text
stringlengths
145
7.65M
==================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.17 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seamless_m4t\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_seamless_m4t import * from .feature_extraction_seamless_m4t import * from .modeling_seamless_m4t import * from .processing_seamless_m4t import * from .tokenization_seamless_m4t import * from .tokenization_seamless_m4t_fast import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
====================================================================================================================================================== SOURCE CODE FILE: configuration_seamless_m4t.py LINES: 1 SIZE: 22.95 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seamless_m4t\configuration_seamless_m4t.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SeamlessM4T model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SeamlessM4TConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`~SeamlessM4TModel`]. It is used to instantiate an SeamlessM4T model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SeamlessM4T ["facebook/hf-seamless-m4t-medium"](https://huggingface.co/"facebook/hf-seamless-m4t-medium") architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256102): Vocabulary size of the SeamlessM4T model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~SeamlessM4TModel`], [`~SeamlessM4TForTextToSpeech`] or [`~SeamlessM4TForTextToText`]. t2u_vocab_size (`int`, *optional*, defaults to 10082): Unit vocabulary size of the SeamlessM4T model. Defines the number of different unit tokens that can be represented by the `inputs_ids` passed when calling the Text-To-Units sub-model of [`~SeamlessM4TModel`], [`~SeamlessM4TForSpeechToSpeech`] or [`~SeamlessM4TForTextToSpeech`]. > Parameters shared across sub-models hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the "intermediate" layers in the architecture. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model text encoder and decoder might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model is used as an encoder/decoder or not. encoder_layerdrop (`float`, *optional*, defaults to 0.05): The LayerDrop probability for the encoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.05): The LayerDrop probability for the decoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the decoder and feed-forward layers. If string, `"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, decoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all attention layers. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all activation layers in the model. scale_embedding (`bool`, *optional*, defaults to `True`): Scale embeddings by diving by sqrt(d_model). > Text encoder and text decoder specific parameters encoder_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer text encoder. encoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text encoder. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text encoder. decoder_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer text decoder. decoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text decoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text decoder. decoder_start_token_id (`int`, *optional*, defaults to 3): If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only applied in the text decoder. max_new_tokens (`int`, *optional*, defaults to 256): The maximum numbers of text tokens to generate, ignoring the number of tokens in the prompt. pad_token_id (`int`, *optional*, defaults to 0): The id of the _padding_ text token. Only applied to the text-decoder model. bos_token_id (`int`, *optional*, defaults to 2): The id of the _beginning-of-stream_ text token. Only applied to the text-decoder model. eos_token_id (`int`, *optional*, defaults to 3): The id of the _end-of-stream_ text token. Only applied to the text-decoder model. > Speech encoder specific parameters speech_encoder_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer speech encoder. speech_encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer speech encoder. speech_encoder_intermediate_size (`int`, *optional*, defaults to 4096): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer speech encoder. speech_encoder_hidden_act (`str` or `function`, *optional*, defaults to `"swish"`): The non-linear activation function (function or string) in the speech encoder. If string, `"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported. speech_encoder_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all layers in the speech encoder. add_adapter (`bool`, *optional*, defaults to `True`): Add an adapter layer on top of the speech encoder. speech_encoder_layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability for the speech encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. feature_projection_input_dim (`int`, *optional*, defaults to 160): Input dimension of the input feature projection of the speech encoder, i.e the dimension after processing input audios with [`SeamlessM4TFeatureExtractor`]. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer of the speech encoder. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer of the speech encoder. adaptor_kernel_size (`int`, *optional*, defaults to 8): Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adaptor_stride (`int`, *optional*, defaults to 8): Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adaptor_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all layers in the speech adapter. num_adapter_layers (`int`, *optional*, defaults to 1): Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is True`. position_embeddings_type (`str`, *optional*, defaults to `"relative"`): Can be specified to `relative` or `rotary` for relative or rotary position embeddings respectively. If left `None` no relative position embedding is applied. Only applied to the speech encoder. rotary_embedding_base (`int`, *optional*, defaults to 10000): If `"rotary"` position embeddings are used, defines the size of the embedding base. Only applied to the speech encoder. max_source_positions (`int`, *optional*, defaults to 4096): if `"relative"` position embeddings are used, defines the maximum source input positions. Only applied to the speech encoder. conv_depthwise_kernel_size (`int`, *optional*, defaults to 31): Kernel size of convolutional depthwise 1D layer in Conformer blocks. Only applied to the speech encoder. > Text-To-Unit (t2u) model specific parameters t2u_bos_token_id (`int`, *optional*, defaults to 0): The id of the _beginning-of-stream_ unit token. Only applied to the text-to-unit seq2seq model. t2u_pad_token_id (`int`, *optional*, defaults to 1): The id of the _padding_ unit token. Only applied to the text-to-unit seq2seq model. t2u_eos_token_id (`int`, *optional*, defaults to 2): The id of the _end-of-stream_ unit token. Only applied to the text-to-unit seq2seq model. t2u_decoder_start_token_id (`int`, *optional*, defaults to 2): If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only applied to the text-to-unit seq2seq model. t2u_max_new_tokens (`int`, *optional*, defaults to 1024): The maximum numbers of unit tokens to generate, ignoring the number of tokens in the prompt. Only applied to the text-to-unit seq2seq model. t2u_encoder_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer text-to-unit encoder. t2u_encoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit encoder. t2u_encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text-to-unit encoder. t2u_decoder_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer text-to-unit decoder. t2u_decoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit decoder. t2u_decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text-to-unit decoder. t2u_max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model text-to-unit component might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). > Hifi-Gan Vocoder specific parameters sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the output audio will be generated, expressed in hertz (Hz). upsample_initial_channel (`int`, *optional*, defaults to 512): The number of input channels into the hifi-gan upsampling network. Applies to the vocoder only. upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[5, 4, 4, 2, 2]`): A tuple of integers defining the stride of each 1D convolutional layer in the vocoder upsampling network. The length of *upsample_rates* defines the number of convolutional layers and has to match the length of *upsample_kernel_sizes*. Applies to the vocoder only. upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[11, 8, 8, 4, 4]`): A tuple of integers defining the kernel size of each 1D convolutional layer in the vocoder upsampling network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of *upsample_rates*. Applies to the vocoder only. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): A tuple of integers defining the kernel sizes of the vocoder 1D convolutional layers in the multi-receptive field fusion (MRF) module. Applies to the vocoder only. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): A nested tuple of integers defining the dilation rates of the vocoder dilated 1D convolutional layers in the multi-receptive field fusion (MRF) module. Applies to the vocoder only. leaky_relu_slope (`float`, *optional*, defaults to 0.1): The angle of the negative slope used by the leaky ReLU activation in the vocoder. Applies to the vocoder only. unit_hifi_gan_vocab_size (`int`, *optional*, defaults to 10000): Vocabulary size of the SeamlessM4T vocoder. Defines the number of different unit tokens that can be represented by the `inputs_ids` passed when calling the vocoder of [`~SeamlessM4TModel`], [`~SeamlessM4TForSpeechToSpeech`] or [`~SeamlessM4TForTextToSpeech`]. unit_embed_dim (`int`, *optional*, defaults to 1280): The projection dimension of the input ids given to the hifi-gan vocoder. Applies to the vocoder only. lang_embed_dim (`int`, *optional*, defaults to 256): The projection dimension of the target language given to the hifi-gan vocoder. Applies to the vocoder only. spkr_embed_dim (`int`, *optional*, defaults to 256): The projection dimension of the speaker id given to the hifi-gan vocoder. Applies to the vocoder only. vocoder_num_langs (`int`, *optional*, defaults to 36): Number of langs supported by the vocoder. Might be different from `t2u_num_langs`. vocoder_num_spkrs (`int`, *optional*, defaults to 200): Number of speakers supported by the vocoder. variance_predictor_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the duration predictor. Applies to the vocoder only. var_pred_dropout (`float`, *optional*, defaults to 0.5): The dropout probability of the duration predictor. Applies to the vocoder only. vocoder_offset (`int`, *optional*, defaults to 4): Offset the unit token ids by this number to account for symbol tokens. Applies to the vocoder only. ```python >>> from transformers import SeamlessM4TModel, SeamlessM4TConfig >>> # Initializing a SeamlessM4T "facebook/hf-seamless-m4t-medium" style configuration >>> configuration = SeamlessM4TConfig() >>> # Initializing a model from the "facebook/hf-seamless-m4t-medium" style configuration >>> model = SeamlessM4TModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "seamless_m4t" def __init__( self, vocab_size=256102, t2u_vocab_size=10082, # shared config hidden_size=1024, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, max_position_embeddings=1024, is_encoder_decoder=True, encoder_layerdrop=0.05, decoder_layerdrop=0.05, activation_function="relu", dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, scale_embedding=True, # text encoder|decoder encoder_layers=24, encoder_ffn_dim=8192, encoder_attention_heads=16, decoder_layers=24, decoder_ffn_dim=8192, decoder_attention_heads=16, decoder_start_token_id=3, max_new_tokens=256, pad_token_id=0, bos_token_id=2, eos_token_id=3, # speech_encoder speech_encoder_layers=24, speech_encoder_attention_heads=16, speech_encoder_intermediate_size=4096, speech_encoder_hidden_act="swish", speech_encoder_dropout=0.0, add_adapter=True, speech_encoder_layerdrop=0.1, feature_projection_input_dim=160, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, adaptor_kernel_size=8, adaptor_stride=8, adaptor_dropout=0.1, num_adapter_layers=1, position_embeddings_type="relative", rotary_embedding_base=10000, max_source_positions=4096, conv_depthwise_kernel_size=31, # t2u config t2u_bos_token_id=0, t2u_pad_token_id=1, t2u_eos_token_id=2, t2u_decoder_start_token_id=2, t2u_max_new_tokens=1024, t2u_encoder_layers=6, t2u_encoder_ffn_dim=8192, t2u_encoder_attention_heads=16, t2u_decoder_layers=6, t2u_decoder_ffn_dim=8192, t2u_decoder_attention_heads=16, t2u_max_position_embeddings=2048, # hifi-gan vocoder config sampling_rate=16000, upsample_initial_channel=512, upsample_rates=[5, 4, 4, 2, 2], upsample_kernel_sizes=[11, 8, 8, 4, 4], resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], leaky_relu_slope=0.1, # specific to Code Hifi-Gan unit_hifi_gan_vocab_size=10000, unit_embed_dim=1280, lang_embed_dim=256, spkr_embed_dim=256, vocoder_num_langs=36, vocoder_num_spkrs=200, variance_predictor_kernel_size=3, var_pred_dropout=0.5, vocoder_offset=4, **kwargs, ): # overall_config self.vocab_size = vocab_size self.t2u_vocab_size = t2u_vocab_size self.hidden_size = hidden_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.max_position_embeddings = max_position_embeddings self.use_cache = use_cache self.max_new_tokens = max_new_tokens self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.activation_function = activation_function self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.scale_embedding = scale_embedding # for proper config init self.num_attention_heads = decoder_attention_heads self.num_hidden_layers = decoder_layers # text|unit encoder|decoder self.encoder_layers = encoder_layers self.encoder_ffn_dim = encoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.decoder_attention_heads = decoder_attention_heads # speech_encoder self.speech_encoder_layers = speech_encoder_layers self.speech_encoder_hidden_act = speech_encoder_hidden_act self.speech_encoder_dropout = speech_encoder_dropout self.speech_encoder_attention_heads = speech_encoder_attention_heads self.speech_encoder_layerdrop = speech_encoder_layerdrop self.speech_encoder_intermediate_size = speech_encoder_intermediate_size self.feature_projection_input_dim = feature_projection_input_dim self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.adaptor_kernel_size = adaptor_kernel_size self.adaptor_stride = adaptor_stride self.adaptor_dropout = adaptor_dropout self.num_adapter_layers = num_adapter_layers self.position_embeddings_type = position_embeddings_type self.rotary_embedding_base = rotary_embedding_base self.max_source_positions = max_source_positions self.conv_depthwise_kernel_size = conv_depthwise_kernel_size self.add_adapter = add_adapter # t2u config self.t2u_bos_token_id = t2u_bos_token_id self.t2u_pad_token_id = t2u_pad_token_id self.t2u_eos_token_id = t2u_eos_token_id self.t2u_decoder_start_token_id = t2u_decoder_start_token_id self.t2u_max_new_tokens = t2u_max_new_tokens self.t2u_encoder_layers = t2u_encoder_layers self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim self.t2u_encoder_attention_heads = t2u_encoder_attention_heads self.t2u_decoder_layers = t2u_decoder_layers self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim self.t2u_decoder_attention_heads = t2u_decoder_attention_heads self.t2u_max_position_embeddings = t2u_max_position_embeddings # hifi-gan vocoder config # original parameters specific to Hifi-Gan self.sampling_rate = sampling_rate self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.leaky_relu_slope = leaky_relu_slope # specific to Code Hifi-Gan self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size self.unit_embed_dim = unit_embed_dim self.lang_embed_dim = lang_embed_dim self.spkr_embed_dim = spkr_embed_dim self.vocoder_num_langs = vocoder_num_langs self.vocoder_num_spkrs = vocoder_num_spkrs self.variance_predictor_kernel_size = variance_predictor_kernel_size self.var_pred_dropout = var_pred_dropout self.vocoder_offset = vocoder_offset super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, is_encoder_decoder=is_encoder_decoder, max_position_embeddings=max_position_embeddings, **kwargs, ) __all__ = ["SeamlessM4TConfig"] ```
=========================================================================================================================================================== SOURCE CODE FILE: feature_extraction_seamless_m4t.py LINES: 1 SIZE: 13.31 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seamless_m4t\feature_extraction_seamless_m4t.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for SeamlessM4T """ from typing import List, Optional, Union import numpy as np from ...utils import is_torch_available if is_torch_available(): import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging logger = logging.get_logger(__name__) class SeamlessM4TFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a SeamlessM4T feature extractor. This feature extractor inherits from [`SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts mel-filter bank features from raw speech. Args: feature_size (`int`, *optional*, defaults to 80): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). num_mel_bins (`int`, *optional*, defaults to 80): Number of Mel-frequency bins. padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding vectors. stride (`int`, *optional*, defaults to 2): Stride used to reshape audios from shape (batch_size,num_frames,num_mel_bins) to (batch_size,num_frames//stride,num_mel_bins*stride). """ model_input_names = ["input_features", "attention_mask"] def __init__( self, feature_size=80, sampling_rate=16000, num_mel_bins=80, padding_value=0.0, stride=2, **kwargs, ): self.num_mel_bins = num_mel_bins self.return_attention_mask = True self.stride = stride mel_filters = mel_filter_bank( num_frequency_bins=257, num_mel_filters=self.num_mel_bins, min_frequency=20, max_frequency=sampling_rate // 2, sampling_rate=sampling_rate, norm=None, mel_scale="kaldi", triangularize_in_mel_space=True, ) self.mel_filters = mel_filters self.window = window_function(400, "povey", periodic=False) super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def zero_mean_unit_var_norm( input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0 ) -> List[np.ndarray]: """ Every array in the list is normalized to have zero mean and unit variance """ if attention_mask is not None: attention_mask = np.array(attention_mask, np.int32) normed_input_values = [] for vector, length in zip(input_values, attention_mask.sum(-1)): normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: normed_slice[length:] = padding_value normed_input_values.append(normed_slice) else: normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def _extract_fbank_features( self, waveform: np.ndarray, ) -> np.ndarray: """ Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs and hence the waveform should not be normalized before feature extraction. """ # by default, it extracts the left channel if stereo if len(waveform.shape) == 2: waveform = waveform[0] waveform = np.squeeze(waveform) * (2**15) # Kaldi compliance: 16-bit signed integers features = spectrogram( waveform, self.window, frame_length=400, hop_length=160, fft_length=512, power=2.0, center=False, preemphasis=0.97, mel_filters=self.mel_filters, log_mel="log", mel_floor=1.192092955078125e-07, remove_dc_offset=True, ).T return features def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Union[bool, str, PaddingStrategy] = True, pad_to_multiple_of: Optional[int] = 2, max_length: Optional[int] = None, truncation: bool = False, return_tensors: Optional[Union[str, TensorType]] = None, sampling_rate: Optional[int] = None, return_attention_mask: Optional[bool] = None, do_normalize_per_mel_bins: Optional[bool] = True, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Args: raw_speech (`np.ndarray`, `torch.Tensor`, `List[float]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[float]]`, `List[List[List[float]]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a torch tensor, a list of float values, a list of numpy arrays, a list of torch tensors, a list of list of float values or a list of a list of list of float values. If `raw_speech` is a one-dimensional `np.ndarray`, `torch.Tensor` or a `List[float]`, `raw_speech` is considered a single-channel, single-sample sound. In all other cases, the first dimension of `raw_speech`, whether from an `np.ndarray`, a `torch.Tensor` or a `List[...]`, corresponds to the number of samples in the batch, and the number of channels (i.e. mono or stereo character) is derived from the other dimensions (1D -> single-channel waveform batches; 2D-> stereo-channel waveform batches). padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). pad_to_multiple_of (`int`, *optional*, defaults to 2): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> For SeamlessM4T models, `attention_mask` should always be passed for batched inference, to avoid subtle bugs. </Tip> return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. do_normalize_per_mel_bins (`bool`, *optional*, defaults to `True`): Whether or not to zero-mean unit-variance normalize the input per mel-channel. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to the tokenizer or the feature extractor. """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( f"It is strongly recommended to pass the `sampling_rate` argument to `{self.__class__.__name__}()`. " "Failing to do so can result in silent errors that might be hard to debug." ) return_attention_mask = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 3: raise ValueError(f"Only mono-channel or stereo-channel audio is supported for input to {self}") acceptable_types = ( (torch.Tensor, np.ndarray, tuple, list) if is_torch_available() else (np.ndarray, tuple, list) ) is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], acceptable_types)) ) if is_batched: raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [raw_speech] # extract fbank features features = [self._extract_fbank_features(waveform) for waveform in raw_speech] if do_normalize_per_mel_bins: # torch defaults to ddof=1, and numpy defaults to ddof=0 features = [ (x - np.expand_dims(x.mean(0), 0)) / np.sqrt(np.expand_dims(x.var(0, ddof=1), 0) + 1e-7) for x in features ] # convert into correct format for padding encoded_inputs = BatchFeature({"input_features": features}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=True, return_tensors="np", ) # SeamlessM4T needs to process extracted features input_features = padded_inputs.get("input_features") attention_mask = padded_inputs.pop("attention_mask") batch_size, num_frames, num_channels = input_features.shape remainder = num_frames % self.stride if remainder != 0: input_features = input_features[:, : num_frames - remainder, :] attention_mask = attention_mask[:, : num_frames - remainder] input_features = np.reshape( input_features, (batch_size, num_frames // self.stride, num_channels * self.stride) ) indices = np.arange(0, num_frames - remainder) attention_mask = attention_mask[:, indices % self.stride == 1] padded_inputs["input_features"] = input_features if return_attention_mask: padded_inputs["attention_mask"] = attention_mask if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs __all__ = ["SeamlessM4TFeatureExtractor"] ```
================================================================================================================================================= SOURCE CODE FILE: modeling_seamless_m4t.py LINES: 1 SIZE: 194.88 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seamless_m4t\modeling_seamless_m4t.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SeamlessM4T model.""" import copy import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...integrations.fsdp import is_fsdp_managed_module from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, Wav2Vec2BaseModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_seamless_m4t import SeamlessM4TConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/hf-seamless-m4t-medium" _CONFIG_FOR_DOC = "SeamlessM4TConfig" @dataclass class SeamlessM4TGenerationOutput(ModelOutput): """ Class defining the generated outputs from [`SeamlessM4TModel`], [`SeamlessM4TForTextToText`], [`SeamlessM4TForTextToSpeech`], [`SeamlessM4TForSpeechToSpeech`] and [`SeamlessM4TForTextToSpeech`]. Args: waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): The final audio waveform predicted by the model. waveform_lengths (`torch.IntTensor` of shape `(batch_size,)`, *optional*): The length in samples of each element in the `waveform` batch. sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): The generated translated sequences. This is the output of the text-to-text or the speech-to-text models. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. unit_sequences (`torch.LongTensor` of shape `(batch_size, unit_sequence_length)`, *optional*): The generated translated unit sequences. This is the output of the text-to-units model. The second dimension (unit_sequence_length) is either equal to `t2u_max_length` or shorter if all batches finished early due to the `t2u_eos_token_id`. """ waveform: Optional[torch.FloatTensor] = None waveform_lengths: Optional[torch.IntTensor] = None sequences: Optional[Tuple[torch.FloatTensor]] = None unit_sequences: Optional[Tuple[torch.FloatTensor]] = None SEAMLESS_M4T_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`~SeamlessM4TConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEAMLESS_M4T_INPUTS_DOCSTRING_FIRST_PART = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. """ SEAMLESS_M4T_INPUTS_DOCSTRING_TEXT_PART = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) """ SEAMLESS_M4T_INPUTS_DOCSTRING_SPEECH_PART = r""" Args: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. """ SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART = r""" attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ M4T_MODEL_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_FIRST_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART M4T_TEXT_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_TEXT_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART M4T_SPEECH_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_SPEECH_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART ############ UTILS ################ # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids def _compute_new_attention_mask(hidden_states: torch.Tensor, seq_lens: torch.Tensor): """ Computes an attention mask of the form `(batch, seq_len)` with an attention for each element in the batch that stops at the corresponding element in `seq_lens`. Args: hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, *)`): The sequences to mask, where `*` is any number of sequence-specific dimensions including none. seq_lens (`torch.Tensor` of shape `(batch)`: Each element represents the length of the sequence at the same index in `hidden_states` Returns: `torch.FloatTensor`: The float attention mask of shape `(batch, seq_len)` """ batch_size, mask_seq_len = hidden_states.shape[:2] indices = torch.arange(mask_seq_len, device=seq_lens.device).expand(batch_size, -1) bool_mask = indices >= seq_lens.unsqueeze(1).expand(-1, mask_seq_len) mask = hidden_states.new_ones((batch_size, mask_seq_len)) mask = mask.masked_fill(bool_mask, 0) return mask def format_speech_generation_kwargs(kwargs): """ Format kwargs for SeamlessM4T models that generate speech, attribute kwargs to either the text generation or the speech generation models. Args: kwargs (`dict`)`: Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. """ # attribute kwargs to models kwargs_text = {} kwargs_speech = {} for key, value in kwargs.items(): if key.startswith("text_"): key = key[len("text_") :] kwargs_text[key] = value elif key.startswith("speech_"): key = key[len("speech_") :] kwargs_speech[key] = value elif key == "generation_config": kwargs_text[key] = value else: # If the key is already in a specific config, then it's been set with a # submodules specific value and we don't override if key not in kwargs_text: kwargs_text[key] = value if key not in kwargs_speech: kwargs_speech[key] = value return kwargs_text, kwargs_speech ############ SPEECH ENCODER related code ################ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->SeamlessM4TConformer, feat_extract_activation->speech_encoder_hidden_act class SeamlessM4TConformerPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) if hasattr(self.conv, "parametrizations"): weight_g = self.conv.parametrizations.weight.original0 weight_v = self.conv.parametrizations.weight.original1 else: weight_g = self.conv.weight_g weight_v = self.conv.weight_v deepspeed.zero.register_external_parameter(self, weight_v) deepspeed.zero.register_external_parameter(self, weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = SeamlessM4TConformerSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.speech_encoder_hidden_act] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRotaryPositionalEmbedding with Wav2Vec2->SeamlessM4T, num_attention_heads->speech_encoder_attention_heads class SeamlessM4TConformerRotaryPositionalEmbedding(nn.Module): """Rotary positional embedding Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf """ def __init__(self, config): super().__init__() dim = config.hidden_size // config.speech_encoder_attention_heads base = config.rotary_embedding_base inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) self.register_buffer("inv_freq", inv_freq) self.cached_sequence_length = None self.cached_rotary_positional_embedding = None def forward(self, hidden_states): sequence_length = hidden_states.shape[1] if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None: return self.cached_rotary_positional_embedding self.cached_sequence_length = sequence_length # Embeddings are computed in the dtype of the inv_freq constant time_stamps = torch.arange(sequence_length).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq) embeddings = torch.cat((freqs, freqs), dim=-1) cos_embeddings = embeddings.cos()[:, None, None, :] sin_embeddings = embeddings.sin()[:, None, None, :] # Computed embeddings are cast to the dtype of the hidden state inputs self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states) return self.cached_rotary_positional_embedding # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRelPositionalEmbedding with Wav2Vec2->SeamlessM4T class SeamlessM4TConformerRelPositionalEmbedding(nn.Module): """Relative positional encoding module.""" def __init__(self, config): super().__init__() self.max_len = config.max_source_positions self.d_model = config.hidden_size self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, self.max_len)) def extend_pe(self, x): # Reset the positional encodings if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` is the position of query vector and `j` is the # position of key vector. We use positive relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i<j). pe_positive = torch.zeros(x.size(1), self.d_model) pe_negative = torch.zeros(x.size(1), self.d_model) position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1) div_term = torch.exp( torch.arange(0, self.d_model, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.d_model) ) pe_positive[:, 0::2] = torch.sin(position * div_term) pe_positive[:, 1::2] = torch.cos(position * div_term) pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) # Reverse the order of positive indices and concat both positive and # negative indices. This is used to support the shifting trick # as in https://arxiv.org/abs/1901.02860 pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) pe_negative = pe_negative[1:].unsqueeze(0) pe = torch.cat([pe_positive, pe_negative], dim=1) self.pe = pe.to(device=x.device, dtype=x.dtype) def forward(self, hidden_states: torch.Tensor): self.extend_pe(hidden_states) start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1 end_idx = self.pe.size(1) // 2 + hidden_states.size(1) relative_position_embeddings = self.pe[:, start_idx:end_idx] return relative_position_embeddings # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSamePadLayer with Wav2Vec2->SeamlessM4T class SeamlessM4TConformerSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states class SeamlessM4TConformerFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.feature_projection_input_dim, eps=config.layer_norm_eps) self.projection = nn.Linear(config.feature_projection_input_dim, config.hidden_size) self.dropout = nn.Dropout(config.speech_encoder_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class SeamlessM4TConformerFeedForward(nn.Module): def __init__(self, config, act_fn=None, dropout=None): super().__init__() dropout = dropout if dropout is not None else config.speech_encoder_dropout act_fn = act_fn if act_fn is not None else config.speech_encoder_hidden_act self.intermediate_dropout = nn.Dropout(dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.speech_encoder_intermediate_size) self.intermediate_act_fn = ACT2FN[act_fn] if isinstance(act_fn, str) else act_fn self.output_dense = nn.Linear(config.speech_encoder_intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class SeamlessM4TConformerConvolutionModule(nn.Module): """Convolution block used in the conformer block""" def __init__(self, config): super().__init__() if (config.conv_depthwise_kernel_size - 1) % 2 == 1: raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding") self.layer_norm = nn.LayerNorm(config.hidden_size) self.pointwise_conv1 = nn.Conv1d( config.hidden_size, 2 * config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.glu = nn.GLU(dim=1) self.depthwise_conv = nn.Conv1d( config.hidden_size, config.hidden_size, config.conv_depthwise_kernel_size, stride=1, padding="same", groups=config.hidden_size, bias=False, ) self.batch_norm = nn.BatchNorm1d(config.hidden_size) self.activation = ACT2FN[config.speech_encoder_hidden_act] self.pointwise_conv2 = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.dropout = nn.Dropout(config.speech_encoder_dropout) def forward(self, hidden_states, attention_mask=None): hidden_states = self.layer_norm(hidden_states) # Ensure that we do not leak padded positions in depthwise convolution. # Put 0 where necessary if attention_mask is not None: hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0) # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism # => (batch, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # => (batch, channel, dim) hidden_states = self.glu(hidden_states) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.batch_norm(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class SeamlessM4TConformerSelfAttention(nn.Module): """Construct a SeamlessM4TConformerSelfAttention object. Can be enhanced with rotary or relative position embeddings. """ def __init__(self, config, use_position_embeddings=True): super().__init__() self.head_size = config.hidden_size // config.speech_encoder_attention_heads self.num_heads = config.speech_encoder_attention_heads self.position_embeddings_type = config.position_embeddings_type if use_position_embeddings else None self.linear_q = nn.Linear(config.hidden_size, config.hidden_size) self.linear_k = nn.Linear(config.hidden_size, config.hidden_size) self.linear_v = nn.Linear(config.hidden_size, config.hidden_size) self.linear_out = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(p=config.speech_encoder_dropout) if self.position_embeddings_type == "relative": # linear transformation for positional encoding self.linear_pos = nn.Linear(config.hidden_size, config.hidden_size, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # self-attention mechanism batch_size, sequence_length, hidden_size = hidden_states.size() # make sure query/key states can be != value states query_key_states = hidden_states value_states = hidden_states if self.position_embeddings_type == "rotary": if relative_position_embeddings is None: raise ValueError( "`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'" ) query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings) # project query_key_states and value_states query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size) # => (batch, head, time1, d_k) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) if self.position_embeddings_type == "relative": if relative_position_embeddings is None: raise ValueError( "`relative_position_embeddings` has to be defined when `self.position_embeddings_type ==" " 'relative'" ) # apply relative_position_embeddings to qk scores # as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860 scores = self._apply_relative_embeddings( query=query, key=key, relative_position_embeddings=relative_position_embeddings ) else: scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size) # apply attention_mask if necessary if attention_mask is not None: scores = scores + attention_mask # => (batch, head, time1, time2) probs = torch.softmax(scores, dim=-1) probs = self.dropout(probs) # => (batch, head, time1, d_k) hidden_states = torch.matmul(probs, value) # => (batch, time1, hidden_size) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size) hidden_states = self.linear_out(hidden_states) return hidden_states, probs # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_rotary_embedding def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings): batch_size, sequence_length, hidden_size = hidden_states.size() hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size) cos = relative_position_embeddings[0, :sequence_length, ...] sin = relative_position_embeddings[1, :sequence_length, ...] # rotate hidden_states with rotary embeddings hidden_states = hidden_states.transpose(0, 1) rotated_states_begin = hidden_states[..., : self.head_size // 2] rotated_states_end = hidden_states[..., self.head_size // 2 :] rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1) hidden_states = (hidden_states * cos) + (rotated_states * sin) hidden_states = hidden_states.transpose(0, 1) hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size) return hidden_states # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_relative_embeddings def _apply_relative_embeddings(self, query, key, relative_position_embeddings): # 1. project positional embeddings # => (batch, head, 2*time1-1, d_k) proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings) proj_relative_position_embeddings = proj_relative_position_embeddings.view( relative_position_embeddings.size(0), -1, self.num_heads, self.head_size ) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3) # 2. Add bias to query # => (batch, head, time1, d_k) query = query.transpose(1, 2) q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2) q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2) # 3. attention score: first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # => (batch, head, time1, time2) scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1)) # 4. then compute matrix b and matrix d # => (batch, head, time1, 2*time1-1) scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings) # 5. shift matrix b and matrix d zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype) scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1) scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2]) scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape) scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd) scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1] # 6. sum matrices # => (batch, head, time1, time2) scores = (scores_ac + scores_bd) / math.sqrt(self.head_size) return scores class SeamlessM4TConformerEncoderLayer(nn.Module): """Conformer block based on https://arxiv.org/abs/2005.08100.""" # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerEncoderLayer.__init__ with Wav2Vec2->SeamlessM4T, attention_dropout->speech_encoder_dropout, torch.nn->nn def __init__(self, config): super().__init__() embed_dim = config.hidden_size dropout = config.speech_encoder_dropout # Feed-forward 1 self.ffn1_layer_norm = nn.LayerNorm(embed_dim) self.ffn1 = SeamlessM4TConformerFeedForward(config) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim) self.self_attn_dropout = nn.Dropout(dropout) self.self_attn = SeamlessM4TConformerSelfAttention(config) # Conformer Convolution self.conv_module = SeamlessM4TConformerConvolutionModule(config) # Feed-forward 2 self.ffn2_layer_norm = nn.LayerNorm(embed_dim) self.ffn2 = SeamlessM4TConformerFeedForward(config) self.final_layer_norm = nn.LayerNorm(embed_dim) def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, conv_attention_mask: Optional[torch.Tensor] = None, ): hidden_states = hidden_states # 1. Feed-Forward 1 layer residual = hidden_states hidden_states = self.ffn1_layer_norm(hidden_states) hidden_states = self.ffn1(hidden_states) hidden_states = hidden_states * 0.5 + residual residual = hidden_states # 2. Self-Attention layer hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weigts = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual # 3. Convolutional Layer residual = hidden_states hidden_states = self.conv_module(hidden_states, attention_mask=conv_attention_mask) hidden_states = residual + hidden_states # 4. Feed-Forward 2 Layer residual = hidden_states hidden_states = self.ffn2_layer_norm(hidden_states) hidden_states = self.ffn2(hidden_states) hidden_states = hidden_states * 0.5 + residual hidden_states = self.final_layer_norm(hidden_states) return hidden_states, attn_weigts class SeamlessM4TConformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config if config.position_embeddings_type == "relative": self.embed_positions = SeamlessM4TConformerRelPositionalEmbedding(config) elif config.position_embeddings_type == "rotary": self.embed_positions = SeamlessM4TConformerRotaryPositionalEmbedding(config) else: self.embed_positions = None self.dropout = nn.Dropout(config.speech_encoder_dropout) self.layers = nn.ModuleList( [SeamlessM4TConformerEncoderLayer(config) for _ in range(config.speech_encoder_layers)] ) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None conv_attention_mask = attention_mask if attention_mask is not None: # make sure padded tokens output 0 hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0) # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) hidden_states = self.dropout(hidden_states) if self.embed_positions is not None: relative_position_embeddings = self.embed_positions(hidden_states) else: relative_position_embeddings = None synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self) for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = ( True if self.training and (dropout_probability < self.config.speech_encoder_layerdrop) else False ) if not skip_the_layer or synced_gpus: # under fsdp or deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, relative_position_embeddings, output_attentions, conv_attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, conv_attention_mask=conv_attention_mask, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class SeamlessM4TConformerAdapterLayer(nn.Module): def __init__(self, config): super().__init__() embed_dim = config.hidden_size dropout = config.adaptor_dropout self.kernel_size = config.adaptor_kernel_size self.stride = config.adaptor_stride # 1. residual convolution self.residual_layer_norm = nn.LayerNorm(embed_dim) self.residual_conv = nn.Conv1d( embed_dim, 2 * embed_dim, self.kernel_size, stride=self.stride, padding=self.stride // 2, ) self.activation = nn.GLU(dim=1) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim) self.self_attn_conv = nn.Conv1d( embed_dim, 2 * embed_dim, self.kernel_size, stride=self.stride, padding=self.stride // 2, ) self.self_attn = SeamlessM4TConformerSelfAttention(config, use_position_embeddings=False) self.self_attn_dropout = nn.Dropout(dropout) # Feed-forward self.ffn_layer_norm = nn.LayerNorm(embed_dim) self.ffn = SeamlessM4TConformerFeedForward(config, act_fn="relu", dropout=dropout) def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask): pad = self.kernel_size // 2 seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1) seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1 return seq_lens.floor() def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): residual = self.residual_layer_norm(hidden_states) # Apply pooling to the residual to match the sequence length of the # multi-head attention output. # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len) residual = residual.transpose(1, 2) residual = self.residual_conv(residual) residual = self.activation(residual) # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim) residual = residual.transpose(1, 2) hidden_states = self.self_attn_layer_norm(hidden_states) # Apply pooling before feeding to the multihead-attention layer. # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.self_attn_conv(hidden_states) hidden_states = self.activation(hidden_states) # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim) hidden_states = hidden_states.transpose(1, 2) if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( hidden_states.device ) attention_mask = _compute_new_attention_mask(hidden_states=hidden_states, seq_lens=sub_sampled_lengths) attention_mask = _prepare_4d_attention_mask( attention_mask, hidden_states.dtype, ) # The rest of the computation is identical to a vanilla Transformer # encoder layer. hidden_states, attn_weigths = self.self_attn( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.ffn_layer_norm(hidden_states) hidden_states = self.ffn(hidden_states) + residual return hidden_states class SeamlessM4TConformerAdapter(nn.Module): def __init__(self, config): super().__init__() self.layers = nn.ModuleList(SeamlessM4TConformerAdapterLayer(config) for _ in range(config.num_adapter_layers)) def forward(self, hidden_states, attention_mask): # down project hidden_states if necessary for layer in self.layers: hidden_states = layer(hidden_states, attention_mask) return hidden_states ############ TEXT / UNITS related code ################ # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100ScaledWordEmbedding with M2M100->SeamlessM4T class SeamlessM4TScaledWordEmbedding(nn.Embedding): """ This module overrides nn.Embeddings' forward by multiplying with embeddings scale. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0): super().__init__(num_embeddings, embedding_dim, padding_idx) self.embed_scale = embed_scale def forward(self, input_ids: torch.Tensor): return super().forward(input_ids) * self.embed_scale # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding class SeamlessM4TSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.register_buffer("weights", emb_weights, persistent=False) @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward( self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, past_key_values_length: int = 0, ): if input_ids is not None: bsz, seq_len = input_ids.size() # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( input_ids.device ) else: bsz, seq_len = inputs_embeds.size()[:-1] position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length) # expand embeddings if needed max_pos = self.padding_idx + 1 + seq_len + past_key_values_length if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length class SeamlessM4TAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" # Copied from transformers.models.bart.modeling_bart.BartAttention.__init__ with Bart->SeamlessM4T def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[SeamlessM4TConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if encoder_hidden_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = encoder_hidden_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == encoder_hidden_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `encoder_hidden_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == encoder_hidden_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz) value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.nllb_moe.modeling_nllb_moe.NllbMoeDenseActDense with NllbMoe->SeamlessM4T,DenseActDense->FeedForwardNetwork, d_model->hidden_size class SeamlessM4TFeedForwardNetwork(nn.Module): def __init__(self, config: SeamlessM4TConfig, ffn_dim: int): super().__init__() self.fc1 = nn.Linear(config.hidden_size, ffn_dim) self.fc2 = nn.Linear(ffn_dim, config.hidden_size) self.dropout = nn.Dropout(config.activation_dropout) self.act = ACT2FN[config.activation_function] def forward(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) if ( isinstance(self.fc2.weight, torch.Tensor) and hidden_states.dtype != self.fc2.weight.dtype and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8) ): hidden_states = hidden_states.to(self.fc2.weight.dtype) hidden_states = self.fc2(hidden_states) return hidden_states class SeamlessM4TEncoderLayer(nn.Module): def __init__(self, config: SeamlessM4TConfig, encoder_ffn_dim=None, encoder_attention_heads=None): super().__init__() encoder_ffn_dim = config.encoder_ffn_dim if encoder_ffn_dim is None else encoder_ffn_dim encoder_attention_heads = ( config.encoder_attention_heads if encoder_attention_heads is None else encoder_attention_heads ) self.embed_dim = config.hidden_size self.self_attn = SeamlessM4TAttention( embed_dim=self.embed_dim, num_heads=encoder_attention_heads, dropout=config.attention_dropout, ) self.attn_dropout = nn.Dropout(config.dropout) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.ffn = SeamlessM4TFeedForwardNetwork(config, ffn_dim=encoder_ffn_dim) self.ffn_layer_norm = nn.LayerNorm(config.hidden_size) self.ffn_dropout = nn.Dropout(config.activation_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.ffn_layer_norm(hidden_states) hidden_states = self.ffn(hidden_states) hidden_states = self.ffn_dropout(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class SeamlessM4TDecoderLayer(nn.Module): def __init__(self, config: SeamlessM4TConfig, decoder_ffn_dim=None, decoder_attention_heads=None): super().__init__() decoder_ffn_dim = config.decoder_ffn_dim if decoder_ffn_dim is None else decoder_ffn_dim decoder_attention_heads = ( config.decoder_attention_heads if decoder_attention_heads is None else decoder_attention_heads ) self.embed_dim = config.hidden_size self.self_attn = SeamlessM4TAttention( embed_dim=self.embed_dim, num_heads=decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.attn_dropout = nn.Dropout(config.dropout) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.cross_attention = SeamlessM4TAttention( self.embed_dim, decoder_attention_heads, config.attention_dropout, is_decoder=True ) self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim) self.ffn = SeamlessM4TFeedForwardNetwork(config, ffn_dim=decoder_ffn_dim) self.ffn_layer_norm = nn.LayerNorm(config.hidden_size) self.ffn_dropout = nn.Dropout(config.activation_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.cross_attention_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, past_key_value=cross_attn_past_key_value, attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value += cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.ffn_layer_norm(hidden_states) hidden_states = self.ffn(hidden_states) hidden_states = self.ffn_dropout(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states, present_key_value) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs ############ SUB-MODELS related code ################ class SeamlessM4TPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SeamlessM4TConfig base_model_prefix = "seamless_m4t" supports_gradient_checkpointing = True _no_split_modules = ["SeamlessM4TEncoderLayer", "SeamlessM4TDecoderLayer", "SeamlessM4TConformerEncoderLayer"] def _init_weights(self, module): """Initialize the weights""" std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, SeamlessM4TConformerSelfAttention): if hasattr(module, "pos_bias_u"): nn.init.xavier_uniform_(module.pos_bias_u) if hasattr(module, "pos_bias_v"): nn.init.xavier_uniform_(module.pos_bias_v) elif isinstance(module, SeamlessM4TConformerPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, SeamlessM4TConformerFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask): kernel_size, stride = self.config.adaptor_kernel_size, self.config.adaptor_stride pad = kernel_size // 2 seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1) seq_lens = ((seq_lens + 2 * pad - kernel_size) / stride) + 1 return seq_lens.floor() def compute_last_hidden_states_per_sample( self, hidden_states: Tuple[Tuple[torch.Tensor]], beam_indices: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Computes the last hidden states. Parameters: hidden_states (`Tuple[Tuple[torch.Tensor]]`): The generated hidden states. Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of torch.FloatTensor of shape (batch_size*num_beams*num_return_sequences, generated_length, hidden_size). beam_indices (`torch.LongTensor`, *optional*): Beam indices of generated token id at each generation step. `torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at generate-time. Return: `torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length, hidden_size)` containing the last hidden states. ```""" # 1. First, let's compute last_hidden_states from hidden_states. # For each generation step, takes the hidden state from the last layer. # shape: (batch_size*vocab_size*num_return_sequences, # generation_steps, hidden_dim) last_hidden_states = torch.concat([hidden_states[-1] for hidden_states in hidden_states], dim=1) # 2. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent # to a beam search approach were the first (and only) beam is always selected # in that case, return directly last_hidden_states if beam_indices is None: return last_hidden_states # 3. cut beam_indices to longest beam length beam_indices_mask = beam_indices < 0 max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max() beam_indices = beam_indices.clone()[:, :max_beam_length] beam_indices_mask = beam_indices_mask[:, :max_beam_length] # 4. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards anyways beam_indices[beam_indices_mask] = 0 # 5. expand beam_indices to last_hidden_states dim beam_indices = beam_indices.unsqueeze(-1) beam_indices = beam_indices.expand(-1, -1, last_hidden_states.shape[-1]) # 6. select the right candidate for each beam # in other words, new_last_hidden_states[i,j,k] = last_hidden_states[beam_indices[i,j,k], j, k] for all i, j, k last_hidden_states = torch.gather(last_hidden_states, 0, beam_indices) return last_hidden_states @add_start_docstrings( """Transformer speech encoder consisting of *config.speech_encoder_layers* conformer self attention layers. Each layer is a [`SeamlessM4TConformerEncoderLayer`].""", SEAMLESS_M4T_START_DOCSTRING, ) class SeamlessM4TSpeechEncoder(SeamlessM4TPreTrainedModel): main_input_name = "input_features" def __init__(self, config: SeamlessM4TConfig): super().__init__(config) self.feature_projection = SeamlessM4TConformerFeatureProjection(config) self.encoder = SeamlessM4TConformerEncoder(config) self.intermediate_ffn = SeamlessM4TConformerFeedForward(config, act_fn="relu", dropout=0.0) self.adapter = SeamlessM4TConformerAdapter(config) if config.add_adapter else None self.inner_layer_norm = nn.LayerNorm(config.hidden_size) # Initialize weights and apply final processing self.post_init() def forward( self, input_features: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_features is None: raise ValueError( """Both `input_features` and `inputs_embeds` are `None` in `SeamlessM4TSpeechEncoder.forward`. Make sure one of them is not `None`.""" ) hidden_states = self.feature_projection(input_features) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] expanded_hidden_states = self.intermediate_ffn(hidden_states) hidden_states = hidden_states + 0.5 * expanded_hidden_states if self.adapter is not None: hidden_states = self.adapter(hidden_states, attention_mask=attention_mask) hidden_states = self.inner_layer_norm(hidden_states) if not return_dict: return (hidden_states,) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # inspired from MBart and NllbMoe @add_start_docstrings( "Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`SeamlessM4TEncoderLayer`].", SEAMLESS_M4T_START_DOCSTRING, """ embed_tokens (`nn.Embedding`, *optional*): Input embedding is_t2u_encoder (`bool`, *optional*, defaults to `False`): indicates if it belongs to the text-to-units model, in which case it won't have input embeddings """, ) class SeamlessM4TEncoder(SeamlessM4TPreTrainedModel): def __init__( self, config: SeamlessM4TConfig, embed_tokens: Optional[nn.Embedding] = None, is_t2u_encoder: bool = False, ): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id embed_dim = config.hidden_size self.is_t2u_encoder = is_t2u_encoder self.max_source_positions = config.max_position_embeddings if not self.is_t2u_encoder: embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.embed_tokens = SeamlessM4TScaledWordEmbedding( config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale ) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = SeamlessM4TSinusoidalPositionalEmbedding( self.max_source_positions, embed_dim, self.padding_idx, ) layers = [] for _ in range(config.encoder_layers): layers.append( SeamlessM4TEncoderLayer( config, encoder_attention_heads=config.encoder_attention_heads, encoder_ffn_dim=config.encoder_ffn_dim, ) ) self.layers = nn.ModuleList(layers) self.layer_norm = nn.LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, BaseModelOutput]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and self.is_t2u_encoder: raise ValueError( "You cannot pass input_ids to the encoder of the text_to_units model. Pass inputs_embeds instead." ) # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input = input_ids input_shape = input.shape input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input = inputs_embeds[:, :, -1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if not self.is_t2u_encoder: embed_pos = self.embed_positions(input) hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device) else: hidden_states = inputs_embeds hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.forward, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @add_start_docstrings( "Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SeamlessM4TDecoderLayer`].", SEAMLESS_M4T_START_DOCSTRING, """ embed_tokens (`nn.Embedding`, *optional*): Input embedding """, ) class SeamlessM4TDecoder(SeamlessM4TPreTrainedModel): def __init__( self, config: SeamlessM4TConfig, embed_tokens: Optional[nn.Embedding] = None, ): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.max_target_positions = config.max_position_embeddings embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 if embed_tokens is not None: # if embed_tokens defined, use its shape instead self.embed_tokens = SeamlessM4TScaledWordEmbedding( embed_tokens.num_embeddings, embed_tokens.embedding_dim, self.padding_idx, embed_scale=embed_scale ) self.embed_tokens.weight = embed_tokens.weight else: self.embed_tokens = SeamlessM4TScaledWordEmbedding( self.vocab_size, config.hidden_size, self.padding_idx, embed_scale=embed_scale ) self.embed_positions = SeamlessM4TSinusoidalPositionalEmbedding( self.max_target_positions, config.hidden_size, padding_idx=self.padding_idx, ) layers = [] for _ in range(config.decoder_layers): layers.append( SeamlessM4TDecoderLayer( config, decoder_attention_heads=config.decoder_attention_heads, decoder_ffn_dim=config.decoder_ffn_dim, ) ) self.layers = nn.ModuleList(layers) self.layer_norm = nn.LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input = input_ids input_shape = input.