_bos_token else ''} $B:1{(' ' + eos + ':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["GPTNeoXTokenizerFast"]
```
|
===============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.94 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\gpt_sw3\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .tokenization_gpt_sw3 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.