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input, past_key_values_length=past_key_values_length) hidden_states = inputs_embeds + positions.to(inputs_embeds.device) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[1],) if output_attentions: all_self_attns += (layer_outputs[2],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[3],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "Transformer bare text-to-unit encoder-decoder. The encoder is a [`SeamlessM4TEncoder`] without embeddings and the decoder is a [`SeamlessM4TDecoder`].", SEAMLESS_M4T_START_DOCSTRING, """ embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder. """, ) class SeamlessM4TTextToUnitModel(SeamlessM4TPreTrainedModel): def __init__( self, config: SeamlessM4TConfig, embed_tokens_decoder: Optional[nn.Embedding] = None, ): super().__init__(config) self.encoder = SeamlessM4TEncoder(config, is_t2u_encoder=True) self.decoder = SeamlessM4TDecoder(config, embed_tokens_decoder) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "Transformer text-to-unit encoder-decoder with a language model head. The base encoder-decoder model is a [`SeamlessM4TTextToUnit`].", SEAMLESS_M4T_START_DOCSTRING, """ embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder. """, ) class SeamlessM4TTextToUnitForConditionalGeneration(SeamlessM4TPreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_missing = [ "vocoder", "speech_encoder", "text_encoder", "text_decoder", ] _tied_weights_keys = ["decoder.embed_tokens.weight", "lm_head.weight"] def __init__( self, config: SeamlessM4TConfig, embed_tokens_decoder: Optional[nn.Embedding] = None, ): # update config - used principaly for bos_token_id etc. config = copy.deepcopy(config) for param, val in config.to_dict().items(): if param.startswith("t2u_"): config.__setattr__(param[4:], val) super().__init__(config) self.model = SeamlessM4TTextToUnitModel(config, embed_tokens_decoder) self.lm_head = nn.Linear(config.hidden_size, config.t2u_vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value @add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.t2u_pad_token_id, self.config.t2u_decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.t2u_pad_token_id, self.config.t2u_decoder_start_token_id) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past def _tie_weights(self) -> None: if getattr(self.config, "tie_word_embeddings", True): output_embeddings = self.get_output_embeddings() if output_embeddings is not None: self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) ############ VOCODER related code ################ HIFIGAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SeamlessM4TConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ # Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock class HifiGanResidualBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): super().__init__() self.leaky_relu_slope = leaky_relu_slope self.convs1 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=dilation[i], padding=self.get_padding(kernel_size, dilation[i]), ) for i in range(len(dilation)) ] ) self.convs2 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=1, padding=self.get_padding(kernel_size, 1), ) for _ in range(len(dilation)) ] ) def get_padding(self, kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm for layer in self.convs1: weight_norm(layer) for layer in self.convs2: weight_norm(layer) def remove_weight_norm(self): for layer in self.convs1: nn.utils.remove_weight_norm(layer) for layer in self.convs2: nn.utils.remove_weight_norm(layer) def forward(self, hidden_states): for conv1, conv2 in zip(self.convs1, self.convs2): residual = hidden_states hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv1(hidden_states) hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv2(hidden_states) hidden_states = hidden_states + residual return hidden_states class SeamlessM4TVariancePredictor(nn.Module): def __init__(self, config): super().__init__() embed_dim = config.unit_embed_dim kernel_size = config.variance_predictor_kernel_size var_pred_dropout = config.var_pred_dropout self.conv1 = nn.Conv1d( embed_dim, embed_dim, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, ) self.activation_fuction = nn.ReLU() self.ln1 = nn.LayerNorm(embed_dim) self.dropout_module = nn.Dropout(p=var_pred_dropout) self.conv2 = nn.Conv1d( embed_dim, embed_dim, kernel_size=kernel_size, padding=1, ) self.ln2 = nn.LayerNorm(embed_dim) self.proj = nn.Linear(embed_dim, 1) def forward(self, hidden_states: Tensor) -> Tensor: # Input: B x T x C; Output: B x T hidden_states = self.conv1(hidden_states.transpose(1, 2)) hidden_states = self.activation_fuction(hidden_states).transpose(1, 2) hidden_states = self.dropout_module(self.ln1(hidden_states)) hidden_states = self.conv2(hidden_states.transpose(1, 2)) hidden_states = self.activation_fuction(hidden_states).transpose(1, 2) hidden_states = self.dropout_module(self.ln2(hidden_states)) return self.proj(hidden_states).squeeze(dim=2) class SeamlessM4THifiGan(nn.Module): def __init__(self, config: SeamlessM4TConfig): super().__init__() model_in_dim = config.unit_embed_dim + config.lang_embed_dim + config.spkr_embed_dim self.leaky_relu_slope = config.leaky_relu_slope self.num_kernels = len(config.resblock_kernel_sizes) self.num_upsamples = len(config.upsample_rates) self.conv_pre = nn.Conv1d( model_in_dim, config.upsample_initial_channel, kernel_size=7, stride=1, padding=3, ) self.upsampler = nn.ModuleList() for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): self.upsampler.append( nn.ConvTranspose1d( config.upsample_initial_channel // (2**i), config.upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel_size, stride=upsample_rate, padding=(kernel_size - upsample_rate) // 2, ) ) self.resblocks = nn.ModuleList() for i in range(len(self.upsampler)): channels = config.upsample_initial_channel // (2 ** (i + 1)) for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3) def forward(self, input_embeds: torch.FloatTensor) -> torch.FloatTensor: r""" Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech waveform. Args: spectrogram (`torch.FloatTensor`): Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length, model_in_dim)`, or un-batched and of shape `(sequence_length, model_in_dim)`. Note that `model_in_dim` is the sum of `config.unit_embed_dim`, `config.lang_embed_dim` and `config.spkr_embed_dim`. Returns: `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`. """ hidden_states = self.conv_pre(input_embeds) for i in range(self.num_upsamples): hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = self.upsampler[i](hidden_states) res_state = self.resblocks[i * self.num_kernels](hidden_states) for j in range(1, self.num_kernels): res_state += self.resblocks[i * self.num_kernels + j](hidden_states) hidden_states = res_state / self.num_kernels hidden_states = nn.functional.leaky_relu(hidden_states) hidden_states = self.conv_post(hidden_states) hidden_states = torch.tanh(hidden_states) # remove seq-len dim since this collapses to 1 waveform = hidden_states.squeeze(1) return waveform @add_start_docstrings( """Code HiFi-GAN vocoder as described in this [repository](https://github.com/facebookresearch/speech-resynthesis).""", HIFIGAN_START_DOCSTRING, ) class SeamlessM4TCodeHifiGan(PreTrainedModel): config_class = SeamlessM4TConfig main_input_name = "input_embeds" _no_split_modules = [] def __init__(self, config): super().__init__(config) self.pad_token_id = config.t2u_pad_token_id self.dur_predictor = SeamlessM4TVariancePredictor(config) self.unit_embedding = nn.Embedding(config.unit_hifi_gan_vocab_size, config.unit_embed_dim) self.speaker_embedding = nn.Embedding(config.vocoder_num_spkrs, config.spkr_embed_dim) self.language_embedding = nn.Embedding(config.vocoder_num_langs, config.lang_embed_dim) self.hifi_gan = SeamlessM4THifiGan(config) # Initialize weights and apply final processing self.post_init() def _get_dur_output_lengths(self, input_ids, dur_out): """ Computes the output length after the duration layer. """ unit_lengths = (input_ids != self.pad_token_id).sum(1) # take care of edge cases where no padding or too many padding unit_lengths = torch.clamp(unit_lengths, 0, dur_out.shape[1] - 1) cumulative_dur_out = torch.cumsum(dur_out, dim=1) unit_lengths = cumulative_dur_out.gather(dim=1, index=unit_lengths.unsqueeze(1)).squeeze() return unit_lengths def _get_output_hifigan_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the hifigan convolutional layers """ def _conv_out_length(input_length, kernel_size, stride, pad, dilation=1): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return ( torch.div(input_length + 2 * pad - dilation * (kernel_size - 1) - 1, stride, rounding_mode="floor") + 1 ) def _transpose_conv_out_length(input_length, kernel_size, stride, pad, dilation=1): return (input_length - 1) * stride - 2 * pad + dilation * (kernel_size - 1) + 1 # conv_pre input_lengths = _conv_out_length(input_lengths, 7, 1, 3) # upsampler for i, (upsample_rate, kernel_size) in enumerate( zip(self.config.upsample_rates, self.config.upsample_kernel_sizes) ): input_lengths = _transpose_conv_out_length( input_lengths, kernel_size, upsample_rate, (kernel_size - upsample_rate) // 2 ) # resblock for i in range(len(self.config.upsample_rates)): for kernel_size, dilation in zip(self.config.resblock_kernel_sizes, self.config.resblock_dilation_sizes): for dil in dilation: input_lengths = _conv_out_length( input_lengths, kernel_size, 1, (kernel_size - 1) * dil // 2, dilation=dil ) for dil in dilation: input_lengths = _conv_out_length(input_lengths, kernel_size, 1, (kernel_size - 1) // 2, dilation=1) # conv_post input_lengths = _conv_out_length(input_lengths, 7, 1, 3) return input_lengths def forward( self, input_ids: torch.LongTensor, spkr_id: torch.Tensor, lang_id: torch.Tensor ) -> Tuple[torch.Tensor]: """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTextToUnitForConditionalGeneration`]. [What are input IDs?](../glossary#input-ids) spkr_id (`int`, *optional*): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. tgt_lang (`str`, *optional*): The language id to use as target language for translation. """ hidden_states = self.unit_embedding(input_ids).transpose(1, 2) spkr = self.speaker_embedding(spkr_id).transpose(1, 2) lang = self.language_embedding(lang_id).transpose(1, 2) log_dur_pred = self.dur_predictor(hidden_states.transpose(1, 2)) dur_out = torch.clamp(torch.round((torch.expm1(log_dur_pred))).long(), min=1) # B x C x T if hidden_states.size(0) == 1: hidden_states = torch.repeat_interleave(hidden_states, dur_out.view(-1), dim=2) else: # if batched sample, need to interleave per sample, and pad -> loss of parallelism if hidden_states.shape[0] > 1 and self.training: logger.warning( """`self.training=True` and you use batching. You lose parallelism during the hifigan forward pass because the samples are interleaved.""" ) hidden_states = [ torch.repeat_interleave(hidden_state, duration, dim=-1).transpose(0, 1) for (hidden_state, duration) in zip(hidden_states, dur_out) ] hidden_states = nn.utils.rnn.pad_sequence(hidden_states, batch_first=True).transpose(1, 2) spkr = spkr.repeat(1, 1, hidden_states.shape[-1]) lang = lang.repeat(1, 1, hidden_states.shape[-1]) hidden_states = torch.cat([lang, hidden_states, spkr], dim=1) hidden_states = self.hifi_gan(hidden_states) unit_lengths = self._get_dur_output_lengths(input_ids, dur_out) lengths = self._get_output_hifigan_lengths(unit_lengths) return hidden_states, lengths def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm weight_norm(self.hifi_gan.conv_pre) for layer in self.hifi_gan.upsampler: weight_norm(layer) for layer in self.hifi_gan.resblocks: layer.apply_weight_norm() weight_norm(self.hifi_gan.conv_post) def remove_weight_norm(self): nn.utils.remove_weight_norm(self.hifi_gan.conv_pre) for layer in self.hifi_gan.upsampler: nn.utils.remove_weight_norm(layer) for layer in self.hifi_gan.resblocks: layer.remove_weight_norm() nn.utils.remove_weight_norm(self.hifi_gan.conv_post) ############ WHOLE MODEL related code ################ @add_start_docstrings( "The text-to-text SeamlessM4T Model transformer which can be used for T2TT.", SEAMLESS_M4T_START_DOCSTRING, ) class SeamlessM4TForTextToText(SeamlessM4TPreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_missing = ["speech_encoder", "t2u_model", "vocoder"] main_input_name = "input_ids" _tied_weights_keys = [ "lm_head.weight", "text_encoder.embed_tokens.weight", "text_decoder.embed_tokens.weight", ] def __init__(self, config: SeamlessM4TConfig): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.text_encoder = SeamlessM4TEncoder(config, self.shared) self.text_decoder = SeamlessM4TDecoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.text_encoder def get_decoder(self): return self.text_decoder def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens def set_input_embeddings(self, value): self.text_encoder.embed_tokens = value self.text_decoder.embed_tokens = value self.shared = value def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def generate( self, input_ids=None, tgt_lang=None, generation_config=None, logits_processor=None, stopping_criteria=None, prefix_allowed_tokens_fn=None, synced_gpus=False, **kwargs, ): """ Generates sequences of token ids. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: input_ids (`torch.Tensor` of varying shape depending on the modality, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) tgt_lang (`str`, *optional*): The language to use as target language for translation. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904). synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # prepare text_decoder_input_ids text_decoder_input_ids = kwargs.pop("decoder_input_ids", None) # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. if tgt_lang is not None: batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds")) if hasattr(self.generation_config, "text_decoder_lang_to_code_id"): # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {", ".join(self.generation_config.text_decoder_lang_to_code_id.keys())}""" ) # tgt_lang gets priority over decoder input ids text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size, device=self.device) else: raise ValueError( """This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) else: # only a warning, otherwise errors appear in the tests logger.warning( """You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get a correct generation, otherwise the generation will probably make no sense.""" ) return super().generate( input_ids, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, decoder_input_ids=text_decoder_input_ids, **kwargs, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( "The speech-to-text SeamlessM4T Model transformer which can be used for S2TT.", SEAMLESS_M4T_START_DOCSTRING, ) class SeamlessM4TForSpeechToText(SeamlessM4TPreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_missing = ["text_decoder", "t2u_model", "vocoder"] main_input_name = "input_features" _tied_weights_keys = [ "lm_head.weight", "text_decoder.embed_tokens.weight", ] def __init__(self, config: SeamlessM4TConfig): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.speech_encoder = SeamlessM4TSpeechEncoder(config) self.text_decoder = SeamlessM4TDecoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.speech_encoder def get_decoder(self): return self.text_decoder def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens def set_input_embeddings(self, value): self.text_decoder.embed_tokens = value def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING) def forward( self, input_features: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.speech_encoder( input_features=input_features, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_outputs[0].device ) encoder_attention_mask = _compute_new_attention_mask( hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def generate( self, input_features=None, tgt_lang=None, generation_config=None, logits_processor=None, stopping_criteria=None, prefix_allowed_tokens_fn=None, synced_gpus=False, **kwargs, ): """ Generates sequences of token ids. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. tgt_lang (`str`, *optional*): The language to use as target language for translation. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904). synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ text_decoder_input_ids = kwargs.pop("decoder_input_ids", None) # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. input_features = input_features if input_features is not None else kwargs.pop("inputs") if tgt_lang is not None: inputs = kwargs.get("input_embeds") if input_features is None else input_features inputs = ( inputs if inputs is not None else kwargs.get("encoder_outputs", {"last_hidden_state": None})["last_hidden_state"] ) batch_size = len(inputs) if hasattr(self.generation_config, "text_decoder_lang_to_code_id"): # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {", ".join(self.generation_config.text_decoder_lang_to_code_id.keys())}""" ) # tgt_lang gets priority over decoder input ids text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size, device=self.device) else: raise ValueError( """This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) else: # only a warning, otherwise errors appear in the tests logger.warning( """You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get a correct generation, otherwise the generation will probably make no sense.""" ) return super().generate( input_features, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, decoder_input_ids=text_decoder_input_ids, **kwargs, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( "The text-to-speech SeamlessM4T Model transformer which can be used for T2ST.", SEAMLESS_M4T_START_DOCSTRING, ) class SeamlessM4TForTextToSpeech(SeamlessM4TPreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_missing = ["speech_encoder"] main_input_name = "input_ids" _tied_weights_keys = [ "lm_head.weight", "text_encoder.embed_tokens.weight", "text_decoder.embed_tokens.weight", ] def __init__(self, config: SeamlessM4TConfig): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.text_encoder = SeamlessM4TEncoder(config, self.shared) self.text_decoder = SeamlessM4TDecoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config) self.vocoder = SeamlessM4TCodeHifiGan(config) def get_encoder(self): return self.text_encoder def get_decoder(self): return self.text_decoder def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens def set_input_embeddings(self, value): self.text_encoder.embed_tokens = value self.text_decoder.embed_tokens = value self.shared = value def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This is the same forward method as `SeamlessM4TForTextToText`." "It doesn't use the text-to-unit model `SeamlessM4TTextToUnitForConditionalGeneration`." "If you want to generate speech, use the `.generate` method." ) encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @torch.no_grad() def generate( self, input_ids: Optional[torch.Tensor] = None, return_intermediate_token_ids: Optional[bool] = None, tgt_lang: Optional[str] = None, spkr_id: Optional[int] = 0, **kwargs, ) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]: """ Generates translated audio waveforms. <Tip> This method successively calls the `.generate` function of two different sub-models. You can specify keyword arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments that will be passed to one of them. For example, calling `.generate(input_ids, num_beams=4, speech_do_sample=True)` will successively perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) return_intermediate_token_ids (`bool`, *optional*): If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want to get translated text alongside the audio. tgt_lang (`str`, *optional*): The language to use as target language for translation. spkr_id (`int`, *optional*, defaults to 0): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. Returns: `Union[SeamlessM4TGenerationOutput, Tuple[Tensor]]`: - If `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`]. - If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample. """ batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds")) if tgt_lang is None: raise ValueError("You must specify a `tgt_lang` to generate translated speech.") else: # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]: lang_code_to_id = getattr(self.generation_config, key, None) if lang_code_to_id is None: raise ValueError( f"""This model generation config doesn't have a `{key}` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) elif tgt_lang not in lang_code_to_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {",".join(lang_code_to_id.keys())}. Note that SeamlessM4T supports more languages for text translation than for speech synthesis.""" ) kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs) kwargs_text["output_hidden_states"] = True kwargs_text["return_dict_in_generate"] = True kwargs_text["output_scores"] = True text_decoder_input_ids = kwargs_text.get("decoder_input_ids") # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size, device=self.device) kwargs_text["decoder_input_ids"] = text_decoder_input_ids # first generation text_generation_output = super().generate(input_ids, **kwargs_text) sequences = text_generation_output.sequences # prepare second generation num_return_sequences = len(sequences) // batch_size attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None)) encoder_hidden_states = text_generation_output.encoder_hidden_states[-1] # take care of num_return_sequences # take most probable hidden states per batch of return_sequences # (batch_size*num_return_sequences, ...) -> (batch_size,...) if num_return_sequences > 1: idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1) idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1) idx_most_probable_sequences_per_batch = ( idx_most_probable_sequences_per_batch + torch.arange(batch_size, device=self.device) * num_return_sequences ) sequences = sequences[idx_most_probable_sequences_per_batch] # get decoder last hidden state - must do a pass through the text decoder t2u_input_embeds = self.text_decoder( input_ids=sequences, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, ).last_hidden_state pad_token_id = self.generation_config.pad_token_id # Compute new attention mask seq_lens = (sequences != pad_token_id).int().sum(1) t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens) kwargs_speech["attention_mask"] = t2u_model_attention_mask # Compute t2u decoder_input_ids t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids") t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang) t2u_decoder_input_ids = torch.tensor( [[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size, device=self.device ) kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids # second generation unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech) output_unit_ids = unit_ids.detach().clone() # get rid of t2u_decoder_input_ids unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :] # replace eos per pad unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id # offset of control symbols unit_ids = torch.where( unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset ) vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang) vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids), device=self.device) spkr_id = torch.tensor([[spkr_id]] * len(unit_ids), device=self.device) waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id) if return_intermediate_token_ids: return SeamlessM4TGenerationOutput( waveform=waveform, waveform_lengths=waveform_lengths, sequences=sequences, unit_sequences=output_unit_ids, ) return waveform, waveform_lengths @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( "The speech-to-speech SeamlessM4T Model transformer which can be used for S2ST.", SEAMLESS_M4T_START_DOCSTRING, ) class SeamlessM4TForSpeechToSpeech(SeamlessM4TPreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_missing = ["text_encoder"] main_input_name = "input_features" _tied_weights_keys = [ "lm_head.weight", "text_decoder.embed_tokens.weight", ] def __init__(self, config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.speech_encoder = SeamlessM4TSpeechEncoder(config) self.text_decoder = SeamlessM4TDecoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config) self.vocoder = SeamlessM4TCodeHifiGan(config) def get_encoder(self): return self.speech_encoder def get_decoder(self): return self.text_decoder def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens def set_input_embeddings(self, value): self.text_decoder.embed_tokens = value def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING) def forward( self, input_features: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This is the same forward method as `SeamlessM4TForSpeechToText`. It doesn't use `self.t2u_model`." "If you want to generate speech, use the `generate` method." ) encoder_outputs = self.speech_encoder( input_features=input_features, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_outputs[0].device ) encoder_attention_mask = _compute_new_attention_mask( hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @torch.no_grad() def generate( self, input_features: Optional[torch.Tensor] = None, return_intermediate_token_ids: Optional[bool] = None, tgt_lang: Optional[str] = None, spkr_id: Optional[int] = 0, **kwargs, ) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]: """ Generates translated audio waveforms. <Tip> This method successively calls the `.generate` function of two different sub-models. You can specify keyword arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments that will be passed to one of them. For example, calling `.generate(input_features, num_beams=4, speech_do_sample=True)` will successively perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Args: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. return_intermediate_token_ids (`bool`, *optional*): If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want to get translated text alongside the audio. tgt_lang (`str`, *optional*): The language to use as target language for translation. spkr_id (`int`, *optional*, defaults to 0): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. Returns: `Union[SeamlessM4TGenerationOutput, Tuple[Tensor]]`: - If `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`]. - If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample. """ batch_size = len(input_features) if input_features is not None else len(kwargs.get("inputs_embeds")) if tgt_lang is None: raise ValueError("You must specify a `tgt_lang` to generate translated speech.") else: # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]: lang_code_to_id = getattr(self.generation_config, key, None) if lang_code_to_id is None: raise ValueError( f"""This model generation config doesn't have a `{key}` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) elif tgt_lang not in lang_code_to_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {",".join(lang_code_to_id.keys())}. Note that SeamlessM4T supports more languages for text translation than for speech synthesis.""" ) kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs) kwargs_text["output_hidden_states"] = True kwargs_text["return_dict_in_generate"] = True kwargs_text["output_scores"] = True text_decoder_input_ids = kwargs_text.get("decoder_input_ids") # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size, device=self.device) kwargs_text["decoder_input_ids"] = text_decoder_input_ids # first generation text_generation_output = super().generate(input_features, **kwargs_text) sequences = text_generation_output.sequences # prepare second generation num_return_sequences = len(sequences) // batch_size attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None)) # get last_hidden_state from encoder encoder_hidden_states = self.speech_encoder(input_features=input_features, attention_mask=attention_mask)[0] # input modality = speech so new attention mask for the decoder if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_hidden_states.device ) attention_mask = _compute_new_attention_mask( hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths ) # take care of num_return_sequences # take most probable hidden states per batch of return_sequences # (batch_size*num_return_sequences, ...) -> (batch_size,...) if num_return_sequences > 1: idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1) idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1) idx_most_probable_sequences_per_batch = ( idx_most_probable_sequences_per_batch + torch.arange(batch_size, device=self.device) * num_return_sequences ) sequences = sequences[idx_most_probable_sequences_per_batch] # get decoder last hidden state - must do a pass through the text decoder t2u_input_embeds = self.text_decoder( input_ids=sequences, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, ).last_hidden_state pad_token_id = self.generation_config.pad_token_id # Compute new attention mask seq_lens = (sequences != pad_token_id).int().sum(1) t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens) kwargs_speech["attention_mask"] = t2u_model_attention_mask # Compute t2u decoder_input_ids t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids") t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang) t2u_decoder_input_ids = torch.tensor( [[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size, device=self.device ) kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids # second generation unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech) output_unit_ids = unit_ids.detach().clone() # get rid of t2u_decoder_input_ids unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :] # replace eos per pad unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id # offset of control symbols unit_ids = torch.where( unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset ) vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang) vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids), device=self.device) spkr_id = torch.tensor([[spkr_id]] * len(unit_ids), device=self.device) waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id) if return_intermediate_token_ids: return SeamlessM4TGenerationOutput( waveform=waveform, waveform_lengths=waveform_lengths, sequences=sequences, unit_sequences=output_unit_ids, ) return waveform, waveform_lengths @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( "The original SeamlessM4T Model transformer which can be used for every tasks available (S2ST, S2TT, T2TT, T2ST).", SEAMLESS_M4T_START_DOCSTRING, """ current_modality (`str`, *optional*, defaults to `"text"`): Default modality. Used to initialize the model. """, ) class SeamlessM4TModel(SeamlessM4TPreTrainedModel, GenerationMixin): _tied_weights_keys = [ "lm_head.weight", "text_encoder.embed_tokens.weight", "text_decoder.embed_tokens.weight", ] def __init__(self, config, current_modality="text"): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.text_encoder = SeamlessM4TEncoder(config, self.shared) self.speech_encoder = SeamlessM4TSpeechEncoder(config) self.text_decoder = SeamlessM4TDecoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() self.current_modality = current_modality if current_modality == "speech": self.main_input_name = "input_features" # these models already call post_init in their initialization self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config) self.vocoder = SeamlessM4TCodeHifiGan(config) def set_modality(self, modality="text"): if modality == "text": self.main_input_name = "input_ids" self.current_modality = "text" elif modality == "speech": self.main_input_name = "input_features" self.current_modality = "speech" else: raise ValueError(f"`modality={modality}` is not a valid modality. It must be `text` or `speech`.") def get_encoder(self): if self.current_modality == "text": return self.text_encoder else: return self.speech_encoder def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens def set_input_embeddings(self, value): self.text_encoder.embed_tokens = value self.text_decoder.embed_tokens = value self.shared = value def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_MODEL_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, input_features: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) if input_ids is None and input_features is None and inputs_embeds is None and encoder_outputs is None: raise ValueError( "`input_ids`,`input_features`, `inputs_embeds` and `encoder_outputs` are all empty. Make sure at least one of them is not." ) elif input_features is not None: if input_ids is not None: logger.warning( "`input_ids` is not `None` but `input_features` has been given." "`input_features` will be used in priority through the `speech_encoder`. " "Make sure that `input_features` and `input_ids` are mutually exclusive." ) if inputs_embeds is not None: logger.warning( "`inputs_embeds` is not `None` but `input_features` has been given." "`input_features` will be used in priority through `speech_encoder`. " "`inputs_embeds` will be ignored." ) # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This calls the same method `forward` as `SeamlessM4TForTextToText` and `SeamlessM4TForSpeechToText`" "depending on the input modality. If you want to generate speech, use the `generate` method." ) self.set_modality("speech") encoder_outputs = self.speech_encoder( input_features=input_features, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif input_ids is not None or inputs_embeds is not None: # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This calls the same method `forward` as `SeamlessM4TForTextToText` and `SeamlessM4TForSpeechToText`" "depending on the input modality. If you want to generate speech, use the `generate` method." ) self.set_modality("text") encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask # input modality = speech so new attention mask if self.current_modality == "speech" and attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_outputs[0].device ) encoder_attention_mask = _compute_new_attention_mask( hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @torch.no_grad() def generate( self, input_ids: Optional[torch.Tensor] = None, input_features: Optional[torch.Tensor] = None, return_intermediate_token_ids: Optional[bool] = None, tgt_lang: Optional[str] = None, spkr_id: Optional[int] = 0, generate_speech: Optional[bool] = True, **kwargs, ) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]: """ Generates translated token ids and/or translated audio waveforms. <Tip> This method successively calls the `.generate` function of two different sub-models. You can specify keyword arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments that will be passed to one of them. For example, calling `.generate(input_ids=input_ids, num_beams=4, speech_do_sample=True)` will successively perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`, *optional*): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. return_intermediate_token_ids (`bool`, *optional*): If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want to get translated text alongside the audio. Note that if `generate_speech=True`, this parameter will be ignored. tgt_lang (`str`, *optional*): The language to use as target language for translation. spkr_id (`int`, *optional*, defaults to 0): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. generate_speech (`bool`, *optional*, defaults to `True`): If `False`, will only returns the text tokens and won't generate speech. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. Returns: `Union[SeamlessM4TGenerationOutput, Tuple[Tensor], ModelOutput]`: - If `generate_speech` and `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`]. - If `generate_speech` and not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample. - If `generate_speech=False`, it will returns `ModelOutput`. """ if input_ids is None and input_features is None and kwargs.get("inputs_embeds", None) is None: raise ValueError( "`input_ids`,`input_features` and `inputs_embeds` are all empty. Make sure at least one of them is not." ) if generate_speech and tgt_lang is None: raise ValueError("You must specify a `tgt_lang` to generate translated speech.") if tgt_lang is not None: # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]: lang_code_to_id = getattr(self.generation_config, key, None) if lang_code_to_id is None: raise ValueError( f"""This model generation config doesn't have a `{key}` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) elif tgt_lang not in lang_code_to_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {",".join(lang_code_to_id.keys())}. Note that SeamlessM4T supports more languages for text translation than for speech synthesis.""" ) batch_size = ( len(input_features) if input_features is not None else (len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds"))) ) kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs) kwargs_text["output_hidden_states"] = True kwargs_text["return_dict_in_generate"] = True kwargs_text["output_scores"] = True text_decoder_input_ids = kwargs_text.get("decoder_input_ids") # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. if tgt_lang is not None: # tgt_lang gets priority over decoder input ids text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size, device=self.device) kwargs_text["decoder_input_ids"] = text_decoder_input_ids # first generation if input_features is not None: self.set_modality("speech") if input_ids is not None: logger.warning( "`input_features` and `input_ids` are both non empty. `input_features` will be used in priority " "through the speech encoder. Make sure `input_features=None` if you want to use the text encoder." ) text_generation_output = super().generate(input_features=input_features, **kwargs_text) else: self.set_modality("text") text_generation_output = super().generate(input_ids=input_ids, input_features=None, **kwargs_text) sequences = text_generation_output.sequences if not generate_speech: return text_generation_output # prepare second generation num_return_sequences = len(sequences) // batch_size attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None)) # get encoder last hidden states if self.current_modality == "speech": # get last_hidden_state from encoder - must do a pass through the speech encoder encoder_hidden_states = self.speech_encoder( input_features=input_features, attention_mask=attention_mask ).last_hidden_state # input modality = speech so new attention mask for the decoder if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_hidden_states.device ) attention_mask = _compute_new_attention_mask( hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths ) else: encoder_hidden_states = text_generation_output.encoder_hidden_states[-1] # take care of num_return_sequences # take most probable hidden states per batch of return_sequences # (batch_size*num_return_sequences, ...) -> (batch_size,...) if num_return_sequences > 1: idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1) idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1) idx_most_probable_sequences_per_batch = ( idx_most_probable_sequences_per_batch + torch.arange(batch_size, device=self.device) * num_return_sequences ) sequences = sequences[idx_most_probable_sequences_per_batch] # get decoder last hidden state - must do a pass through the text decoder t2u_input_embeds = self.text_decoder( input_ids=sequences, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, ).last_hidden_state pad_token_id = self.generation_config.pad_token_id # Compute new attention mask seq_lens = (sequences != pad_token_id).int().sum(1) t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens) kwargs_speech["attention_mask"] = t2u_model_attention_mask # Compute t2u decoder_input_ids t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids") t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang) t2u_decoder_input_ids = torch.tensor( [[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size, device=self.device ) kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids # second generation unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech) output_unit_ids = unit_ids.detach().clone() # get rid of t2u_decoder_input_ids unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :] # replace eos per pad unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id # offset of control symbols unit_ids = torch.where( unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset ) vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang) vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids), device=self.device) spkr_id = torch.tensor([[spkr_id]] * len(unit_ids), device=self.device) waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id) if return_intermediate_token_ids: return SeamlessM4TGenerationOutput( waveform=waveform, waveform_lengths=waveform_lengths, sequences=sequences, unit_sequences=output_unit_ids, ) return waveform, waveform_lengths @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past __all__ = [ "SeamlessM4TForTextToSpeech", "SeamlessM4TForSpeechToSpeech", "SeamlessM4TForTextToText", "SeamlessM4TForSpeechToText", "SeamlessM4TModel", "SeamlessM4TPreTrainedModel", "SeamlessM4TCodeHifiGan", "SeamlessM4THifiGan", "SeamlessM4TTextToUnitForConditionalGeneration", "SeamlessM4TTextToUnitModel", ] ```
=================================================================================================================================================== SOURCE CODE FILE: processing_seamless_m4t.py LINES: 1 SIZE: 5.79 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seamless_m4t\processing_seamless_m4t.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Audio/Text processor class for SeamlessM4T """ from ...processing_utils import ProcessorMixin class SeamlessM4TProcessor(ProcessorMixin): r""" Constructs a SeamlessM4T processor which wraps a SeamlessM4T feature extractor and a SeamlessM4T tokenizer into a single processor. [`SeamlessM4TProcessor`] offers all the functionalities of [`SeamlessM4TFeatureExtractor`] and [`SeamlessM4TTokenizerFast`]. See the [`~SeamlessM4TProcessor.__call__`] and [`~SeamlessM4TProcessor.decode`] for more information. Args: feature_extractor ([`SeamlessM4TFeatureExtractor`]): The audio processor is a required input. tokenizer ([`SeamlessM4TTokenizerFast`]): The tokenizer is a required input. """ feature_extractor_class = "SeamlessM4TFeatureExtractor" tokenizer_class = ("SeamlessM4TTokenizer", "SeamlessM4TTokenizerFast") def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) def __call__(self, text=None, audios=None, src_lang=None, tgt_lang=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text` and `kwargs` arguments to SeamlessM4TTokenizerFast's [`~SeamlessM4TTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the docstring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the sample length of the audio. src_lang (`str`, *optional*): The language code of the input texts/audios. If not specified, the last `src_lang` specified will be used. tgt_lang (`str`, *optional*): The code of the target language. If not specified, the last `tgt_lang` specified will be used. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to the feature extractor and/or the tokenizer. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **input_features** -- Audio input features to be fed to a model. Returned when `audios` is not `None`. """ sampling_rate = kwargs.pop("sampling_rate", None) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none.") elif text is not None and audios is not None: raise ValueError( "Text and audios are mututally exclusive when passed to `SeamlessM4T`. Specify one or another." ) elif text is not None: if tgt_lang is not None: self.tokenizer.tgt_lang = tgt_lang if src_lang is not None: self.tokenizer.src_lang = src_lang encoding = self.tokenizer(text, **kwargs) return encoding else: encoding = self.feature_extractor(audios, sampling_rate=sampling_rate, **kwargs) return encoding def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names feature_extractor_input_names = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names)) __all__ = ["SeamlessM4TProcessor"] ```
===================================================================================================================================================== SOURCE CODE FILE: tokenization_seamless_m4t.py LINES: 1 SIZE: 25.40 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seamless_m4t\tokenization_seamless_m4t.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for SeamlessM4T.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...convert_slow_tokenizer import import_protobuf from ...tokenization_utils import ( BatchEncoding, PreTokenizedInput, PreTrainedTokenizer, TextInput, ) from ...tokenization_utils_base import AddedToken from ...utils import PaddingStrategy, logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} class SeamlessM4TTokenizer(PreTrainedTokenizer): """ Construct a SeamlessM4T tokenizer. Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). The tokenization method is `<language code> <tokens> <eos>` for source language documents, and `<eos> <language code> <tokens> <eos>` for target language documents. Examples: ```python >>> from transformers import SeamlessM4TTokenizer >>> tokenizer = SeamlessM4TTokenizer.from_pretrained( ... "facebook/hf-seamless-m4t-medium", src_lang="eng", tgt_lang="fra" ... ) >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" >>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie." >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt") ``` Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. tokenizer_file (`str`, *optional*): The path to a tokenizer file to use instead of the vocab file. src_lang (`str`, *optional*, defaults to `"eng"`): The language to use as source language for translation. tgt_lang (`str`, *optional*, defaults to `"fra"`): The language to use as target language for translation. sp_model_kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments to pass to the model initialization. additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*): A tuple or a list of additional special tokens. Can be used to specify the list of languages that will be supported by the tokenizer. add_prefix_space (`bool`, *optional*, defaults to `True`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", tokenizer_file=None, src_lang="eng", tgt_lang="fra", sp_model_kwargs: Optional[Dict[str, Any]] = None, additional_special_tokens=None, add_prefix_space=True, **kwargs, ): self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs # Add this unused argument to keep some important Copied from statements self.legacy = False self.vocab_file = vocab_file self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False)) # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # spm | '<unk>' | '<s>' | '</s>' | 'an' | 'en' | '_d' | 'er' | 'in' | '_s' | '_a' # fairseq | '<pad>' | '<unk>' | '<s>' | '</s>' | 'an' | 'en' | '▁d' | 'er' | 'in' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token self._added_tokens_decoder = { 0: AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token, 1: AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token, 2: AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token, 3: AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token, } # The first "real" token "an" has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.sp_model_size = len(self.sp_model) self._src_lang = f"__{src_lang}__" if "__" not in src_lang else src_lang self._tgt_lang = f"__{tgt_lang}__" if "__" not in tgt_lang else tgt_lang self.add_prefix_space = add_prefix_space super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, tokenizer_file=tokenizer_file, src_lang=src_lang, tgt_lang=tgt_lang, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, add_prefix_space=add_prefix_space, **kwargs, ) self.set_src_lang_special_tokens(self._src_lang) self.set_tgt_lang_special_tokens(self._tgt_lang) # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @property def vocab_size(self): return len(self.sp_model) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair_target: Optional[ Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] ] = None, padding: Union[bool, str, PaddingStrategy] = True, pad_to_multiple_of: Optional[int] = 2, src_lang: Optional[str] = None, tgt_lang: Optional[str] = None, **kwargs, ): """ Args: text (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). src_lang (`str`, *optional*): A string representing the source language. If not specified, the last `src_lang` specified (either during initialization or when calling this tokenizer) will be used. tgt_lang (`str`, *optional*): A string representing the target language. If not specified, the last `tgt_lang` specified (either during initialization or when calling this tokenizer) will be used. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to [`PreTrainedTokenizer.__call__`]. """ if src_lang is not None: self.src_lang = src_lang if tgt_lang is not None: self.tgt_lang = tgt_lang output = super().__call__( text=text, text_pair=text_pair, text_target=text_target, text_pair_target=text_pair_target, padding=padding, pad_to_multiple_of=pad_to_multiple_of, **kwargs, ) return BatchEncoding(output, tensor_type=kwargs.get("return_tensors")) @property # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.src_lang def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: if "__" not in new_src_lang: self._src_lang = f"__{new_src_lang}__" else: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) @property def tgt_lang(self) -> str: return self._tgt_lang @tgt_lang.setter def tgt_lang(self, new_tgt_lang: str) -> None: if "__" not in new_tgt_lang: self._tgt_lang = f"__{new_tgt_lang}__" else: self._tgt_lang = new_tgt_lang self.set_tgt_lang_special_tokens(self._tgt_lang) # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] * len(self.suffix_tokens) if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An NLLB sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `X [eos, src_lang_code]` - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model.") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) if "__" not in tgt_lang: tgt_lang = f"__{tgt_lang}__" tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def get_vocab(self): vocab = { self.convert_ids_to_tokens(i): i for i in range(self.fairseq_offset, self.vocab_size + self.fairseq_offset) } vocab.update(self.added_tokens_encoder) return vocab @property def unk_token_length(self): return len(self.sp_model.encode(str(self.unk_token))) # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor def get_spm_processor(self, from_slow=False): tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) if self.legacy or from_slow: # no dependency on protobuf tokenizer.Load(self.vocab_file) return tokenizer with open(self.vocab_file, "rb") as f: sp_model = f.read() model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)") model = model_pb2.ModelProto.FromString(sp_model) normalizer_spec = model_pb2.NormalizerSpec() normalizer_spec.add_dummy_prefix = False model.normalizer_spec.MergeFrom(normalizer_spec) sp_model = model.SerializeToString() tokenizer.LoadFromSerializedProto(sp_model) return tokenizer # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize def tokenize(self, text: "TextInput", **kwargs) -> List[str]: """ Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the first token is special. """ if self.legacy or len(text) == 0: return super().tokenize(text, **kwargs) text = text.replace(SPIECE_UNDERLINE, " ") if self.add_prefix_space: text = SPIECE_UNDERLINE + text tokens = super().tokenize(text, **kwargs) if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: tokens = tokens[1:] return tokens # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize def _tokenize(self, text, **kwargs): """ Returns a tokenized string. We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. """ if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")): return self.sp_model.encode(text, out_type=str) # 1. Encode string + prefix ex: "<unk> Hey" tokens = self.sp_model.encode(self.unk_token + text, out_type=str) # 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" # since we manually add the prefix space, we have to remove it when decoding if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space: tokens[0] = tokens[0][1:] out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.prepare_seq2seq_batch with eng_Latn->eng, fra_Latn->fra def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "eng", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "fra", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_input_mode def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer._switch_to_target_mode def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang) -> None: """Reset the special tokens to the source lang setting. Prefix=[src_lang_code], suffix = [eos] """ self.cur_lang_code = self.convert_tokens_to_ids(src_lang) self.init_kwargs["src_lang"] = src_lang if self.cur_lang_code == self.unk_token_id: logger.warning_once( f"`src_lang={src_lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id." ) self.prefix_tokens = [self.cur_lang_code] self.suffix_tokens = [self.eos_token_id] # https://github.com/facebookresearch/fairseq2/blob/c53f18e6be6b8b46b722f2249b8397b7eccd7ad3/src/fairseq2/models/nllb/tokenizer.py#L112-L116 def set_tgt_lang_special_tokens(self, lang: str) -> None: """Reset the special tokens to the target lang setting. Prefix=[eos, tgt_lang_code] and suffix=[eos]. """ self.cur_lang_code = self.convert_tokens_to_ids(lang) self.init_kwargs["tgt_lang"] = lang if self.cur_lang_code == self.unk_token_id: logger.warning_once( f"`tgt_lang={lang}` has not be found in the vocabulary. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id." ) self.prefix_tokens = [self.eos_token_id, self.cur_lang_code] self.suffix_tokens = [self.eos_token_id] __all__ = ["SeamlessM4TTokenizer"] ```
========================================================================================================================================================== SOURCE CODE FILE: tokenization_seamless_m4t_fast.py LINES: 1 SIZE: 19.46 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seamless_m4t\tokenization_seamless_m4t_fast.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Tokenization class for SeamlessM4T.""" import os from shutil import copyfile from typing import List, Optional, Tuple, Union from tokenizers import processors from ...tokenization_utils import ( BatchEncoding, PreTokenizedInput, TextInput, ) from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_seamless_m4t import SeamlessM4TTokenizer else: SeamlessM4TTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} class SeamlessM4TTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" SeamlessM4T tokenizer (backed by HuggingFace's *tokenizers* library). Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. The tokenization method is `<language code> <tokens> <eos>` for source language documents, and `<eos> <language code> <tokens> <eos>` for target language documents. Examples: ```python >>> from transformers import SeamlessM4TTokenizerFast >>> tokenizer = SeamlessM4TTokenizerFast.from_pretrained( ... "facebook/hf-seamless-m4t-medium", src_lang="eng", tgt_lang="fra" ... ) >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" >>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie." >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt") ``` Args: vocab_file (`str`, *optional*): Path to the vocabulary file. tokenizer_file (`str`, *optional*): The path to a tokenizer file to use instead of the vocab file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. src_lang (`str`, *optional*, defaults to `"eng"`): The language to use as source language for translation. tgt_lang (`str`, *optional*, defaults to `"fra"`): The language to use as target language for translation. additional_special_tokens (tuple or list of `str` or `tokenizers.AddedToken`, *optional*): A tuple or a list of additional special tokens. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = SeamlessM4TTokenizer model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", src_lang="eng", tgt_lang="fra", additional_special_tokens=None, **kwargs, ): super().__init__( vocab_file=vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, src_lang=src_lang, tgt_lang=tgt_lang, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file self._src_lang = f"__{src_lang}__" if "__" not in src_lang else src_lang self._tgt_lang = f"__{tgt_lang}__" if "__" not in tgt_lang else tgt_lang self.set_src_lang_special_tokens(self._src_lang) self.set_tgt_lang_special_tokens(self._tgt_lang) @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False @property # Copied from transformers.models.nllb.tokenization_nllb.NllbTokenizer.src_lang def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: if "__" not in new_src_lang: self._src_lang = f"__{new_src_lang}__" else: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) @property def tgt_lang(self) -> str: return self._tgt_lang @tgt_lang.setter def tgt_lang(self, new_tgt_lang: str) -> None: if "__" not in new_tgt_lang: self._tgt_lang = f"__{new_tgt_lang}__" else: self._tgt_lang = new_tgt_lang self.set_tgt_lang_special_tokens(self._tgt_lang) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang. An SeamlessM4T sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `[src_lang_code] X [eos]` - `decoder_input_ids`: (for decoder) `[eos, tgt_lang_code] X [eos]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) if "__" not in tgt_lang: tgt_lang = f"__{tgt_lang}__" tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.prepare_seq2seq_batch with "fra_Latn"->"fra", "eng_Latn"->"eng" def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "eng", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "fra", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast._switch_to_input_mode def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast._switch_to_target_mode def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang) -> None: """Reset the special tokens to the source lang setting. Prefix=[src_lang_code], suffix = [eos] """ self.cur_lang_code = self.convert_tokens_to_ids(src_lang) if self.cur_lang_code == self.unk_token_id: logger.warning_once( f"`tgt_lang={src_lang}` has not be found in the `vocabulary`. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id." ) self.init_kwargs["src_lang"] = src_lang self.prefix_tokens = [self.cur_lang_code] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def set_tgt_lang_special_tokens(self, lang: str) -> None: """Reset the special tokens to the target lang setting. Prefix=[eos, tgt_lang_code] and suffix=[eos]. """ self.cur_lang_code = self.convert_tokens_to_ids(lang) if self.cur_lang_code == self.unk_token_id: logger.warning_once( f"`tgt_lang={lang}` has not be found in the `vocabulary`. Behaviour will probably be unexpected because the language token id will be replaced by the unknown token id." ) self.init_kwargs["tgt_lang"] = lang self.prefix_tokens = [self.eos_token_id, self.cur_lang_code] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) # Copied from transformers.models.nllb.tokenization_nllb_fast.NllbTokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory.") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) @classmethod def _from_pretrained( cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, token=None, cache_dir=None, local_files_only=False, _commit_hash=None, _is_local=False, **kwargs, ): tokenizer = super()._from_pretrained( resolved_vocab_files, pretrained_model_name_or_path, init_configuration, *init_inputs, token=token, cache_dir=cache_dir, local_files_only=local_files_only, _commit_hash=_commit_hash, _is_local=_is_local, **kwargs, ) # ensure also set after from pretrained tokenizer.set_src_lang_special_tokens(tokenizer._src_lang) tokenizer.set_tgt_lang_special_tokens(tokenizer._tgt_lang) return tokenizer def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, text_pair_target: Optional[ Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] ] = None, padding: Union[bool, str, PaddingStrategy] = True, pad_to_multiple_of: Optional[int] = 2, src_lang: Optional[str] = None, tgt_lang: Optional[str] = None, **kwargs, ): """ Args: text (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). text_pair_target (`str`, `List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences to be encoded as target texts. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). src_lang (`str`, *optional*): A string representing the source language. If not specified, the last `src_lang` specified (either during initialization or when calling this tokenizer) will be used. tgt_lang (`str`, *optional*): A string representing the target language. If not specified, the last `tgt_lang` specified (either during initialization or when calling this tokenizer) will be used. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to [`PreTrainedTokenizerFast.__call__`]. """ if src_lang is not None: self.src_lang = src_lang if tgt_lang is not None: self.tgt_lang = tgt_lang output = super().__call__( text=text, text_pair=text_pair, text_target=text_target, text_pair_target=text_pair_target, padding=padding, pad_to_multiple_of=pad_to_multiple_of, **kwargs, ) return output __all__ = ["SeamlessM4TTokenizerFast"] ```
======================================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.99 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seamless_m4t_v2\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_seamless_m4t_v2 import * from .modeling_seamless_m4t_v2 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
============================================================================================================================================================ SOURCE CODE FILE: configuration_seamless_m4t_v2.py LINES: 1 SIZE: 23.79 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seamless_m4t_v2\configuration_seamless_m4t_v2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SeamlessM4Tv2 model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SeamlessM4Tv2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`~SeamlessM4Tv2Model`]. It is used to instantiate an SeamlessM4Tv2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SeamlessM4Tv2 [""](https://huggingface.co/"") architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256102): Vocabulary size of the text modality of the SeamlessM4Tv2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`~SeamlessM4Tv2Model`], [`~SeamlessM4Tv2ForTextToSpeech`] or [`~SeamlessM4Tv2ForTextToText`]. t2u_vocab_size (`int`, *optional*, defaults to 10082): Unit vocabulary size of the SeamlessM4Tv2 model. Defines the number of different "unit tokens" that can be represented by the `inputs_ids` passed when calling the Text-To-Units sub-model of [`~SeamlessM4Tv2Model`], [`~SeamlessM4Tv2ForSpeechToSpeech`] or [`~SeamlessM4Tv2ForTextToSpeech`]. char_vocab_size (`int`, *optional*, defaults to 10943): Character vocabulary size of the SeamlessM4Tv2 model. Defines the number of different character tokens that can be represented by the `char_inputs_ids` passed when calling the Text-To-Units sub-model of [`~SeamlessM4Tv2Model`], [`~SeamlessM4Tv2ForSpeechToSpeech`] or [`~SeamlessM4Tv2ForTextToSpeech`]. > Parameters shared across sub-models hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the "intermediate" layers in the architecture. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model text encoder and decoder might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model is used as an encoder/decoder or not. encoder_layerdrop (`float`, *optional*, defaults to 0.05): The LayerDrop probability for the encoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.05): The LayerDrop probability for the decoders. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the decoder and feed-forward layers. If string, `"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, decoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all attention layers. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all activation layers in the model. scale_embedding (`bool`, *optional*, defaults to `True`): Scale embeddings by diving by sqrt(d_model). > Text encoder and text decoder specific parameters encoder_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer text encoder. encoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text encoder. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text encoder. decoder_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer text decoder. decoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text decoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text decoder. decoder_start_token_id (`int`, *optional*, defaults to 3): If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. Only applied in the text decoder. max_new_tokens (`int`, *optional*, defaults to 256): The maximum numbers of text tokens to generate, ignoring the number of tokens in the prompt. pad_token_id (`int`, *optional*, defaults to 0): The id of the _padding_ text token. Only applied to the text-decoder model. bos_token_id (`int`, *optional*, defaults to 2): The id of the _beginning-of-stream_ text token. Only applied to the text-decoder model. eos_token_id (`int`, *optional*, defaults to 3): The id of the _end-of-stream_ text token. Only applied to the text-decoder model. > Speech encoder specific parameters speech_encoder_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer speech encoder. speech_encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer speech encoder. speech_encoder_intermediate_size (`int`, *optional*, defaults to 4096): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer speech encoder. speech_encoder_hidden_act (`str` or `function`, *optional*, defaults to `"swish"`): The non-linear activation function (function or string) in the speech encoder. If string, `"gelu"`, `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported. speech_encoder_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all layers in the speech encoder. add_adapter (`bool`, *optional*, defaults to `True`): Add an adapter layer on top of the speech encoder. speech_encoder_layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability for the speech encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. feature_projection_input_dim (`int`, *optional*, defaults to 160): Input dimension of the input feature projection of the speech encoder, i.e the dimension after processing input audios with [`SeamlessM4TFeatureExtractor`]. adaptor_kernel_size (`int`, *optional*, defaults to 8): Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adaptor_stride (`int`, *optional*, defaults to 8): Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adaptor_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all layers in the speech adapter. num_adapter_layers (`int`, *optional*, defaults to 1): Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is True`. position_embeddings_type (`str`, *optional*, defaults to `"relative_key"`): Can be specified to `relative_key`. If left to `None`, no relative position embedding is applied. Only applied to the speech encoder. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). conv_depthwise_kernel_size (`int`, *optional*, defaults to 31): Kernel size of convolutional depthwise 1D layer in Conformer blocks. Only applied to the speech encoder. left_max_position_embeddings (`int`, *optional*, defaults to 64): The left clipping value for relative positions. right_max_position_embeddings (`int`, *optional*, defaults to 8): The right clipping value for relative positions. speech_encoder_chunk_size (`int`, *optional*, defaults to 20000): The size of each attention chunk. speech_encoder_left_chunk_num (`int`, *optional*, defaults to 128): Number of chunks on the left up to which lookahead is allowed. > Text-To-Unit (t2u) model specific parameters t2u_bos_token_id (`int`, *optional*, defaults to 0): The id of the _beginning-of-stream_ unit token. Only applied to the text-to-unit seq2seq model. t2u_pad_token_id (`int`, *optional*, defaults to 1): The id of the _padding_ unit token. Only applied to the text-to-unit seq2seq model. t2u_eos_token_id (`int`, *optional*, defaults to 2): The id of the _end-of-stream_ unit token. Only applied to the text-to-unit seq2seq model. t2u_encoder_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer text-to-unit encoder. t2u_encoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit encoder. t2u_encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text-to-unit encoder. t2u_decoder_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer text-to-unit decoder. t2u_decoder_ffn_dim (`int`, *optional*, defaults to 8192): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer text-to-unit decoder. t2u_decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer text-to-unit decoder. t2u_max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model text-to-unit component might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). t2u_variance_predictor_embed_dim (`int`, *optional*, defaults to 1024): The projection dimension of the text-to-unit's duration predictor. t2u_variance_predictor_hidden_dim (`int`, *optional*, defaults to 256): Internal dimension of the text-to-unit's duration predictor. t2u_variance_predictor_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the convolutional layers of the text-to-unit's duration predictor. t2u_variance_pred_dropout (`float`, *optional*, defaults to 0.5): The dropout probability of the text-to-unit's duration predictor. > Hifi-Gan Vocoder specific parameters sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the output audio will be generated, expressed in hertz (Hz). upsample_initial_channel (`int`, *optional*, defaults to 512): The number of input channels into the hifi-gan upsampling network. Applies to the vocoder only. upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[5, 4, 4, 2, 2]`): A tuple of integers defining the stride of each 1D convolutional layer in the vocoder upsampling network. The length of *upsample_rates* defines the number of convolutional layers and has to match the length of *upsample_kernel_sizes*. Applies to the vocoder only. upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[11, 8, 8, 4, 4]`): A tuple of integers defining the kernel size of each 1D convolutional layer in the vocoder upsampling network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of *upsample_rates*. Applies to the vocoder only. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): A tuple of integers defining the kernel sizes of the vocoder 1D convolutional layers in the multi-receptive field fusion (MRF) module. Applies to the vocoder only. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): A nested tuple of integers defining the dilation rates of the vocoder dilated 1D convolutional layers in the multi-receptive field fusion (MRF) module. Applies to the vocoder only. leaky_relu_slope (`float`, *optional*, defaults to 0.1): The angle of the negative slope used by the leaky ReLU activation in the vocoder. Applies to the vocoder only. unit_hifi_gan_vocab_size (`int`, *optional*, defaults to 10000): Vocabulary size of the SeamlessM4Tv2 vocoder. Defines the number of different unit tokens that can be represented by the `inputs_ids` passed when calling the vocoder of [`~SeamlessM4Tv2Model`], [`~SeamlessM4Tv2ForSpeechToSpeech`] or [`~SeamlessM4Tv2ForTextToSpeech`]. unit_embed_dim (`int`, *optional*, defaults to 1280): The projection dimension of the input ids given to the hifi-gan vocoder. Applies to the vocoder only. lang_embed_dim (`int`, *optional*, defaults to 256): The projection dimension of the target language given to the hifi-gan vocoder. Applies to the vocoder only. spkr_embed_dim (`int`, *optional*, defaults to 256): The projection dimension of the speaker id given to the hifi-gan vocoder. Applies to the vocoder only. vocoder_num_langs (`int`, *optional*, defaults to 36): Number of langs supported by the vocoder. Might be different from `t2u_num_langs`. vocoder_num_spkrs (`int`, *optional*, defaults to 200): Number of speakers supported by the vocoder. variance_predictor_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the duration predictor. Applies to the vocoder only. var_pred_dropout (`float`, *optional*, defaults to 0.5): The dropout probability of the duration predictor. Applies to the vocoder only. vocoder_offset (`int`, *optional*, defaults to 4): Offset the unit token ids by this number to account for symbol tokens. Applies to the vocoder only. ```python >>> from transformers import SeamlessM4Tv2Model, SeamlessM4Tv2Config >>> # Initializing a SeamlessM4Tv2 "" style configuration >>> configuration = SeamlessM4Tv2Config() >>> # Initializing a model from the "" style configuration >>> model = SeamlessM4Tv2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "seamless_m4t_v2" def __init__( self, vocab_size=256102, t2u_vocab_size=10082, char_vocab_size=10943, # shared config hidden_size=1024, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, max_position_embeddings=4096, is_encoder_decoder=True, encoder_layerdrop=0.05, decoder_layerdrop=0.05, activation_function="relu", dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, scale_embedding=True, # text encoder|decoder encoder_layers=24, encoder_ffn_dim=8192, encoder_attention_heads=16, decoder_layers=24, decoder_ffn_dim=8192, decoder_attention_heads=16, decoder_start_token_id=3, max_new_tokens=256, pad_token_id=0, bos_token_id=2, eos_token_id=3, # speech_encoder speech_encoder_layers=24, speech_encoder_attention_heads=16, speech_encoder_intermediate_size=4096, speech_encoder_hidden_act="swish", speech_encoder_dropout=0.0, add_adapter=True, speech_encoder_layerdrop=0.1, feature_projection_input_dim=160, adaptor_kernel_size=8, adaptor_stride=8, adaptor_dropout=0.1, num_adapter_layers=1, position_embeddings_type="relative_key", conv_depthwise_kernel_size=31, left_max_position_embeddings=64, right_max_position_embeddings=8, speech_encoder_chunk_size=20000, speech_encoder_left_chunk_num=128, # t2u config t2u_bos_token_id=0, t2u_pad_token_id=1, t2u_eos_token_id=2, t2u_encoder_layers=6, t2u_encoder_ffn_dim=8192, t2u_encoder_attention_heads=16, t2u_decoder_layers=6, t2u_decoder_ffn_dim=8192, t2u_decoder_attention_heads=16, t2u_max_position_embeddings=4096, t2u_variance_predictor_embed_dim=1024, t2u_variance_predictor_hidden_dim=256, t2u_variance_predictor_kernel_size=3, t2u_variance_pred_dropout=0.5, # hifi-gan vocoder config sampling_rate=16000, upsample_initial_channel=512, upsample_rates=[5, 4, 4, 2, 2], upsample_kernel_sizes=[11, 8, 8, 4, 4], resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], leaky_relu_slope=0.1, # specific to Code Hifi-Gan unit_hifi_gan_vocab_size=10000, unit_embed_dim=1280, lang_embed_dim=256, spkr_embed_dim=256, vocoder_num_langs=36, vocoder_num_spkrs=200, variance_predictor_kernel_size=3, var_pred_dropout=0.5, vocoder_offset=4, **kwargs, ): # overall_config self.vocab_size = vocab_size self.t2u_vocab_size = t2u_vocab_size self.char_vocab_size = char_vocab_size self.hidden_size = hidden_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.max_position_embeddings = max_position_embeddings self.use_cache = use_cache self.max_new_tokens = max_new_tokens self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.activation_function = activation_function self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.scale_embedding = scale_embedding # for proper config init self.num_attention_heads = decoder_attention_heads self.num_hidden_layers = decoder_layers # text|unit encoder|decoder self.encoder_layers = encoder_layers self.encoder_ffn_dim = encoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.decoder_attention_heads = decoder_attention_heads # speech_encoder self.speech_encoder_layers = speech_encoder_layers self.speech_encoder_hidden_act = speech_encoder_hidden_act self.speech_encoder_dropout = speech_encoder_dropout self.speech_encoder_attention_heads = speech_encoder_attention_heads self.speech_encoder_layerdrop = speech_encoder_layerdrop self.speech_encoder_intermediate_size = speech_encoder_intermediate_size self.feature_projection_input_dim = feature_projection_input_dim self.adaptor_kernel_size = adaptor_kernel_size self.adaptor_stride = adaptor_stride self.adaptor_dropout = adaptor_dropout self.num_adapter_layers = num_adapter_layers self.position_embeddings_type = position_embeddings_type self.conv_depthwise_kernel_size = conv_depthwise_kernel_size self.add_adapter = add_adapter self.left_max_position_embeddings = left_max_position_embeddings self.right_max_position_embeddings = right_max_position_embeddings self.speech_encoder_chunk_size = speech_encoder_chunk_size self.speech_encoder_left_chunk_num = speech_encoder_left_chunk_num # t2u config self.t2u_bos_token_id = t2u_bos_token_id self.t2u_pad_token_id = t2u_pad_token_id self.t2u_eos_token_id = t2u_eos_token_id self.t2u_encoder_layers = t2u_encoder_layers self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim self.t2u_encoder_attention_heads = t2u_encoder_attention_heads self.t2u_decoder_layers = t2u_decoder_layers self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim self.t2u_decoder_attention_heads = t2u_decoder_attention_heads self.t2u_max_position_embeddings = t2u_max_position_embeddings self.t2u_variance_predictor_embed_dim = t2u_variance_predictor_embed_dim # TODO: add to docstrings self.t2u_variance_predictor_hidden_dim = t2u_variance_predictor_hidden_dim # TODO: add to docstrings self.t2u_variance_predictor_kernel_size = t2u_variance_predictor_kernel_size # TODO: add to docstrings self.t2u_variance_pred_dropout = t2u_variance_pred_dropout # TODO: add to docstrings # hifi-gan vocoder config # original parameters specific to Hifi-Gan self.sampling_rate = sampling_rate self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.leaky_relu_slope = leaky_relu_slope # specific to Code Hifi-Gan self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size self.unit_embed_dim = unit_embed_dim self.lang_embed_dim = lang_embed_dim self.spkr_embed_dim = spkr_embed_dim self.vocoder_num_langs = vocoder_num_langs self.vocoder_num_spkrs = vocoder_num_spkrs self.variance_predictor_kernel_size = variance_predictor_kernel_size self.var_pred_dropout = var_pred_dropout self.vocoder_offset = vocoder_offset super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, is_encoder_decoder=is_encoder_decoder, max_position_embeddings=max_position_embeddings, **kwargs, ) __all__ = ["SeamlessM4Tv2Config"] ```
======================================================================================================================================================= SOURCE CODE FILE: modeling_seamless_m4t_v2.py LINES: 1 SIZE: 220.73 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seamless_m4t_v2\modeling_seamless_m4t_v2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SeamlessM4Tv2 model.""" import copy import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...integrations.fsdp import is_fsdp_managed_module from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, Wav2Vec2BaseModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_seamless_m4t_v2 import SeamlessM4Tv2Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "" _CONFIG_FOR_DOC = "SeamlessM4Tv2Config" @dataclass # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TGenerationOutput with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2GenerationOutput(ModelOutput): """ Class defining the generated outputs from [`SeamlessM4Tv2Model`], [`SeamlessM4Tv2ForTextToText`], [`SeamlessM4Tv2ForTextToSpeech`], [`SeamlessM4Tv2ForSpeechToSpeech`] and [`SeamlessM4Tv2ForTextToSpeech`]. Args: waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): The final audio waveform predicted by the model. waveform_lengths (`torch.IntTensor` of shape `(batch_size,)`, *optional*): The length in samples of each element in the `waveform` batch. sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): The generated translated sequences. This is the output of the text-to-text or the speech-to-text models. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. unit_sequences (`torch.LongTensor` of shape `(batch_size, unit_sequence_length)`, *optional*): The generated translated unit sequences. This is the output of the text-to-units model. The second dimension (unit_sequence_length) is either equal to `t2u_max_length` or shorter if all batches finished early due to the `t2u_eos_token_id`. """ waveform: Optional[torch.FloatTensor] = None waveform_lengths: Optional[torch.IntTensor] = None sequences: Optional[Tuple[torch.FloatTensor]] = None unit_sequences: Optional[Tuple[torch.FloatTensor]] = None @dataclass class SeamlessM4Tv2TextToUnitDecoderOutput(ModelOutput): """ Class defining the outputs from [`SeamlessM4Tv2TextToUnitDecoder`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. padding_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked* """ last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None padding_mask: Optional[torch.Tensor] = None @dataclass class SeamlessM4Tv2TextToUnitOutput(ModelOutput): """ Class defining the outputs from [`SeamlessM4Tv2TextToUnitForConditionalGeneration`] and [`SeamlessM4Tv2TextToUnitModel`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. padding_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked* decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. """ last_hidden_state: Optional[torch.FloatTensor] = None padding_mask: Optional[torch.Tensor] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None loss: Optional[torch.FloatTensor] = None SEAMLESS_M4T_V2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`~SeamlessM4Tv2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEAMLESS_M4T_V2_MULTIMODAL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. """ M4T_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) """ M4T_SPEECH_INPUTS_DOCSTRING = r""" Args: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. """ SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING = r""" attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ M4T_MODEL_INPUTS_DOCSTRING = SEAMLESS_M4T_V2_MULTIMODAL_INPUTS_DOCSTRING + SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING M4T_TEXT_INPUTS_DOCSTRING = M4T_TEXT_INPUTS_DOCSTRING + SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING M4T_SPEECH_INPUTS_DOCSTRING = M4T_SPEECH_INPUTS_DOCSTRING + SEAMLESS_M4T_V2_END_INPUTS_DOCSTRING M4T_TEXT_TO_UNITS_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) char_input_ids (`torch.LongTensor` of shape `(batch_size, char_sequence_length)`): Character indices. The correspondence between characters and indices can be found in `char_to_id`, a dictionary in the generation configuration. char_count_per_id (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Number of characters per input id. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. inputs_embeds (`torch.FloatTensor` of shape`(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ ############ UTILS ################ # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids def _compute_new_attention_mask(hidden_states: torch.Tensor, seq_lens: torch.Tensor): """ Computes an attention mask of the form `(batch, seq_len)` with an attention for each element in the batch that stops at the corresponding element in `seq_lens`. Args: hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, *)`): The sequences to mask, where `*` is any number of sequence-specific dimensions including none. seq_lens (`torch.Tensor` of shape `(batch)`: Each element represents the length of the sequence at the same index in `hidden_states` Returns: `torch.FloatTensor`: The float attention mask of shape `(batch, seq_len)` """ batch_size, mask_seq_len = hidden_states.shape[:2] indices = torch.arange(mask_seq_len, device=seq_lens.device).expand(batch_size, -1) bool_mask = indices >= seq_lens.unsqueeze(1).expand(-1, mask_seq_len) mask = hidden_states.new_ones((batch_size, mask_seq_len)) mask = mask.masked_fill(bool_mask, 0) return mask # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.format_speech_generation_kwargs with SeamlessM4T->SeamlessM4Tv2 def format_speech_generation_kwargs(kwargs): """ Format kwargs for SeamlessM4Tv2 models that generate speech, attribute kwargs to either the text generation or the speech generation models. Args: kwargs (`dict`)`: Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. """ # attribute kwargs to models kwargs_text = {} kwargs_speech = {} for key, value in kwargs.items(): if key.startswith("text_"): key = key[len("text_") :] kwargs_text[key] = value elif key.startswith("speech_"): key = key[len("speech_") :] kwargs_speech[key] = value elif key == "generation_config": kwargs_text[key] = value else: # If the key is already in a specific config, then it's been set with a # submodules specific value and we don't override if key not in kwargs_text: kwargs_text[key] = value if key not in kwargs_speech: kwargs_speech[key] = value return kwargs_text, kwargs_speech ############ SPEECH ENCODER related code ################ class SeamlessM4Tv2ConformerFeatureProjection(nn.Module): # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerFeatureProjection.__init__ def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.feature_projection_input_dim, eps=config.layer_norm_eps) self.projection = nn.Linear(config.feature_projection_input_dim, config.hidden_size) self.dropout = nn.Dropout(config.speech_encoder_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states.to(self.layer_norm.weight.dtype)) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerFeedForward with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2ConformerFeedForward(nn.Module): def __init__(self, config, act_fn=None, dropout=None): super().__init__() dropout = dropout if dropout is not None else config.speech_encoder_dropout act_fn = act_fn if act_fn is not None else config.speech_encoder_hidden_act self.intermediate_dropout = nn.Dropout(dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.speech_encoder_intermediate_size) self.intermediate_act_fn = ACT2FN[act_fn] if isinstance(act_fn, str) else act_fn self.output_dense = nn.Linear(config.speech_encoder_intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class SeamlessM4Tv2ConformerConvolutionModule(nn.Module): """Convolution block used in the conformer block. Uses a causal depthwise convolution similar to that described in Section 2.1 of `https://doi.org/10.48550/arxiv.1609.03499""" def __init__(self, config): super().__init__() if (config.conv_depthwise_kernel_size - 1) % 2 == 1: raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding") self.layer_norm = nn.LayerNorm(config.hidden_size) self.pointwise_conv1 = nn.Conv1d( config.hidden_size, 2 * config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.glu = nn.GLU(dim=1) self.depthwise_conv = nn.Conv1d( config.hidden_size, config.hidden_size, config.conv_depthwise_kernel_size, stride=1, padding=0, groups=config.hidden_size, bias=False, ) self.depthwise_layer_norm = nn.LayerNorm(config.hidden_size) self.activation = ACT2FN[config.speech_encoder_hidden_act] self.pointwise_conv2 = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.dropout = nn.Dropout(config.speech_encoder_dropout) def forward(self, hidden_states, attention_mask=None): hidden_states = self.layer_norm(hidden_states) # Ensure that we do not leak padded positions in depthwise convolution. # Put 0 where necessary if attention_mask is not None: hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0) # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism # => (batch, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # => (batch, channel, dim) hidden_states = self.glu(hidden_states) # Pad the sequence entirely on the left because of causal convolution. hidden_states = torch.nn.functional.pad(hidden_states, (self.depthwise_conv.kernel_size[0] - 1, 0)) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.depthwise_layer_norm(hidden_states.transpose(1, 2)).transpose(1, 2) hidden_states = self.activation(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class SeamlessM4Tv2ConformerSelfAttention(nn.Module): """Construct a SeamlessM4Tv2ConformerSelfAttention object. Can be enhanced with relative position embeddings. """ def __init__(self, config, use_position_embeddings=True): super().__init__() self.head_size = config.hidden_size // config.speech_encoder_attention_heads self.num_heads = config.speech_encoder_attention_heads self.position_embeddings_type = config.position_embeddings_type if use_position_embeddings else None self.linear_q = nn.Linear(config.hidden_size, config.hidden_size) self.linear_k = nn.Linear(config.hidden_size, config.hidden_size) self.linear_v = nn.Linear(config.hidden_size, config.hidden_size) self.linear_out = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(p=config.speech_encoder_dropout) if self.position_embeddings_type == "relative_key": self.left_max_position_embeddings = config.left_max_position_embeddings self.right_max_position_embeddings = config.right_max_position_embeddings num_positions = self.left_max_position_embeddings + self.right_max_position_embeddings + 1 self.distance_embedding = nn.Embedding(num_positions, self.head_size) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # self-attention mechanism batch_size, sequence_length, hidden_size = hidden_states.size() # make sure query/key states can be != value states query_key_states = hidden_states value_states = hidden_states # project query_key_states and value_states query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size) # => (batch, head, time1, d_k) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) attn_weights = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size) if self.position_embeddings_type == "relative_key": query_length, key_length = query.shape[2], key.shape[2] position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_r - position_ids_l distance = torch.clamp(distance, -self.left_max_position_embeddings, self.right_max_position_embeddings) positional_embedding = self.distance_embedding(distance + self.left_max_position_embeddings) positional_embedding = positional_embedding.to(dtype=query.dtype) # fp16 compatibility relative_position_attn_weights = torch.einsum("bhld,lrd->bhlr", query, positional_embedding) attn_weights = attn_weights + (relative_position_attn_weights / math.sqrt(self.head_size)) # apply attention_mask if necessary if attention_mask is not None: attn_weights = attn_weights + attention_mask # => (batch, head, time1, time2) attn_weights = torch.softmax(attn_weights, dim=-1) attn_weights = self.dropout(attn_weights) # => (batch, head, time1, d_k) attn_output = torch.matmul(attn_weights, value) # => (batch, time1, hidden_size) attn_output = attn_output.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size) attn_output = self.linear_out(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class SeamlessM4Tv2ConformerEncoderLayer(nn.Module): """Conformer block based on https://arxiv.org/abs/2005.08100.""" # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerEncoderLayer.__init__ with Wav2Vec2->SeamlessM4Tv2, attention_dropout->speech_encoder_dropout, torch.nn->nn def __init__(self, config): super().__init__() embed_dim = config.hidden_size dropout = config.speech_encoder_dropout # Feed-forward 1 self.ffn1_layer_norm = nn.LayerNorm(embed_dim) self.ffn1 = SeamlessM4Tv2ConformerFeedForward(config) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim) self.self_attn_dropout = nn.Dropout(dropout) self.self_attn = SeamlessM4Tv2ConformerSelfAttention(config) # Conformer Convolution self.conv_module = SeamlessM4Tv2ConformerConvolutionModule(config) # Feed-forward 2 self.ffn2_layer_norm = nn.LayerNorm(embed_dim) self.ffn2 = SeamlessM4Tv2ConformerFeedForward(config) self.final_layer_norm = nn.LayerNorm(embed_dim) def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, conv_attention_mask: Optional[torch.Tensor] = None, ): hidden_states = hidden_states # 1. Feed-Forward 1 layer residual = hidden_states hidden_states = self.ffn1_layer_norm(hidden_states) hidden_states = self.ffn1(hidden_states) hidden_states = hidden_states * 0.5 + residual residual = hidden_states # 2. Self-Attention layer hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual # 3. Convolutional Layer residual = hidden_states hidden_states = self.conv_module(hidden_states, attention_mask=conv_attention_mask) hidden_states = residual + hidden_states # 4. Feed-Forward 2 Layer residual = hidden_states hidden_states = self.ffn2_layer_norm(hidden_states) hidden_states = self.ffn2(hidden_states) hidden_states = hidden_states * 0.5 + residual hidden_states = self.final_layer_norm(hidden_states) return hidden_states, attn_weights class SeamlessM4Tv2ConformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.dropout = nn.Dropout(config.speech_encoder_dropout) self.layers = nn.ModuleList( [SeamlessM4Tv2ConformerEncoderLayer(config) for _ in range(config.speech_encoder_layers)] ) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def _apply_chunk_attention(self, attention_mask, hidden_states): """ Creates a chunk attention mask. It creates a mask to prevent attention across chunks, ensuring that each position attends only to positions within its own chunk. If a left chunk overlap is specified (`speech_encoder_chunk_size` in the configuration), the attention mask is adjusted accordingly to allow each position to also attends the `speech_encoder_chunk_size - 1` previous chunks. """ sequence_len = hidden_states.shape[1] chunk_indices = torch.arange(sequence_len, device=hidden_states.device) chunk_indices = torch.div(chunk_indices, self.config.speech_encoder_chunk_size).long() start_indices = torch.full_like(chunk_indices, 0) if self.config.speech_encoder_left_chunk_num >= 0: start_indices = (chunk_indices - self.config.speech_encoder_left_chunk_num).clamp_(min=0) start_indices = start_indices * self.config.speech_encoder_chunk_size start_indices = start_indices start_indices = start_indices.unsqueeze(1).expand(-1, sequence_len) end_indices = ((chunk_indices + 1) * self.config.speech_encoder_chunk_size).clamp_(max=sequence_len) end_indices = end_indices.unsqueeze(1).expand(-1, sequence_len) indices = torch.arange(sequence_len, device=hidden_states.device).unsqueeze(0).expand(sequence_len, -1) chunk_mask = (indices < start_indices) | (indices >= end_indices) chunk_mask = chunk_mask.unsqueeze(0).unsqueeze(0) attention_mask = chunk_mask if attention_mask is None else (attention_mask.bool() | chunk_mask) attention_mask = attention_mask.to(dtype=hidden_states.dtype) return attention_mask def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None conv_attention_mask = attention_mask if attention_mask is not None: # make sure padded tokens output 0 hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0) # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) if self.config.speech_encoder_chunk_size is not None: attention_mask = self._apply_chunk_attention(attention_mask, hidden_states) if attention_mask is not None: attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min hidden_states = self.dropout(hidden_states) synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self) for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = ( True if self.training and (dropout_probability < self.config.speech_encoder_layerdrop) else False ) if not skip_the_layer or synced_gpus: # under fsdp or deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, conv_attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, conv_attention_mask=conv_attention_mask, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerAdapterLayer with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2ConformerAdapterLayer(nn.Module): def __init__(self, config): super().__init__() embed_dim = config.hidden_size dropout = config.adaptor_dropout self.kernel_size = config.adaptor_kernel_size self.stride = config.adaptor_stride # 1. residual convolution self.residual_layer_norm = nn.LayerNorm(embed_dim) self.residual_conv = nn.Conv1d( embed_dim, 2 * embed_dim, self.kernel_size, stride=self.stride, padding=self.stride // 2, ) self.activation = nn.GLU(dim=1) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim) self.self_attn_conv = nn.Conv1d( embed_dim, 2 * embed_dim, self.kernel_size, stride=self.stride, padding=self.stride // 2, ) self.self_attn = SeamlessM4Tv2ConformerSelfAttention(config, use_position_embeddings=False) self.self_attn_dropout = nn.Dropout(dropout) # Feed-forward self.ffn_layer_norm = nn.LayerNorm(embed_dim) self.ffn = SeamlessM4Tv2ConformerFeedForward(config, act_fn="relu", dropout=dropout) def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask): pad = self.kernel_size // 2 seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1) seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1 return seq_lens.floor() def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): residual = self.residual_layer_norm(hidden_states) # Apply pooling to the residual to match the sequence length of the # multi-head attention output. # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len) residual = residual.transpose(1, 2) residual = self.residual_conv(residual) residual = self.activation(residual) # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim) residual = residual.transpose(1, 2) hidden_states = self.self_attn_layer_norm(hidden_states) # Apply pooling before feeding to the multihead-attention layer. # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.self_attn_conv(hidden_states) hidden_states = self.activation(hidden_states) # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim) hidden_states = hidden_states.transpose(1, 2) if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( hidden_states.device ) attention_mask = _compute_new_attention_mask(hidden_states=hidden_states, seq_lens=sub_sampled_lengths) attention_mask = _prepare_4d_attention_mask( attention_mask, hidden_states.dtype, ) # The rest of the computation is identical to a vanilla Transformer # encoder layer. hidden_states, attn_weigths = self.self_attn( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.ffn_layer_norm(hidden_states) hidden_states = self.ffn(hidden_states) + residual return hidden_states # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TConformerAdapter with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2ConformerAdapter(nn.Module): def __init__(self, config): super().__init__() self.layers = nn.ModuleList( SeamlessM4Tv2ConformerAdapterLayer(config) for _ in range(config.num_adapter_layers) ) def forward(self, hidden_states, attention_mask): # down project hidden_states if necessary for layer in self.layers: hidden_states = layer(hidden_states, attention_mask) return hidden_states ############ TEXT / UNITS related code ################ # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100ScaledWordEmbedding with M2M100->SeamlessM4Tv2 class SeamlessM4Tv2ScaledWordEmbedding(nn.Embedding): """ This module overrides nn.Embeddings' forward by multiplying with embeddings scale. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0): super().__init__(num_embeddings, embedding_dim, padding_idx) self.embed_scale = embed_scale def forward(self, input_ids: torch.Tensor): return super().forward(input_ids) * self.embed_scale # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding class SeamlessM4Tv2SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.register_buffer("weights", emb_weights, persistent=False) @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward( self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, past_key_values_length: int = 0, ): if input_ids is not None: bsz, seq_len = input_ids.size() # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( input_ids.device ) else: bsz, seq_len = inputs_embeds.size()[:-1] position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length) # expand embeddings if needed max_pos = self.padding_idx + 1 + seq_len + past_key_values_length if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length class SeamlessM4Tv2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" # Copied from transformers.models.bart.modeling_bart.BartAttention.__init__ with Bart->SeamlessM4Tv2 def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[SeamlessM4Tv2Config] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, projection: torch.Tensor) -> torch.Tensor: new_projection_shape = projection.size()[:-1] + (self.num_heads, self.head_dim) # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) return new_projection def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" is_cross_attention = encoder_hidden_states is not None batch_size, seq_length = hidden_states.shape[:2] # use encoder_hidden_states if cross attention current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states # checking that the `sequence_length` of the `past_key_value` is the same as the he provided # `encoder_hidden_states` to support prefix tuning if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] else: key_states = self._shape(self.k_proj(current_states)) value_states = self._shape(self.v_proj(current_states)) if past_key_value is not None and not is_cross_attention: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) query_states = self._shape(self.q_proj(hidden_states) * self.scaling) attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) if attention_mask is not None: attention_scores = attention_scores + attention_mask # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).type_as(attention_scores) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # attn_output = torch.bmm(attn_probs, value_states) ? context_states = torch.matmul(attn_weights, value_states) # attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ? context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1) attn_output = self.out_proj(context_states) if output_attentions: return attn_output, attn_weights, past_key_value else: return attn_output, None, past_key_value # Copied from transformers.models.nllb_moe.modeling_nllb_moe.NllbMoeDenseActDense with NllbMoe->SeamlessM4Tv2,DenseActDense->FeedForwardNetwork, d_model->hidden_size class SeamlessM4Tv2FeedForwardNetwork(nn.Module): def __init__(self, config: SeamlessM4Tv2Config, ffn_dim: int): super().__init__() self.fc1 = nn.Linear(config.hidden_size, ffn_dim) self.fc2 = nn.Linear(ffn_dim, config.hidden_size) self.dropout = nn.Dropout(config.activation_dropout) self.act = ACT2FN[config.activation_function] def forward(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) if ( isinstance(self.fc2.weight, torch.Tensor) and hidden_states.dtype != self.fc2.weight.dtype and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8) ): hidden_states = hidden_states.to(self.fc2.weight.dtype) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TEncoderLayer with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2EncoderLayer(nn.Module): def __init__(self, config: SeamlessM4Tv2Config, encoder_ffn_dim=None, encoder_attention_heads=None): super().__init__() encoder_ffn_dim = config.encoder_ffn_dim if encoder_ffn_dim is None else encoder_ffn_dim encoder_attention_heads = ( config.encoder_attention_heads if encoder_attention_heads is None else encoder_attention_heads ) self.embed_dim = config.hidden_size self.self_attn = SeamlessM4Tv2Attention( embed_dim=self.embed_dim, num_heads=encoder_attention_heads, dropout=config.attention_dropout, ) self.attn_dropout = nn.Dropout(config.dropout) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.ffn = SeamlessM4Tv2FeedForwardNetwork(config, ffn_dim=encoder_ffn_dim) self.ffn_layer_norm = nn.LayerNorm(config.hidden_size) self.ffn_dropout = nn.Dropout(config.activation_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.ffn_layer_norm(hidden_states) hidden_states = self.ffn(hidden_states) hidden_states = self.ffn_dropout(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TDecoderLayer with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2DecoderLayer(nn.Module): def __init__(self, config: SeamlessM4Tv2Config, decoder_ffn_dim=None, decoder_attention_heads=None): super().__init__() decoder_ffn_dim = config.decoder_ffn_dim if decoder_ffn_dim is None else decoder_ffn_dim decoder_attention_heads = ( config.decoder_attention_heads if decoder_attention_heads is None else decoder_attention_heads ) self.embed_dim = config.hidden_size self.self_attn = SeamlessM4Tv2Attention( embed_dim=self.embed_dim, num_heads=decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.attn_dropout = nn.Dropout(config.dropout) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.cross_attention = SeamlessM4Tv2Attention( self.embed_dim, decoder_attention_heads, config.attention_dropout, is_decoder=True ) self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim) self.ffn = SeamlessM4Tv2FeedForwardNetwork(config, ffn_dim=decoder_ffn_dim) self.ffn_layer_norm = nn.LayerNorm(config.hidden_size) self.ffn_dropout = nn.Dropout(config.activation_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.cross_attention_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, past_key_value=cross_attn_past_key_value, attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) hidden_states = self.attn_dropout(hidden_states) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value += cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.ffn_layer_norm(hidden_states) hidden_states = self.ffn(hidden_states) hidden_states = self.ffn_dropout(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states, present_key_value) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs class SeamlessM4Tv2TextToUnitDecoderLayer(nn.Module): def __init__(self, config: SeamlessM4Tv2Config, decoder_ffn_dim=None, decoder_attention_heads=None): super().__init__() decoder_ffn_dim = config.decoder_ffn_dim if decoder_ffn_dim is None else decoder_ffn_dim decoder_attention_heads = ( config.decoder_attention_heads if decoder_attention_heads is None else decoder_attention_heads ) self.dropout = config.dropout self.embed_dim = config.hidden_size self.self_attn = SeamlessM4Tv2Attention( embed_dim=self.embed_dim, num_heads=decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.conv1 = nn.Conv1d(self.embed_dim, self.embed_dim, kernel_size=7, stride=1, padding="same") self.activation_fn = ACT2FN[config.activation_function] self.conv2 = nn.Conv1d(self.embed_dim, self.embed_dim, kernel_size=7, stride=1, padding="same") self.conv_layer_norm = nn.LayerNorm(config.hidden_size) self.conv_dropout = nn.Dropout(self.dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. padding_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked* output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Conv residual = hidden_states # Apply padding mask to avoid leaking padded positions in the convolution layer if padding_mask is not None: hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0) hidden_states = self.conv1(hidden_states.transpose(1, 2)).transpose(1, 2) if padding_mask is not None: hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0) hidden_states = self.activation_fn(hidden_states) hidden_states = self.conv2(hidden_states.transpose(1, 2)).transpose(1, 2) hidden_states = self.conv_dropout(hidden_states) hidden_states = residual + hidden_states hidden_states = self.conv_layer_norm(hidden_states) outputs = (hidden_states, present_key_value) if output_attentions: outputs += self_attn_weights return outputs ############ SUB-MODELS related code ################ class SeamlessM4Tv2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SeamlessM4Tv2Config base_model_prefix = "seamless_m4t_v2" supports_gradient_checkpointing = True _no_split_modules = [ "SeamlessM4Tv2EncoderLayer", "SeamlessM4Tv2DecoderLayer", "SeamlessM4Tv2ConformerEncoderLayer", "SeamlessM4Tv2TextToUnitDecoderLayer", ] def _init_weights(self, module): """Initialize the weights""" std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, SeamlessM4Tv2ConformerSelfAttention): if hasattr(module, "pos_bias_u"): nn.init.xavier_uniform_(module.pos_bias_u) if hasattr(module, "pos_bias_v"): nn.init.xavier_uniform_(module.pos_bias_v) elif isinstance(module, SeamlessM4Tv2ConformerFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, (nn.Conv1d, nn.ConvTranspose1d)): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TPreTrainedModel._compute_sub_sample_lengths_from_attention_mask def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask): kernel_size, stride = self.config.adaptor_kernel_size, self.config.adaptor_stride pad = kernel_size // 2 seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1) seq_lens = ((seq_lens + 2 * pad - kernel_size) / stride) + 1 return seq_lens.floor() def _indices_to_subwords(self, input_ids): """ Returns the corresponding text string for each input id. """ if not hasattr(self.generation_config, "id_to_text"): raise ValueError( """This model generation config doesn't have a `id_to_text` key which maps token ids to subwords. Make sure to load the right generation config.""" ) batch_size, sequence_len = input_ids.shape subwords_batch = [] for batch_id in range(batch_size): subwords = [] for i in range(sequence_len): subword = self.generation_config.id_to_text.get(str(input_ids[batch_id, i].item())) subwords.append(str(subword)) subwords_batch.append(subwords) return subwords_batch def _count_character_length_in_subword( self, input_ids, subwords_batch, merge_space_with_prev_subword=False, pad_token_id=0, unk_token_id=1, space="▁", ): """ Counts the number of characters per text string associated with the input token id. Args: input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. subwords_batch (`List[List[str]]` of shape `(batch_size, sequence_length)`): Corresponding text string for each input id. merge_space_with_prev_subword (`bool`, *optional*, defaults to `False`): Indicates if the space character is merged with the previous subword. If `False`, it will be merged with the next subword. pad_token_id (`int`, *optional*, defaults to 0): The id of the _padding_ text token. If it is encountered when calculating the length of a subword sample, the lengths of subsequent subwords will be set to 0. unk_token_id (`int`, *optional*, defaults to 1): The id of the _unknown_ text token. Associated to a subword of length 1. space (`str`, *optional*, defaults to `"▁"`): The space character. """ batch_size, _ = input_ids.shape char_count_per_id = input_ids.new_zeros(input_ids.size()) subword_lens = input_ids.ne(pad_token_id).sum(1) for batch_id in range(batch_size): # We slice out the tensor till the padding index. subword_indices = input_ids[batch_id, : subword_lens[batch_id]] subwords = subwords_batch[batch_id][: subword_lens[batch_id]] is_next_start_with_space = [ len(subwords[i + 1]) > 1 and subwords[i + 1][0] == space if i < len(subwords) - 1 else False for i in range(len(subwords)) ] is_punc = [ len(subwords[i]) == 1 and not subwords[i].isalpha() and not subwords[i].isnumeric() and subwords[i] != space for i in range(len(subwords)) ] for i, (subword_idx, subword) in enumerate(zip(subword_indices, subwords)): if subword_idx == pad_token_id: break if subword_idx == unk_token_id: # We set char_len to 1 for an unk token. char_len = 1 if merge_space_with_prev_subword and is_next_start_with_space[i]: char_len += 1 else: # By default, spaces are merged with the next subword. # char_len includes the space. char_len = len(subword) if merge_space_with_prev_subword: # Add the space for the next subword. if is_next_start_with_space[i]: char_len += 1 # Subtract the space for the current subword. if i > 0 and is_next_start_with_space[i - 1]: char_len -= 1 else: # Merge space with punctuation mark by default. if is_punc[i] and is_next_start_with_space[i]: char_len += 1 # Subtract the space for the subword succeeding the punctuation mark. elif i > 0 and is_punc[i - 1] and is_next_start_with_space[i - 1]: char_len -= 1 char_count_per_id[batch_id, i] = char_len return char_count_per_id def _get_char_input_ids(self, input_ids, subwords_batch, char_count_per_id, pad_token_id=0, unk_token_id=1): """ Returns the corresponding character input id for each character of `subwords_batch`. Args: input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. subwords_batch (`List[List[str]]` of shape `(batch_size, sequence_length)`): Corresponding text string for each input id. char_count_per_id (`torch.Tensor` of shape `(batch_size, sequence_length)`): Number of characters per input id. pad_token_id (`int`, *optional*, defaults to 0): The id of the _padding_ text token. If it is encountered when calculating the length of a subword sample, the lengths of subsequent subwords will be set to 0. unk_token_id (`int`, *optional*, defaults to 1): The id of the _unknown_ text token. Associated to a subword of length 1. Returns: `torch.Tensor`: Tensor of shape `(batch_size, char_sequence_length)` containing the id of each character. """ if not hasattr(self.generation_config, "char_to_id"): raise ValueError( """This model generation config doesn't have a `char_to_id` key which maps characters to character ids. Make sure to load the right generation config.""" ) batch_size = input_ids.shape[0] max_len = int(char_count_per_id.sum(1).max().item()) char_seqs = input_ids.new_zeros((batch_size, max_len)).fill_(pad_token_id) subword_lens = input_ids.ne(pad_token_id).sum(1) for batch_id in range(batch_size): total = 0 subword_indices = input_ids[batch_id, : subword_lens[batch_id]] subwords = subwords_batch[batch_id][: subword_lens[batch_id]] for subword_idx, subword in zip(subword_indices, subwords): if subword_idx == unk_token_id: char_ids = [unk_token_id] else: # Get char token indices corresponding to the subwords. char_ids = [self.generation_config.char_to_id.get(ch, unk_token_id) for ch in list(subword)] char_seq_len = len(char_ids) char_seqs[batch_id, total : total + char_seq_len] = torch.tensor(char_ids).to(char_seqs) total += char_seq_len return char_seqs def _hard_upsample(self, hidden_states, durations): """ Repeats the time dimension of each sample in the batch based on the corresponding duration. Args: hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, *)`, *optional*): The sequence to repeat, where `*` is any number of sequence-specific dimensions including none. durations (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates how many times to repeat time segments. """ if hidden_states.size(0) == 1: hidden_states = torch.repeat_interleave(hidden_states, durations.view(-1), dim=1) else: # if batched sample, need to interleave per sample, and pad -> loss of parallelism if hidden_states.shape[0] > 1 and self.training: logger.warning_once( """`self.training=True` and you use batching. You lose parallelism during the hifigan forward pass because the samples are interleaved.""" ) hidden_states = [ torch.repeat_interleave(hidden_state, duration, dim=0) for (hidden_state, duration) in zip(hidden_states, durations) ] hidden_states = nn.utils.rnn.pad_sequence(hidden_states, batch_first=True) return hidden_states @add_start_docstrings( """Transformer speech encoder consisting of *config.speech_encoder_layers* conformer self attention layers. Each layer is a [`SeamlessM4Tv2ConformerEncoderLayer`].""", SEAMLESS_M4T_V2_START_DOCSTRING, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TSpeechEncoder with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2SpeechEncoder(SeamlessM4Tv2PreTrainedModel): main_input_name = "input_features" def __init__(self, config: SeamlessM4Tv2Config): super().__init__(config) self.feature_projection = SeamlessM4Tv2ConformerFeatureProjection(config) self.encoder = SeamlessM4Tv2ConformerEncoder(config) self.intermediate_ffn = SeamlessM4Tv2ConformerFeedForward(config, act_fn="relu", dropout=0.0) self.adapter = SeamlessM4Tv2ConformerAdapter(config) if config.add_adapter else None self.inner_layer_norm = nn.LayerNorm(config.hidden_size) # Initialize weights and apply final processing self.post_init() def forward( self, input_features: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_features is None: raise ValueError( """Both `input_features` and `inputs_embeds` are `None` in `SeamlessM4Tv2SpeechEncoder.forward`. Make sure one of them is not `None`.""" ) hidden_states = self.feature_projection(input_features) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] expanded_hidden_states = self.intermediate_ffn(hidden_states) hidden_states = hidden_states + 0.5 * expanded_hidden_states if self.adapter is not None: hidden_states = self.adapter(hidden_states, attention_mask=attention_mask) hidden_states = self.inner_layer_norm(hidden_states) if not return_dict: return (hidden_states,) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # inspired from MBart and NllbMoe @add_start_docstrings( "Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`SeamlessM4Tv2EncoderLayer`].", SEAMLESS_M4T_V2_START_DOCSTRING, """ embed_tokens (`nn.Embedding`, *optional*): Input embedding is_t2u_encoder (`bool`, *optional*, defaults to `False`): indicates if it belongs to the text-to-units model, in which case it won't have input embeddings """, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TEncoder with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2Encoder(SeamlessM4Tv2PreTrainedModel): def __init__( self, config: SeamlessM4Tv2Config, embed_tokens: Optional[nn.Embedding] = None, is_t2u_encoder: bool = False, ): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id embed_dim = config.hidden_size self.is_t2u_encoder = is_t2u_encoder self.max_source_positions = config.max_position_embeddings if not self.is_t2u_encoder: embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.embed_tokens = SeamlessM4Tv2ScaledWordEmbedding( config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale ) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.embed_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding( self.max_source_positions, embed_dim, self.padding_idx, ) layers = [] for _ in range(config.encoder_layers): layers.append( SeamlessM4Tv2EncoderLayer( config, encoder_attention_heads=config.encoder_attention_heads, encoder_ffn_dim=config.encoder_ffn_dim, ) ) self.layers = nn.ModuleList(layers) self.layer_norm = nn.LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, BaseModelOutput]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and self.is_t2u_encoder: raise ValueError( "You cannot pass input_ids to the encoder of the text_to_units model. Pass inputs_embeds instead." ) # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input = input_ids input_shape = input.shape input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input = inputs_embeds[:, :, -1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if not self.is_t2u_encoder: embed_pos = self.embed_positions(input) hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device) else: hidden_states = inputs_embeds hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.forward, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @add_start_docstrings( "Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SeamlessM4Tv2DecoderLayer`].", SEAMLESS_M4T_V2_START_DOCSTRING, """ embed_tokens (`nn.Embedding`, *optional*): Input embedding """, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TDecoder with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2Decoder(SeamlessM4Tv2PreTrainedModel): def __init__( self, config: SeamlessM4Tv2Config, embed_tokens: Optional[nn.Embedding] = None, ): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.max_target_positions = config.max_position_embeddings embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 if embed_tokens is not None: # if embed_tokens defined, use its shape instead self.embed_tokens = SeamlessM4Tv2ScaledWordEmbedding( embed_tokens.num_embeddings, embed_tokens.embedding_dim, self.padding_idx, embed_scale=embed_scale ) self.embed_tokens.weight = embed_tokens.weight else: self.embed_tokens = SeamlessM4Tv2ScaledWordEmbedding( self.vocab_size, config.hidden_size, self.padding_idx, embed_scale=embed_scale ) self.embed_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding( self.max_target_positions, config.hidden_size, padding_idx=self.padding_idx, ) layers = [] for _ in range(config.decoder_layers): layers.append( SeamlessM4Tv2DecoderLayer( config, decoder_attention_heads=config.decoder_attention_heads, decoder_ffn_dim=config.decoder_ffn_dim, ) ) self.layers = nn.ModuleList(layers) self.layer_norm = nn.LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input = input_ids input_shape = input.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input, past_key_values_length=past_key_values_length) hidden_states = inputs_embeds + positions.to(inputs_embeds.device) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[1],) if output_attentions: all_self_attns += (layer_outputs[2],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[3],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SeamlessM4Tv2DecoderLayer`].", SEAMLESS_M4T_V2_START_DOCSTRING, """ embed_tokens (`nn.Embedding`, *optional*): Input embedding """, ) class SeamlessM4Tv2TextToUnitDecoder(SeamlessM4Tv2PreTrainedModel): def __init__( self, config: SeamlessM4Tv2Config, embed_tokens: Optional[nn.Embedding] = None, ): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 if embed_tokens is not None: # if embed_tokens defined, use its shape instead self.embed_tokens = nn.Embedding(embed_tokens.num_embeddings, embed_tokens.embedding_dim, self.padding_idx) self.embed_tokens.weight = embed_tokens.weight else: self.embed_tokens = nn.Embedding(self.vocab_size, config.hidden_size, self.padding_idx) self.embed_char = nn.Embedding(config.char_vocab_size, config.hidden_size) self.embed_char_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding( self.max_target_positions, config.hidden_size, padding_idx=self.padding_idx, ) self.pos_emb_alpha_char = nn.Parameter(torch.ones(1)) self.pos_emb_alpha = nn.Parameter(torch.ones(1)) self.duration_predictor = SeamlessM4Tv2VariancePredictor( config.variance_predictor_embed_dim, config.variance_predictor_hidden_dim, config.variance_predictor_kernel_size, config.variance_pred_dropout, ) self.embed_positions = SeamlessM4Tv2SinusoidalPositionalEmbedding( self.max_target_positions, config.hidden_size, padding_idx=self.padding_idx, ) layers = [] for _ in range(config.decoder_layers): layers.append( SeamlessM4Tv2TextToUnitDecoderLayer( config, decoder_attention_heads=config.decoder_attention_heads, decoder_ffn_dim=config.decoder_ffn_dim, ) ) self.layers = nn.ModuleList(layers) self.layer_norm = nn.LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, char_input_ids: Optional[torch.LongTensor] = None, char_count_per_id: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SeamlessM4Tv2TextToUnitDecoderOutput]: r""" Args: char_input_ids (`torch.LongTensor` of shape `(batch_size, char_sequence_length)`): Character indices. The correspondence between characters and indices can be found in `char_to_id`, a dictionary in the generation configuration. char_count_per_id (`torch.Tensor` of shape `(batch_size, encoder_sequence_length)`): Number of characters per text input id. encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # create padding mask for character lengths char_padding_mask = _compute_new_attention_mask(char_input_ids, char_count_per_id.sum(1)) # upsample hidden states according to characters sequence lengths char_hidden_states = self._hard_upsample(encoder_hidden_states, char_count_per_id) # embed char positions char_positions = self.pos_emb_alpha_char * self.embed_char_positions(inputs_embeds=char_hidden_states) # update char hidden states with positions and char embeddings char_hidden_states = self.embed_char(char_input_ids) * self.embed_scale + char_positions + char_hidden_states # predict duration log_dur_pred = self.duration_predictor(char_hidden_states, padding_mask=char_padding_mask) dur_out = torch.clamp(torch.round((torch.expm1(log_dur_pred))).long(), min=1) dur_out = dur_out.masked_fill(~char_padding_mask.bool(), 0.0) # upsample char hidden states according to predicted duration char_hidden_states = self._hard_upsample(char_hidden_states, dur_out) positions = self.pos_emb_alpha * self.embed_positions(inputs_embeds=char_hidden_states) hidden_states = char_hidden_states + positions padding_mask = _compute_new_attention_mask(hidden_states, dur_out.sum(1)) attention_mask = _prepare_4d_attention_mask(padding_mask, hidden_states.dtype) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, padding_mask, output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, padding_mask=padding_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attns, padding_mask] if v is not None) return SeamlessM4Tv2TextToUnitDecoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, padding_mask=padding_mask, ) @add_start_docstrings( "Transformer bare text-to-unit encoder-decoder. The encoder is a [`SeamlessM4Tv2Encoder`] without embeddings and the decoder is a [`SeamlessM4Tv2TextToUnitDecoder`].", SEAMLESS_M4T_V2_START_DOCSTRING, """ embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder. """, ) class SeamlessM4Tv2TextToUnitModel(SeamlessM4Tv2PreTrainedModel): # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitModel.__init__ with SeamlessM4T->SeamlessM4Tv2, Decoder->TextToUnitDecoder def __init__( self, config: SeamlessM4Tv2Config, embed_tokens_decoder: Optional[nn.Embedding] = None, ): super().__init__(config) self.encoder = SeamlessM4Tv2Encoder(config, is_t2u_encoder=True) self.decoder = SeamlessM4Tv2TextToUnitDecoder(config, embed_tokens_decoder) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, char_input_ids: Optional[torch.LongTensor] = None, char_count_per_id: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, dec_hidden, dec_attn, padding_mask) decoder_outputs = self.decoder( char_input_ids=char_input_ids, char_count_per_id=char_count_per_id, encoder_hidden_states=encoder_outputs[0], output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return SeamlessM4Tv2TextToUnitOutput( last_hidden_state=decoder_outputs.last_hidden_state, padding_mask=decoder_outputs.padding_mask, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "Transformer text-to-unit encoder-decoder with a language model head. The base encoder-decoder model is a [`SeamlessM4Tv2TextToUnitModel`].", SEAMLESS_M4T_V2_START_DOCSTRING, """ embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder. """, ) class SeamlessM4Tv2TextToUnitForConditionalGeneration(SeamlessM4Tv2PreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_missing = [ "vocoder", "speech_encoder", "text_encoder", "text_decoder", ] _tied_weights_keys = ["decoder.embed_tokens.weight", "lm_head.weight"] # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.__init__ with SeamlessM4T->SeamlessM4Tv2 def __init__( self, config: SeamlessM4Tv2Config, embed_tokens_decoder: Optional[nn.Embedding] = None, ): # update config - used principaly for bos_token_id etc. config = copy.deepcopy(config) for param, val in config.to_dict().items(): if param.startswith("t2u_"): config.__setattr__(param[4:], val) super().__init__(config) self.model = SeamlessM4Tv2TextToUnitModel(config, embed_tokens_decoder) self.lm_head = nn.Linear(config.hidden_size, config.t2u_vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_encoder def get_encoder(self): return self.model.encoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_decoder def get_decoder(self): return self.model.decoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.get_input_embeddings def get_input_embeddings(self): return self.model.decoder.embed_tokens # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration.set_input_embeddings def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value @add_start_docstrings_to_model_forward(M4T_TEXT_TO_UNITS_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, char_input_ids: Optional[torch.LongTensor] = None, char_count_per_id: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, char_input_ids=char_input_ids, char_count_per_id=char_count_per_id, attention_mask=attention_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return SeamlessM4Tv2TextToUnitOutput( last_hidden_state=lm_logits, padding_mask=outputs.padding_mask, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, loss=masked_lm_loss, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TTextToUnitForConditionalGeneration._tie_weights def _tie_weights(self) -> None: if getattr(self.config, "tie_word_embeddings", True): output_embeddings = self.get_output_embeddings() if output_embeddings is not None: self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) ############ VOCODER related code ################ HIFIGAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SeamlessM4Tv2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ # Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock class HifiGanResidualBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): super().__init__() self.leaky_relu_slope = leaky_relu_slope self.convs1 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=dilation[i], padding=self.get_padding(kernel_size, dilation[i]), ) for i in range(len(dilation)) ] ) self.convs2 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=1, padding=self.get_padding(kernel_size, 1), ) for _ in range(len(dilation)) ] ) def get_padding(self, kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm for layer in self.convs1: weight_norm(layer) for layer in self.convs2: weight_norm(layer) def remove_weight_norm(self): for layer in self.convs1: nn.utils.remove_weight_norm(layer) for layer in self.convs2: nn.utils.remove_weight_norm(layer) def forward(self, hidden_states): for conv1, conv2 in zip(self.convs1, self.convs2): residual = hidden_states hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv1(hidden_states) hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv2(hidden_states) hidden_states = hidden_states + residual return hidden_states class SeamlessM4Tv2VariancePredictor(nn.Module): def __init__(self, embed_dim, hidden_dim, kernel_size, var_pred_dropout): super().__init__() self.conv1 = nn.Conv1d( embed_dim, hidden_dim, kernel_size=kernel_size, padding="same", ) self.activation_fuction = nn.ReLU() self.ln1 = nn.LayerNorm(hidden_dim) self.dropout_module = nn.Dropout(p=var_pred_dropout) self.conv2 = nn.Conv1d( hidden_dim, hidden_dim, kernel_size=kernel_size, padding="same", ) self.ln2 = nn.LayerNorm(hidden_dim) self.proj = nn.Linear(hidden_dim, 1) def forward(self, hidden_states: Tensor, padding_mask: Optional[Tensor] = None) -> Tensor: # Input: B x T x C; Output: B x T if padding_mask is not None: hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0) hidden_states = self.conv1(hidden_states.transpose(1, 2)) hidden_states = self.activation_fuction(hidden_states).transpose(1, 2) hidden_states = self.dropout_module(self.ln1(hidden_states)) if padding_mask is not None: hidden_states = hidden_states.masked_fill(~padding_mask.bool().unsqueeze(-1), 0.0) hidden_states = self.conv2(hidden_states.transpose(1, 2)) hidden_states = self.activation_fuction(hidden_states).transpose(1, 2) hidden_states = self.dropout_module(self.ln2(hidden_states)) return self.proj(hidden_states).squeeze(dim=2) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4THifiGan with SeamlessM4T->SeamlessM4Tv2 class SeamlessM4Tv2HifiGan(nn.Module): def __init__(self, config: SeamlessM4Tv2Config): super().__init__() model_in_dim = config.unit_embed_dim + config.lang_embed_dim + config.spkr_embed_dim self.leaky_relu_slope = config.leaky_relu_slope self.num_kernels = len(config.resblock_kernel_sizes) self.num_upsamples = len(config.upsample_rates) self.conv_pre = nn.Conv1d( model_in_dim, config.upsample_initial_channel, kernel_size=7, stride=1, padding=3, ) self.upsampler = nn.ModuleList() for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): self.upsampler.append( nn.ConvTranspose1d( config.upsample_initial_channel // (2**i), config.upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel_size, stride=upsample_rate, padding=(kernel_size - upsample_rate) // 2, ) ) self.resblocks = nn.ModuleList() for i in range(len(self.upsampler)): channels = config.upsample_initial_channel // (2 ** (i + 1)) for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3) def forward(self, input_embeds: torch.FloatTensor) -> torch.FloatTensor: r""" Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech waveform. Args: spectrogram (`torch.FloatTensor`): Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length, model_in_dim)`, or un-batched and of shape `(sequence_length, model_in_dim)`. Note that `model_in_dim` is the sum of `config.unit_embed_dim`, `config.lang_embed_dim` and `config.spkr_embed_dim`. Returns: `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`. """ hidden_states = self.conv_pre(input_embeds) for i in range(self.num_upsamples): hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = self.upsampler[i](hidden_states) res_state = self.resblocks[i * self.num_kernels](hidden_states) for j in range(1, self.num_kernels): res_state += self.resblocks[i * self.num_kernels + j](hidden_states) hidden_states = res_state / self.num_kernels hidden_states = nn.functional.leaky_relu(hidden_states) hidden_states = self.conv_post(hidden_states) hidden_states = torch.tanh(hidden_states) # remove seq-len dim since this collapses to 1 waveform = hidden_states.squeeze(1) return waveform @add_start_docstrings( """Code HiFi-GAN vocoder as described in this [repository](https://github.com/facebookresearch/speech-resynthesis).""", HIFIGAN_START_DOCSTRING, ) class SeamlessM4Tv2CodeHifiGan(PreTrainedModel): config_class = SeamlessM4Tv2Config main_input_name = "input_embeds" _no_split_modules = [] def __init__(self, config): super().__init__(config) self.pad_token_id = config.t2u_pad_token_id embed_dim = config.unit_embed_dim kernel_size = config.variance_predictor_kernel_size var_pred_dropout = config.var_pred_dropout self.dur_predictor = SeamlessM4Tv2VariancePredictor(embed_dim, embed_dim, kernel_size, var_pred_dropout) self.unit_embedding = nn.Embedding(config.unit_hifi_gan_vocab_size, config.unit_embed_dim) self.speaker_embedding = nn.Embedding(config.vocoder_num_spkrs, config.spkr_embed_dim) self.language_embedding = nn.Embedding(config.vocoder_num_langs, config.lang_embed_dim) self.hifi_gan = SeamlessM4Tv2HifiGan(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan._get_dur_output_lengths def _get_dur_output_lengths(self, input_ids, dur_out): """ Computes the output length after the duration layer. """ unit_lengths = (input_ids != self.pad_token_id).sum(1) # take care of edge cases where no padding or too many padding unit_lengths = torch.clamp(unit_lengths, 0, dur_out.shape[1] - 1) cumulative_dur_out = torch.cumsum(dur_out, dim=1) unit_lengths = cumulative_dur_out.gather(dim=1, index=unit_lengths.unsqueeze(1)).squeeze() return unit_lengths # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan._get_output_hifigan_lengths def _get_output_hifigan_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the hifigan convolutional layers """ def _conv_out_length(input_length, kernel_size, stride, pad, dilation=1): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return ( torch.div(input_length + 2 * pad - dilation * (kernel_size - 1) - 1, stride, rounding_mode="floor") + 1 ) def _transpose_conv_out_length(input_length, kernel_size, stride, pad, dilation=1): return (input_length - 1) * stride - 2 * pad + dilation * (kernel_size - 1) + 1 # conv_pre input_lengths = _conv_out_length(input_lengths, 7, 1, 3) # upsampler for i, (upsample_rate, kernel_size) in enumerate( zip(self.config.upsample_rates, self.config.upsample_kernel_sizes) ): input_lengths = _transpose_conv_out_length( input_lengths, kernel_size, upsample_rate, (kernel_size - upsample_rate) // 2 ) # resblock for i in range(len(self.config.upsample_rates)): for kernel_size, dilation in zip(self.config.resblock_kernel_sizes, self.config.resblock_dilation_sizes): for dil in dilation: input_lengths = _conv_out_length( input_lengths, kernel_size, 1, (kernel_size - 1) * dil // 2, dilation=dil ) for dil in dilation: input_lengths = _conv_out_length(input_lengths, kernel_size, 1, (kernel_size - 1) // 2, dilation=1) # conv_post input_lengths = _conv_out_length(input_lengths, 7, 1, 3) return input_lengths # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan.forward with SeamlessM4T->SeamlessM4Tv2, spkr_id->speaker_id def forward( self, input_ids: torch.LongTensor, speaker_id: torch.Tensor, lang_id: torch.Tensor ) -> Tuple[torch.Tensor]: """ Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4Tv2TextToUnitForConditionalGeneration`]. [What are input IDs?](../glossary#input-ids) speaker_id (`int`, *optional*): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. tgt_lang (`str`, *optional*): The language id to use as target language for translation. """ hidden_states = self.unit_embedding(input_ids).transpose(1, 2) spkr = self.speaker_embedding(speaker_id).transpose(1, 2) lang = self.language_embedding(lang_id).transpose(1, 2) log_dur_pred = self.dur_predictor(hidden_states.transpose(1, 2)) dur_out = torch.clamp(torch.round((torch.expm1(log_dur_pred))).long(), min=1) # B x C x T if hidden_states.size(0) == 1: hidden_states = torch.repeat_interleave(hidden_states, dur_out.view(-1), dim=2) else: # if batched sample, need to interleave per sample, and pad -> loss of parallelism if hidden_states.shape[0] > 1 and self.training: logger.warning( """`self.training=True` and you use batching. You lose parallelism during the hifigan forward pass because the samples are interleaved.""" ) hidden_states = [ torch.repeat_interleave(hidden_state, duration, dim=-1).transpose(0, 1) for (hidden_state, duration) in zip(hidden_states, dur_out) ] hidden_states = nn.utils.rnn.pad_sequence(hidden_states, batch_first=True).transpose(1, 2) spkr = spkr.repeat(1, 1, hidden_states.shape[-1]) lang = lang.repeat(1, 1, hidden_states.shape[-1]) hidden_states = torch.cat([lang, hidden_states, spkr], dim=1) hidden_states = self.hifi_gan(hidden_states) unit_lengths = self._get_dur_output_lengths(input_ids, dur_out) lengths = self._get_output_hifigan_lengths(unit_lengths) return hidden_states, lengths # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan._init_weights def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan.apply_weight_norm def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm weight_norm(self.hifi_gan.conv_pre) for layer in self.hifi_gan.upsampler: weight_norm(layer) for layer in self.hifi_gan.resblocks: layer.apply_weight_norm() weight_norm(self.hifi_gan.conv_post) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TCodeHifiGan.remove_weight_norm def remove_weight_norm(self): nn.utils.remove_weight_norm(self.hifi_gan.conv_pre) for layer in self.hifi_gan.upsampler: nn.utils.remove_weight_norm(layer) for layer in self.hifi_gan.resblocks: layer.remove_weight_norm() nn.utils.remove_weight_norm(self.hifi_gan.conv_post) ############ WHOLE MODEL related code ################ @add_start_docstrings( "The text-to-text SeamlessM4Tv2 Model transformer which can be used for T2TT.", SEAMLESS_M4T_V2_START_DOCSTRING, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToText with SeamlessM4T->SeamlessM4Tv2,SeamlessM4Tv2Tokenizer->SeamlessM4TTokenizer, SeamlessM4Tv2Processor->SeamlessM4TProcessor class SeamlessM4Tv2ForTextToText(SeamlessM4Tv2PreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_missing = ["speech_encoder", "t2u_model", "vocoder"] main_input_name = "input_ids" _tied_weights_keys = [ "lm_head.weight", "text_encoder.embed_tokens.weight", "text_decoder.embed_tokens.weight", ] def __init__(self, config: SeamlessM4Tv2Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.text_encoder = SeamlessM4Tv2Encoder(config, self.shared) self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.text_encoder def get_decoder(self): return self.text_decoder def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens def set_input_embeddings(self, value): self.text_encoder.embed_tokens = value self.text_decoder.embed_tokens = value self.shared = value def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def generate( self, input_ids=None, tgt_lang=None, generation_config=None, logits_processor=None, stopping_criteria=None, prefix_allowed_tokens_fn=None, synced_gpus=False, **kwargs, ): """ Generates sequences of token ids. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: input_ids (`torch.Tensor` of varying shape depending on the modality, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) tgt_lang (`str`, *optional*): The language to use as target language for translation. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904). synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # prepare text_decoder_input_ids text_decoder_input_ids = kwargs.pop("decoder_input_ids", None) # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. if tgt_lang is not None: batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds")) if hasattr(self.generation_config, "text_decoder_lang_to_code_id"): # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {", ".join(self.generation_config.text_decoder_lang_to_code_id.keys())}""" ) # tgt_lang gets priority over decoder input ids text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size, device=self.device) else: raise ValueError( """This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) else: # only a warning, otherwise errors appear in the tests logger.warning( """You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get a correct generation, otherwise the generation will probably make no sense.""" ) return super().generate( input_ids, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, decoder_input_ids=text_decoder_input_ids, **kwargs, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( "The speech-to-text SeamlessM4Tv2 Model transformer which can be used for S2TT.", SEAMLESS_M4T_V2_START_DOCSTRING, ) class SeamlessM4Tv2ForSpeechToText(SeamlessM4Tv2PreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_missing = ["text_decoder", "t2u_model", "vocoder"] main_input_name = "input_features" _tied_weights_keys = [ "lm_head.weight", "text_decoder.embed_tokens.weight", ] # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.__init__ with SeamlessM4T->SeamlessM4Tv2 def __init__(self, config: SeamlessM4Tv2Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.speech_encoder = SeamlessM4Tv2SpeechEncoder(config) self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_encoder def get_encoder(self): return self.speech_encoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_decoder def get_decoder(self): return self.text_decoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.get_input_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.set_input_embeddings def set_input_embeddings(self, value): self.text_decoder.embed_tokens = value # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText._tie_weights def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.forward def forward( self, input_features: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.speech_encoder( input_features=input_features, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_outputs[0].device ) encoder_attention_mask = _compute_new_attention_mask( hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText.generate def generate( self, input_features=None, tgt_lang=None, generation_config=None, logits_processor=None, stopping_criteria=None, prefix_allowed_tokens_fn=None, synced_gpus=False, **kwargs, ): """ Generates sequences of token ids. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. tgt_lang (`str`, *optional*): The language to use as target language for translation. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904). synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed to avoid deadlocking with `FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3). kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ text_decoder_input_ids = kwargs.pop("decoder_input_ids", None) # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. input_features = input_features if input_features is not None else kwargs.pop("inputs") if tgt_lang is not None: inputs = kwargs.get("input_embeds") if input_features is None else input_features inputs = ( inputs if inputs is not None else kwargs.get("encoder_outputs", {"last_hidden_state": None})["last_hidden_state"] ) batch_size = len(inputs) if hasattr(self.generation_config, "text_decoder_lang_to_code_id"): # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {", ".join(self.generation_config.text_decoder_lang_to_code_id.keys())}""" ) # tgt_lang gets priority over decoder input ids text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size, device=self.device) else: raise ValueError( """This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) else: # only a warning, otherwise errors appear in the tests logger.warning( """You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get a correct generation, otherwise the generation will probably make no sense.""" ) return super().generate( input_features, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, decoder_input_ids=text_decoder_input_ids, **kwargs, ) @staticmethod # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToText._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( "The text-to-speech SeamlessM4Tv2 Model transformer which can be used for T2ST.", SEAMLESS_M4T_V2_START_DOCSTRING, ) class SeamlessM4Tv2ForTextToSpeech(SeamlessM4Tv2PreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_missing = ["speech_encoder"] main_input_name = "input_ids" _tied_weights_keys = [ "lm_head.weight", "text_encoder.embed_tokens.weight", "text_decoder.embed_tokens.weight", ] # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.__init__ with SeamlessM4T->SeamlessM4Tv2 def __init__(self, config: SeamlessM4Tv2Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.text_encoder = SeamlessM4Tv2Encoder(config, self.shared) self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() self.t2u_model = SeamlessM4Tv2TextToUnitForConditionalGeneration(config) self.vocoder = SeamlessM4Tv2CodeHifiGan(config) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_encoder def get_encoder(self): return self.text_encoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_decoder def get_decoder(self): return self.text_decoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.get_input_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.set_input_embeddings def set_input_embeddings(self, value): self.text_encoder.embed_tokens = value self.text_decoder.embed_tokens = value self.shared = value # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech._tie_weights def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech.forward with SeamlessM4T->SeamlessM4Tv2 def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This is the same forward method as `SeamlessM4Tv2ForTextToText`." "It doesn't use the text-to-unit model `SeamlessM4Tv2TextToUnitForConditionalGeneration`." "If you want to generate speech, use the `.generate` method." ) encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @torch.no_grad() def generate( self, input_ids: Optional[torch.Tensor] = None, return_intermediate_token_ids: Optional[bool] = None, tgt_lang: Optional[str] = None, speaker_id: Optional[int] = 0, **kwargs, ) -> Union[torch.Tensor, SeamlessM4Tv2GenerationOutput]: """ Generates translated audio waveforms. <Tip> This method successively calls the `.generate` function of two different sub-models. You can specify keyword arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments that will be passed to one of them. For example, calling `.generate(input_ids, num_beams=4, speech_do_sample=True)` will successively perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) return_intermediate_token_ids (`bool`, *optional*): If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want to get translated text alongside the audio. tgt_lang (`str`, *optional*): The language to use as target language for translation. speaker_id (`int`, *optional*, defaults to 0): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. Returns: `Union[SeamlessM4Tv2GenerationOutput, Tuple[Tensor]]`: - If `return_intermediate_token_ids`, returns [`SeamlessM4Tv2GenerationOutput`]. - If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample. """ batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds")) if tgt_lang is None: raise ValueError("You must specify a `tgt_lang` to generate translated speech.") else: # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]: lang_code_to_id = getattr(self.generation_config, key, None) if lang_code_to_id is None: raise ValueError( f"""This model generation config doesn't have a `{key}` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) elif tgt_lang not in lang_code_to_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {",".join(lang_code_to_id.keys())}. Note that SeamlessM4Tv2 supports more languages for text translation than for speech synthesis.""" ) kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs) kwargs_text["output_hidden_states"] = True kwargs_text["return_dict_in_generate"] = True kwargs_text["output_scores"] = True text_decoder_input_ids = kwargs_text.get("decoder_input_ids") # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size, device=self.device) kwargs_text["decoder_input_ids"] = text_decoder_input_ids # first generation text_generation_output = super().generate(input_ids, **kwargs_text) sequences = text_generation_output.sequences # prepare second generation num_return_sequences = len(sequences) // batch_size attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None)) if attention_mask is not None: # repeat attention mask alongside batch dimension attention_mask = torch.repeat_interleave(attention_mask, num_return_sequences, dim=0) encoder_hidden_states = text_generation_output.encoder_hidden_states[-1] # repeat attention mask alongside batch dimension encoder_hidden_states = torch.repeat_interleave(encoder_hidden_states, num_return_sequences, dim=0) # get decoder last hidden state - must do a pass through the text decoder t2u_input_embeds = self.text_decoder( input_ids=sequences[:, :-1], # Manually trim the final EOS token encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, ).last_hidden_state pad_token_id = self.generation_config.pad_token_id # Compute new attention mask seq_lens = (sequences[:, :-1] != pad_token_id).int().sum(1) t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens) kwargs_speech["attention_mask"] = t2u_model_attention_mask # REMOVE EOS and lang_id t2u_input_ids = sequences[:, 2:-1] # replace every other EOS t2u_input_ids = torch.masked_fill( t2u_input_ids, t2u_input_ids == self.generation_config.eos_token_id, pad_token_id ) # compute t2u_char_input_ids t2u_subwords = self._indices_to_subwords(t2u_input_ids) t2u_char_count_per_id = self._count_character_length_in_subword( t2u_input_ids, t2u_subwords, pad_token_id=pad_token_id ) # Add pads for lang, EOS tokens as per NLLB "source" tokenizer mode. pad_zero = t2u_char_count_per_id.new_zeros((t2u_char_count_per_id.shape[0], 1)) t2u_char_count_per_id = torch.cat([pad_zero, t2u_char_count_per_id, pad_zero], dim=1) t2u_char_input_ids = self._get_char_input_ids( t2u_input_ids, t2u_subwords, t2u_char_count_per_id, pad_token_id=pad_token_id ) # second pass t2u_output = self.t2u_model( inputs_embeds=t2u_input_embeds, char_input_ids=t2u_char_input_ids, char_count_per_id=t2u_char_count_per_id, **kwargs_speech, ) t2u_logits = t2u_output[0] padding_mask = t2u_output[1].bool() # The text-to-unit model is non auto-regressive. We keep the ability to use sampling with temperature temperature = kwargs_speech.get("temperature", None) if (temperature is None or temperature == 1.0) or not kwargs_speech.get("do_sample", False): unit_ids = t2u_logits.argmax(dim=-1) else: t2u_logits = t2u_logits / temperature # apply softmax probs = nn.functional.softmax(t2u_logits, dim=-1) # reshape to 2D: (batch_size, seq_len, t2u_vocab_size) -> (batch_size*seq_len, t2u_vocab_size) probs = probs.reshape((-1, probs.shape[2])) # multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len) unit_ids = torch.multinomial(probs, num_samples=1).view(t2u_logits.shape[0], -1) output_unit_ids = unit_ids.detach().clone() replace_mask = (unit_ids == self.config.t2u_eos_token_id) | (~padding_mask) # replace eos per pad unit_ids = unit_ids.masked_fill(replace_mask, self.config.t2u_pad_token_id) # offset of control symbols unit_ids = torch.where( unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset ) vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang) vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids), device=self.device) speaker_id = torch.tensor([[speaker_id]] * len(unit_ids), device=self.device) waveform, waveform_lengths = self.vocoder( input_ids=unit_ids, speaker_id=speaker_id, lang_id=vocoder_tgt_lang_id ) if return_intermediate_token_ids: return SeamlessM4Tv2GenerationOutput( waveform=waveform, waveform_lengths=waveform_lengths, sequences=sequences, unit_sequences=output_unit_ids, ) return waveform, waveform_lengths @staticmethod # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForTextToSpeech._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( "The speech-to-speech SeamlessM4Tv2 Model transformer which can be used for S2ST.", SEAMLESS_M4T_V2_START_DOCSTRING, ) class SeamlessM4Tv2ForSpeechToSpeech(SeamlessM4Tv2PreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_missing = ["text_encoder"] main_input_name = "input_features" _tied_weights_keys = [ "lm_head.weight", "text_decoder.embed_tokens.weight", ] # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.__init__ with SeamlessM4T->SeamlessM4Tv2 def __init__(self, config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.speech_encoder = SeamlessM4Tv2SpeechEncoder(config) self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() self.t2u_model = SeamlessM4Tv2TextToUnitForConditionalGeneration(config) self.vocoder = SeamlessM4Tv2CodeHifiGan(config) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_encoder def get_encoder(self): return self.speech_encoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_decoder def get_decoder(self): return self.text_decoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.get_input_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.set_input_embeddings def set_input_embeddings(self, value): self.text_decoder.embed_tokens = value # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech._tie_weights def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech.forward with SeamlessM4T->SeamlessM4Tv2 def forward( self, input_features: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This is the same forward method as `SeamlessM4Tv2ForSpeechToText`. It doesn't use `self.t2u_model`." "If you want to generate speech, use the `generate` method." ) encoder_outputs = self.speech_encoder( input_features=input_features, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_outputs[0].device ) encoder_attention_mask = _compute_new_attention_mask( hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @torch.no_grad() def generate( self, input_features: Optional[torch.Tensor] = None, return_intermediate_token_ids: Optional[bool] = None, tgt_lang: Optional[str] = None, speaker_id: Optional[int] = 0, **kwargs, ) -> Union[torch.Tensor, SeamlessM4Tv2GenerationOutput]: """ Generates translated audio waveforms. <Tip> This method successively calls the `.generate` function of two different sub-models. You can specify keyword arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments that will be passed to one of them. For example, calling `.generate(input_features, num_beams=4, speech_do_sample=True)` will successively perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Args: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. return_intermediate_token_ids (`bool`, *optional*): If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want to get translated text alongside the audio. tgt_lang (`str`, *optional*): The language to use as target language for translation. speaker_id (`int`, *optional*, defaults to 0): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. Returns: `Union[SeamlessM4Tv2GenerationOutput, Tuple[Tensor]]`: - If `return_intermediate_token_ids`, returns [`SeamlessM4Tv2GenerationOutput`]. - If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample. """ batch_size = len(input_features) if input_features is not None else len(kwargs.get("inputs_embeds")) if tgt_lang is None: raise ValueError("You must specify a `tgt_lang` to generate translated speech.") else: # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]: lang_code_to_id = getattr(self.generation_config, key, None) if lang_code_to_id is None: raise ValueError( f"""This model generation config doesn't have a `{key}` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) elif tgt_lang not in lang_code_to_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {",".join(lang_code_to_id.keys())}. Note that SeamlessM4Tv2 supports more languages for text translation than for speech synthesis.""" ) kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs) kwargs_text["output_hidden_states"] = True kwargs_text["return_dict_in_generate"] = True kwargs_text["output_scores"] = True text_decoder_input_ids = kwargs_text.get("decoder_input_ids") # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size, device=self.device) kwargs_text["decoder_input_ids"] = text_decoder_input_ids # first generation text_generation_output = super().generate(input_features, **kwargs_text) sequences = text_generation_output.sequences # prepare second generation num_return_sequences = len(sequences) // batch_size attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None)) # get last_hidden_state from encoder encoder_hidden_states = self.speech_encoder(input_features=input_features, attention_mask=attention_mask)[0] # input modality = speech so new attention mask for the decoder if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_hidden_states.device ) attention_mask = _compute_new_attention_mask( hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths ) # repeat attention mask alongside batch dimension attention_mask = torch.repeat_interleave(attention_mask, num_return_sequences, dim=0) # repeat attention mask alongside batch dimension encoder_hidden_states = torch.repeat_interleave(encoder_hidden_states, num_return_sequences, dim=0) # get decoder last hidden state - must do a pass through the text decoder t2u_input_embeds = self.text_decoder( input_ids=sequences[:, :-1], # Manually trim the final EOS token encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, ).last_hidden_state pad_token_id = self.generation_config.pad_token_id # Compute new attention mask seq_lens = (sequences[:, :-1] != pad_token_id).int().sum(1) t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens) kwargs_speech["attention_mask"] = t2u_model_attention_mask # REMOVE EOS and lang_id t2u_input_ids = sequences[:, 2:-1] # replace every other EOS t2u_input_ids = torch.masked_fill( t2u_input_ids, t2u_input_ids == self.generation_config.eos_token_id, pad_token_id ) # compute t2u_char_input_ids t2u_subwords = self._indices_to_subwords(t2u_input_ids) t2u_char_count_per_id = self._count_character_length_in_subword( t2u_input_ids, t2u_subwords, pad_token_id=pad_token_id ) # Add pads for lang, EOS tokens as per NLLB "source" tokenizer mode. pad_zero = t2u_char_count_per_id.new_zeros((t2u_char_count_per_id.shape[0], 1)) t2u_char_count_per_id = torch.cat([pad_zero, t2u_char_count_per_id, pad_zero], dim=1) t2u_char_input_ids = self._get_char_input_ids( t2u_input_ids, t2u_subwords, t2u_char_count_per_id, pad_token_id=pad_token_id ) # second pass t2u_output = self.t2u_model( inputs_embeds=t2u_input_embeds, char_input_ids=t2u_char_input_ids, char_count_per_id=t2u_char_count_per_id, **kwargs_speech, ) t2u_logits = t2u_output[0] padding_mask = t2u_output[1].bool() # The text-to-unit model is non auto-regressive. We keep the ability to use sampling with temperature temperature = kwargs_speech.get("temperature", None) if (temperature is None or temperature == 1.0) or not kwargs_speech.get("do_sample", False): unit_ids = t2u_logits.argmax(dim=-1) else: t2u_logits = t2u_logits / temperature # apply softmax probs = nn.functional.softmax(t2u_logits, dim=-1) # reshape to 2D: (batch_size, seq_len, t2u_vocab_size) -> (batch_size*seq_len, t2u_vocab_size) probs = probs.reshape((-1, probs.shape[2])) # multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len) unit_ids = torch.multinomial(probs, num_samples=1).view(t2u_logits.shape[0], -1) output_unit_ids = unit_ids.detach().clone() replace_mask = (unit_ids == self.config.t2u_eos_token_id) | (~padding_mask) # replace eos per pad unit_ids = unit_ids.masked_fill(replace_mask, self.config.t2u_pad_token_id) # offset of control symbols unit_ids = torch.where( unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset ) vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang) vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids), device=self.device) speaker_id = torch.tensor([[speaker_id]] * len(unit_ids), device=self.device) waveform, waveform_lengths = self.vocoder( input_ids=unit_ids, speaker_id=speaker_id, lang_id=vocoder_tgt_lang_id ) if return_intermediate_token_ids: return SeamlessM4Tv2GenerationOutput( waveform=waveform, waveform_lengths=waveform_lengths, sequences=sequences, unit_sequences=output_unit_ids, ) return waveform, waveform_lengths @staticmethod # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TForSpeechToSpeech._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past @add_start_docstrings( "The original SeamlessM4Tv2 Model transformer which can be used for every tasks available (S2ST, S2TT, T2TT, T2ST).", SEAMLESS_M4T_V2_START_DOCSTRING, """ current_modality (`str`, *optional*, defaults to `"text"`): Default modality. Used only to initialize the model. It can be set to `"text"` or `"speech"`. This will be updated automatically according to the modality passed to the forward and generate passes (`input_ids` for text and `input_features` for audio). """, ) class SeamlessM4Tv2Model(SeamlessM4Tv2PreTrainedModel, GenerationMixin): _tied_weights_keys = [ "lm_head.weight", "text_encoder.embed_tokens.weight", "text_decoder.embed_tokens.weight", ] # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.__init__ with SeamlessM4T->SeamlessM4Tv2 def __init__(self, config, current_modality="text"): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.text_encoder = SeamlessM4Tv2Encoder(config, self.shared) self.speech_encoder = SeamlessM4Tv2SpeechEncoder(config) self.text_decoder = SeamlessM4Tv2Decoder(config, self.shared) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() self.current_modality = current_modality if current_modality == "speech": self.main_input_name = "input_features" # these models already call post_init in their initialization self.t2u_model = SeamlessM4Tv2TextToUnitForConditionalGeneration(config) self.vocoder = SeamlessM4Tv2CodeHifiGan(config) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.set_modality def set_modality(self, modality="text"): if modality == "text": self.main_input_name = "input_ids" self.current_modality = "text" elif modality == "speech": self.main_input_name = "input_features" self.current_modality = "speech" else: raise ValueError(f"`modality={modality}` is not a valid modality. It must be `text` or `speech`.") # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.get_encoder def get_encoder(self): if self.current_modality == "text": return self.text_encoder else: return self.speech_encoder # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.get_input_embeddings def get_input_embeddings(self): return self.text_decoder.embed_tokens # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.set_input_embeddings def set_input_embeddings(self, value): self.text_encoder.embed_tokens = value self.text_decoder.embed_tokens = value self.shared = value # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel._tie_weights def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.lm_head, self.shared) @add_start_docstrings_to_model_forward(M4T_MODEL_INPUTS_DOCSTRING) # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel.forward with SeamlessM4T->SeamlessM4Tv2 def forward( self, input_ids: Optional[torch.LongTensor] = None, input_features: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) if input_ids is None and input_features is None and inputs_embeds is None and encoder_outputs is None: raise ValueError( "`input_ids`,`input_features`, `inputs_embeds` and `encoder_outputs` are all empty. Make sure at least one of them is not." ) elif input_features is not None: if input_ids is not None: logger.warning( "`input_ids` is not `None` but `input_features` has been given." "`input_features` will be used in priority through the `speech_encoder`. " "Make sure that `input_features` and `input_ids` are mutually exclusive." ) if inputs_embeds is not None: logger.warning( "`inputs_embeds` is not `None` but `input_features` has been given." "`input_features` will be used in priority through `speech_encoder`. " "`inputs_embeds` will be ignored." ) # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This calls the same method `forward` as `SeamlessM4Tv2ForTextToText` and `SeamlessM4Tv2ForSpeechToText`" "depending on the input modality. If you want to generate speech, use the `generate` method." ) self.set_modality("speech") encoder_outputs = self.speech_encoder( input_features=input_features, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif input_ids is not None or inputs_embeds is not None: # if encoder_outputs is not None, it's probably used within a .generate method so no need to warn logger.warning( "This calls the same method `forward` as `SeamlessM4Tv2ForTextToText` and `SeamlessM4Tv2ForSpeechToText`" "depending on the input modality. If you want to generate speech, use the `generate` method." ) self.set_modality("text") encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) encoder_attention_mask = attention_mask # input modality = speech so new attention mask if self.current_modality == "speech" and attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_outputs[0].device ) encoder_attention_mask = _compute_new_attention_mask( hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(decoder_outputs[0]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(lm_logits.device) masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: outputs = decoder_outputs + encoder_outputs output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @torch.no_grad() def generate( self, input_ids: Optional[torch.Tensor] = None, input_features: Optional[torch.Tensor] = None, return_intermediate_token_ids: Optional[bool] = None, tgt_lang: Optional[str] = None, speaker_id: Optional[int] = 0, generate_speech: Optional[bool] = True, **kwargs, ) -> Union[torch.Tensor, SeamlessM4Tv2GenerationOutput]: """ Generates translated token ids and/or translated audio waveforms. <Tip> This method successively calls the `.generate` function of two different sub-models. You can specify keyword arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments that will be passed to one of them. For example, calling `.generate(input_ids=input_ids, num_beams=4, speech_do_sample=True)` will successively perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`, *optional*): Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the [`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details. return_intermediate_token_ids (`bool`, *optional*): If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want to get translated text alongside the audio. Note that if `generate_speech=True`, this parameter will be ignored. tgt_lang (`str`, *optional*): The language to use as target language for translation. speaker_id (`int`, *optional*, defaults to 0): The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`. generate_speech (`bool`, *optional*, defaults to `True`): If `False`, will only returns the text tokens and won't generate speech. kwargs (*optional*): Remaining dictioy of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword arguments are of two types: - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model, except for `decoder_input_ids` which will only be passed through the text components. - With a *text_* or *speech_* prefix, they will be input for the `generate` method of the text model and speech model respectively. It has the priority over the keywords without a prefix. This means you can, for example, specify a generation strategy for one generation but not for the other. Returns: `Union[SeamlessM4Tv2GenerationOutput, Tuple[Tensor], ModelOutput]`: - If `generate_speech` and `return_intermediate_token_ids`, returns [`SeamlessM4Tv2GenerationOutput`]. - If `generate_speech` and not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample. - If `generate_speech=False`, it will returns `ModelOutput`. """ if input_ids is None and input_features is None and kwargs.get("inputs_embeds", None) is None: raise ValueError( "`input_ids`,`input_features` and `inputs_embeds` are all empty. Make sure at least one of them is not." ) if generate_speech and tgt_lang is None: raise ValueError("You must specify a `tgt_lang` to generate translated speech.") if tgt_lang is not None: # also accept __xxx__ tgt_lang = tgt_lang.replace("__", "") if generate_speech: keys_to_check = ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"] else: keys_to_check = ["text_decoder_lang_to_code_id"] for key in keys_to_check: lang_code_to_id = getattr(self.generation_config, key, None) if lang_code_to_id is None: raise ValueError( f"""This model generation config doesn't have a `{key}` key which maps the target language to the right token id. Make sure to load the right generation config.""" ) elif tgt_lang not in lang_code_to_id: raise ValueError( f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in {",".join(lang_code_to_id.keys())}. Note that SeamlessM4Tv2 supports more languages for text translation than for speech synthesis.""" ) batch_size = ( len(input_features) if input_features is not None else (len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds"))) ) kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs) kwargs_text["output_hidden_states"] = True kwargs_text["return_dict_in_generate"] = True kwargs_text["output_scores"] = True text_decoder_input_ids = kwargs_text.get("decoder_input_ids") # overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids. if tgt_lang is not None: # tgt_lang gets priority over decoder input ids text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang) text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size, device=self.device) kwargs_text["decoder_input_ids"] = text_decoder_input_ids # first generation if input_features is not None: self.set_modality("speech") if input_ids is not None: logger.warning( "`input_features` and `input_ids` are both non empty. `input_features` will be used in priority " "through the speech encoder. Make sure `input_features=None` if you want to use the text encoder." ) text_generation_output = super().generate(input_features=input_features, **kwargs_text) else: self.set_modality("text") text_generation_output = super().generate(input_ids=input_ids, input_features=None, **kwargs_text) sequences = text_generation_output.sequences if not generate_speech: return text_generation_output # prepare second generation num_return_sequences = len(sequences) // batch_size attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None)) # get encoder last hidden states if self.current_modality == "speech": # get last_hidden_state from encoder - must do a pass through the speech encoder encoder_hidden_states = self.speech_encoder( input_features=input_features, attention_mask=attention_mask ).last_hidden_state # input modality = speech so new attention mask for the decoder if attention_mask is not None: sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to( encoder_hidden_states.device ) attention_mask = _compute_new_attention_mask( hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths ) else: encoder_hidden_states = text_generation_output.encoder_hidden_states[-1] if attention_mask is not None: # repeat attention mask alongside batch dimension attention_mask = torch.repeat_interleave(attention_mask, num_return_sequences, dim=0) # repeat attention mask alongside batch dimension encoder_hidden_states = torch.repeat_interleave(encoder_hidden_states, num_return_sequences, dim=0) # get decoder last hidden state - must do a pass through the text decoder t2u_input_embeds = self.text_decoder( input_ids=sequences[:, :-1], # Manually trim the final EOS token encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, ).last_hidden_state pad_token_id = self.generation_config.pad_token_id # Compute new attention mask seq_lens = (sequences[:, :-1] != pad_token_id).int().sum(1) t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens) kwargs_speech["attention_mask"] = t2u_model_attention_mask # REMOVE EOS and lang_id t2u_input_ids = sequences[:, 2:-1] # replace every other EOS t2u_input_ids = torch.masked_fill( t2u_input_ids, t2u_input_ids == self.generation_config.eos_token_id, pad_token_id ) # compute t2u_char_input_ids t2u_subwords = self._indices_to_subwords(t2u_input_ids) t2u_char_count_per_id = self._count_character_length_in_subword( t2u_input_ids, t2u_subwords, pad_token_id=pad_token_id ) # Add pads for lang, EOS tokens as per NLLB "source" tokenizer mode. pad_zero = t2u_char_count_per_id.new_zeros((t2u_char_count_per_id.shape[0], 1)) t2u_char_count_per_id = torch.cat([pad_zero, t2u_char_count_per_id, pad_zero], dim=1) t2u_char_input_ids = self._get_char_input_ids( t2u_input_ids, t2u_subwords, t2u_char_count_per_id, pad_token_id=pad_token_id ) # second pass t2u_output = self.t2u_model( inputs_embeds=t2u_input_embeds, char_input_ids=t2u_char_input_ids, char_count_per_id=t2u_char_count_per_id, **kwargs_speech, ) t2u_logits = t2u_output[0] padding_mask = t2u_output[1].bool() # The text-to-unit model is non auto-regressive. We keep the ability to use sampling with temperature temperature = kwargs_speech.get("temperature", None) if (temperature is None or temperature == 1.0) or not kwargs_speech.get("do_sample", False): unit_ids = t2u_logits.argmax(dim=-1) else: t2u_logits = t2u_logits / temperature # apply softmax probs = nn.functional.softmax(t2u_logits, dim=-1) # reshape to 2D: (batch_size, seq_len, t2u_vocab_size) -> (batch_size*seq_len, t2u_vocab_size) probs = probs.reshape((-1, probs.shape[2])) # multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len) unit_ids = torch.multinomial(probs, num_samples=1).view(t2u_logits.shape[0], -1) output_unit_ids = unit_ids.detach().clone() replace_mask = (unit_ids == self.config.t2u_eos_token_id) | (~padding_mask) # replace eos per pad unit_ids = unit_ids.masked_fill(replace_mask, self.config.t2u_pad_token_id) # offset of control symbols unit_ids = torch.where( unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset ) vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang) vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids), device=self.device) speaker_id = torch.tensor([[speaker_id]] * len(unit_ids), device=self.device) waveform, waveform_lengths = self.vocoder( input_ids=unit_ids, speaker_id=speaker_id, lang_id=vocoder_tgt_lang_id ) if return_intermediate_token_ids: return SeamlessM4Tv2GenerationOutput( waveform=waveform, waveform_lengths=waveform_lengths, sequences=sequences, unit_sequences=output_unit_ids, ) return waveform, waveform_lengths @staticmethod # Copied from transformers.models.seamless_m4t.modeling_seamless_m4t.SeamlessM4TModel._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past __all__ = [ "SeamlessM4Tv2ForTextToSpeech", "SeamlessM4Tv2ForSpeechToSpeech", "SeamlessM4Tv2ForTextToText", "SeamlessM4Tv2ForSpeechToText", "SeamlessM4Tv2Model", "SeamlessM4Tv2PreTrainedModel", ] ```
================================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.11 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\segformer\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_segformer import * from .feature_extraction_segformer import * from .image_processing_segformer import * from .modeling_segformer import * from .modeling_tf_segformer import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
================================================================================================================================================ SOURCE CODE FILE: configuration_segformer.py LINES: 1 SIZE: 7.25 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\segformer\configuration_segformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 NVIDIA and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SegFormer model configuration""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class SegformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SegformerModel`]. It is used to instantiate an SegFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SegFormer [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_encoder_blocks (`int`, *optional*, defaults to 4): The number of encoder blocks (i.e. stages in the Mix Transformer encoder). depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`): The number of layers in each encoder block. sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`): Sequence reduction ratios in each encoder block. hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`): Dimension of each of the encoder blocks. patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`): Patch size before each encoder block. strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): Stride before each encoder block. num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`): Number of attention heads for each attention layer in each block of the Transformer encoder. mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`): Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the encoder blocks. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. classifier_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability before the classification head. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. drop_path_rate (`float`, *optional*, defaults to 0.1): The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. decoder_hidden_size (`int`, *optional*, defaults to 256): The dimension of the all-MLP decode head. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. Example: ```python >>> from transformers import SegformerModel, SegformerConfig >>> # Initializing a SegFormer nvidia/segformer-b0-finetuned-ade-512-512 style configuration >>> configuration = SegformerConfig() >>> # Initializing a model from the nvidia/segformer-b0-finetuned-ade-512-512 style configuration >>> model = SegformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "segformer" def __init__( self, num_channels=3, num_encoder_blocks=4, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], hidden_sizes=[32, 64, 160, 256], patch_sizes=[7, 3, 3, 3], strides=[4, 2, 2, 2], num_attention_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, classifier_dropout_prob=0.1, initializer_range=0.02, drop_path_rate=0.1, layer_norm_eps=1e-6, decoder_hidden_size=256, semantic_loss_ignore_index=255, **kwargs, ): super().__init__(**kwargs) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True.", FutureWarning, ) self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.depths = depths self.sr_ratios = sr_ratios self.hidden_sizes = hidden_sizes self.patch_sizes = patch_sizes self.strides = strides self.mlp_ratios = mlp_ratios self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.classifier_dropout_prob = classifier_dropout_prob self.initializer_range = initializer_range self.drop_path_rate = drop_path_rate self.layer_norm_eps = layer_norm_eps self.decoder_hidden_size = decoder_hidden_size self.reshape_last_stage = kwargs.get("reshape_last_stage", True) self.semantic_loss_ignore_index = semantic_loss_ignore_index class SegformerOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 @property def default_onnx_opset(self) -> int: return 12 __all__ = ["SegformerConfig", "SegformerOnnxConfig"] ```
===================================================================================================================================================== SOURCE CODE FILE: feature_extraction_segformer.py LINES: 1 SIZE: 1.22 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\segformer\feature_extraction_segformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for SegFormer.""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor logger = logging.get_logger(__name__) class SegformerFeatureExtractor(SegformerImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs) __all__ = ["SegformerFeatureExtractor"] ```
=================================================================================================================================================== SOURCE CODE FILE: image_processing_segformer.py LINES: 1 SIZE: 22.31 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\segformer\image_processing_segformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Segformer.""" from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import INIT_SERVICE_KWARGS, BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import ( TensorType, filter_out_non_signature_kwargs, is_torch_available, is_torch_tensor, is_vision_available, logging, ) from ...utils.deprecation import deprecate_kwarg if is_vision_available(): import PIL.Image if is_torch_available(): import torch logger = logging.get_logger(__name__) class SegformerImageProcessor(BaseImageProcessor): r""" Constructs a Segformer image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `(size["height"], size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 512, "width": 512}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. do_reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] @deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.41.0") @filter_out_non_signature_kwargs(extra=INIT_SERVICE_KWARGS) def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_reduce_labels: bool = False, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 512, "width": 512} size = get_size_dict(size) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_reduce_labels = do_reduce_labels @classmethod def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to save support of deprecated `reduce_labels` in old configs """ image_processor_dict = image_processor_dict.copy() if "reduce_labels" in image_processor_dict: image_processor_dict["do_reduce_labels"] = image_processor_dict.pop("reduce_labels") return super().from_dict(image_processor_dict, **kwargs) # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) # Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.reduce_label def reduce_label(self, label: ImageInput) -> np.ndarray: label = to_numpy_array(label) # Avoid using underflow conversion label[label == 0] = 255 label = label - 1 label[label == 254] = 255 return label def _preprocess( self, image: ImageInput, do_reduce_labels: bool, do_resize: bool, do_rescale: bool, do_normalize: bool, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, rescale_factor: Optional[float] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): if do_reduce_labels: image = self.reduce_label(image) if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) return image def _preprocess_image( self, image: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" # All transformations expect numpy arrays. image = to_numpy_array(image) if do_rescale and is_scaled_image(image): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) image = self._preprocess( image=image, do_reduce_labels=False, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format, ) if data_format is not None: image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def _preprocess_mask( self, segmentation_map: ImageInput, do_reduce_labels: Optional[bool] = None, do_resize: Optional[bool] = None, size: Dict[str, int] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single mask.""" segmentation_map = to_numpy_array(segmentation_map) # Add channel dimension if missing - needed for certain transformations if segmentation_map.ndim == 2: added_channel_dim = True segmentation_map = segmentation_map[None, ...] input_data_format = ChannelDimension.FIRST else: added_channel_dim = False if input_data_format is None: input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1) # reduce zero label if needed segmentation_map = self._preprocess( image=segmentation_map, do_reduce_labels=do_reduce_labels, do_resize=do_resize, resample=PILImageResampling.NEAREST, size=size, do_rescale=False, do_normalize=False, input_data_format=input_data_format, ) # Remove extra channel dimension if added for processing if added_channel_dim: segmentation_map = segmentation_map.squeeze(0) segmentation_map = segmentation_map.astype(np.int64) return segmentation_map def __call__(self, images, segmentation_maps=None, **kwargs): """ Preprocesses a batch of images and optionally segmentation maps. Overrides the `__call__` method of the `Preprocessor` class so that both images and segmentation maps can be passed in as positional arguments. """ return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs) @deprecate_kwarg("reduce_labels", new_name="do_reduce_labels", version="4.41.0") @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, segmentation_maps: Optional[ImageInput] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_reduce_labels: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. segmentation_maps (`ImageInput`, *optional*): Segmentation map to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after `resize` is applied. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize do_rescale = do_rescale if do_rescale is not None else self.do_rescale do_normalize = do_normalize if do_normalize is not None else self.do_normalize do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels resample = resample if resample is not None else self.resample size = size if size is not None else self.size rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) if segmentation_maps is not None: segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) images = [ self._preprocess_image( image=img, do_resize=do_resize, resample=resample, size=size, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, input_data_format=input_data_format, ) for img in images ] data = {"pixel_values": images} if segmentation_maps is not None: segmentation_maps = [ self._preprocess_mask( segmentation_map=segmentation_map, do_reduce_labels=do_reduce_labels, do_resize=do_resize, size=size, input_data_format=input_data_format, ) for segmentation_map in segmentation_maps ] data["labels"] = segmentation_maps return BatchFeature(data=data, tensor_type=return_tensors) # Copied from transformers.models.beit.image_processing_beit.BeitImageProcessor.post_process_semantic_segmentation with Beit->Segformer def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): """ Converts the output of [`SegformerForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`SegformerForSemanticSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple]` of length `batch_size`, *optional*): List of tuples corresponding to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. Returns: semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ # TODO: add support for other frameworks logits = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(target_sizes): target_sizes = target_sizes.numpy() semantic_segmentation = [] for idx in range(len(logits)): resized_logits = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = logits.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation __all__ = ["SegformerImageProcessor"] ```
=========================================================================================================================================== SOURCE CODE FILE: modeling_segformer.py LINES: 1 SIZE: 34.74 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\segformer\modeling_segformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 NVIDIA The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SegFormer model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput, SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_segformer import SegformerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SegformerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "nvidia/mit-b0" _EXPECTED_OUTPUT_SHAPE = [1, 256, 16, 16] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "nvidia/mit-b0" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" class SegFormerImageClassifierOutput(ImageClassifierOutput): """ Base class for outputs of image classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the model at the output of each stage. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Segformer class SegformerDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class SegformerOverlapPatchEmbeddings(nn.Module): """Construct the overlapping patch embeddings.""" def __init__(self, patch_size, stride, num_channels, hidden_size): super().__init__() self.proj = nn.Conv2d( num_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=patch_size // 2, ) self.layer_norm = nn.LayerNorm(hidden_size) def forward(self, pixel_values): embeddings = self.proj(pixel_values) _, _, height, width = embeddings.shape # (batch_size, num_channels, height, width) -> (batch_size, num_channels, height*width) -> (batch_size, height*width, num_channels) # this can be fed to a Transformer layer embeddings = embeddings.flatten(2).transpose(1, 2) embeddings = self.layer_norm(embeddings) return embeddings, height, width class SegformerEfficientSelfAttention(nn.Module): """SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT paper](https://arxiv.org/abs/2102.12122).""" def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio): super().__init__() self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads if self.hidden_size % self.num_attention_heads != 0: raise ValueError( f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention " f"heads ({self.num_attention_heads})" ) self.attention_head_size = int(self.hidden_size / self.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(self.hidden_size, self.all_head_size) self.key = nn.Linear(self.hidden_size, self.all_head_size) self.value = nn.Linear(self.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.sr_ratio = sequence_reduction_ratio if sequence_reduction_ratio > 1: self.sr = nn.Conv2d( hidden_size, hidden_size, kernel_size=sequence_reduction_ratio, stride=sequence_reduction_ratio ) self.layer_norm = nn.LayerNorm(hidden_size) def transpose_for_scores(self, hidden_states): new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size) hidden_states = hidden_states.view(new_shape) return hidden_states.permute(0, 2, 1, 3) def forward( self, hidden_states, height, width, output_attentions=False, ): query_layer = self.transpose_for_scores(self.query(hidden_states)) if self.sr_ratio > 1: batch_size, seq_len, num_channels = hidden_states.shape # Reshape to (batch_size, num_channels, height, width) hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) # Apply sequence reduction hidden_states = self.sr(hidden_states) # Reshape back to (batch_size, seq_len, num_channels) hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1) hidden_states = self.layer_norm(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class SegformerSelfOutput(nn.Module): def __init__(self, config, hidden_size): super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class SegformerAttention(nn.Module): def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio): super().__init__() self.self = SegformerEfficientSelfAttention( config=config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, ) self.output = SegformerSelfOutput(config, hidden_size=hidden_size) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, height, width, output_attentions=False): self_outputs = self.self(hidden_states, height, width, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class SegformerDWConv(nn.Module): def __init__(self, dim=768): super().__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) def forward(self, hidden_states, height, width): batch_size, seq_len, num_channels = hidden_states.shape hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width) hidden_states = self.dwconv(hidden_states) hidden_states = hidden_states.flatten(2).transpose(1, 2) return hidden_states class SegformerMixFFN(nn.Module): def __init__(self, config, in_features, hidden_features=None, out_features=None): super().__init__() out_features = out_features or in_features self.dense1 = nn.Linear(in_features, hidden_features) self.dwconv = SegformerDWConv(hidden_features) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.dense2 = nn.Linear(hidden_features, out_features) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, height, width): hidden_states = self.dense1(hidden_states) hidden_states = self.dwconv(hidden_states, height, width) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.dense2(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class SegformerLayer(nn.Module): """This corresponds to the Block class in the original implementation.""" def __init__(self, config, hidden_size, num_attention_heads, drop_path, sequence_reduction_ratio, mlp_ratio): super().__init__() self.layer_norm_1 = nn.LayerNorm(hidden_size) self.attention = SegformerAttention( config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, ) self.drop_path = SegformerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.layer_norm_2 = nn.LayerNorm(hidden_size) mlp_hidden_size = int(hidden_size * mlp_ratio) self.mlp = SegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size) def forward(self, hidden_states, height, width, output_attentions=False): self_attention_outputs = self.attention( self.layer_norm_1(hidden_states), # in Segformer, layernorm is applied before self-attention height, width, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection (with stochastic depth) attention_output = self.drop_path(attention_output) hidden_states = attention_output + hidden_states mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width) # second residual connection (with stochastic depth) mlp_output = self.drop_path(mlp_output) layer_output = mlp_output + hidden_states outputs = (layer_output,) + outputs return outputs class SegformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config # stochastic depth decay rule drop_path_decays = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( SegformerOverlapPatchEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], ) ) self.patch_embeddings = nn.ModuleList(embeddings) # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( SegformerLayer( config, hidden_size=config.hidden_sizes[i], num_attention_heads=config.num_attention_heads[i], drop_path=drop_path_decays[cur + j], sequence_reduction_ratio=config.sr_ratios[i], mlp_ratio=config.mlp_ratios[i], ) ) blocks.append(nn.ModuleList(layers)) self.block = nn.ModuleList(blocks) # Layer norms self.layer_norm = nn.ModuleList( [nn.LayerNorm(config.hidden_sizes[i]) for i in range(config.num_encoder_blocks)] ) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None batch_size = pixel_values.shape[0] hidden_states = pixel_values for idx, x in enumerate(zip(self.patch_embeddings, self.block, self.layer_norm)): embedding_layer, block_layer, norm_layer = x # first, obtain patch embeddings hidden_states, height, width = embedding_layer(hidden_states) # second, send embeddings through blocks for i, blk in enumerate(block_layer): layer_outputs = blk(hidden_states, height, width, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # third, apply layer norm hidden_states = norm_layer(hidden_states) # fourth, optionally reshape back to (batch_size, num_channels, height, width) if idx != len(self.patch_embeddings) - 1 or ( idx == len(self.patch_embeddings) - 1 and self.config.reshape_last_stage ): hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous() if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class SegformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SegformerConfig base_model_prefix = "segformer" main_input_name = "pixel_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d)): module.bias.data.zero_() module.weight.data.fill_(1.0) SEGFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SegformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEGFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SegFormer encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.", SEGFORMER_START_DOCSTRING, ) class SegformerModel(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config # hierarchical Transformer encoder self.encoder = SegformerEncoder(config) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ SegFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden states) e.g. for ImageNet. """, SEGFORMER_START_DOCSTRING, ) class SegformerForImageClassification(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.segformer = SegformerModel(config) # Classifier head self.classifier = nn.Linear(config.hidden_sizes[-1], config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=SegFormerImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SegFormerImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # convert last hidden states to (batch_size, height*width, hidden_size) batch_size = sequence_output.shape[0] if self.config.reshape_last_stage: # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) sequence_output = sequence_output.permute(0, 2, 3, 1) sequence_output = sequence_output.reshape(batch_size, -1, self.config.hidden_sizes[-1]) # global average pooling sequence_output = sequence_output.mean(dim=1) logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SegFormerImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class SegformerMLP(nn.Module): """ Linear Embedding. """ def __init__(self, config: SegformerConfig, input_dim): super().__init__() self.proj = nn.Linear(input_dim, config.decoder_hidden_size) def forward(self, hidden_states: torch.Tensor): hidden_states = hidden_states.flatten(2).transpose(1, 2) hidden_states = self.proj(hidden_states) return hidden_states class SegformerDecodeHead(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) # linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size mlps = [] for i in range(config.num_encoder_blocks): mlp = SegformerMLP(config, input_dim=config.hidden_sizes[i]) mlps.append(mlp) self.linear_c = nn.ModuleList(mlps) # the following 3 layers implement the ConvModule of the original implementation self.linear_fuse = nn.Conv2d( in_channels=config.decoder_hidden_size * config.num_encoder_blocks, out_channels=config.decoder_hidden_size, kernel_size=1, bias=False, ) self.batch_norm = nn.BatchNorm2d(config.decoder_hidden_size) self.activation = nn.ReLU() self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifier = nn.Conv2d(config.decoder_hidden_size, config.num_labels, kernel_size=1) self.config = config def forward(self, encoder_hidden_states: torch.FloatTensor) -> torch.Tensor: batch_size = encoder_hidden_states[-1].shape[0] all_hidden_states = () for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.linear_c): if self.config.reshape_last_stage is False and encoder_hidden_state.ndim == 3: height = width = int(math.sqrt(encoder_hidden_state.shape[-1])) encoder_hidden_state = ( encoder_hidden_state.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous() ) # unify channel dimension height, width = encoder_hidden_state.shape[2], encoder_hidden_state.shape[3] encoder_hidden_state = mlp(encoder_hidden_state) encoder_hidden_state = encoder_hidden_state.permute(0, 2, 1) encoder_hidden_state = encoder_hidden_state.reshape(batch_size, -1, height, width) # upsample encoder_hidden_state = nn.functional.interpolate( encoder_hidden_state, size=encoder_hidden_states[0].size()[2:], mode="bilinear", align_corners=False ) all_hidden_states += (encoder_hidden_state,) hidden_states = self.linear_fuse(torch.cat(all_hidden_states[::-1], dim=1)) hidden_states = self.batch_norm(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) # logits are of shape (batch_size, num_labels, height/4, width/4) logits = self.classifier(hidden_states) return logits @add_start_docstrings( """SegFormer Model transformer with an all-MLP decode head on top e.g. for ADE20k, CityScapes.""", SEGFORMER_START_DOCSTRING, ) class SegformerForSemanticSegmentation(SegformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.segformer = SegformerModel(config) self.decode_head = SegformerDecodeHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, SegformerForSemanticSegmentation >>> from PIL import Image >>> import requests >>> image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) >>> list(logits.shape) [1, 150, 128, 128] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if labels is not None and self.config.num_labels < 1: raise ValueError(f"Number of labels should be >=0: {self.config.num_labels}") outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.decode_head(encoder_hidden_states) loss = None if labels is not None: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) if self.config.num_labels > 1: loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) elif self.config.num_labels == 1: valid_mask = ((labels >= 0) & (labels != self.config.semantic_loss_ignore_index)).float() loss_fct = BCEWithLogitsLoss(reduction="none") loss = loss_fct(upsampled_logits.squeeze(1), labels.float()) loss = (loss * valid_mask).mean() if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) __all__ = [ "SegformerDecodeHead", "SegformerForImageClassification", "SegformerForSemanticSegmentation", "SegformerLayer", "SegformerModel", "SegformerPreTrainedModel", ] ```
============================================================================================================================================== SOURCE CODE FILE: modeling_tf_segformer.py LINES: 1 SIZE: 42.79 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\segformer\modeling_tf_segformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 NVIDIA The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TensorFlow SegFormer model.""" from __future__ import annotations import math from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import TFBaseModelOutput, TFSemanticSegmenterOutput, TFSequenceClassifierOutput from ...modeling_tf_utils import ( TFPreTrainedModel, TFSequenceClassificationLoss, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import logging from .configuration_segformer import SegformerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SegformerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "nvidia/mit-b0" _EXPECTED_OUTPUT_SHAPE = [1, 256, 16, 16] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "nvidia/mit-b0" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->Segformer class TFSegformerDropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path: float, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x: tf.Tensor, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFSegformerOverlapPatchEmbeddings(keras.layers.Layer): """Construct the overlapping patch embeddings.""" def __init__(self, patch_size, stride, num_channels, hidden_size, **kwargs): super().__init__(**kwargs) self.padding = keras.layers.ZeroPadding2D(padding=patch_size // 2) self.proj = keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=stride, padding="VALID", name="proj" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm") self.num_channels = num_channels self.hidden_size = hidden_size def call(self, pixel_values: tf.Tensor) -> Tuple[tf.Tensor, int, int]: embeddings = self.proj(self.padding(pixel_values)) height = shape_list(embeddings)[1] width = shape_list(embeddings)[2] hidden_dim = shape_list(embeddings)[3] # (batch_size, height, width, num_channels) -> (batch_size, height*width, num_channels) # this can be fed to a Transformer layer embeddings = tf.reshape(embeddings, (-1, height * width, hidden_dim)) embeddings = self.layer_norm(embeddings) return embeddings, height, width def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build([None, None, None, self.num_channels]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.hidden_size]) class TFSegformerEfficientSelfAttention(keras.layers.Layer): """SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT paper](https://arxiv.org/abs/2102.12122).""" def __init__( self, config: SegformerConfig, hidden_size: int, num_attention_heads: int, sequence_reduction_ratio: int, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads if self.hidden_size % self.num_attention_heads != 0: raise ValueError( f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention " f"heads ({self.num_attention_heads})" ) self.attention_head_size = self.hidden_size // self.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense(self.all_head_size, name="query") self.key = keras.layers.Dense(self.all_head_size, name="key") self.value = keras.layers.Dense(self.all_head_size, name="value") self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.sr_ratio = sequence_reduction_ratio if sequence_reduction_ratio > 1: self.sr = keras.layers.Conv2D( filters=hidden_size, kernel_size=sequence_reduction_ratio, strides=sequence_reduction_ratio, name="sr" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm") def transpose_for_scores(self, tensor: tf.Tensor) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] # to [batch_size, seq_length, num_attention_heads, attention_head_size] batch_size = shape_list(tensor)[0] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] # to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False, training: bool = False, ) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]: batch_size = shape_list(hidden_states)[0] num_channels = shape_list(hidden_states)[2] query_layer = self.transpose_for_scores(self.query(hidden_states)) if self.sr_ratio > 1: # Reshape to (batch_size, height, width, num_channels) hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) # Apply sequence reduction hidden_states = self.sr(hidden_states) # Reshape back to (batch_size, seq_len, num_channels) hidden_states = tf.reshape(hidden_states, (batch_size, -1, num_channels)) hidden_states = self.layer_norm(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) scale = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, scale) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) context_layer = tf.reshape(context_layer, (batch_size, -1, self.all_head_size)) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.hidden_size]) if getattr(self, "sr", None) is not None: with tf.name_scope(self.sr.name): self.sr.build([None, None, None, self.hidden_size]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.hidden_size]) class TFSegformerSelfOutput(keras.layers.Layer): def __init__(self, config: SegformerConfig, hidden_size: int, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(hidden_size, name="dense") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.hidden_size = hidden_size def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.hidden_size]) class TFSegformerAttention(keras.layers.Layer): def __init__( self, config: SegformerConfig, hidden_size: int, num_attention_heads: int, sequence_reduction_ratio: int, **kwargs, ): super().__init__(**kwargs) self.self = TFSegformerEfficientSelfAttention( config=config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, name="self", ) self.dense_output = TFSegformerSelfOutput(config, hidden_size=hidden_size, name="output") def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False ) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]: self_outputs = self.self(hidden_states, height, width, output_attentions) attention_output = self.dense_output(self_outputs[0]) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) class TFSegformerDWConv(keras.layers.Layer): def __init__(self, dim: int = 768, **kwargs): super().__init__(**kwargs) self.depthwise_convolution = keras.layers.Conv2D( filters=dim, kernel_size=3, strides=1, padding="same", groups=dim, name="dwconv" ) self.dim = dim def call(self, hidden_states: tf.Tensor, height: int, width: int) -> tf.Tensor: batch_size = shape_list(hidden_states)[0] num_channels = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) hidden_states = self.depthwise_convolution(hidden_states) new_height = shape_list(hidden_states)[1] new_width = shape_list(hidden_states)[2] num_channels = shape_list(hidden_states)[3] hidden_states = tf.reshape(hidden_states, (batch_size, new_height * new_width, num_channels)) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "depthwise_convolution", None) is not None: with tf.name_scope(self.depthwise_convolution.name): self.depthwise_convolution.build([None, None, None, self.dim]) class TFSegformerMixFFN(keras.layers.Layer): def __init__( self, config: SegformerConfig, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, **kwargs, ): super().__init__(**kwargs) out_features = out_features or in_features self.dense1 = keras.layers.Dense(hidden_features, name="dense1") self.depthwise_convolution = TFSegformerDWConv(hidden_features, name="dwconv") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.dense2 = keras.layers.Dense(out_features, name="dense2") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.hidden_features = hidden_features self.in_features = in_features def call(self, hidden_states: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor: hidden_states = self.dense1(hidden_states) hidden_states = self.depthwise_convolution(hidden_states, height, width) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.dense2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense1", None) is not None: with tf.name_scope(self.dense1.name): self.dense1.build([None, None, self.in_features]) if getattr(self, "depthwise_convolution", None) is not None: with tf.name_scope(self.depthwise_convolution.name): self.depthwise_convolution.build(None) if getattr(self, "dense2", None) is not None: with tf.name_scope(self.dense2.name): self.dense2.build([None, None, self.hidden_features]) class TFSegformerLayer(keras.layers.Layer): """This corresponds to the Block class in the original implementation.""" def __init__( self, config, hidden_size: int, num_attention_heads: int, drop_path: float, sequence_reduction_ratio: int, mlp_ratio: int, **kwargs, ): super().__init__(**kwargs) self.layer_norm_1 = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_1") self.attention = TFSegformerAttention( config, hidden_size=hidden_size, num_attention_heads=num_attention_heads, sequence_reduction_ratio=sequence_reduction_ratio, name="attention", ) self.drop_path = TFSegformerDropPath(drop_path) if drop_path > 0.0 else keras.layers.Activation("linear") self.layer_norm_2 = keras.layers.LayerNormalization(epsilon=1e-05, name="layer_norm_2") mlp_hidden_size = int(hidden_size * mlp_ratio) self.mlp = TFSegformerMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size, name="mlp") self.hidden_size = hidden_size def call( self, hidden_states: tf.Tensor, height: int, width: int, output_attentions: bool = False, training: bool = False, ) -> Tuple: self_attention_outputs = self.attention( self.layer_norm_1(hidden_states), # in Segformer, layernorm is applied before self-attention height, width, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection (with stochastic depth) attention_output = self.drop_path(attention_output, training=training) hidden_states = attention_output + hidden_states mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width) # second residual connection (with stochastic depth) mlp_output = self.drop_path(mlp_output, training=training) layer_output = mlp_output + hidden_states outputs = (layer_output,) + outputs return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm_1", None) is not None: with tf.name_scope(self.layer_norm_1.name): self.layer_norm_1.build([None, None, self.hidden_size]) if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "layer_norm_2", None) is not None: with tf.name_scope(self.layer_norm_2.name): self.layer_norm_2.build([None, None, self.hidden_size]) if getattr(self, "mlp", None) is not None: with tf.name_scope(self.mlp.name): self.mlp.build(None) class TFSegformerEncoder(keras.layers.Layer): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.config = config # stochastic depth decay rule drop_path_decays = [x.numpy() for x in tf.linspace(0.0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( TFSegformerOverlapPatchEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], name=f"patch_embeddings.{i}", ) ) self.embeddings = embeddings # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( TFSegformerLayer( config, hidden_size=config.hidden_sizes[i], num_attention_heads=config.num_attention_heads[i], drop_path=drop_path_decays[cur + j], sequence_reduction_ratio=config.sr_ratios[i], mlp_ratio=config.mlp_ratios[i], name=f"block.{i}.{j}", ) ) blocks.append(layers) self.block = blocks # Layer norms self.layer_norms = [ keras.layers.LayerNormalization(epsilon=1e-05, name=f"layer_norm.{i}") for i in range(config.num_encoder_blocks) ] def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None batch_size = shape_list(pixel_values)[0] hidden_states = pixel_values for idx, x in enumerate(zip(self.embeddings, self.block, self.layer_norms)): embedding_layer, block_layer, norm_layer = x # first, obtain patch embeddings hidden_states, height, width = embedding_layer(hidden_states) # second, send embeddings through blocks # (each block consists of multiple layers i.e., list of layers) for i, blk in enumerate(block_layer): layer_outputs = blk( hidden_states, height, width, output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # third, apply layer norm hidden_states = norm_layer(hidden_states) # fourth, optionally reshape back to (batch_size, height, width, num_channels) if idx != len(self.embeddings) - 1 or (idx == len(self.embeddings) - 1 and self.config.reshape_last_stage): num_channels = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (batch_size, height, width, num_channels)) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norms", None) is not None: for layer, shape in zip(self.layer_norms, self.config.hidden_sizes): with tf.name_scope(layer.name): layer.build([None, None, shape]) if getattr(self, "block", None) is not None: for block in self.block: for layer in block: with tf.name_scope(layer.name): layer.build(None) if getattr(self, "embeddings", None) is not None: for layer in self.embeddings: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFSegformerMainLayer(keras.layers.Layer): config_class = SegformerConfig def __init__(self, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.config = config # hierarchical Transformer encoder self.encoder = TFSegformerEncoder(config, name="encoder") @unpack_inputs def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) encoder_outputs = self.encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] # Change to NCHW output format to have uniformity in the modules sequence_output = tf.transpose(sequence_output, perm=[0, 3, 1, 2]) # Change the other hidden state outputs to NCHW as well if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: if tf.greater(len(encoder_outputs[1:]), 0): transposed_encoder_outputs = tuple(tf.transpose(v, perm=[0, 3, 1, 2]) for v in encoder_outputs[1:][0]) return (sequence_output,) + (transposed_encoder_outputs,) else: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) class TFSegformerPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SegformerConfig base_model_prefix = "segformer" main_input_name = "pixel_values" @property def input_signature(self): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 512, 512), dtype=tf.float32)} SEGFORMER_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`SegformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SEGFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare SegFormer encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.", SEGFORMER_START_DOCSTRING, ) class TFSegformerModel(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config # hierarchical Transformer encoder self.segformer = TFSegformerMainLayer(config, name="segformer") @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) @add_start_docstrings( """ SegFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden states) e.g. for ImageNet. """, SEGFORMER_START_DOCSTRING, ) class TFSegformerForImageClassification(TFSegformerPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: SegformerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.segformer = TFSegformerMainLayer(config, name="segformer") # Classifier head self.classifier = keras.layers.Dense(config.num_labels, name="classifier") self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFSequenceClassifierOutput]: outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # convert last hidden states to (batch_size, height*width, hidden_size) batch_size = shape_list(sequence_output)[0] sequence_output = tf.transpose(sequence_output, perm=[0, 2, 3, 1]) sequence_output = tf.reshape(sequence_output, (batch_size, -1, self.config.hidden_sizes[-1])) # global average pooling sequence_output = tf.reduce_mean(sequence_output, axis=1) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_sizes[-1]]) class TFSegformerMLP(keras.layers.Layer): """ Linear Embedding. """ def __init__(self, input_dim: int, config: SegformerConfig, **kwargs): super().__init__(**kwargs) self.proj = keras.layers.Dense(config.decoder_hidden_size, name="proj") self.input_dim = input_dim def call(self, hidden_states: tf.Tensor) -> tf.Tensor: height = shape_list(hidden_states)[1] width = shape_list(hidden_states)[2] hidden_dim = shape_list(hidden_states)[-1] hidden_states = tf.reshape(hidden_states, (-1, height * width, hidden_dim)) hidden_states = self.proj(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build([None, None, self.input_dim]) class TFSegformerDecodeHead(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(config, **kwargs) # linear layers which will unify the channel dimension of each of the encoder blocks to the same config.decoder_hidden_size mlps = [] for i in range(config.num_encoder_blocks): mlp = TFSegformerMLP(config=config, input_dim=config.hidden_sizes[i], name=f"linear_c.{i}") mlps.append(mlp) self.mlps = mlps # the following 3 layers implement the ConvModule of the original implementation self.linear_fuse = keras.layers.Conv2D( filters=config.decoder_hidden_size, kernel_size=1, use_bias=False, name="linear_fuse" ) self.batch_norm = keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="batch_norm") self.activation = keras.layers.Activation("relu") self.dropout = keras.layers.Dropout(config.classifier_dropout_prob) self.classifier = keras.layers.Conv2D(filters=config.num_labels, kernel_size=1, name="classifier") self.config = config def call(self, encoder_hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: all_hidden_states = () for encoder_hidden_state, mlp in zip(encoder_hidden_states, self.mlps): if self.config.reshape_last_stage is False and len(shape_list(encoder_hidden_state)) == 3: height = tf.math.sqrt(tf.cast(shape_list(encoder_hidden_state)[1], tf.float32)) height = width = tf.cast(height, tf.int32) channel_dim = shape_list(encoder_hidden_state)[-1] encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim)) # unify channel dimension encoder_hidden_state = tf.transpose(encoder_hidden_state, perm=[0, 2, 3, 1]) height, width = shape_list(encoder_hidden_state)[1:3] encoder_hidden_state = mlp(encoder_hidden_state) channel_dim = shape_list(encoder_hidden_state)[-1] encoder_hidden_state = tf.reshape(encoder_hidden_state, (-1, height, width, channel_dim)) # upsample temp_state = tf.transpose(encoder_hidden_states[0], perm=[0, 2, 3, 1]) upsample_resolution = shape_list(temp_state)[1:-1] encoder_hidden_state = tf.image.resize(encoder_hidden_state, size=upsample_resolution, method="bilinear") all_hidden_states += (encoder_hidden_state,) hidden_states = self.linear_fuse(tf.concat(all_hidden_states[::-1], axis=-1)) hidden_states = self.batch_norm(hidden_states, training=training) hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # logits of shape (batch_size, height/4, width/4, num_labels) logits = self.classifier(hidden_states) return logits def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "linear_fuse", None) is not None: with tf.name_scope(self.linear_fuse.name): self.linear_fuse.build( [None, None, None, self.config.decoder_hidden_size * self.config.num_encoder_blocks] ) if getattr(self, "batch_norm", None) is not None: with tf.name_scope(self.batch_norm.name): self.batch_norm.build([None, None, None, self.config.decoder_hidden_size]) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, None, self.config.decoder_hidden_size]) if getattr(self, "mlps", None) is not None: for layer in self.mlps: with tf.name_scope(layer.name): layer.build(None) @add_start_docstrings( """SegFormer Model transformer with an all-MLP decode head on top e.g. for ADE20k, CityScapes.""", SEGFORMER_START_DOCSTRING, ) class TFSegformerForSemanticSegmentation(TFSegformerPreTrainedModel): def __init__(self, config: SegformerConfig, **kwargs): super().__init__(config, **kwargs) self.segformer = TFSegformerMainLayer(config, name="segformer") self.decode_head = TFSegformerDecodeHead(config, name="decode_head") def hf_compute_loss(self, logits, labels): # upsample logits to the images' original size # `labels` is of shape (batch_size, height, width) label_interp_shape = shape_list(labels)[1:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") def masked_loss(real, pred): unmasked_loss = loss_fct(real, pred) mask = tf.cast(real != self.config.semantic_loss_ignore_index, dtype=unmasked_loss.dtype) masked_loss = unmasked_loss * mask # Reduction strategy in the similar spirit with # https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_utils.py#L210 reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) return masked_loss(labels, upsampled_logits) @unpack_inputs @add_start_docstrings_to_model_forward(SEGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFSemanticSegmenterOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a (per-pixel) classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFSegformerForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> model = TFSegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs, training=False) >>> # logits are of shape (batch_size, num_labels, height/4, width/4) >>> logits = outputs.logits >>> list(logits.shape) [1, 150, 128, 128] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if labels is not None and not self.config.num_labels > 1: raise ValueError("The number of labels should be greater than one") outputs = self.segformer( pixel_values, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.decode_head(encoder_hidden_states) loss = None if labels is not None: loss = self.hf_compute_loss(logits=logits, labels=labels) # make logits of shape (batch_size, num_labels, height, width) to # keep them consistent across APIs logits = tf.transpose(logits, perm=[0, 3, 1, 2]) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "segformer", None) is not None: with tf.name_scope(self.segformer.name): self.segformer.build(None) if getattr(self, "decode_head", None) is not None: with tf.name_scope(self.decode_head.name): self.decode_head.build(None) __all__ = [ "TFSegformerDecodeHead", "TFSegformerForImageClassification", "TFSegformerForSemanticSegmentation", "TFSegformerModel", "TFSegformerPreTrainedModel", ] ```
============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.01 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seggpt\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_seggpt import * from .image_processing_seggpt import * from .modeling_seggpt import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
========================================================================================================================================== SOURCE CODE FILE: configuration_seggpt.py LINES: 1 SIZE: 6.34 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seggpt\configuration_seggpt.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SegGpt model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SegGptConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SegGptModel`]. It is used to instantiate a SegGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SegGPT [BAAI/seggpt-vit-large](https://huggingface.co/BAAI/seggpt-vit-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. image_size (`List[int]`, *optional*, defaults to `[896, 448]`): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. mlp_dim (`int`, *optional*): The dimensionality of the MLP layer in the Transformer encoder. If unset, defaults to `hidden_size` * 4. drop_path_rate (`float`, *optional*, defaults to 0.1): The drop path rate for the dropout layers. pretrain_image_size (`int`, *optional*, defaults to 224): The pretrained size of the absolute position embeddings. decoder_hidden_size (`int`, *optional*, defaults to 64): Hidden size for decoder. use_relative_position_embeddings (`bool`, *optional*, defaults to `True`): Whether to use relative position embeddings in the attention layers. merge_index (`int`, *optional*, defaults to 2): The index of the encoder layer to merge the embeddings. intermediate_hidden_state_indices (`List[int]`, *optional*, defaults to `[5, 11, 17, 23]`): The indices of the encoder layers which we store as features for the decoder. beta (`float`, *optional*, defaults to 0.01): Regularization factor for SegGptLoss (smooth-l1 loss). Example: ```python >>> from transformers import SegGptConfig, SegGptModel >>> # Initializing a SegGPT seggpt-vit-large style configuration >>> configuration = SegGptConfig() >>> # Initializing a model (with random weights) from the seggpt-vit-large style configuration >>> model = SegGptModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "seggpt" def __init__( self, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, hidden_act="gelu", hidden_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-6, image_size=[896, 448], patch_size=16, num_channels=3, qkv_bias=True, mlp_dim=None, drop_path_rate=0.1, pretrain_image_size=224, decoder_hidden_size=64, use_relative_position_embeddings=True, merge_index=2, intermediate_hidden_state_indices=[5, 11, 17, 23], beta=0.01, **kwargs, ): super().__init__(**kwargs) if merge_index > min(intermediate_hidden_state_indices): raise ValueError( f"Merge index must be less than the minimum encoder output index, but got {merge_index=} and {intermediate_hidden_state_indices=}" ) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.drop_path_rate = drop_path_rate self.pretrain_image_size = pretrain_image_size self.decoder_hidden_size = decoder_hidden_size self.use_relative_position_embeddings = use_relative_position_embeddings self.merge_index = merge_index self.intermediate_hidden_state_indices = intermediate_hidden_state_indices self.beta = beta self.mlp_dim = int(hidden_size * 4) if mlp_dim is None else mlp_dim __all__ = ["SegGptConfig"] ```
============================================================================================================================================= SOURCE CODE FILE: image_processing_seggpt.py LINES: 1 SIZE: 30.79 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seggpt\image_processing_seggpt.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for SegGPT.""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging, requires_backends if is_torch_available(): import torch if is_vision_available(): pass logger = logging.get_logger(__name__) # See https://arxiv.org/pdf/2212.02499.pdf at 3.1 Redefining Output Spaces as "Images" - Semantic Segmentation from PAINTER paper # Taken from https://github.com/Abdullah-Meda/Painter/blob/main/Painter/data/coco_semseg/gen_color_coco_panoptic_segm.py#L31 def build_palette(num_labels: int) -> List[Tuple[int, int]]: base = int(num_labels ** (1 / 3)) + 1 margin = 256 // base # we assume that class_idx 0 is the background which is mapped to black color_list = [(0, 0, 0)] for location in range(num_labels): num_seq_r = location // base**2 num_seq_g = (location % base**2) // base num_seq_b = location % base R = 255 - num_seq_r * margin G = 255 - num_seq_g * margin B = 255 - num_seq_b * margin color_list.append((R, G, B)) return color_list def mask_to_rgb( mask: np.ndarray, palette: Optional[List[Tuple[int, int]]] = None, data_format: Optional[ChannelDimension] = None ) -> np.ndarray: data_format = data_format if data_format is not None else ChannelDimension.FIRST if palette is not None: height, width = mask.shape rgb_mask = np.zeros((3, height, width), dtype=np.uint8) classes_in_mask = np.unique(mask) for class_idx in classes_in_mask: rgb_value = palette[class_idx] class_mask = (mask == class_idx).astype(np.uint8) class_mask = np.expand_dims(class_mask, axis=-1) class_rgb_mask = class_mask * np.array(rgb_value) class_rgb_mask = np.moveaxis(class_rgb_mask, -1, 0) rgb_mask += class_rgb_mask.astype(np.uint8) rgb_mask = np.clip(rgb_mask, 0, 255).astype(np.uint8) else: rgb_mask = np.repeat(mask[None, ...], 3, axis=0) return to_channel_dimension_format(rgb_mask, data_format) class SegGptImageProcessor(BaseImageProcessor): r""" Constructs a SegGpt image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `(size["height"], size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`dict`, *optional*, defaults to `{"height": 448, "width": 448}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the prompt mask to RGB format. Can be overridden by the `do_convert_rgb` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 448, "width": 448} size = get_size_dict(size) self.do_resize = do_resize self.do_rescale = do_rescale self.do_normalize = do_normalize self.size = size self.resample = resample self.rescale_factor = rescale_factor self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_convert_rgb = do_convert_rgb def get_palette(self, num_labels: int) -> List[Tuple[int, int]]: """Build a palette to map the prompt mask from a single channel to a 3 channel RGB. Args: num_labels (`int`): Number of classes in the segmentation task (excluding the background). Returns: `List[Tuple[int, int]]`: Palette to map the prompt mask from a single channel to a 3 channel RGB. """ return build_palette(num_labels) def mask_to_rgb( self, image: np.ndarray, palette: Optional[List[Tuple[int, int]]] = None, data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Converts a segmentation map to RGB format. Args: image (`np.ndarray`): Segmentation map with dimensions (height, width) where pixel values represent the class index. palette (`List[Tuple[int, int]]`, *optional*, defaults to `None`): Palette to use to convert the mask to RGB format. If unset, the mask is duplicated across the channel dimension. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The mask in RGB format. """ return mask_to_rgb(image, palette=palette, data_format=data_format) # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def _preprocess_step( self, images: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, do_convert_rgb: Optional[bool] = None, num_labels: Optional[int] = None, **kwargs, ): """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after resizing. resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BICUBIC`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the prompt mask to RGB format. If `num_labels` is specified, a palette will be built to map the prompt mask from a single channel to a 3 channel RGB. If unset, the prompt mask is duplicated across the channel dimension. Must be set to `False` if the prompt mask is already in RGB format. num_labels: (`int`, *optional*): Number of classes in the segmentation task (excluding the background). If specified, a palette will be built, assuming that class_idx 0 is the background, to map the prompt mask from a single class_idx channel to a 3 channel RGB. Not specifying this will result in the prompt mask either being passed through as is if it is already in RGB format or being duplicated across the channel dimension. """ do_resize = do_resize if do_resize is not None else self.do_resize do_rescale = do_rescale if do_rescale is not None else self.do_rescale do_normalize = do_normalize if do_normalize is not None else self.do_normalize do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb resample = resample if resample is not None else self.resample rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size_dict = get_size_dict(size) # If segmentation map is passed we expect 2D images images = make_list_of_images(images, expected_ndims=2 if do_convert_rgb else 3) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None and not do_convert_rgb: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_convert_rgb: palette = self.get_palette(num_labels) if num_labels is not None else None # Since this is the input for the next transformations its format should be the same as the input_data_format images = [ self.mask_to_rgb(image=image, palette=palette, data_format=ChannelDimension.FIRST) for image in images ] input_data_format = ChannelDimension.FIRST if do_resize: images = [ self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] return images def preprocess( self, images: Optional[ImageInput] = None, prompt_images: Optional[ImageInput] = None, prompt_masks: Optional[ImageInput] = None, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: Optional[bool] = None, num_labels: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ): """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. prompt_images (`ImageInput`): Prompt image to _preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. prompt_masks (`ImageInput`): Prompt mask from prompt image to _preprocess that specify prompt_masks value in the preprocessed output. Can either be in the format of segmentation maps (no channels) or RGB images. If in the format of RGB images, `do_convert_rgb` should be set to `False`. If in the format of segmentation maps, `num_labels` specifying `num_labels` is recommended to build a palette to map the prompt mask from a single channel to a 3 channel RGB. If `num_labels` is not specified, the prompt mask will be duplicated across the channel dimension. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after resizing. resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`): `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BICUBIC`. Only has an effect if `do_resize` is set to `True`. Doesn't apply to prompt mask as it is resized using nearest. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the prompt mask to RGB format. If `num_labels` is specified, a palette will be built to map the prompt mask from a single channel to a 3 channel RGB. If unset, the prompt mask is duplicated across the channel dimension. Must be set to `False` if the prompt mask is already in RGB format. num_labels: (`int`, *optional*): Number of classes in the segmentation task (excluding the background). If specified, a palette will be built, assuming that class_idx 0 is the background, to map the prompt mask from a plain segmentation map with no channels to a 3 channel RGB. Not specifying this will result in the prompt mask either being passed through as is if it is already in RGB format (if `do_convert_rgb` is false) or being duplicated across the channel dimension. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ if all(v is None for v in [images, prompt_images, prompt_masks]): raise ValueError("At least one of images, prompt_images, prompt_masks must be specified.") data = {} if images is not None: images = self._preprocess_step( images, is_mask=False, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_convert_rgb=False, data_format=data_format, input_data_format=input_data_format, **kwargs, ) data["pixel_values"] = images if prompt_images is not None: prompt_images = self._preprocess_step( prompt_images, is_mask=False, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_convert_rgb=False, data_format=data_format, input_data_format=input_data_format, **kwargs, ) data["prompt_pixel_values"] = prompt_images if prompt_masks is not None: prompt_masks = self._preprocess_step( prompt_masks, do_resize=do_resize, size=size, resample=PILImageResampling.NEAREST, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_convert_rgb=do_convert_rgb, num_labels=num_labels, data_format=data_format, input_data_format=input_data_format, **kwargs, ) data["prompt_masks"] = prompt_masks return BatchFeature(data=data, tensor_type=return_tensors) def post_process_semantic_segmentation( self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None, num_labels: Optional[int] = None ): """ Converts the output of [`SegGptImageSegmentationOutput`] into segmentation maps. Only supports PyTorch. Args: outputs ([`SegGptImageSegmentationOutput`]): Raw outputs of the model. target_sizes (`List[Tuple[int, int]]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]`) corresponds to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized. num_labels (`int`, *optional*): Number of classes in the segmentation task (excluding the background). If specified, a palette will be built, assuming that class_idx 0 is the background, to map prediction masks from RGB values to class indices. This value should be the same used when preprocessing inputs. Returns: semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ requires_backends(self, ["torch"]) # batch_size x num_channels x 2*height x width masks = outputs.pred_masks # Predicted mask and prompt are concatenated in the height dimension # batch_size x num_channels x height x width masks = masks[:, :, masks.shape[2] // 2 :, :] # To unnormalize we need to permute to channel last # batch_size x height x width x num_channels std = torch.tensor(self.image_std).to(masks.device) mean = torch.tensor(self.image_mean).to(masks.device) masks = masks.permute(0, 2, 3, 1) * std + mean # batch_size x num_channels x height x width masks = masks.permute(0, 3, 1, 2) # Clip to match with palette if specified masks = torch.clip(masks * 255, 0, 255) semantic_segmentation = [] palette_tensor = None palette = self.get_palette(num_labels) if num_labels is not None else None if palette is not None: palette_tensor = torch.tensor(palette).to(device=masks.device, dtype=torch.float) _, num_channels, _, _ = masks.shape palette_tensor = palette_tensor.view(1, 1, num_labels + 1, num_channels) for idx, mask in enumerate(masks): if target_sizes is not None: mask = torch.nn.functional.interpolate( mask.unsqueeze(0), size=target_sizes[idx], mode="nearest", )[0] if num_labels is not None: channels, height, width = mask.shape dist = mask.permute(1, 2, 0).view(height, width, 1, channels) dist = dist - palette_tensor dist = torch.pow(dist, 2) dist = torch.sum(dist, dim=-1) pred = dist.argmin(dim=-1) else: # If no palette is specified SegGpt will try to paint using the mask class idx as RGB pred = mask.mean(dim=0).int() semantic_segmentation.append(pred) return semantic_segmentation __all__ = ["SegGptImageProcessor"] ```
===================================================================================================================================== SOURCE CODE FILE: modeling_seggpt.py LINES: 1 SIZE: 45.19 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\seggpt\modeling_seggpt.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SegGpt model.""" import collections.abc from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import functional as F from ...activations import ACT2FN from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, torch_int, ) from .configuration_seggpt import SegGptConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SegGptConfig" # Base docstring _CHECKPOINT_FOR_DOC = "BAAI/seggpt-vit-large" _EXPECTED_OUTPUT_SHAPE = [3, 896, 448] @dataclass class SegGptEncoderOutput(ModelOutput): """ Output type of [`SegGptEncoderOutput`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, patch_height, patch_width, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`Tuple[torch.FloatTensor]`, `optional`, returned when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, patch_height, patch_width, hidden_size)`. attentions (`Tuple[torch.FloatTensor]`, `optional`, returned when `config.output_attentions=True`): Tuple of *torch.FloatTensor* (one for each layer) of shape `(batch_size, num_heads, seq_len, seq_len)`. intermediate_hidden_states (`Tuple[torch.FloatTensor]`, *optional*, returned when `config.intermediate_hidden_state_indices` is set): Tuple of `torch.FloatTensor` of shape `(batch_size, patch_height, patch_width, hidden_size)`. Each element in the Tuple corresponds to the output of the layer specified in `config.intermediate_hidden_state_indices`. Additionaly, each feature passes through a LayerNorm. """ last_hidden_state: torch.FloatTensor hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None intermediate_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class SegGptImageSegmentationOutput(ModelOutput): """ Output type of [`SegGptImageSegmentationOutput`]. Args: loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided): The loss value. pred_masks (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): The predicted masks. hidden_states (`Tuple[torch.FloatTensor]`, `optional`, returned when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, patch_height, patch_width, hidden_size)`. attentions (`Tuple[torch.FloatTensor]`, `optional`, returned when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, seq_len, seq_len)`. """ loss: Optional[torch.FloatTensor] = None pred_masks: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.sam.modeling_sam.SamPatchEmbeddings with Sam->SegGpt class SegGptPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(pixel_values).permute(0, 2, 3, 1) return embeddings class SegGptEmbeddings(nn.Module): """ Construct the embeddings from patch, position embeddings for input and prompt. """ def __init__(self, config: SegGptConfig) -> None: super().__init__() self.mask_token = nn.Parameter(torch.zeros(1, 1, 1, config.hidden_size)) self.segment_token_input = nn.Parameter(torch.zeros(1, 1, 1, config.hidden_size)) self.segment_token_prompt = nn.Parameter(torch.zeros(1, 1, 1, config.hidden_size)) # token for seg types self.type_token_semantic = nn.Parameter(torch.zeros(1, 1, 1, config.hidden_size)) self.type_token_instance = nn.Parameter(torch.zeros(1, 1, 1, config.hidden_size)) self.patch_embeddings = SegGptPatchEmbeddings(config) num_positions = (config.pretrain_image_size // config.patch_size) ** 2 + 1 self.position_embeddings = nn.Parameter(torch.randn(1, num_positions, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) def interpolate_pos_encoding(self, height: int, width: int) -> torch.Tensor: patch_pos_embed = self.position_embeddings[:, 1:] num_patches = patch_pos_embed.shape[1] pretrain_patch_size = torch_int(num_patches**0.5) # always interpolate when tracing to ensure the exported model works for dynamic input shapes if torch.jit.is_tracing() or pretrain_patch_size != height or pretrain_patch_size != width: patch_pos_embed = F.interpolate( patch_pos_embed.reshape(1, pretrain_patch_size, pretrain_patch_size, -1).permute(0, 3, 1, 2), size=(height, width), mode="bicubic", align_corners=False, ) return patch_pos_embed.permute(0, 2, 3, 1) else: return patch_pos_embed.reshape(1, height, width, -1) def forward( self, pixel_values: torch.Tensor, prompt_pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, embedding_type: Optional[str] = None, ) -> torch.Tensor: input_embeddings = self.patch_embeddings(pixel_values) prompt_embeddings = self.patch_embeddings(prompt_pixel_values) batch_size, patch_height, patch_width, _ = input_embeddings.shape mask_token = self.mask_token.expand(batch_size, patch_height, patch_width, -1) # replace the masked visual tokens by mask_token w = bool_masked_pos.unsqueeze(-1).type_as(mask_token).reshape(-1, patch_height, patch_width, 1) prompt_embeddings = prompt_embeddings * (1 - w) + mask_token * w embedding_type = embedding_type if embedding_type is not None else "instance" # add positional encoding to each token pos_embed = self.interpolate_pos_encoding(patch_height, patch_width) # add segment token input_embeddings = input_embeddings + self.segment_token_input prompt_embeddings = prompt_embeddings + self.segment_token_prompt # add position embedding skipping CLS input_embeddings = input_embeddings + pos_embed prompt_embeddings = prompt_embeddings + pos_embed # add type embedding to each token if embedding_type == "semantic": type_embedding = self.type_token_semantic elif embedding_type == "instance": type_embedding = self.type_token_instance else: raise ValueError(f"Embedding type should be either 'semantic' or 'instance', but got {embedding_type}") input_embeddings = input_embeddings + type_embedding prompt_embeddings = prompt_embeddings + type_embedding embeddings = torch.cat((input_embeddings, prompt_embeddings), dim=0) return embeddings class SegGptAttention(nn.Module): """Multi-head Attention block with relative position embeddings.""" def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) input_size = (image_size[0] // config.patch_size, image_size[1] // config.patch_size) head_dim = config.hidden_size // config.num_attention_heads self.num_attention_heads = config.num_attention_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias) self.proj = nn.Linear(config.hidden_size, config.hidden_size) self.use_relative_position_embeddings = config.use_relative_position_embeddings if self.use_relative_position_embeddings: if input_size is None: raise ValueError("Input size must be provided if using relative positional encoding.") # initialize relative positional embeddings self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of the query. k_size (int): size of key k. rel_pos (`torch.Tensor`): relative position embeddings (L, channel). Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) # Interpolate rel pos. rel_pos_resized = F.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode="linear", ) rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) # Scale the coords with short length if shapes for q and k are different. q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) return rel_pos_resized[relative_coords.long()] def add_decomposed_rel_pos( self, attn: torch.Tensor, query: torch.Tensor, rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, q_size: Tuple[int, int], k_size: Tuple[int, int], ) -> torch.Tensor: """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py Args: attn (`torch.Tensor`): attention map. query (`torch.Tensor`): query q in the attention layer with shape (batch_size, query_height * query_width, channel). rel_pos_h (`torch.Tensor`): relative position embeddings (Lh, channel) for height axis. rel_pos_w (`torch.Tensor`): relative position embeddings (Lw, channel) for width axis. q_size (tuple): spatial sequence size of query q with (query_height, query_width). k_size (tuple): spatial sequence size of key k with (key_height, key_width). Returns: attn (`torch.Tensor`): attention map with added relative positional embeddings. """ query_height, query_width = q_size key_height, key_width = k_size relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h) relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w) batch_size, _, dim = query.shape reshaped_query = query.reshape(batch_size, query_height, query_width, dim) rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height) rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width) attn = attn.reshape(batch_size, query_height, query_width, key_height, key_width) attn = attn + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] attn = attn.reshape(batch_size, query_height * query_width, key_height * key_width) return attn def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor: batch_size, height, width, _ = hidden_states.shape # qkv with shape (3, batch_size, nHead, height * width, channel) qkv = ( self.qkv(hidden_states) .reshape(batch_size, height * width, 3, self.num_attention_heads, -1) .permute(2, 0, 3, 1, 4) ) # q, k, v with shape (batch_size * nHead, height * width, channel) query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(0) attn_weights = (query * self.scale) @ key.transpose(-2, -1) if self.use_relative_position_embeddings: attn_weights = self.add_decomposed_rel_pos( attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width) ) attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_attention_heads, height * width, -1) attn_weights = attn_weights_reshaped.view(batch_size * self.num_attention_heads, height * width, -1) else: attn_weights_reshaped = None attn_output = (attn_weights @ value).reshape(batch_size, self.num_attention_heads, height, width, -1) attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1) attn_output = self.proj(attn_output) return (attn_output, attn_weights_reshaped) # Copied from transformers.models.sam.modeling_sam.SamMLPBlock with SamMLPBlock->SegGptMlp class SegGptMlp(nn.Module): def __init__(self, config): super().__init__() self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim) self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size) self.act = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.lin1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.lin2(hidden_states) return hidden_states # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->SegGpt class SegGptDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class SegGptLayer(nn.Module): def __init__(self, config: SegGptConfig, drop_path_rate: float) -> None: super().__init__() self.attention = SegGptAttention(config) self.mlp = SegGptMlp(config) self.drop_path = SegGptDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, ensemble_cond: int, feature_ensemble: bool = False, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in SegGpt, layernorm is applied before self-attention output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if feature_ensemble and attention_output.shape[0] // 2 >= ensemble_cond: prompt, inputs = attention_output.split(attention_output.shape[1] // 2, dim=1) if ensemble_cond == 2: num_prompts = attention_output.shape[0] // 2 inputs = inputs.reshape(2, num_prompts, -1) inputs = inputs.mean(dim=1, keepdim=True).expand_as(inputs) inputs = inputs.reshape(*prompt.shape) else: inputs = inputs.mean(dim=0, keepdim=True).expand_as(inputs) attention_output = torch.cat([prompt, inputs], dim=1) # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states residual = hidden_states hidden_states = self.layernorm_after(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + self.drop_path(hidden_states) outputs = (hidden_states,) + outputs return outputs class SegGptEncoder(nn.Module): def __init__(self, config: SegGptConfig) -> None: super().__init__() self.config = config dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] self.layers = nn.ModuleList([SegGptLayer(config, dpr[i]) for i in range(config.num_hidden_layers)]) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, feature_ensemble: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, SegGptEncoderOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None intermediate_hidden_states = [] for i, layer_module in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # Condition to check if we have the appropriate number of prompts to ensemble ensemble_cond = 2 if self.config.merge_index > i else 1 if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, ensemble_cond, feature_ensemble, output_attentions, ) else: layer_outputs = layer_module(hidden_states, ensemble_cond, feature_ensemble, output_attentions) hidden_states = layer_outputs[0] if i == self.config.merge_index: hidden_states = ( hidden_states[: hidden_states.shape[0] // 2] + hidden_states[hidden_states.shape[0] // 2 :] ) * 0.5 if i in self.config.intermediate_hidden_state_indices: intermediate_hidden_states.append(self.layernorm(hidden_states)) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attentions, intermediate_hidden_states] if v is not None ) return SegGptEncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, intermediate_hidden_states=intermediate_hidden_states, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->SegGpt class SegGptLayerNorm(nn.Module): r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError(f"Unsupported data format: {self.data_format}") self.normalized_shape = (normalized_shape,) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.data_format == "channels_last": x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": input_dtype = x.dtype x = x.float() u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = x.to(dtype=input_dtype) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class SegGptDecoderHead(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv2d( config.decoder_hidden_size, config.decoder_hidden_size, kernel_size=3, padding=1, ) self.layernorm = SegGptLayerNorm( normalized_shape=config.decoder_hidden_size, eps=config.layer_norm_eps, data_format="channels_first" ) self.act_fct = ACT2FN[config.hidden_act] self.head = nn.Conv2d(config.decoder_hidden_size, 3, kernel_size=1, bias=True) # decoder to patch def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.conv(hidden_states) hidden_states = self.layernorm(hidden_states) hidden_states = self.act_fct(hidden_states) hidden_states = self.head(hidden_states) return hidden_states class SegGptDecoder(nn.Module): def __init__(self, config): super().__init__() self.decoder_embed = nn.Linear( config.hidden_size * len(config.intermediate_hidden_state_indices), config.patch_size**2 * config.decoder_hidden_size, bias=True, ) self.decoder_pred = SegGptDecoderHead(config) self.patch_size = config.patch_size self.decoder_hidden_size = config.decoder_hidden_size self.config = config def _reshape_hidden_states(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: batch_size, patch_height, patch_width, _ = hidden_states.shape hidden_states = hidden_states.reshape( batch_size, patch_height, patch_width, self.patch_size, self.patch_size, self.decoder_hidden_size ) hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4) hidden_states = hidden_states.reshape( shape=(batch_size, -1, patch_height * self.patch_size, patch_width * self.patch_size) ) return hidden_states def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.decoder_embed(hidden_states) hidden_states = self._reshape_hidden_states(hidden_states) hidden_states = self.decoder_pred(hidden_states) return hidden_states class SegGptPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SegGptConfig base_model_prefix = "model" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["SegGptEmbeddings", "SegGptLayer"] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_(module.weight.data.to(torch.float32), mean=0.0, std=std).to( module.weight.dtype ) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, SegGptAttention): module.rel_pos_h.data = nn.init.trunc_normal_( module.rel_pos_h.data.to(torch.float32), mean=0.0, std=std, ).to(module.rel_pos_h.dtype) module.rel_pos_w.data = nn.init.trunc_normal_( module.rel_pos_w.data.to(torch.float32), mean=0.0, std=std, ).to(module.rel_pos_w.dtype) elif isinstance(module, SegGptEmbeddings): module.position_embeddings.data = nn.init.trunc_normal_( module.position_embeddings.data.to(torch.float32), mean=0.0, std=std, ).to(module.position_embeddings.dtype) torch.nn.init.normal_(module.mask_token, std=std) torch.nn.init.normal_(module.segment_token_input, std=std) torch.nn.init.normal_(module.segment_token_prompt, std=std) torch.nn.init.normal_(module.type_token_semantic, std=std) torch.nn.init.normal_(module.type_token_instance, std=std) SEGGPT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SegGptConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEGGPT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegGptImageProcessor.__call__`] for details. prompt_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Prompt pixel values. Prompt pixel values can be obtained using [`AutoImageProcessor`]. See [`SegGptImageProcessor.__call__`] for details. prompt_masks (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Prompt mask. Prompt mask can be obtained using [`AutoImageProcessor`]. See [`SegGptImageProcessor.__call__`] for details. bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). feature_ensemble (`bool`, *optional*): Boolean indicating whether to use feature ensemble or not. If `True`, the model will use feature ensemble if we have at least two prompts. If `False`, the model will not use feature ensemble. This argument should be considered when doing few-shot inference on an input image i.e. more than one prompt for the same image. embedding_type (`str`, *optional*): Embedding type. Indicates whether the prompt is a semantic or instance embedding. Can be either instance or semantic. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SegGpt Model transformer outputting raw hidden-states without any specific head on top.", SEGGPT_START_DOCSTRING, ) class SegGptModel(SegGptPreTrainedModel): def __init__(self, config: SegGptConfig): super().__init__(config) self.config = config self.embeddings = SegGptEmbeddings(config) self.encoder = SegGptEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> SegGptPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(SEGGPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SegGptEncoderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.Tensor, prompt_pixel_values: torch.Tensor, prompt_masks: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, feature_ensemble: Optional[bool] = None, embedding_type: Optional[str] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SegGptEncoderOutput]: r""" labels (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, `optional`): Ground truth mask for input images. Returns: Examples: ```python >>> from transformers import SegGptImageProcessor, SegGptModel >>> from PIL import Image >>> import requests >>> image_input_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_2.jpg" >>> image_prompt_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_1.jpg" >>> mask_prompt_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_1_target.png" >>> image_input = Image.open(requests.get(image_input_url, stream=True).raw) >>> image_prompt = Image.open(requests.get(image_prompt_url, stream=True).raw) >>> mask_prompt = Image.open(requests.get(mask_prompt_url, stream=True).raw).convert("L") >>> checkpoint = "BAAI/seggpt-vit-large" >>> model = SegGptModel.from_pretrained(checkpoint) >>> image_processor = SegGptImageProcessor.from_pretrained(checkpoint) >>> inputs = image_processor(images=image_input, prompt_images=image_prompt, prompt_masks=mask_prompt, return_tensors="pt") >>> outputs = model(**inputs) >>> list(outputs.last_hidden_state.shape) [1, 56, 28, 1024] ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict feature_ensemble = feature_ensemble if feature_ensemble is not None else False expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype pixel_values = pixel_values.to(expected_dtype) prompt_pixel_values = prompt_pixel_values.to(expected_dtype) # Prepare inputs pixel_values = torch.cat((prompt_pixel_values, pixel_values), dim=2) prompt_pixel_values = ( torch.cat((prompt_masks, prompt_masks), dim=2) if labels is None else torch.cat((prompt_masks, labels), dim=2) ) if bool_masked_pos is None and labels is not None: logger.warning_once( "Labels were provided, but bool_masked_pos were not. It will be set to default value. If you're training the model, make sure to provide a bool_masked_pos." ) # We concat on height axis so SegGPT can handle as a single image, hence we need to mask the portion # of the mask prompt pixels that will be destinated to the prediction as they don't add any information. # This is only the case for inference. In training, the model concat of prompt mask and label is masked # and reconstructed together (In-Context Painting). if bool_masked_pos is None: num_patches = self.embeddings.patch_embeddings.num_patches bool_masked_pos_zeros = torch.zeros(num_patches // 2, dtype=torch.bool, device=pixel_values.device) bool_masked_pos_ones = torch.ones( num_patches - num_patches // 2, dtype=torch.bool, device=pixel_values.device ) bool_masked_pos = torch.cat([bool_masked_pos_zeros, bool_masked_pos_ones]) bool_masked_pos = bool_masked_pos.unsqueeze(0) embedding_output = self.embeddings( pixel_values, prompt_pixel_values, embedding_type=embedding_type, bool_masked_pos=bool_masked_pos ) encoder_outputs = self.encoder( embedding_output, feature_ensemble=feature_ensemble, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return encoder_outputs def patchify(tensor: torch.Tensor, patch_size: int) -> torch.Tensor: batch_size, num_channels, height, width = tensor.shape patch_height = height // patch_size patch_width = width // patch_size tensor = tensor.reshape(shape=(batch_size, num_channels, patch_height, patch_size, patch_width, patch_size)) tensor = tensor.permute(0, 2, 4, 3, 5, 1) tensor = tensor.reshape(shape=(batch_size, patch_height * patch_width, patch_size**2 * 3)) return tensor def unpatchify(tensor: torch.Tensor, patch_height: int, patch_width: int) -> torch.Tensor: batch_size = tensor.shape[0] patch_size = int((tensor.shape[-1] / 3) ** 0.5) if patch_height * patch_width != tensor.shape[1]: raise ValueError( f"Number of patches {tensor.shape[1]} does not match patch height ({patch_height}) and width ({patch_width})." ) tensor = tensor.reshape(shape=(batch_size, patch_height, patch_width, patch_size, patch_size, 3)) tensor = tensor.permute(0, 5, 1, 3, 2, 4) tensor = tensor.reshape(shape=(batch_size, 3, patch_height * patch_size, patch_width * patch_size)) return tensor class SegGptLoss(nn.Module): def __init__(self, config): super().__init__() self.beta = config.beta self.patch_size = config.patch_size def forward( self, prompt_masks: torch.FloatTensor, pred_masks: torch.FloatTensor, labels: torch.FloatTensor, bool_masked_pos: torch.BoolTensor, ): """Computes the L1 loss between the predicted masks and the ground truth masks. Args: prompt_masks (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values from mask prompt. pred_masks (`torch.FloatTensor` of shape `(batch_size, num_channels, 2*height, width)`): Predicted masks. labels (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Ground truth mask for input images. bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: `torch.FloatTensor`: The mean L1 loss between the predicted masks and the ground truth masks. """ ground_truth = torch.cat((prompt_masks, labels), dim=2) mask = bool_masked_pos[:, :, None].repeat(1, 1, self.patch_size**2 * 3) mask = unpatchify(mask, ground_truth.shape[2] // self.patch_size, ground_truth.shape[3] // self.patch_size) loss = F.smooth_l1_loss(pred_masks, ground_truth, reduction="none", beta=self.beta) loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches return loss @add_start_docstrings( "SegGpt model with a decoder on top for one-shot image segmentation.", SEGGPT_START_DOCSTRING, ) class SegGptForImageSegmentation(SegGptPreTrainedModel): def __init__(self, config: SegGptConfig): super().__init__(config) self.config = config self.model = SegGptModel(config) self.decoder = SegGptDecoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SEGGPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SegGptImageSegmentationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.Tensor, prompt_pixel_values: torch.Tensor, prompt_masks: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, feature_ensemble: Optional[bool] = None, embedding_type: Optional[str] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SegGptImageSegmentationOutput]: r""" labels (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, `optional`): Ground truth mask for input images. Returns: Examples: ```python >>> from transformers import SegGptImageProcessor, SegGptForImageSegmentation >>> from PIL import Image >>> import requests >>> image_input_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_2.jpg" >>> image_prompt_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_1.jpg" >>> mask_prompt_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_1_target.png" >>> image_input = Image.open(requests.get(image_input_url, stream=True).raw) >>> image_prompt = Image.open(requests.get(image_prompt_url, stream=True).raw) >>> mask_prompt = Image.open(requests.get(mask_prompt_url, stream=True).raw).convert("L") >>> checkpoint = "BAAI/seggpt-vit-large" >>> model = SegGptForImageSegmentation.from_pretrained(checkpoint) >>> image_processor = SegGptImageProcessor.from_pretrained(checkpoint) >>> inputs = image_processor(images=image_input, prompt_images=image_prompt, prompt_masks=mask_prompt, return_tensors="pt") >>> outputs = model(**inputs) >>> result = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[(image_input.height, image_input.width)])[0] >>> print(list(result.shape)) [170, 297] ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if bool_masked_pos is None: num_patches = self.model.embeddings.patch_embeddings.num_patches bool_masked_pos_zeros = torch.zeros(num_patches // 2, dtype=torch.bool, device=pixel_values.device) bool_masked_pos_ones = torch.ones( num_patches - num_patches // 2, dtype=torch.bool, device=pixel_values.device ) bool_masked_pos = torch.cat([bool_masked_pos_zeros, bool_masked_pos_ones]) bool_masked_pos = bool_masked_pos.unsqueeze(0) outputs = self.model( pixel_values=pixel_values, prompt_pixel_values=prompt_pixel_values, prompt_masks=prompt_masks, bool_masked_pos=bool_masked_pos, feature_ensemble=feature_ensemble, embedding_type=embedding_type, labels=labels, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) intermediate_hidden_states = outputs.intermediate_hidden_states if return_dict else outputs[-1] intermediate_hidden_states = torch.cat(intermediate_hidden_states, dim=-1) pred_masks = self.decoder(intermediate_hidden_states) loss = None if labels is not None: loss_fn = SegGptLoss(self.config) loss = loss_fn(prompt_masks, pred_masks, labels, bool_masked_pos) if not return_dict: output = (pred_masks,) if output_hidden_states: output = output + (outputs[1],) if output_attentions: idx = 2 if output_hidden_states else 1 output = output + (outputs[idx],) if loss is not None: output = (loss,) + output return output return SegGptImageSegmentationOutput( loss=loss, pred_masks=pred_masks, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["SegGptModel", "SegGptPreTrainedModel", "SegGptForImageSegmentation"] ```
=========================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.96 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\sew\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_sew import * from .modeling_sew import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
==================================================================================================================================== SOURCE CODE FILE: configuration_sew.py LINES: 1 SIZE: 13.87 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\sew\configuration_sew.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 ASAPP Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SEW model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SEWConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SEWModel`]. It is used to instantiate a SEW model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SEW [asapp/sew-tiny-100k](https://huggingface.co/asapp/sew-tiny-100k) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the SEW model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`SEW`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. squeeze_factor (`int`, *optional*, defaults to 2): Sequence length downsampling factor after the encoder and upsampling factor after the transformer. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`SEWForCTC`]. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`SEWForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`SEWForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`Wav2Vec2ForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. Example: ```python >>> from transformers import SEWConfig, SEWModel >>> # Initializing a SEW asapp/sew-tiny-100k style configuration >>> configuration = SEWConfig() >>> # Initializing a model (with random weights) from the asapp/sew-tiny-100k style configuration >>> model = SEWModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "sew" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, squeeze_factor=2, hidden_act="gelu", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, feat_extract_norm="group", feat_extract_activation="gelu", conv_dim=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), conv_stride=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), conv_kernel=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, ctc_loss_reduction="mean", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, pad_token_id=0, bos_token_id=1, eos_token_id=2, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.squeeze_factor = squeeze_factor self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. " "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, " f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride) " f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # sequence classification self.use_weighted_layer_sum = use_weighted_layer_sum self.classifier_proj_size = classifier_proj_size @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1) __all__ = ["SEWConfig"] ```
============================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.97 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\sew_d\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_sew_d import * from .modeling_sew_d import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
======================================================================================================================================== SOURCE CODE FILE: configuration_sew_d.py LINES: 1 SIZE: 15.80 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\sew_d\configuration_sew_d.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 ASAPP Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SEW-D model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SEWDConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SEWDModel`]. It is used to instantiate a SEW-D model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SEW-D [asapp/sew-d-tiny-100k](https://huggingface.co/asapp/sew-d-tiny-100k) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the SEW-D model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`SEWD`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. squeeze_factor (`int`, *optional*, defaults to 2): Sequence length downsampling factor after the encoder and upsampling factor after the transformer. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). position_buckets (`int`, *optional*, defaults to 256): The maximum size of relative position embeddings. share_att_key (`bool`, *optional*, defaults to `True`): Whether to share attention key with c2p and p2c. relative_attention (`bool`, *optional*, defaults to `True`): Whether to use relative position encoding. pos_att_type (`Tuple[str]`, *optional*, defaults to `("p2c", "c2p")`): The type of relative position attention, it can be a combination of `("p2c", "c2p")`, e.g. `("p2c")`, `("p2c", "c2p")`, `("p2c", "c2p")`. norm_rel_ebd (`str`, *optional*, defaults to `"layer_norm"`): Whether to use layer norm in relative embedding (`"layer_norm"` if yes) hidden_act (`str` or `function`, *optional*, defaults to `"gelu_python"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"`, `"gelu_python"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): Deprecated. Not used by the model and will be removed in a future version. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`SEWDForCTC`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-7): The epsilon used by the layer normalization layers in the transformer encoder. feature_layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization after the feature encoder. feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' diversity_loss_weight (`int`, *optional*, defaults to 0.1): The weight of the codebook diversity loss component. ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`SEWDForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`SEWDForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`Wav2Vec2ForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. Example: ```python >>> from transformers import SEWDConfig, SEWDModel >>> # Initializing a SEW-D asapp/sew-d-tiny-100k style configuration >>> configuration = SEWDConfig() >>> # Initializing a model (with random weights) from the asapp/sew-d-tiny-100k style configuration >>> model = SEWDModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "sew-d" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, squeeze_factor=2, max_position_embeddings=512, position_buckets=256, share_att_key=True, relative_attention=True, pos_att_type=("p2c", "c2p"), norm_rel_ebd="layer_norm", hidden_act="gelu_python", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, final_dropout=0.1, initializer_range=0.02, layer_norm_eps=1e-7, feature_layer_norm_eps=1e-5, feat_extract_norm="group", feat_extract_activation="gelu", conv_dim=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), conv_stride=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), conv_kernel=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, ctc_loss_reduction="mean", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, pad_token_id=0, bos_token_id=1, eos_token_id=2, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.squeeze_factor = squeeze_factor self.max_position_embeddings = max_position_embeddings self.position_buckets = position_buckets self.share_att_key = share_att_key self.relative_attention = relative_attention self.norm_rel_ebd = norm_rel_ebd self.pos_att_type = list(pos_att_type) self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self._hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layer_norm_eps = layer_norm_eps self.feature_layer_norm_eps = feature_layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. " "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, " f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride) " f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # sequence classification self.use_weighted_layer_sum = use_weighted_layer_sum self.classifier_proj_size = classifier_proj_size @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1) def to_dict(self): """ Serializes this instance to a Python dictionary. """ output = super().to_dict() output["hidden_dropout"] = output.pop("_hidden_dropout") return output __all__ = ["SEWDConfig"] ```
=================================================================================================================================== SOURCE CODE FILE: modeling_sew_d.py LINES: 1 SIZE: 71.16 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\sew_d\modeling_sew_d.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 ASAPP Inc. and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SEW model.""" import math import warnings from collections.abc import Sequence from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss, LayerNorm from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import softmax_backward_data from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_sew_d import SEWDConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 1 # General docstring _CONFIG_FOR_DOC = "SEWDConfig" # Base docstring _CHECKPOINT_FOR_DOC = "asapp/sew-d-tiny-100k-ft-ls100h" _EXPECTED_OUTPUT_SHAPE = [1, 292, 384] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTIL OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 0.21 # Audio class docstring _SEQ_CLASS_CHECKPOINT = "anton-l/sew-d-mid-400k-ft-keyword-spotting" _SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'" _SEQ_CLASS_EXPECTED_LOSS = 3.16 # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.detach().sum(-1).tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask def make_log_bucket_position(relative_pos, bucket_size, max_position): sign = torch.sign(relative_pos) mid = bucket_size // 2 abs_pos = torch.where( (relative_pos < mid) & (relative_pos > -mid), torch.tensor(mid - 1).type_as(relative_pos), torch.abs(relative_pos), ) log_pos = ( torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid ) bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign) return bucket_pos def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None): """ Build relative position according to the query and key We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q - P_k\\) Args: query_size (int): the length of query key_size (int): the length of key bucket_size (int): the size of position bucket max_position (int): the maximum allowed absolute position device (`torch.device`): the device on which tensors will be created. Return: `torch.LongTensor`: A tensor with shape [1, query_size, key_size] """ q_ids = torch.arange(0, query_size, device=device) k_ids = torch.arange(0, key_size, device=device) rel_pos_ids = q_ids[:, None] - k_ids[None, :] if bucket_size > 0 and max_position > 0: rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position) rel_pos_ids = rel_pos_ids.to(torch.long) rel_pos_ids = rel_pos_ids[:query_size, :] rel_pos_ids = rel_pos_ids.unsqueeze(0) return rel_pos_ids @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)]) @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)]) @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand def pos_dynamic_expand(pos_index, p2c_att, key_layer): return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))) def get_mask(input, local_context): if not isinstance(local_context, DropoutContext): dropout = local_context mask = None else: dropout = local_context.dropout dropout *= local_context.scale mask = local_context.mask if local_context.reuse_mask else None if dropout > 0 and mask is None: mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool) if isinstance(local_context, DropoutContext): if local_context.mask is None: local_context.mask = mask return mask, dropout # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SEWD class SEWDNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SEWD class SEWDLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SEWD class SEWDGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.sew.modeling_sew.SEWPositionalConvEmbedding with SEW->SEWD class SEWDPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, stride=config.squeeze_factor, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) if hasattr(self.conv, "parametrizations"): weight_g = self.conv.parametrizations.weight.original0 weight_v = self.conv.parametrizations.weight.original1 else: weight_g = self.conv.weight_g weight_v = self.conv.weight_v deepspeed.zero.register_external_parameter(self, weight_v) deepspeed.zero.register_external_parameter(self, weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = SEWDSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SEW class SEWDSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.sew.modeling_sew.SEWUpsampling with SEW->SEWD class SEWDUpsampling(nn.Module): def __init__(self, config): super().__init__() self.projection = nn.Linear(config.hidden_size, config.hidden_size * config.squeeze_factor) self.activation = ACT2FN[config.feat_extract_activation] self.squeeze_factor = config.squeeze_factor def forward(self, hidden_states): hidden_states = self.projection(hidden_states) hidden_states = self.activation(hidden_states) if self.squeeze_factor > 1: # transform embedding channels to sequence length bsz, src_len, src_embed_dim = hidden_states.size() tgt_len = src_len * self.squeeze_factor tgt_embed_dim = src_embed_dim // self.squeeze_factor hidden_states = hidden_states.reshape(bsz, src_len, self.squeeze_factor, tgt_embed_dim) hidden_states = hidden_states.reshape(bsz, tgt_len, tgt_embed_dim) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SEWD class SEWDFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [SEWDGroupNormConvLayer(config, layer_id=0)] + [ SEWDNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [SEWDLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class SEWDFeatureExtractor(SEWDFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) class ContextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size) self.dropout = StableDropout(config.pooler_dropout) self.config = config def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. context_token = hidden_states[:, 0] context_token = self.dropout(context_token) pooled_output = self.dense(context_token) pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output) return pooled_output @property def output_dim(self): return self.config.hidden_size class XSoftmax(torch.autograd.Function): """ Masked Softmax which is optimized for saving memory Args: input (`torch.tensor`): The input tensor that will apply softmax. mask (`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation. dim (int): The dimension that will apply softmax Example: ```python >>> import torch >>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax >>> # Make a tensor >>> x = torch.randn([4, 20, 100]) >>> # Create a mask >>> mask = (x > 0).int() >>> # Specify the dimension to apply softmax >>> dim = -1 >>> y = XSoftmax.apply(x, mask, dim) ```""" @staticmethod def forward(ctx, input, mask, dim): ctx.dim = dim rmask = ~(mask.to(torch.bool)) output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min)) output = torch.softmax(output, ctx.dim) output.masked_fill_(rmask, 0) ctx.save_for_backward(output) return output @staticmethod def backward(ctx, grad_output): (output,) = ctx.saved_tensors inputGrad = softmax_backward_data(ctx, grad_output, output, ctx.dim, output) return inputGrad, None, None @staticmethod def symbolic(g, self, mask, dim): import torch.onnx.symbolic_helper as sym_help from torch.onnx.symbolic_opset9 import masked_fill, softmax mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"]) r_mask = g.op( "Cast", g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value), to_i=sym_help.cast_pytorch_to_onnx["Bool"], ) output = masked_fill( g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min)) ) output = softmax(g, output, dim) return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool))) class DropoutContext: def __init__(self): self.dropout = 0 self.mask = None self.scale = 1 self.reuse_mask = True class XDropout(torch.autograd.Function): """Optimized dropout function to save computation and memory by using mask operation instead of multiplication.""" @staticmethod def forward(ctx, input, local_ctx): mask, dropout = get_mask(input, local_ctx) ctx.scale = 1.0 / (1 - dropout) if dropout > 0: ctx.save_for_backward(mask) return input.masked_fill(mask, 0) * ctx.scale else: return input @staticmethod def backward(ctx, grad_output): if ctx.scale > 1: (mask,) = ctx.saved_tensors return grad_output.masked_fill(mask, 0) * ctx.scale, None else: return grad_output, None @staticmethod def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value: from torch.onnx import symbolic_opset12 dropout_p = local_ctx if isinstance(local_ctx, DropoutContext): dropout_p = local_ctx.dropout # StableDropout only calls this function when training. train = True # TODO: We should check if the opset_version being used to export # is > 12 here, but there's no good way to do that. As-is, if the # opset_version < 12, export will fail with a CheckerError. # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like: # if opset_version < 12: # return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train) return symbolic_opset12.dropout(g, input, dropout_p, train) class StableDropout(nn.Module): """ Optimized dropout module for stabilizing the training Args: drop_prob (float): the dropout probabilities """ def __init__(self, drop_prob): super().__init__() self.drop_prob = drop_prob self.count = 0 self.context_stack = None def forward(self, x): """ Call the module Args: x (`torch.tensor`): The input tensor to apply dropout """ if self.training and self.drop_prob > 0: return XDropout.apply(x, self.get_context()) return x def clear_context(self): self.count = 0 self.context_stack = None def init_context(self, reuse_mask=True, scale=1): if self.context_stack is None: self.context_stack = [] self.count = 0 for c in self.context_stack: c.reuse_mask = reuse_mask c.scale = scale def get_context(self): if self.context_stack is not None: if self.count >= len(self.context_stack): self.context_stack.append(DropoutContext()) ctx = self.context_stack[self.count] ctx.dropout = self.drop_prob self.count += 1 return ctx else: return self.drop_prob class SEWDSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = nn.Dropout(config.activation_dropout) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class DisentangledSelfAttention(nn.Module): """ Disentangled self-attention module Parameters: config (`DebertaV2Config`): A model config class instance with the configuration to build a new model. The schema is similar to *BertConfig*, for more details, please refer [`DebertaV2Config`] """ def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads _attention_head_size = config.hidden_size // config.num_attention_heads self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.share_att_key = getattr(config, "share_att_key", False) self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.position_buckets = getattr(config, "position_buckets", -1) self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.pos_ebd_size = self.max_relative_positions if self.position_buckets > 0: self.pos_ebd_size = self.position_buckets self.pos_dropout = StableDropout(config.activation_dropout) if not self.share_att_key: if "c2p" in self.pos_att_type: self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) if "p2c" in self.pos_att_type: self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = StableDropout(config.attention_dropout) def transpose_for_scores(self, x, attention_heads): new_x_shape = x.size()[:-1] + (attention_heads, -1) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1)) def forward( self, hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None, ): """ Call the module Args: hidden_states (`torch.FloatTensor`): Input states to the module usually the output from previous layer, it will be the Q,K and V in *Attention(Q,K,V)* attention_mask (`torch.BoolTensor`): An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* th token. output_attentions (`bool`, *optional*): Whether return the attention matrix. query_states (`torch.FloatTensor`, *optional*): The *Q* state in *Attention(Q,K,V)*. relative_pos (`torch.LongTensor`): The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with values ranging in [*-max_relative_positions*, *max_relative_positions*]. rel_embeddings (`torch.FloatTensor`): The embedding of relative distances. It's a tensor of shape [\\(2 \\times \\text{max_relative_positions}\\), *hidden_size*]. """ if query_states is None: query_states = hidden_states query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads) key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads) value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads) rel_att = None # Take the dot product between "query" and "key" to get the raw attention scores. scale_factor = 1 if "c2p" in self.pos_att_type: scale_factor += 1 if "p2c" in self.pos_att_type: scale_factor += 1 scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor) attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype)) if self.relative_attention: rel_embeddings = self.pos_dropout(rel_embeddings) rel_att = self.disentangled_attention_bias( query_layer, key_layer, relative_pos, rel_embeddings, scale_factor ) if rel_att is not None: attention_scores = attention_scores + rel_att attention_scores = attention_scores attention_scores = attention_scores.view( -1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1) ) # bsz x height x length x dimension attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1) attention_probs = self.dropout(attention_probs) context_layer = torch.bmm( attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer ) context_layer = ( context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1)) .permute(0, 2, 1, 3) .contiguous() ) new_context_layer_shape = context_layer.size()[:-2] + (-1,) context_layer = context_layer.view(new_context_layer_shape) if output_attentions: return (context_layer, attention_probs) else: return context_layer def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): if relative_pos is None: q = query_layer.size(-2) relative_pos = build_relative_position( q, key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=query_layer.device, ) if relative_pos.dim() == 2: relative_pos = relative_pos.unsqueeze(0).unsqueeze(0) elif relative_pos.dim() == 3: relative_pos = relative_pos.unsqueeze(1) # bsz x height x query x key elif relative_pos.dim() != 4: raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}") att_span = self.pos_ebd_size relative_pos = relative_pos.to(device=query_layer.device, dtype=torch.long) rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0) if self.share_att_key: pos_query_layer = self.transpose_for_scores( self.query_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat( query_layer.size(0) // self.num_attention_heads, 1, 1 ) else: if "c2p" in self.pos_att_type: pos_key_layer = self.transpose_for_scores( self.pos_key_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1) if "p2c" in self.pos_att_type: pos_query_layer = self.transpose_for_scores( self.pos_query_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1) score = 0 # content->position if "c2p" in self.pos_att_type: scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor) c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2)) c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1) c2p_att = torch.gather( c2p_att, dim=-1, index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]), ) score += c2p_att / scale.to(dtype=c2p_att.dtype) # position->content if "p2c" in self.pos_att_type: scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor) if key_layer.size(-2) != query_layer.size(-2): r_pos = build_relative_position( key_layer.size(-2), key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=query_layer.device, ) r_pos = r_pos.unsqueeze(0) else: r_pos = relative_pos p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1) p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2)) p2c_att = torch.gather( p2c_att, dim=-1, index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]), ).transpose(-1, -2) score += p2c_att / scale.to(dtype=p2c_att.dtype) return score class SEWDAttention(nn.Module): def __init__(self, config): super().__init__() self.self = DisentangledSelfAttention(config) self.output = SEWDSelfOutput(config) self.config = config def forward( self, hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None, ): self_output = self.self( hidden_states, attention_mask, output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) if output_attentions: self_output, att_matrix = self_output if query_states is None: query_states = hidden_states attention_output = self.output(self_output, query_states) if output_attentions: return (attention_output, att_matrix) else: return attention_output # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->SEWD class SEWDIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class SEWDOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = nn.Dropout(config.activation_dropout) self.config = config def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class SEWDLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = SEWDAttention(config) self.intermediate = SEWDIntermediate(config) self.output = SEWDOutput(config) def forward( self, hidden_states, attention_mask, query_states=None, relative_pos=None, rel_embeddings=None, output_attentions=False, ): attention_output = self.attention( hidden_states, attention_mask, output_attentions=output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) if output_attentions: attention_output, att_matrix = attention_output intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) if output_attentions: return (layer_output, att_matrix) else: return layer_output class ConvLayer(nn.Module): def __init__(self, config): super().__init__() kernel_size = getattr(config, "conv_kernel_size", 3) groups = getattr(config, "conv_groups", 1) self.conv_act = getattr(config, "conv_act", "tanh") self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups ) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.hidden_dropout_prob) self.config = config def forward(self, hidden_states, residual_states, input_mask): out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous() rmask = (1 - input_mask).bool() out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0) out = ACT2FN[self.conv_act](self.dropout(out)) layer_norm_input = residual_states + out output = self.LayerNorm(layer_norm_input).to(layer_norm_input) if input_mask is None: output_states = output else: if input_mask.dim() != layer_norm_input.dim(): if input_mask.dim() == 4: input_mask = input_mask.squeeze(1).squeeze(1) input_mask = input_mask.unsqueeze(2) input_mask = input_mask.to(output.dtype) output_states = output * input_mask return output_states class SEWDTransformerEncoder(nn.Module): """Modified BertEncoder with relative position bias support""" def __init__(self, config): super().__init__() self.layer = nn.ModuleList([SEWDLayer(config) for _ in range(config.num_hidden_layers)]) self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.position_buckets = getattr(config, "position_buckets", -1) pos_ebd_size = self.max_relative_positions * 2 if self.position_buckets > 0: pos_ebd_size = self.position_buckets * 2 self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size) self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")] if "layer_norm" in self.norm_rel_ebd: self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True) self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None self.gradient_checkpointing = False def get_rel_embedding(self): rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd): rel_embeddings = self.LayerNorm(rel_embeddings) return rel_embeddings def get_attention_mask(self, attention_mask): if attention_mask.dim() <= 2: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1) elif attention_mask.dim() == 3: attention_mask = attention_mask.unsqueeze(1) return attention_mask def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): if self.relative_attention and relative_pos is None: q = query_states.size(-2) if query_states is not None else hidden_states.size(-2) relative_pos = build_relative_position( q, hidden_states.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=hidden_states.device, ) return relative_pos def forward( self, hidden_states, attention_mask, output_hidden_states=True, output_attentions=False, query_states=None, relative_pos=None, return_dict=True, ): if attention_mask.dim() <= 2: input_mask = attention_mask else: input_mask = attention_mask.sum(-2) > 0 attention_mask = self.get_attention_mask(attention_mask) relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None if isinstance(hidden_states, Sequence): next_kv = hidden_states[0] else: next_kv = hidden_states rel_embeddings = self.get_rel_embedding() output_states = next_kv for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if self.gradient_checkpointing and self.training: output_states = self._gradient_checkpointing_func( layer_module.__call__, next_kv, attention_mask, query_states, relative_pos, rel_embeddings, output_attentions, ) else: output_states = layer_module( next_kv, attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, ) if output_attentions: output_states, att_m = output_states if i == 0 and self.conv is not None: output_states = self.conv(hidden_states, output_states, input_mask) if query_states is not None: query_states = output_states if isinstance(hidden_states, Sequence): next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None else: next_kv = output_states if output_attentions: all_attentions = all_attentions + (att_m,) if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if not return_dict: return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions ) class SEWDEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = SEWDPositionalConvEmbedding(config) self.pool = nn.AvgPool1d(config.squeeze_factor, config.squeeze_factor) self.encoder = SEWDTransformerEncoder(config) self.upsample = SEWDUpsampling(config) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): max_encoder_length = hidden_states.shape[1] // self.config.squeeze_factor if attention_mask is None: attention_mask = torch.ones( (hidden_states.shape[0], max_encoder_length), dtype=torch.long, device=hidden_states.device ) else: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask.bool()] = 0.0 input_lengths = (attention_mask.long()).sum(-1) # apply pooling formula to get real output_lengths output_lengths = input_lengths // self.config.squeeze_factor attention_ids = ( torch.arange(0, max_encoder_length, device=output_lengths.device) .view(1, -1) .expand(output_lengths.shape[0], -1) ) attention_mask = (attention_ids < output_lengths.view(-1, 1)).long() n_input_timesteps = hidden_states.shape[1] hidden_states = hidden_states.transpose(1, 2) position_embeddings = self.pos_conv_embed(hidden_states) pooled_hidden_states = self.pool(hidden_states) min_length = min(position_embeddings.size(-1), pooled_hidden_states.size(-1)) hidden_states = pooled_hidden_states[..., :min_length] + position_embeddings[..., :min_length] hidden_states = hidden_states.transpose(1, 2) encoder_outputs = self.encoder(hidden_states, attention_mask, output_hidden_states, output_attentions) hidden_states = self.upsample(encoder_outputs.last_hidden_state) if hidden_states.shape[1] < n_input_timesteps: hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, n_input_timesteps - hidden_states.shape[1])) if not return_dict: return tuple( v for v in [hidden_states, encoder_outputs.hidden_states, encoder_outputs.attentions] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class SEWDPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SEWDConfig base_model_prefix = "sew-d" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, SEWDPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): if is_deepspeed_zero3_enabled(): import deepspeed if hasattr(module, "weight_v") and hasattr(module, "weight_g"): with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: nn.init.kaiming_normal_(module.weight.data) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None: module.bias.data.zero_() def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask SEWD_START_DOCSTRING = r""" SEW-D was proposed in [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SEWDConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEWD_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SEW-D Model transformer outputting raw hidden-states without any specific head on top.", SEWD_START_DOCSTRING, ) # Copied from transformers.models.sew.modeling_sew.SEWModel with SEW->SEWD, layer_norm_eps->feature_layer_norm_eps class SEWDModel(SEWDPreTrainedModel): def __init__(self, config: SEWDConfig): super().__init__(config) self.config = config self.feature_extractor = SEWDFeatureEncoder(config) self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.feature_layer_norm_eps) self.project_features = config.conv_dim[-1] != config.hidden_size if self.project_features: self.feature_projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.feature_dropout = nn.Dropout(config.feat_proj_dropout) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_()) self.encoder = SEWDEncoder(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) extract_features = self.layer_norm(extract_features) if self.project_features: extract_features = self.feature_projection(extract_features) hidden_states = self.feature_dropout(extract_features) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """SEW-D Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", SEWD_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV2VEC2->SEWD class SEWDForCTC(SEWDPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.sew_d = SEWDModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `SEWDForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for SEWD so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, SEWD never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.sew_d.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.sew_d.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") outputs = self.sew_d( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ SEWD Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, SEWD_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV2VEC2->SEWD class SEWDForSequenceClassification(SEWDPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of SEWD adapters (config.add_adapter=True)" ) self.sew_d = SEWDModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.sew_d.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.sew_d.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_SEQ_CLASS_CHECKPOINT, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.sew_d( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) expand_padding_mask = padding_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["SEWDForCTC", "SEWDForSequenceClassification", "SEWDModel", "SEWDPreTrainedModel"] ```
=============================================================================================================================== SOURCE CODE FILE: modeling_sew.py LINES: 1 SIZE: 65.85 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\sew\modeling_sew.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 ASAPP Inc. and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SEW model.""" import math import warnings from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...integrations.fsdp import is_fsdp_managed_module from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_sew import SEWConfig if is_flash_attn_available(): from ...modeling_flash_attention_utils import _flash_attention_forward logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 1 # General docstring _CONFIG_FOR_DOC = "SEWConfig" # Base docstring _CHECKPOINT_FOR_DOC = "asapp/sew-tiny-100k-ft-ls100h" _EXPECTED_OUTPUT_SHAPE = [1, 292, 512] # CTC docstring _CTC_EXPECTED_OUTPUT = ( "'MISTER QUILTER IS THE APPOSTILE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPOLLE'" ) _CTC_EXPECTED_LOSS = 0.42 # Audio class docstring _SEQ_CLASS_CHECKPOINT = "anton-l/sew-mid-100k-ft-keyword-spotting" _SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'" _SEQ_CLASS_EXPECTED_LOSS = 9.52 # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.detach().sum(-1).tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SEW class SEWNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SEW class SEWLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SEW class SEWGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class SEWPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, stride=config.squeeze_factor, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) if hasattr(self.conv, "parametrizations"): weight_g = self.conv.parametrizations.weight.original0 weight_v = self.conv.parametrizations.weight.original1 else: weight_g = self.conv.weight_g weight_v = self.conv.weight_v deepspeed.zero.register_external_parameter(self, weight_v) deepspeed.zero.register_external_parameter(self, weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = SEWSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SEW class SEWSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states class SEWUpsampling(nn.Module): def __init__(self, config): super().__init__() self.projection = nn.Linear(config.hidden_size, config.hidden_size * config.squeeze_factor) self.activation = ACT2FN[config.feat_extract_activation] self.squeeze_factor = config.squeeze_factor def forward(self, hidden_states): hidden_states = self.projection(hidden_states) hidden_states = self.activation(hidden_states) if self.squeeze_factor > 1: # transform embedding channels to sequence length bsz, src_len, src_embed_dim = hidden_states.size() tgt_len = src_len * self.squeeze_factor tgt_embed_dim = src_embed_dim // self.squeeze_factor hidden_states = hidden_states.reshape(bsz, src_len, self.squeeze_factor, tgt_embed_dim) hidden_states = hidden_states.reshape(bsz, tgt_len, tgt_embed_dim) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SEW class SEWFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [SEWGroupNormConvLayer(config, layer_id=0)] + [ SEWNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [SEWLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class SEWFeatureExtractor(SEWFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->SEW class SEWAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[SEWConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->SEW class SEWFlashAttention2(SEWAttention): """ SEW flash attention module. This module inherits from `SEWAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask() def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # SEWFlashAttention2 attention does not support output_attentions if output_attentions: raise ValueError("SEWFlashAttention2 attention does not support output_attentions") # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, q_len, _ = hidden_states.size() # get query proj query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0].transpose(1, 2) value_states = past_key_value[1].transpose(1, 2) elif is_cross_attention: # cross_attentions key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) else: # self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (LlamaRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout if self.training else 0.0, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class SEWSdpaAttention(SEWAttention): # Copied from transformers.models.bart.modeling_bart.BartSdpaAttention.forward with Bart->SEW def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" if output_attentions or layer_head_mask is not None: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. logger.warning_once( "SEWModel is using SEWSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, key_value_states=key_value_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) query_states = self._shape(query_states, tgt_len, bsz) # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None, past_key_value SEW_ATTENTION_CLASSES = { "eager": SEWAttention, "sdpa": SEWSdpaAttention, "flash_attention_2": SEWFlashAttention2, } # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->SEW class SEWFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->SEW, WAV2VEC2->SEW class SEWEncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = SEW_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = SEWFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class SEWEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = SEWPositionalConvEmbedding(config) self.pool = nn.AvgPool1d(config.squeeze_factor, config.squeeze_factor) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([SEWEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.upsample = SEWUpsampling(config) self.gradient_checkpointing = False self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) if self._use_flash_attention_2: # make sure padded tokens output 0 hidden_states[~expand_attention_mask] = 0.0 # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None else: # make sure padded tokens output 0 hidden_states[~expand_attention_mask] = 0.0 input_lengths = (attention_mask.long()).sum(-1) # apply pooling formula to get real output_lengths output_lengths = input_lengths // self.config.squeeze_factor max_encoder_length = hidden_states.shape[1] // self.config.squeeze_factor attention_ids = ( torch.arange(0, max_encoder_length, device=output_lengths.device) .view(1, -1) .expand(output_lengths.shape[0], -1) ) attention_mask = (attention_ids < output_lengths.view(-1, 1)).long() # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) n_input_timesteps = hidden_states.shape[1] hidden_states = hidden_states.transpose(1, 2) position_embeddings = self.pos_conv_embed(hidden_states) pooled_hidden_states = self.pool(hidden_states) min_length = min(position_embeddings.size(-1), pooled_hidden_states.size(-1)) hidden_states = pooled_hidden_states[..., :min_length] + position_embeddings[..., :min_length] hidden_states = hidden_states.transpose(1, 2) hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self) for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or synced_gpus: # under fsdp or deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.upsample(hidden_states) if hidden_states.shape[1] < n_input_timesteps: hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, n_input_timesteps - hidden_states.shape[1])) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class SEWPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SEWConfig base_model_prefix = "sew" main_input_name = "input_values" supports_gradient_checkpointing = True _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, SEWPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): if is_deepspeed_zero3_enabled(): import deepspeed if hasattr(module, "weight_v") and hasattr(module, "weight_g"): with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: nn.init.kaiming_normal_(module.weight.data) if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None: module.bias.data.zero_() def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask SEW_START_DOCSTRING = r""" SEW was proposed in [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SEWConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEW_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SEW Model transformer outputting raw hidden-states without any specific head on top.", SEW_START_DOCSTRING, ) class SEWModel(SEWPreTrainedModel): def __init__(self, config: SEWConfig): super().__init__(config) self.config = config self.feature_extractor = SEWFeatureEncoder(config) self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.project_features = config.conv_dim[-1] != config.hidden_size if self.project_features: self.feature_projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.feature_dropout = nn.Dropout(config.feat_proj_dropout) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_()) self.encoder = SEWEncoder(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(SEW_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) extract_features = self.layer_norm(extract_features) if self.project_features: extract_features = self.feature_projection(extract_features) hidden_states = self.feature_dropout(extract_features) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """SEW Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", SEW_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->SEW, wav2vec2->sew, WAV2VEC2->SEW class SEWForCTC(SEWPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.sew = SEWModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `SEWForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for SEW so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, SEW never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.sew.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.sew.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(SEW_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") outputs = self.sew( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ SEW Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, SEW_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification with Wav2Vec2->SEW, wav2vec2->sew, WAV2VEC2->SEW class SEWForSequenceClassification(SEWPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of SEW adapters (config.add_adapter=True)" ) self.sew = SEWModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.sew.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.sew.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(SEW_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_SEQ_CLASS_CHECKPOINT, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.sew( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) expand_padding_mask = padding_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel"] ```
==================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.02 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\shieldgemma2\__init__.py ENCODING: utf-8 ```py # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_shieldgemma2 import * from .modeling_shieldgemma2 import * from .processing_shieldgemma2 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
====================================================================================================================================================== SOURCE CODE FILE: configuration_shieldgemma2.py LINES: 1 SIZE: 4.63 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\shieldgemma2\configuration_shieldgemma2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING, AutoConfig logger = logging.get_logger(__name__) class ShieldGemma2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ShieldGemma2ForImageClassification`]. It is used to instantiate an ShieldGemma2ForImageClassification according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the shieldgemma-2-4b-it. e.g. [google/gemma-3-4b](https://huggingface.co/google/gemma-3-4b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`Union[ShieldGemma2TextConfig, dict]`, *optional*): The config object of the text backbone. vision_config (`Union[AutoConfig, dict]`, *optional*): Custom vision config or dict. mm_tokens_per_image (`int`, *optional*, defaults to 256): The number of tokens per image embedding. boi_token_index (`int`, *optional*, defaults to 255999): The begin-of-image token index to wrap the image prompt. eoi_token_index (`int`, *optional*, defaults to 256000): The end-of-image token index to wrap the image prompt. image_token_index (`int`, *optional*, defaults to 262144): The image token index to encode the image prompt. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import ShieldGemma2ForConditionalGeneration, ShieldGemma2Config, SiglipVisionConfig, ShieldGemma2TextConfig >>> # Initializing a Siglip-like vision config >>> vision_config = SiglipVisionConfig() >>> # Initializing a ShieldGemma2 Text config >>> text_config = ShieldGemma2TextConfig() >>> # Initializing a ShieldGemma2 gemma-3-4b style configuration >>> configuration = ShieldGemma2Config(vision_config, text_config) >>> # Initializing a model from the gemma-3-4b style configuration >>> model = ShieldGemma2TextConfig(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "shieldgemma2" sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig} def __init__( self, text_config=None, vision_config=None, mm_tokens_per_image: int = 256, boi_token_index: int = 255_999, eoi_token_index: int = 256_000, image_token_index: int = 262_144, initializer_range: float = 0.02, **kwargs, ): if isinstance(vision_config, dict): vision_config["model_type"] = ( vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model" ) vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: vision_config = CONFIG_MAPPING["siglip_vision_model"]() self.vision_config = vision_config if isinstance(text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma3_text" text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: text_config = CONFIG_MAPPING["gemma3_text"]() self.text_config = text_config self.vision_config = vision_config self.mm_tokens_per_image = mm_tokens_per_image self.boi_token_index = boi_token_index self.eoi_token_index = eoi_token_index self.image_token_index = image_token_index self.initializer_range = initializer_range super().__init__(**kwargs) __all__ = ["ShieldGemma2Config"] ```
================================================================================================================================================= SOURCE CODE FILE: modeling_shieldgemma2.py LINES: 1 SIZE: 10.58 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\shieldgemma2\modeling_shieldgemma2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import List, Optional, Union import torch import torch.utils.checkpoint from ...cache_utils import Cache from ...modeling_outputs import ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings_to_model_forward, logging, ) from ...utils.deprecation import deprecate_kwarg from ..auto import AutoModelForImageTextToText from .configuration_shieldgemma2 import ShieldGemma2Config _CHECKPOINT_FOR_DOC = "google/shieldgemma-2-4b-it" _CONFIG_FOR_DOC = "ShieldGemma2Config" logger = logging.get_logger(__name__) SHIELDGEMMA2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @dataclass class ShieldGemma2ImageClassifierOutputWithNoAttention(ImageClassifierOutputWithNoAttention): """ShieldGemma2 classifies imags as violative or not relative to a specific policy Args: """ probabilities: Optional[torch.Tensor] = None class ShieldGemma2ForImageClassification(PreTrainedModel): config_class = ShieldGemma2Config def __init__(self, config: ShieldGemma2Config): super().__init__(config=config) self.yes_token_index = getattr(config, "yes_token_index", 10_784) self.no_token_index = getattr(config, "no_token_index", 3771) self.model = AutoModelForImageTextToText.from_config(config=config) def get_input_embeddings(self): return self.model.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.model.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.model.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.model.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.model.language_model.set_decoder(decoder) def get_decoder(self): return self.model.language_model.get_decoder() def tie_weights(self): return self.model.language_model.tie_weights() @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(SHIELDGEMMA2_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None, token_type_ids: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **lm_kwargs, ) -> ShieldGemma2ImageClassifierOutputWithNoAttention: """Predicts the binary probability that the image violates the specified policy. Returns: A `ShieldGemma2ImageClassifierOutputWithNoAttention` instance containing the logits and probabilities associated with the model predicting the `Yes` or `No` token as the response to that prompt, captured in the following properties. * `logits` (`torch.Tensor` of shape `(batch_size, 2)`): The first position along dim=1 is the logits for the `Yes` token and the second position along dim=1 is the logits for the `No` token. * `probabilities` (`torch.Tensor` of shape `(batch_size, 2)`): The first position along dim=1 is the probability of predicting the `Yes` token and the second position along dim=1 is the probability of predicting the `No` token. ShieldGemma prompts are constructed such that predicting the `Yes` token means the content *does violate* the policy as described. If you are only interested in the violative condition, use `violated = outputs.probabilities[:, 1]` to extract that slice from the output tensors. When used with the `ShieldGemma2Processor`, the `batch_size` will be equal to `len(images) * len(policies)`, and the order within the batch will be img1_policy1, ... img1_policyN, ... imgM_policyN. """ outputs = self.model( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, token_type_ids=token_type_ids, cache_position=cache_position, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, logits_to_keep=logits_to_keep, **lm_kwargs, ) logits = outputs.logits selected_logits = logits[:, -1, [self.yes_token_index, self.no_token_index]] probabilities = torch.softmax(selected_logits, dim=-1) return ShieldGemma2ImageClassifierOutputWithNoAttention( logits=selected_logits, probabilities=probabilities, ) __all__ = [ "ShieldGemma2ForImageClassification", ] ```
=================================================================================================================================================== SOURCE CODE FILE: processing_shieldgemma2.py LINES: 1 SIZE: 8.38 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\shieldgemma2\processing_shieldgemma2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Mapping, Sequence from typing import Optional from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import Unpack from ...utils import logging from ..gemma3.processing_gemma3 import Gemma3Processor, Gemma3ProcessorKwargs logger = logging.get_logger(__name__) DEFAULT_SHIELDGEMMA2_POLICIES: Mapping[str, str] = { "dangerous": ( "No Dangerous Content: The image shall not contain content that" " facilitates or encourages activities that could cause real-world harm" " (e.g., building firearms and explosive devices, promotion of" " terrorism, instructions for suicide)." ), "sexual": ( "No Sexually Explicit content: The image shall not contain content that" " depicts explicit or graphic sexual acts (e.g., pornography, erotic" " nudity, depictions of rape or sexual assault)." ), "violence": ( "No Violence/Gore content: The image shall not contain content that" " depicts shocking, sensational, or gratuitous violence (e.g.," " excessive blood and gore, gratuitous violence against animals," " extreme injury or moment of death)." ), } class ShieldGemma2ProcessorKwargs(Gemma3ProcessorKwargs, total=False): policies: Optional[Sequence[str]] custom_policies: Optional[Mapping[str, str]] _defaults = { "text_kwargs": { "padding": True, }, "images_kwargs": { "do_pan_and_scan": False, }, } class ShieldGemma2Processor(Gemma3Processor): def __init__( self, image_processor, tokenizer, chat_template=None, image_seq_length=256, policy_definitions=None, **kwargs ): """A processor for the ShieldGemma 2 model. Args: image_processor: The image processor to use, typically a `Gemma3ImageProcessorFast` instance. tokenizer: The tokenizer to use, typically a `GemmaTokenizerFast` instance. chat_template: The chat template to use with this processor. Typically, this is unset as the processor configuration on Hugging Face Hub includes this value already. image_seq_length: The number of soft tokens per image. Typically, this is unset as the processor configuration on Hugging Face Hub includes this value already. policy_definitions: A mapping from policy name to its description in text used as the default policies to classify images against. The policy descriptions are included in the text of the prompts generated by this processor. Typically, this is unset as the processor configuration on Hugging Face Hub includes the base policies ShieldGemma was trained on. """ super().__init__(image_processor, tokenizer, chat_template, image_seq_length, **kwargs) if policy_definitions is None: self.policy_definitions = DEFAULT_SHIELDGEMMA2_POLICIES else: self.policy_definitions = policy_definitions def __call__( self, images: ImageInput = None, text=None, videos=None, audio=None, **kwargs: Unpack[ShieldGemma2ProcessorKwargs], ) -> BatchFeature: """Generates a batch of inputs from the provided images. ShieldGemma was trained to classify image content for policy compliance using a specific prompt construction. This processor generates a batch of such prompts from the provided images by: 1. Creating a list of conversations, one for each `<image, policy>` pair; 2. Converting these conversations to text using `self.apply_chat_template()`; and 3. Encoding the conversations and images using the same techniques as `Gemma3Processor`. Args: images: A single image or a list of images to include in the batch. text: Not supported. videos: Not supported. audio: Not supported. kwargs: An optional dictionary of keyword arguments to configre the processor. Possible values include: * `custom_policies`: Additional policy definitions that augment the `self.policy_definitions` passed into the constructor. Note that `custom_policies` that share a key with `self.policy_definitions` will override the policy description * `policies`: (Optional) a list of keys in the joint `self.policy_definitions | custom_policies` dictionary of specific interest for the provided images. If empty or None, prompts will be generated for every key in the joint dictionary. Returns: A `BatchFeature` continaing `input_ids`, `pixel_values`, etc. where each Tensor is of shape `(len(images) * len(policies), )`, and the order within the batch will be img1_policy1, ... img1_policyN, ... imgM_policyN. """ del text, videos, audio if not images: raise ValueError("ShieldGemma 2 needs images to classify") elif not isinstance(images, Sequence): images = [images] if not self.chat_template: raise ValueError("ShieldGemma 2 requires the use of a specific chat template") # Disable pan and scan images_kwargs = kwargs.setdefault("images_kwargs", {}) if images_kwargs.get("do_pan_and_scan") is True: logger.warning_once("ShieldGemma2 does not support pan and scan.") images_kwargs["do_pan_and_scan"] = False # Enable padding on the batch during tokenization text_kwargs = kwargs.setdefault("text_kwargs", {}) if "padding" not in text_kwargs: text_kwargs["padding"] = kwargs.pop("padding", True) text_kwargs["padding_side"] = kwargs.pop("padding_side", "left") policy_definitions: Mapping[str, str] = { **self.policy_definitions, **kwargs.get("custom_policies", {}), } if (policies := kwargs.get("policies")) is None: policies = list(policy_definitions.keys()) # TODO(ryanmullins): Support images from PIL or URLs. messages = [] expanded_images = [] for img in images: for policy in policies: messages.append( [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": policy_definitions[policy]}, ], } ] ) expanded_images.append([img]) text = self.apply_chat_template(messages, tokenize=False) return super().__call__(images=expanded_images, text=text, **kwargs) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names + ["token_type_ids"] image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) __all__ = ["ShieldGemma2Processor"] ```
=============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.10 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip2\__init__.py ENCODING: utf-8 ```py # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_siglip2 import * from .image_processing_siglip2 import * from .image_processing_siglip2_fast import * from .modeling_siglip2 import * from .processing_siglip2 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
============================================================================================================================================ SOURCE CODE FILE: configuration_siglip2.py LINES: 1 SIZE: 13.00 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip2\configuration_siglip2.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/siglip2/modular_siglip2.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_siglip2.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class Siglip2TextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Siglip2TextModel`]. It is used to instantiate a Siglip2 text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip2 [google/siglip2-base-patch16-224](https://huggingface.co/google/siglip2-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Siglip2 text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Siglip2Model`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 64): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. pad_token_id (`int`, *optional*, defaults to 1): The id of the padding token in the vocabulary. bos_token_id (`int`, *optional*, defaults to 49406): The id of the beginning-of-sequence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 49407): The id of the end-of-sequence token in the vocabulary. projection_size (`int`, *optional*, defaults to `hidden_size`): The size of the projection head. Example: ```python >>> from transformers import Siglip2TextConfig, Siglip2TextModel >>> # Initializing a Siglip2TextConfig with google/siglip2-base-patch16-224 style configuration >>> configuration = Siglip2TextConfig() >>> # Initializing a Siglip2TextModel (with random weights) from the google/siglip2-base-patch16-224 style configuration >>> model = Siglip2TextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "siglip2_text_model" base_config_key = "text_config" def __init__( self, vocab_size=32000, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, max_position_embeddings=64, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, # This differs from `CLIPTokenizer`'s default and from openai/siglip2 # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538 pad_token_id=1, bos_token_id=49406, eos_token_id=49407, projection_size=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.attention_dropout = attention_dropout self.projection_size = projection_size if projection_size is not None else hidden_size class Siglip2VisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Siglip2VisionModel`]. It is used to instantiate a Siglip2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip2 [google/siglip2-base-patch16-naflex](https://huggingface.co/google/siglip2-base-patch16-naflex) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. num_patches (`int`, *optional*, defaults to 256): The number of patches in the image with the size of (`patch_size`, `patch_size`). The image is resized to fill maximum of this number of patches, and to preserve the aspect ratio. In case the resulted number of patches is lower, the image is padded in "patch" dimension. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. Example: ```python >>> from transformers import Siglip2VisionConfig, Siglip2VisionModel >>> # Initializing a Siglip2VisionConfig with google/siglip2-base-patch16-naflex style configuration >>> configuration = Siglip2VisionConfig() >>> # Initializing a Siglip2VisionModel (with random weights) from the google/siglip2-base-patch16-naflex style configuration >>> model = Siglip2VisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "siglip2_vision_model" base_config_key = "vision_config" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, num_patches=256, patch_size=16, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.num_patches = num_patches class Siglip2Config(PretrainedConfig): r""" [`Siglip2Config`] is the configuration class to store the configuration of a [`Siglip2Model`]. It is used to instantiate a Siglip2 model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip2 [google/siglip2-base-patch16-224](https://huggingface.co/google/siglip2-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`Siglip2TextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`Siglip2VisionConfig`]. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import Siglip2Config, Siglip2Model >>> # Initializing a Siglip2Config with google/siglip2-base-patch16-224 style configuration >>> configuration = Siglip2Config() >>> # Initializing a Siglip2Model (with random weights) from the google/siglip2-base-patch16-224 style configuration >>> model = Siglip2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a Siglip2Config from a Siglip2TextConfig and a Siglip2VisionConfig >>> from transformers import Siglip2TextConfig, Siglip2VisionConfig >>> # Initializing a Siglip2Text and Siglip2Vision configuration >>> config_text = Siglip2TextConfig() >>> config_vision = Siglip2VisionConfig() >>> config = Siglip2Config.from_text_vision_configs(config_text, config_vision) ```""" model_type = "siglip2" sub_configs = {"text_config": Siglip2TextConfig, "vision_config": Siglip2VisionConfig} def __init__(self, text_config=None, vision_config=None, **kwargs): super().__init__(**kwargs) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `Siglip2TextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. initializing the `Siglip2VisionConfig` with default values.") self.text_config = Siglip2TextConfig(**text_config) self.vision_config = Siglip2VisionConfig(**vision_config) self.initializer_factor = 1.0 @classmethod def from_text_vision_configs(cls, text_config: Siglip2TextConfig, vision_config: Siglip2VisionConfig, **kwargs): r""" Instantiate a [`Siglip2Config`] (or a derived class) from siglip2 text model configuration and siglip2 vision model configuration. Returns: [`Siglip2Config`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) __all__ = ["Siglip2Config", "Siglip2TextConfig", "Siglip2VisionConfig"] ```
=============================================================================================================================================== SOURCE CODE FILE: image_processing_siglip2.py LINES: 1 SIZE: 15.71 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip2\image_processing_siglip2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for SigLIP2.""" import math from functools import lru_cache from typing import List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import ( convert_to_rgb, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_flat_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging logger = logging.get_logger(__name__) if is_vision_available(): from PIL import Image @lru_cache(maxsize=256) def get_image_size_for_max_num_patches( image_height: int, image_width: int, patch_size: int, max_num_patches: int, eps: float = 1e-5 ) -> Tuple[int, int]: """ Determine image size based on max number of patches, ensure dimensions are divisible by patch size and image is at least 1 patch. Args: image_height (`int`): Original image height. image_width (`int`): Original image width. patch_size (`int`): Patch size for processing. max_num_patches (`int`): Maximum number of patches. eps (`float`): Small threshold for binary search. Returns: Tuple: (target_height, target_width) """ def get_scaled_image_size(scale: float, size: int, patch_size: int) -> int: scaled_size = size * scale scaled_size = math.ceil(scaled_size / patch_size) * patch_size # make divisible by patch_size scaled_size = max(patch_size, scaled_size) # ensure at least 1 patch return int(scaled_size) # Binary search for optimal scale scale_min, scale_max = eps / 10, 100.0 while (scale_max - scale_min) >= eps: scale = (scale_min + scale_max) / 2 target_height = get_scaled_image_size(scale, image_height, patch_size) target_width = get_scaled_image_size(scale, image_width, patch_size) num_patches = (target_height / patch_size) * (target_width / patch_size) if num_patches <= max_num_patches: scale_min = scale else: scale_max = scale scale = scale_min target_height = get_scaled_image_size(scale, image_height, patch_size) target_width = get_scaled_image_size(scale, image_width, patch_size) return target_height, target_width def convert_image_to_patches(image: np.ndarray, patch_size: int) -> np.ndarray: """ Convert 3D array image of shape (image_height, image_width, num_channels) into 2D array of patches of shape (num_patches_height * num_patches_width, patch_size * patch_size * num_channels). """ image_height, image_width, num_channels = image.shape num_patches_height = image_height // patch_size num_patches_width = image_width // patch_size patched_image = image.reshape(num_patches_height, patch_size, num_patches_width, patch_size, num_channels) patched_image = patched_image.transpose(0, 2, 1, 3, 4) patched_image = patched_image.reshape(num_patches_height * num_patches_width, -1) return patched_image def pad_along_first_dim(array: np.ndarray, target_length: int, pad_value: int = 0) -> Tuple[np.ndarray, np.ndarray]: """ Pad the array along the first dimension. """ current_length = array.shape[0] padding_length = target_length - current_length mask = np.ones((target_length,), dtype=np.int32) if padding_length > 0: paddings = [(0, padding_length)] + [(0, 0)] * (array.ndim - 1) array = np.pad(array, paddings, mode="constant", constant_values=pad_value) mask[-padding_length:] = 0 return array, mask class Siglip2ImageProcessor(BaseImageProcessor): r""" Constructs a SigLIP2 image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's dimensions to fit `max_num_patches` according to given `patch_size`. Can be overridden by `do_resize` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image by the specified mean and standard deviation. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch the image will be split to. max_num_patches (`int`, *optional*, defaults to 256): The image will be resized to have at most this number of patches, and then padded in "patch" dimension to match this number exactly. """ model_input_names = ["pixel_values", "pixel_attention_mask", "spatial_shapes"] def __init__( self, do_resize: bool = True, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: float = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: Optional[bool] = None, patch_size: int = 16, max_num_patches: int = 256, **kwargs, ): super().__init__(**kwargs) image_mean = image_mean if image_mean is not None else [0.5, 0.5, 0.5] image_std = image_std if image_std is not None else [0.5, 0.5, 0.5] self.do_resize = do_resize self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb self.patch_size = patch_size self.max_num_patches = max_num_patches @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, resample: Optional[PILImageResampling] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, do_convert_rgb: Optional[bool] = None, patch_size: Optional[int] = None, max_num_patches: Optional[int] = None, ) -> "Image.Image": """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. patch_size (`int`, *optional*, defaults to `self.patch_size`): Patch size for processing, same as the patch size used in the model. max_num_patches (`int`, *optional*, defaults to `self.max_num_patches`): Maximum number of patches per image, the image will be resized to have at most this number of patches. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb patch_size = patch_size if patch_size is not None else self.patch_size max_num_patches = max_num_patches if max_num_patches is not None else self.max_num_patches # Explicitly specify data format to be channels last for image preprocessing. # Image processor does not support different output formats, because it returns patches. data_format = ChannelDimension.LAST images = make_flat_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, ) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) pixel_masks = [] pixel_values = [] spatial_shapes = [] for image in images: image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) if do_resize: height, width = get_image_size_for_max_num_patches( image_height=image.shape[0], image_width=image.shape[1], patch_size=patch_size, max_num_patches=max_num_patches, ) image = resize(image=image, size=(height, width), resample=resample, input_data_format=data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=data_format) if do_normalize: image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=data_format) patches = convert_image_to_patches(image, patch_size) patches, mask = pad_along_first_dim(patches, max_num_patches) num_patches_height = image.shape[0] // patch_size num_patches_width = image.shape[1] // patch_size spatial_shapes.append((num_patches_height, num_patches_width)) pixel_values.append(patches) pixel_masks.append(mask) batch_feature = BatchFeature( data={ "pixel_values": pixel_values, "pixel_attention_mask": pixel_masks, "spatial_shapes": spatial_shapes, }, tensor_type=return_tensors, ) return batch_feature __all__ = ["Siglip2ImageProcessor"] ```
==================================================================================================================================================== SOURCE CODE FILE: image_processing_siglip2_fast.py LINES: 1 SIZE: 7.05 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip2\image_processing_siglip2_fast.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for SigLIP2.""" from typing import List, Optional, Tuple, Union import torch from ...image_processing_utils import BatchFeature from ...image_processing_utils_fast import ( BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS, BaseImageProcessorFast, DefaultFastImageProcessorKwargs, SizeDict, ) from ...image_utils import ( ImageInput, PILImageResampling, ) from ...processing_utils import Unpack from ...utils import ( TensorType, add_start_docstrings, is_torch_available, is_torchvision_available, is_torchvision_v2_available, logging, ) from .image_processing_siglip2 import get_image_size_for_max_num_patches if is_torch_available(): import torch if is_torchvision_available(): if is_torchvision_v2_available(): from torchvision.transforms.v2 import functional as F else: from torchvision.transforms import functional as F logger = logging.get_logger(__name__) def convert_image_to_patches(image: "torch.Tensor", patch_size: int) -> "torch.Tensor": """ Convert 3D tensor image of shape (num_channels, image_height, image_width) into 2D tensor of patches of shape (num_patches_height * num_patches_width, patch_size * patch_size * num_channels). """ num_channels, image_height, image_width = image.shape num_patches_height = image_height // patch_size num_patches_width = image_width // patch_size patched_image = image.reshape(num_channels, num_patches_height, patch_size, num_patches_width, patch_size) patched_image = patched_image.permute(1, 3, 2, 4, 0) patched_image = patched_image.reshape(num_patches_height * num_patches_width, -1) return patched_image def pad_along_first_dim( tensor: "torch.Tensor", target_length: int, pad_value: int = 0 ) -> Tuple["torch.Tensor", "torch.Tensor"]: """ Pad the tensor along the first dimension. """ current_length = tensor.shape[0] padding_length = target_length - current_length mask = torch.ones((target_length,), dtype=torch.int32) if padding_length > 0: padding = [0, 0] * (tensor.ndim - 1) + [0, padding_length] tensor = torch.nn.functional.pad(tensor, padding, mode="constant", value=pad_value) mask[-padding_length:] = 0 return tensor, mask class Siglip2FastImageProcessorKwargs(DefaultFastImageProcessorKwargs): patch_size: Optional[int] max_num_patches: Optional[int] @add_start_docstrings( r"Constructs a fast Siglip2 image processor.", BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, """ patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch the image will be split to. max_num_patches (`int`, *optional*, defaults to 256): The image will be resized to have at most this number of patches, and then padded in "patch" dimension to match this number exactly. """, ) class Siglip2ImageProcessorFast(BaseImageProcessorFast): resample = PILImageResampling.BILINEAR image_mean = [0.5, 0.5, 0.5] image_std = [0.5, 0.5, 0.5] do_resize = True do_rescale = True do_normalize = True patch_size = 16 max_num_patches = 256 valid_kwargs = Siglip2FastImageProcessorKwargs unused_kwargs = ["size", "do_center_crop", "crop_size"] def __init__(self, **kwargs: Unpack[Siglip2FastImageProcessorKwargs]): super().__init__(**kwargs) def _validate_preprocess_kwargs(self, **kwargs) -> tuple: # Remove do_resize from kwargs to not raise an error as size is None kwargs.pop("do_resize", None) return super()._validate_preprocess_kwargs(**kwargs) @add_start_docstrings( BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS, """ patch_size (`int`, *optional*, defaults to `self.patch_size`): The size (resolution) of each patch the image will be split to. max_num_patches (`int`, *optional*, defaults to `self.max_num_patches`): The image will be resized to have at most this number of patches, and then padded in "patch" dimension to match this number exactly. """, ) def preprocess(self, images: ImageInput, **kwargs: Unpack[Siglip2FastImageProcessorKwargs]) -> BatchFeature: return super().preprocess(images, **kwargs) def _preprocess( self, images: List["torch.Tensor"], do_resize: bool, patch_size: int, max_num_patches: int, interpolation: Optional["F.InterpolationMode"], do_rescale: bool, rescale_factor: float, do_normalize: bool, image_mean: Optional[Union[float, List[float]]], image_std: Optional[Union[float, List[float]]], return_tensors: Optional[Union[str, TensorType]], **kwargs, ) -> BatchFeature: pixel_masks = [] pixel_values = [] spatial_shapes = [] for image in images: if do_resize: height, width = get_image_size_for_max_num_patches( image_height=image.shape[1], image_width=image.shape[2], patch_size=patch_size, max_num_patches=max_num_patches, ) side_dict = SizeDict(height=height, width=width) image = self.resize(image=image, size=side_dict, interpolation=interpolation) image = self.rescale_and_normalize(image, do_rescale, rescale_factor, do_normalize, image_mean, image_std) # (num_channels, height, width) -> (num_patches, patch_size * patch_size * num_channels) patches = convert_image_to_patches(image, patch_size) patches, mask = pad_along_first_dim(patches, max_num_patches) num_patches_height = image.shape[1] // patch_size num_patches_width = image.shape[2] // patch_size spatial_shapes.append((num_patches_height, num_patches_width)) pixel_values.append(patches) pixel_masks.append(mask) pixel_values = torch.stack(pixel_values) pixel_masks = torch.stack(pixel_masks) spatial_shapes = torch.tensor(spatial_shapes) batch_feature = BatchFeature( data={ "pixel_values": pixel_values, "pixel_attention_mask": pixel_masks, "spatial_shapes": spatial_shapes, }, tensor_type=return_tensors, ) return batch_feature __all__ = ["Siglip2ImageProcessorFast"] ```
======================================================================================================================================= SOURCE CODE FILE: modeling_siglip2.py LINES: 1 SIZE: 61.36 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip2\modeling_siglip2.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/siglip2/modular_siglip2.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_siglip2.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings from dataclasses import dataclass from typing import Any, Callable, Optional, Tuple, Union import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from torch.nn.init import _calculate_fan_in_and_fan_out from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, can_return_tuple, logging, replace_return_docstrings, ) from .configuration_siglip2 import Siglip2Config, Siglip2TextConfig, Siglip2VisionConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "Siglip2Config" @dataclass class Siglip2VisionOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class Siglip2TextOutput(ModelOutput): """ Base class for text model's outputs that also contains a pooling of the last hidden states. Args: text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The text embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ text_embeds: Optional[torch.FloatTensor] = None last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class Siglip2Output(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`Siglip2TextModel`]. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`Siglip2VisionModel`]. text_model_output (`BaseModelOutputWithPooling`): The output of the [`Siglip2TextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`Siglip2VisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: Optional[torch.FloatTensor] = None logits_per_text: Optional[torch.FloatTensor] = None text_embeds: Optional[torch.FloatTensor] = None image_embeds: Optional[torch.FloatTensor] = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class Siglip2VisionEmbeddings(nn.Module): def __init__(self, config: Siglip2VisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.patch_size = config.patch_size self.patch_embedding = nn.Linear( in_features=config.num_channels * self.patch_size * self.patch_size, out_features=self.embed_dim, ) self.num_patches = config.num_patches self.position_embedding_size = int(self.num_patches**0.5) self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim) @staticmethod def resize_positional_embeddings( positional_embeddings: torch.Tensor, spatial_shapes: torch.LongTensor, max_length: int, ) -> torch.Tensor: """ Resize positional embeddings to image-specific size and pad to a fixed size. Args: positional_embeddings (`torch.Tensor`): Position embeddings of shape (height, width, embed_dim) spatial_shapes (`torch.LongTensor`): Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to max_length (`int`): Maximum length of the positional embeddings to pad resized positional embeddings to Returns: `torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim) """ batch_size = spatial_shapes.shape[0] embed_dim = positional_embeddings.shape[-1] source_dtype = positional_embeddings.dtype resulted_positional_embeddings = torch.empty( (batch_size, max_length, embed_dim), device=positional_embeddings.device, dtype=source_dtype, ) # (height, width, embed_dim) -> (1, embed_dim, height, width) for interpolation positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0) # Upcast to float32 on CPU because antialias is not supported for bfloat16/float16 on CPU if positional_embeddings.device.type == "cpu": positional_embeddings = positional_embeddings.to(torch.float32) for i in range(batch_size): # (1, dim, height, width) -> (1, dim, target_height, target_width) height, width = spatial_shapes[i] resized_embeddings = F.interpolate( positional_embeddings, size=(height, width), mode="bilinear", align_corners=False, antialias=True, ) # (1, dim, target_height, target_width) -> (target_height * target_width, dim) resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1) # Cast to original dtype resized_embeddings = resized_embeddings.to(source_dtype) resulted_positional_embeddings[i, : height * width] = resized_embeddings resulted_positional_embeddings[i, height * width :] = resized_embeddings[0] return resulted_positional_embeddings def forward(self, pixel_values: torch.FloatTensor, spatial_shapes: torch.LongTensor) -> torch.Tensor: """ Args: pixel_values (`torch.FloatTensor`): Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size) spatial_shapes (`List[Tuple[int, int]]`): Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to """ # Apply patch embeddings to already patchified pixel values target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # Get positional resized and padded positional embeddings positional_embeddings = self.position_embedding.weight.reshape( self.position_embedding_size, self.position_embedding_size, -1 ) resized_positional_embeddings = self.resize_positional_embeddings( positional_embeddings, spatial_shapes, max_length=pixel_values.shape[1] ) # Add positional embeddings to patch embeddings embeddings = patch_embeds + resized_positional_embeddings return embeddings def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class Siglip2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Union[Siglip2VisionConfig, Siglip2TextConfig]): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.is_causal = False self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" batch_size, seq_length, embed_dim = hidden_states.shape queries = self.q_proj(hidden_states) keys = self.k_proj(hidden_states) values = self.v_proj(hidden_states) queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and output_attentions: logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, queries, keys, values, attention_mask, is_causal=self.is_causal, scaling=self.scale, dropout=0.0 if not self.training else self.dropout, ) attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous() attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class Siglip2MLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class Siglip2EncoderLayer(nn.Module): def __init__(self, config: Union[Siglip2VisionConfig, Siglip2TextConfig]): super().__init__() self.embed_dim = config.hidden_size self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.self_attn = Siglip2Attention(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = Siglip2MLP(config) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(batch, seq_len, embed_dim)`. attention_mask (`torch.FloatTensor`): Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class Siglip2Encoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`Siglip2EncoderLayer`]. Args: config: Siglip2Config """ def __init__(self, config: Siglip2Config): super().__init__() self.config = config self.layers = nn.ModuleList([Siglip2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False # Ignore copy @can_return_tuple def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutput: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, ) SIGLIP2_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): Whether to interpolate the pre-trained position encodings. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class Siglip2VisionTransformer(nn.Module): def __init__(self, config: Siglip2VisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = Siglip2VisionEmbeddings(config) self.encoder = Siglip2Encoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head if self.use_head: self.head = Siglip2MultiheadAttentionPoolingHead(config) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP2_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Siglip2VisionConfig) def forward( self, pixel_values: torch.FloatTensor, attention_mask: torch.Tensor, spatial_shapes: torch.LongTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) hidden_states = self.embeddings(pixel_values, spatial_shapes) if attention_mask is not None and not self._use_flash_attention_2: # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) else: encoder_attention_mask = attention_mask encoder_outputs: BaseModelOutput = self.encoder( inputs_embeds=hidden_states, attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden_state = encoder_outputs.last_hidden_state last_hidden_state = self.post_layernorm(last_hidden_state) pooler_output = self.head(last_hidden_state, attention_mask) if self.use_head else None return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooler_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class Siglip2TextEmbeddings(nn.Module): def __init__(self, config: Siglip2TextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] max_position_embedding = self.position_embedding.weight.shape[0] if seq_length > max_position_embedding: raise ValueError( f"Sequence length must be less than max_position_embeddings (got `sequence length`: " f"{seq_length} and max_position_embeddings: {max_position_embedding}" ) if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings def _trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) def trunc_normal_tf_( tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 ) -> torch.Tensor: """Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \\leq \text{mean} \\leq b`. NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 and the result is subsequently scaled and shifted by the mean and std args. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value """ with torch.no_grad(): _trunc_normal_(tensor, 0, 1.0, a, b) tensor.mul_(std).add_(mean) def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) if mode == "fan_in": denom = fan_in elif mode == "fan_out": denom = fan_out elif mode == "fan_avg": denom = (fan_in + fan_out) / 2 variance = scale / denom if distribution == "truncated_normal": # constant is stddev of standard normal truncated to (-2, 2) trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) elif distribution == "normal": with torch.no_grad(): tensor.normal_(std=math.sqrt(variance)) elif distribution == "uniform": bound = math.sqrt(3 * variance) with torch.no_grad(): tensor.uniform_(-bound, bound) else: raise ValueError(f"invalid distribution {distribution}") def lecun_normal_(tensor): variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") def default_flax_embed_init(tensor): variance_scaling_(tensor, mode="fan_in", distribution="normal") SIGLIP2_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class Siglip2TextTransformer(nn.Module): def __init__(self, config: Siglip2TextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = Siglip2TextEmbeddings(config) self.encoder = Siglip2Encoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.head = nn.Linear(embed_dim, config.projection_size) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP2_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Siglip2TextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # note: Siglip2's text model does not use a causal mask, unlike the original CLIP model. # expand attention_mask if attention_mask is not None and not self._use_flash_attention_2: # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) encoder_outputs: BaseModelOutput = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden_state = encoder_outputs.last_hidden_state last_hidden_state = self.final_layer_norm(last_hidden_state) # Assuming "sticky" EOS tokenization, last token is always EOS. pooled_output = last_hidden_state[:, -1, :] pooled_output = self.head(pooled_output) return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) SIGLIP2_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Siglip2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SIGLIP2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): Whether to interpolate the pre-trained position encodings. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class Siglip2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Siglip2Config base_model_prefix = "siglip2" supports_gradient_checkpointing = True _no_split_modules = [ "Siglip2TextEmbeddings", "Siglip2EncoderLayer", "Siglip2VisionEmbeddings", "Siglip2EncoderLayer", "Siglip2MultiheadAttentionPoolingHead", ] _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, Siglip2VisionEmbeddings): width = ( self.config.vision_config.hidden_size if isinstance(self.config, Siglip2Config) else self.config.hidden_size ) nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) elif isinstance(module, nn.Embedding): default_flax_embed_init(module.weight) elif isinstance(module, Siglip2Attention): nn.init.xavier_uniform_(module.q_proj.weight) nn.init.xavier_uniform_(module.k_proj.weight) nn.init.xavier_uniform_(module.v_proj.weight) nn.init.xavier_uniform_(module.out_proj.weight) nn.init.zeros_(module.q_proj.bias) nn.init.zeros_(module.k_proj.bias) nn.init.zeros_(module.v_proj.bias) nn.init.zeros_(module.out_proj.bias) elif isinstance(module, Siglip2MLP): nn.init.xavier_uniform_(module.fc1.weight) nn.init.xavier_uniform_(module.fc2.weight) nn.init.normal_(module.fc1.bias, std=1e-6) nn.init.normal_(module.fc2.bias, std=1e-6) elif isinstance(module, Siglip2MultiheadAttentionPoolingHead): nn.init.xavier_uniform_(module.probe.data) nn.init.xavier_uniform_(module.attention.in_proj_weight.data) nn.init.zeros_(module.attention.in_proj_bias.data) elif isinstance(module, Siglip2Model): logit_scale_init = torch.log(torch.tensor(1.0)) module.logit_scale.data.fill_(logit_scale_init) module.logit_bias.data.zero_() elif isinstance(module, Siglip2ForImageClassification): nn.init.normal_( module.classifier.weight, std=self.config.vision_config.hidden_size**-0.5 * self.config.initializer_factor, ) elif isinstance(module, (nn.Linear, nn.Conv2d)): lecun_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @add_start_docstrings( """The text model from Siglip2 without any head or projection on top.""", SIGLIP2_START_DOCSTRING, ) class Siglip2TextModel(Siglip2PreTrainedModel): config_class = Siglip2TextConfig def __init__(self, config: Siglip2TextConfig): super().__init__(config) self.text_model = Siglip2TextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP2_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Siglip2TextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, Siglip2TextModel >>> model = Siglip2TextModel.from_pretrained("google/siglip2-base-patch16-224") >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip2-base-patch16-224") >>> # important: make sure to set padding="max_length" as that's how the model was trained >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) class Siglip2MultiheadAttentionPoolingHead(nn.Module): """Multihead Attention Pooling.""" def __init__(self, config: Siglip2VisionConfig): super().__init__() self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = Siglip2MLP(config) self.num_heads = config.num_attention_heads def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: batch_size = hidden_state.shape[0] probe = self.probe.repeat(batch_size, 1, 1) if attention_mask is not None: target_len, source_len = probe.shape[1], hidden_state.shape[1] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_state.dtype, target_len) attention_mask = attention_mask.repeat(1, self.num_heads, target_len, 1) attention_mask = attention_mask.reshape(-1, target_len, source_len) hidden_state = self.attention(probe, hidden_state, hidden_state, attn_mask=attention_mask)[0] residual = hidden_state hidden_state = self.layernorm(hidden_state) hidden_state = residual + self.mlp(hidden_state) return hidden_state[:, 0] @add_start_docstrings( """The vision model from Siglip2 without any head or projection on top.""", SIGLIP2_START_DOCSTRING, ) class Siglip2VisionModel(Siglip2PreTrainedModel): config_class = Siglip2VisionConfig main_input_name = "pixel_values" def __init__(self, config: Siglip2VisionConfig): super().__init__(config) self.vision_model = Siglip2VisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP2_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Siglip2VisionConfig) def forward( self, pixel_values: torch.FloatTensor, pixel_attention_mask: torch.Tensor, spatial_shapes: torch.LongTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Siglip2VisionModel >>> model = Siglip2VisionModel.from_pretrained("google/siglip2-base-patch16-224") >>> processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-224") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled features ```""" return self.vision_model( pixel_values=pixel_values, attention_mask=pixel_attention_mask, spatial_shapes=spatial_shapes, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) @add_start_docstrings(SIGLIP2_START_DOCSTRING) class Siglip2Model(Siglip2PreTrainedModel): config_class = Siglip2Config def __init__(self, config: Siglip2Config): super().__init__(config) if not isinstance(config.text_config, Siglip2TextConfig): raise TypeError( "config.text_config is expected to be of type Siglip2TextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, Siglip2VisionConfig): raise TypeError( "config.vision_config is expected to be of type Siglip2VisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config # First, initialize the text and vision models with proper attention implementation text_model = Siglip2TextModel._from_config(text_config) vision_model = Siglip2VisionModel._from_config(vision_config) # Second, get the text and vision submodules (for backward compatibility) self.text_model = text_model.text_model self.vision_model = vision_model.vision_model self.logit_scale = nn.Parameter(torch.randn(1)) self.logit_bias = nn.Parameter(torch.randn(1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SIGLIP2_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`Siglip2TextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, AutoModel >>> import torch >>> model = AutoModel.from_pretrained("google/siglip2-base-patch16-224") >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip2-base-patch16-224") >>> # important: make sure to set padding="max_length" as that's how the model was trained >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") >>> with torch.no_grad(): ... text_features = model.get_text_features(**inputs) ```""" # Use Siglip2 model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) text_outputs: BaseModelOutputWithPooling = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) pooled_output = text_outputs.pooler_output return pooled_output @add_start_docstrings_to_model_forward(SIGLIP2_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, pixel_attention_mask: Optional[torch.Tensor] = None, spatial_shapes: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`Siglip2VisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, AutoModel >>> import torch >>> model = AutoModel.from_pretrained("google/siglip2-base-patch16-224") >>> processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-224") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... image_features = model.get_image_features(**inputs) ```""" # Use Siglip2Model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values=pixel_values, attention_mask=pixel_attention_mask, spatial_shapes=spatial_shapes, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) pooled_output = vision_outputs.pooler_output return pooled_output @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Siglip2Output, config_class=Siglip2Config) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_attention_mask: Optional[torch.Tensor] = None, spatial_shapes: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Siglip2Output: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, AutoModel >>> import torch >>> model = AutoModel.from_pretrained("google/siglip2-base-patch16-224") >>> processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-224") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["a photo of 2 cats", "a photo of 2 dogs"] >>> # important: we pass `padding=max_length` since the model was trained with this >>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image >>> probs = torch.sigmoid(logits_per_image) # these are the probabilities >>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") 31.9% that image 0 is 'a photo of 2 cats' ```""" # Use Siglip2 model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values=pixel_values, attention_mask=pixel_attention_mask, spatial_shapes=spatial_shapes, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) text_outputs: BaseModelOutputWithPooling = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) image_embeds = vision_outputs.pooler_output text_embeds = text_outputs.pooler_output # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logits_per_text = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)) logit_scale, logit_bias = self.logit_scale.to(text_embeds.device), self.logit_bias.to(text_embeds.device) logits_per_text = logits_per_text * logit_scale.exp() + logit_bias logits_per_image = logits_per_text.t() loss = None if return_loss: # Adapted from https://github.com/google-research/big_vision/blob/01edb81a4716f93a48be43b3a4af14e29cdb3a7f/big_vision/trainers/proj/image_text/siglip2.py#L287 eye = torch.eye(logits_per_text.size(0), device=logits_per_text.device) m1_diag1 = -torch.ones_like(logits_per_text) + 2 * eye loglik = torch.nn.functional.logsigmoid(m1_diag1 * logits_per_text) nll = -torch.sum(loglik, dim=-1) loss = nll.mean() return Siglip2Output( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) @add_start_docstrings( """ Siglip2 vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of the patch tokens) e.g. for ImageNet. """, SIGLIP2_START_DOCSTRING, ) class Siglip2ForImageClassification(Siglip2PreTrainedModel): main_input_name = "pixel_values" def __init__(self, config: Siglip2Config) -> None: super().__init__(config) self.num_labels = config.num_labels # Create the vision model with proper attention # and take only vision_model submodule (for backward compatibility) vision_model = Siglip2VisionModel._from_config(config.vision_config) self.vision_model = vision_model.vision_model # Classifier head self.classifier = ( nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, pixel_attention_mask: Optional[torch.Tensor] = None, spatial_shapes: Optional[torch.LongTensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> ImageClassifierOutput: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, Siglip2ForImageClassification >>> import torch >>> from PIL import Image >>> import requests >>> torch.manual_seed(3) # doctest: +IGNORE_RESULT >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # note: we are loading a `Siglip2Model` from the hub here, >>> # so the head will be randomly initialized, hence the predictions will be random if seed is not set above. >>> image_processor = AutoImageProcessor.from_pretrained("google/siglip2-base-patch16-224") >>> model = Siglip2ForImageClassification.from_pretrained("google/siglip2-base-patch16-224") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the two classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: LABEL_1 ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values, attention_mask=pixel_attention_mask, spatial_shapes=spatial_shapes, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state # average pool the patch tokens if pixel_attention_mask is not None: pool_mask = pixel_attention_mask[..., None].to(sequence_output.device) sequence_output = torch.sum(sequence_output * pool_mask, dim=1) / torch.sum(pool_mask, dim=1) else: sequence_output = torch.mean(sequence_output, dim=1) # apply classifier logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "Siglip2Model", "Siglip2PreTrainedModel", "Siglip2TextModel", "Siglip2VisionModel", "Siglip2ForImageClassification", ] ```
====================================================================================================================================== SOURCE CODE FILE: modular_siglip2.py LINES: 1 SIZE: 20.34 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip2\modular_siglip2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.models.siglip.configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig from transformers.models.siglip.modeling_siglip import ( BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput, SiglipForImageClassification, SiglipModel, SiglipMultiheadAttentionPoolingHead, SiglipOutput, SiglipPreTrainedModel, SiglipTextModel, SiglipTextModelOutput, SiglipVisionModel, SiglipVisionModelOutput, SiglipVisionTransformer, ) from ...modeling_attn_mask_utils import _prepare_4d_attention_mask class Siglip2TextConfig(SiglipTextConfig): pass class Siglip2VisionConfig(SiglipVisionConfig): r""" This is the configuration class to store the configuration of a [`Siglip2VisionModel`]. It is used to instantiate a Siglip2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip2 [google/siglip2-base-patch16-naflex](https://huggingface.co/google/siglip2-base-patch16-naflex) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. num_patches (`int`, *optional*, defaults to 256): The number of patches in the image with the size of (`patch_size`, `patch_size`). The image is resized to fill maximum of this number of patches, and to preserve the aspect ratio. In case the resulted number of patches is lower, the image is padded in "patch" dimension. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. Example: ```python >>> from transformers import Siglip2VisionConfig, Siglip2VisionModel >>> # Initializing a Siglip2VisionConfig with google/siglip2-base-patch16-naflex style configuration >>> configuration = Siglip2VisionConfig() >>> # Initializing a Siglip2VisionModel (with random weights) from the google/siglip2-base-patch16-naflex style configuration >>> model = Siglip2VisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, num_patches=256, patch_size=16, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, **kwargs, ): super().__init__(**kwargs) self.num_patches = num_patches del self.image_size class Siglip2Config(SiglipConfig): pass class Siglip2VisionOutput(SiglipVisionModelOutput): pass class Siglip2TextOutput(SiglipTextModelOutput): pass class Siglip2Output(SiglipOutput): pass class Siglip2VisionEmbeddings(nn.Module): def __init__(self, config: Siglip2VisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.patch_size = config.patch_size self.patch_embedding = nn.Linear( in_features=config.num_channels * self.patch_size * self.patch_size, out_features=self.embed_dim, ) self.num_patches = config.num_patches self.position_embedding_size = int(self.num_patches**0.5) self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim) @staticmethod def resize_positional_embeddings( positional_embeddings: torch.Tensor, spatial_shapes: torch.LongTensor, max_length: int, ) -> torch.Tensor: """ Resize positional embeddings to image-specific size and pad to a fixed size. Args: positional_embeddings (`torch.Tensor`): Position embeddings of shape (height, width, embed_dim) spatial_shapes (`torch.LongTensor`): Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to max_length (`int`): Maximum length of the positional embeddings to pad resized positional embeddings to Returns: `torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim) """ batch_size = spatial_shapes.shape[0] embed_dim = positional_embeddings.shape[-1] source_dtype = positional_embeddings.dtype resulted_positional_embeddings = torch.empty( (batch_size, max_length, embed_dim), device=positional_embeddings.device, dtype=source_dtype, ) # (height, width, embed_dim) -> (1, embed_dim, height, width) for interpolation positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0) # Upcast to float32 on CPU because antialias is not supported for bfloat16/float16 on CPU if positional_embeddings.device.type == "cpu": positional_embeddings = positional_embeddings.to(torch.float32) for i in range(batch_size): # (1, dim, height, width) -> (1, dim, target_height, target_width) height, width = spatial_shapes[i] resized_embeddings = F.interpolate( positional_embeddings, size=(height, width), mode="bilinear", align_corners=False, antialias=True, ) # (1, dim, target_height, target_width) -> (target_height * target_width, dim) resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1) # Cast to original dtype resized_embeddings = resized_embeddings.to(source_dtype) resulted_positional_embeddings[i, : height * width] = resized_embeddings resulted_positional_embeddings[i, height * width :] = resized_embeddings[0] return resulted_positional_embeddings def forward(self, pixel_values: torch.FloatTensor, spatial_shapes: torch.LongTensor) -> torch.Tensor: """ Args: pixel_values (`torch.FloatTensor`): Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size) spatial_shapes (`List[Tuple[int, int]]`): Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to """ # Apply patch embeddings to already patchified pixel values target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # Get positional resized and padded positional embeddings positional_embeddings = self.position_embedding.weight.reshape( self.position_embedding_size, self.position_embedding_size, -1 ) resized_positional_embeddings = self.resize_positional_embeddings( positional_embeddings, spatial_shapes, max_length=pixel_values.shape[1] ) # Add positional embeddings to patch embeddings embeddings = patch_embeds + resized_positional_embeddings return embeddings class Siglip2VisionTransformer(SiglipVisionTransformer): def __init__(self, config: Siglip2VisionConfig): super().__init__() self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" # Update: add `spatial_shapes` and `attention_mask` def forward( self, pixel_values: torch.FloatTensor, attention_mask: torch.Tensor, spatial_shapes: torch.LongTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) hidden_states = self.embeddings(pixel_values, spatial_shapes) if attention_mask is not None and not self._use_flash_attention_2: # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) else: encoder_attention_mask = attention_mask encoder_outputs: BaseModelOutput = self.encoder( inputs_embeds=hidden_states, attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden_state = encoder_outputs.last_hidden_state last_hidden_state = self.post_layernorm(last_hidden_state) pooler_output = self.head(last_hidden_state, attention_mask) if self.use_head else None return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooler_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class Siglip2PreTrainedModel(SiglipPreTrainedModel): pass class Siglip2TextModel(SiglipTextModel): pass class Siglip2MultiheadAttentionPoolingHead(SiglipMultiheadAttentionPoolingHead): def __init__(self, config: Siglip2VisionConfig): super().__init__(config) self.num_heads = config.num_attention_heads def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor: batch_size = hidden_state.shape[0] probe = self.probe.repeat(batch_size, 1, 1) if attention_mask is not None: target_len, source_len = probe.shape[1], hidden_state.shape[1] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_state.dtype, target_len) attention_mask = attention_mask.repeat(1, self.num_heads, target_len, 1) attention_mask = attention_mask.reshape(-1, target_len, source_len) hidden_state = self.attention(probe, hidden_state, hidden_state, attn_mask=attention_mask)[0] residual = hidden_state hidden_state = self.layernorm(hidden_state) hidden_state = residual + self.mlp(hidden_state) return hidden_state[:, 0] class Siglip2VisionModel(SiglipVisionModel): # Update: add `spatial_shapes` and `pixel_attention_mask` def forward( self, pixel_values: torch.FloatTensor, pixel_attention_mask: torch.Tensor, spatial_shapes: torch.LongTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: return self.vision_model( pixel_values=pixel_values, attention_mask=pixel_attention_mask, spatial_shapes=spatial_shapes, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) class Siglip2Model(SiglipModel): # Update: add `spatial_shapes` and `pixel_attention_mask` def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, pixel_attention_mask: Optional[torch.Tensor] = None, spatial_shapes: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> torch.FloatTensor: # Use Siglip2Model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values=pixel_values, attention_mask=pixel_attention_mask, spatial_shapes=spatial_shapes, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) pooled_output = vision_outputs.pooler_output return pooled_output # Update: add `spatial_shapes` and `pixel_attention_mask` def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_attention_mask: Optional[torch.Tensor] = None, spatial_shapes: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Siglip2Output: # Use Siglip2 model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values=pixel_values, attention_mask=pixel_attention_mask, spatial_shapes=spatial_shapes, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) text_outputs: BaseModelOutputWithPooling = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) image_embeds = vision_outputs.pooler_output text_embeds = text_outputs.pooler_output # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logits_per_text = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)) logit_scale, logit_bias = self.logit_scale.to(text_embeds.device), self.logit_bias.to(text_embeds.device) logits_per_text = logits_per_text * logit_scale.exp() + logit_bias logits_per_image = logits_per_text.t() loss = None if return_loss: # Adapted from https://github.com/google-research/big_vision/blob/01edb81a4716f93a48be43b3a4af14e29cdb3a7f/big_vision/trainers/proj/image_text/siglip2.py#L287 eye = torch.eye(logits_per_text.size(0), device=logits_per_text.device) m1_diag1 = -torch.ones_like(logits_per_text) + 2 * eye loglik = torch.nn.functional.logsigmoid(m1_diag1 * logits_per_text) nll = -torch.sum(loglik, dim=-1) loss = nll.mean() return Siglip2Output( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) class Siglip2ForImageClassification(SiglipForImageClassification): # Update: add `spatial_shapes` and `pixel_attention_mask` def forward( self, pixel_values: Optional[torch.Tensor] = None, pixel_attention_mask: Optional[torch.Tensor] = None, spatial_shapes: Optional[torch.LongTensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> ImageClassifierOutput: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values, attention_mask=pixel_attention_mask, spatial_shapes=spatial_shapes, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state # average pool the patch tokens if pixel_attention_mask is not None: pool_mask = pixel_attention_mask[..., None].to(sequence_output.device) sequence_output = torch.sum(sequence_output * pool_mask, dim=1) / torch.sum(pool_mask, dim=1) else: sequence_output = torch.mean(sequence_output, dim=1) # apply classifier logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "Siglip2Config", "Siglip2TextConfig", "Siglip2VisionConfig", "Siglip2Model", "Siglip2PreTrainedModel", "Siglip2TextModel", "Siglip2VisionModel", "Siglip2ForImageClassification", ] ```
========================================================================================================================================= SOURCE CODE FILE: processing_siglip2.py LINES: 1 SIZE: 7.89 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip2\processing_siglip2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for SigLIP2. """ from typing import List, Optional, Union from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack from ...tokenization_utils_base import PreTokenizedInput, TextInput class Siglip2ImagesKwargs(ImagesKwargs, total=False): max_num_patches: Optional[int] patch_size: Optional[int] class Siglip2ProcessorKwargs(ProcessingKwargs, total=False): images_kwargs: Siglip2ImagesKwargs _defaults = { "text_kwargs": { "padding": "max_length", "truncation": True, "max_length": 64, }, "images_kwargs": { "max_num_patches": 256, "patch_size": 16, }, } class Siglip2Processor(ProcessorMixin): r""" Constructs a Siglip2 processor which wraps a Siglip2 image processor and a Gemma tokenizer into a single processor. [`Siglip2Processor`] offers all the functionalities of [`Siglip2ImageProcessor`] and [`GemmaTokenizerFast`]. See the [`~Siglip2Processor.__call__`] and [`~Siglip2Processor.decode`] for more information. Args: image_processor ([`Siglip2ImageProcessor`]): The image processor is a required input. tokenizer ([`GemmaTokenizerFast`]): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) def __call__( self, images: Optional[Union[ImageInput, List[ImageInput], List[List[ImageInput]]]] = None, text: Optional[Union[TextInput, "PreTokenizedInput", List[TextInput], List["PreTokenizedInput"]]] = None, audio=None, videos=None, **kwargs: Unpack[Siglip2ProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to GemmaTokenizerFast's [`~GemmaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` argument to Siglip2ImageProcessor's [`~Siglip2ImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `max_length`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*, defaults to 64): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*, defaults to `True`): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'pt'`): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. - **pixel_attention_mask** -- Attention mask for the pixel values. Returned when `images` is not `None`. - **spatial_shapes** -- The number of horizontal and vertical patches per image. Returned when `images` is not `None`. """ output_kwargs = self._merge_kwargs( Siglip2ProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: encoding = self.tokenizer(text, **output_kwargs["text_kwargs"]) if images is not None: image_features = self.image_processor(images, **output_kwargs["images_kwargs"]) if text is not None and images is not None: encoding.update(image_features) return encoding elif text is not None: return encoding else: return_tensors = output_kwargs["common_kwargs"]["return_tensors"] return BatchFeature(data=dict(**image_features), tensor_type=return_tensors) def decode(self, *args, **kwargs): """ This method forwards all its arguments to Siglip2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to Siglip2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) __all__ = ["Siglip2Processor"] ```
============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.13 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_siglip import * from .image_processing_siglip import * from .image_processing_siglip_fast import * from .modeling_siglip import * from .processing_siglip import * from .tokenization_siglip import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
========================================================================================================================================== SOURCE CODE FILE: configuration_siglip.py LINES: 1 SIZE: 11.90 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip\configuration_siglip.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Siglip model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SiglipTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`SiglipModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 64): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. pad_token_id (`int`, *optional*, defaults to 1): The id of the padding token in the vocabulary. bos_token_id (`int`, *optional*, defaults to 49406): The id of the beginning-of-sequence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 49407): The id of the end-of-sequence token in the vocabulary. projection_size (`int`, *optional*, defaults to `hidden_size`): The size of the projection head. Example: ```python >>> from transformers import SiglipTextConfig, SiglipTextModel >>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration >>> configuration = SiglipTextConfig() >>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = SiglipTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "siglip_text_model" base_config_key = "text_config" def __init__( self, vocab_size=32000, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, max_position_embeddings=64, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, # This differs from `CLIPTokenizer`'s default and from openai/siglip # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538 pad_token_id=1, bos_token_id=49406, eos_token_id=49407, projection_size=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.attention_dropout = attention_dropout self.projection_size = projection_size if projection_size is not None else hidden_size class SiglipVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. Example: ```python >>> from transformers import SiglipVisionConfig, SiglipVisionModel >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration >>> configuration = SiglipVisionConfig() >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = SiglipVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "siglip_vision_model" base_config_key = "vision_config" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=224, patch_size=16, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act class SiglipConfig(PretrainedConfig): r""" [`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`SiglipTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`SiglipVisionConfig`]. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import SiglipConfig, SiglipModel >>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration >>> configuration = SiglipConfig() >>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = SiglipModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig >>> from transformers import SiglipTextConfig, SiglipVisionConfig >>> # Initializing a SiglipText and SiglipVision configuration >>> config_text = SiglipTextConfig() >>> config_vision = SiglipVisionConfig() >>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision) ```""" model_type = "siglip" sub_configs = {"text_config": SiglipTextConfig, "vision_config": SiglipVisionConfig} def __init__(self, text_config=None, vision_config=None, **kwargs): super().__init__(**kwargs) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.") self.text_config = SiglipTextConfig(**text_config) self.vision_config = SiglipVisionConfig(**vision_config) self.initializer_factor = 1.0 @classmethod def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs): r""" Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision model configuration. Returns: [`SiglipConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) __all__ = ["SiglipConfig", "SiglipTextConfig", "SiglipVisionConfig"] ```
============================================================================================================================================= SOURCE CODE FILE: image_processing_siglip.py LINES: 1 SIZE: 11.74 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip\image_processing_siglip.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for SigLIP.""" from typing import Dict, List, Optional, Union from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( convert_to_rgb, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_flat_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging logger = logging.get_logger(__name__) if is_vision_available(): import PIL class SiglipImageProcessor(BaseImageProcessor): r""" Constructs a SigLIP image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image by the specified mean and standard deviation. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: Optional[bool] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 224, "width": 224} image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, do_convert_rgb: Optional[bool] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, param_name="size", default_to_square=False) resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb images = make_flat_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: height, width = size["height"], size["width"] images = [ resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) __all__ = ["SiglipImageProcessor"] ```
================================================================================================================================================== SOURCE CODE FILE: image_processing_siglip_fast.py LINES: 1 SIZE: 1.37 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip\image_processing_siglip_fast.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for SigLIP.""" from ...image_processing_utils_fast import BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, BaseImageProcessorFast from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, PILImageResampling, ) from ...utils import add_start_docstrings @add_start_docstrings( "Constructs a fast SigLIP image processor.", BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, ) class SiglipImageProcessorFast(BaseImageProcessorFast): resample = PILImageResampling.BICUBIC image_mean = IMAGENET_STANDARD_MEAN image_std = IMAGENET_STANDARD_STD size = {"height": 224, "width": 224} default_to_square = False do_resize = True do_rescale = True do_normalize = True __all__ = ["SiglipImageProcessorFast"] ```
===================================================================================================================================== SOURCE CODE FILE: modeling_siglip.py LINES: 1 SIZE: 58.40 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip\modeling_siglip.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 Google AI and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Siglip model.""" import math import warnings from dataclasses import dataclass from typing import Any, Callable, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from torch.nn.init import _calculate_fan_in_and_fan_out from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, can_return_tuple, logging, replace_return_docstrings, torch_int, ) from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SiglipConfig" _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" def _trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) def trunc_normal_tf_( tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 ) -> torch.Tensor: """Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \\leq \text{mean} \\leq b`. NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 and the result is subsequently scaled and shifted by the mean and std args. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value """ with torch.no_grad(): _trunc_normal_(tensor, 0, 1.0, a, b) tensor.mul_(std).add_(mean) def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) if mode == "fan_in": denom = fan_in elif mode == "fan_out": denom = fan_out elif mode == "fan_avg": denom = (fan_in + fan_out) / 2 variance = scale / denom if distribution == "truncated_normal": # constant is stddev of standard normal truncated to (-2, 2) trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) elif distribution == "normal": with torch.no_grad(): tensor.normal_(std=math.sqrt(variance)) elif distribution == "uniform": bound = math.sqrt(3 * variance) with torch.no_grad(): tensor.uniform_(-bound, bound) else: raise ValueError(f"invalid distribution {distribution}") def lecun_normal_(tensor): variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") def default_flax_embed_init(tensor): variance_scaling_(tensor, mode="fan_in", distribution="normal") @dataclass # Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip class SiglipVisionModelOutput(ModelOutput): """ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. Args: image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass # Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip class SiglipTextModelOutput(ModelOutput): """ Base class for text model's outputs that also contains a pooling of the last hidden states. Args: text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The text embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ text_embeds: Optional[torch.FloatTensor] = None last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass # Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip class SiglipOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`]. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`]. text_model_output (`BaseModelOutputWithPooling`): The output of the [`SiglipTextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`SiglipVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: Optional[torch.FloatTensor] = None logits_per_text: Optional[torch.FloatTensor] = None text_embeds: Optional[torch.FloatTensor] = None image_embeds: Optional[torch.FloatTensor] = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class SiglipVisionEmbeddings(nn.Module): def __init__(self, config: SiglipVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, padding="valid", ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing and no class embeddings. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] num_positions = self.position_embedding.weight.shape[0] # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embedding(self.position_ids) patch_pos_embed = self.position_embedding.weight.unsqueeze(0) dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return patch_pos_embed def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor: _, _, height, width = pixel_values.shape target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] embeddings = patch_embeds.flatten(2).transpose(1, 2) if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip class SiglipTextEmbeddings(nn.Module): def __init__(self, config: SiglipTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] max_position_embedding = self.position_embedding.weight.shape[0] if seq_length > max_position_embedding: raise ValueError( f"Sequence length must be less than max_position_embeddings (got `sequence length`: " f"{seq_length} and max_position_embeddings: {max_position_embedding}" ) if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class SiglipAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Union[SiglipVisionConfig, SiglipTextConfig]): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.is_causal = False self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" batch_size, seq_length, embed_dim = hidden_states.shape queries = self.q_proj(hidden_states) keys = self.k_proj(hidden_states) values = self.v_proj(hidden_states) queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and output_attentions: logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, queries, keys, values, attention_mask, is_causal=self.is_causal, scaling=self.scale, dropout=0.0 if not self.training else self.dropout, ) attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous() attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip class SiglipMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class SiglipEncoderLayer(nn.Module): def __init__(self, config: Union[SiglipVisionConfig, SiglipTextConfig]): super().__init__() self.embed_dim = config.hidden_size self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.self_attn = SiglipAttention(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = SiglipMLP(config) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(batch, seq_len, embed_dim)`. attention_mask (`torch.FloatTensor`): Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class SiglipPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SiglipConfig base_model_prefix = "siglip" supports_gradient_checkpointing = True _no_split_modules = [ "SiglipTextEmbeddings", "SiglipEncoderLayer", "SiglipVisionEmbeddings", "SiglipEncoderLayer", "SiglipMultiheadAttentionPoolingHead", ] _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, SiglipVisionEmbeddings): width = ( self.config.vision_config.hidden_size if isinstance(self.config, SiglipConfig) else self.config.hidden_size ) nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) elif isinstance(module, nn.Embedding): default_flax_embed_init(module.weight) elif isinstance(module, SiglipAttention): nn.init.xavier_uniform_(module.q_proj.weight) nn.init.xavier_uniform_(module.k_proj.weight) nn.init.xavier_uniform_(module.v_proj.weight) nn.init.xavier_uniform_(module.out_proj.weight) nn.init.zeros_(module.q_proj.bias) nn.init.zeros_(module.k_proj.bias) nn.init.zeros_(module.v_proj.bias) nn.init.zeros_(module.out_proj.bias) elif isinstance(module, SiglipMLP): nn.init.xavier_uniform_(module.fc1.weight) nn.init.xavier_uniform_(module.fc2.weight) nn.init.normal_(module.fc1.bias, std=1e-6) nn.init.normal_(module.fc2.bias, std=1e-6) elif isinstance(module, SiglipMultiheadAttentionPoolingHead): nn.init.xavier_uniform_(module.probe.data) nn.init.xavier_uniform_(module.attention.in_proj_weight.data) nn.init.zeros_(module.attention.in_proj_bias.data) elif isinstance(module, SiglipModel): logit_scale_init = torch.log(torch.tensor(1.0)) module.logit_scale.data.fill_(logit_scale_init) module.logit_bias.data.zero_() elif isinstance(module, SiglipForImageClassification): nn.init.normal_( module.classifier.weight, std=self.config.vision_config.hidden_size**-0.5 * self.config.initializer_factor, ) elif isinstance(module, (nn.Linear, nn.Conv2d)): lecun_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) SIGLIP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SiglipConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SIGLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ SIGLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): Whether to interpolate the pre-trained position encodings. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ SIGLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*, defaults to `False`): Whether to interpolate the pre-trained position encodings. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->Siglip class SiglipEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`SiglipEncoderLayer`]. Args: config: SiglipConfig """ def __init__(self, config: SiglipConfig): super().__init__() self.config = config self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False # Ignore copy @can_return_tuple def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutput: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, ) class SiglipTextTransformer(nn.Module): def __init__(self, config: SiglipTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = SiglipTextEmbeddings(config) self.encoder = SiglipEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.head = nn.Linear(embed_dim, config.projection_size) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # note: SigLIP's text model does not use a causal mask, unlike the original CLIP model. # expand attention_mask if attention_mask is not None and not self._use_flash_attention_2: # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) encoder_outputs: BaseModelOutput = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden_state = encoder_outputs.last_hidden_state last_hidden_state = self.final_layer_norm(last_hidden_state) # Assuming "sticky" EOS tokenization, last token is always EOS. pooled_output = last_hidden_state[:, -1, :] pooled_output = self.head(pooled_output) return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """The text model from SigLIP without any head or projection on top.""", SIGLIP_START_DOCSTRING, ) class SiglipTextModel(SiglipPreTrainedModel): config_class = SiglipTextConfig def __init__(self, config: SiglipTextConfig): super().__init__(config) self.text_model = SiglipTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, SiglipTextModel >>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224") >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") >>> # important: make sure to set padding="max_length" as that's how the model was trained >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) class SiglipVisionTransformer(nn.Module): def __init__(self, config: SiglipVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = SiglipVisionEmbeddings(config) self.encoder = SiglipEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head if self.use_head: self.head = SiglipMultiheadAttentionPoolingHead(config) @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig) def forward( self, pixel_values, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = False, ) -> BaseModelOutputWithPooling: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) encoder_outputs: BaseModelOutput = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden_state = encoder_outputs.last_hidden_state last_hidden_state = self.post_layernorm(last_hidden_state) pooler_output = self.head(last_hidden_state) if self.use_head else None return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooler_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class SiglipMultiheadAttentionPoolingHead(nn.Module): """Multihead Attention Pooling.""" def __init__(self, config: SiglipVisionConfig): super().__init__() self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = SiglipMLP(config) def forward(self, hidden_state): batch_size = hidden_state.shape[0] probe = self.probe.repeat(batch_size, 1, 1) hidden_state = self.attention(probe, hidden_state, hidden_state)[0] residual = hidden_state hidden_state = self.layernorm(hidden_state) hidden_state = residual + self.mlp(hidden_state) return hidden_state[:, 0] @add_start_docstrings( """The vision model from SigLIP without any head or projection on top.""", SIGLIP_START_DOCSTRING, ) class SiglipVisionModel(SiglipPreTrainedModel): config_class = SiglipVisionConfig main_input_name = "pixel_values" def __init__(self, config: SiglipVisionConfig): super().__init__(config) self.vision_model = SiglipVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig) def forward( self, pixel_values, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> BaseModelOutputWithPooling: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, SiglipVisionModel >>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224") >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled features ```""" return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, ) @add_start_docstrings(SIGLIP_START_DOCSTRING) class SiglipModel(SiglipPreTrainedModel): config_class = SiglipConfig def __init__(self, config: SiglipConfig): super().__init__(config) if not isinstance(config.text_config, SiglipTextConfig): raise TypeError( "config.text_config is expected to be of type SiglipTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, SiglipVisionConfig): raise TypeError( "config.vision_config is expected to be of type SiglipVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config # First, initialize the text and vision models with proper attention implementation text_model = SiglipTextModel._from_config(text_config) vision_model = SiglipVisionModel._from_config(vision_config) # Second, get the text and vision submodules (for backward compatibility) self.text_model = text_model.text_model self.vision_model = vision_model.vision_model self.logit_scale = nn.Parameter(torch.randn(1)) self.logit_bias = nn.Parameter(torch.randn(1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, AutoModel >>> import torch >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") >>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224") >>> # important: make sure to set padding="max_length" as that's how the model was trained >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt") >>> with torch.no_grad(): ... text_features = model.get_text_features(**inputs) ```""" # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) text_outputs: BaseModelOutputWithPooling = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) pooled_output = text_outputs.pooler_output return pooled_output @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, AutoModel >>> import torch >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... image_features = model.get_image_features(**inputs) ```""" # Use SiglipModel's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, ) pooled_output = vision_outputs.pooler_output return pooled_output @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> SiglipOutput: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, AutoModel >>> import torch >>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224") >>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["a photo of 2 cats", "a photo of 2 dogs"] >>> # important: we pass `padding=max_length` since the model was trained with this >>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image >>> probs = torch.sigmoid(logits_per_image) # these are the probabilities >>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'") 31.9% that image 0 is 'a photo of 2 cats' ```""" # Use SigLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, ) text_outputs: BaseModelOutputWithPooling = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) image_embeds = vision_outputs.pooler_output text_embeds = text_outputs.pooler_output # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logits_per_text = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)) logit_scale, logit_bias = self.logit_scale.to(text_embeds.device), self.logit_bias.to(text_embeds.device) logits_per_text = logits_per_text * logit_scale.exp() + logit_bias logits_per_image = logits_per_text.t() loss = None if return_loss: # Adapted from https://github.com/google-research/big_vision/blob/01edb81a4716f93a48be43b3a4af14e29cdb3a7f/big_vision/trainers/proj/image_text/siglip.py#L287 eye = torch.eye(logits_per_text.size(0), device=logits_per_text.device) m1_diag1 = -torch.ones_like(logits_per_text) + 2 * eye loglik = torch.nn.functional.logsigmoid(m1_diag1 * logits_per_text) nll = -torch.sum(loglik, dim=-1) loss = nll.mean() return SiglipOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) @add_start_docstrings( """ SigLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of the patch tokens) e.g. for ImageNet. """, SIGLIP_START_DOCSTRING, ) class SiglipForImageClassification(SiglipPreTrainedModel): main_input_name = "pixel_values" def __init__(self, config: SiglipConfig) -> None: super().__init__(config) self.num_labels = config.num_labels # Create the vision model with proper attention # and take only vision_model submodule (for backward compatibility) vision_model = SiglipVisionModel._from_config(config.vision_config) self.vision_model = vision_model.vision_model # Classifier head self.classifier = ( nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @can_return_tuple @add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> ImageClassifierOutput: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, SiglipForImageClassification >>> import torch >>> from PIL import Image >>> import requests >>> torch.manual_seed(3) # doctest: +IGNORE_RESULT >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # note: we are loading a `SiglipModel` from the hub here, >>> # so the head will be randomly initialized, hence the predictions will be random if seed is not set above. >>> image_processor = AutoImageProcessor.from_pretrained("google/siglip-base-patch16-224") >>> model = SiglipForImageClassification.from_pretrained("google/siglip-base-patch16-224") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the two classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: LABEL_1 ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, ) sequence_output = outputs.last_hidden_state # average pool the patch tokens sequence_output = torch.mean(sequence_output, dim=1) # apply classifier logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "SiglipModel", "SiglipPreTrainedModel", "SiglipTextModel", "SiglipVisionModel", "SiglipForImageClassification", ] ```
======================================================================================================================================= SOURCE CODE FILE: processing_siglip.py LINES: 1 SIZE: 7.18 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip\processing_siglip.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for SigLIP. """ from typing import List, Optional, Union from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SiglipProcessor(ProcessorMixin): r""" Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor. [`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the [`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information. Args: image_processor ([`SiglipImageProcessor`]): The image processor is a required input. tokenizer ([`SiglipTokenizer`]): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = ("SiglipImageProcessor", "SiglipImageProcessorFast") tokenizer_class = "AutoTokenizer" def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, images: ImageInput = None, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` argument to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: encoding = self.tokenizer( text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length ) if images is not None: image_features = self.image_processor(images, return_tensors=return_tensors) if text is not None and images is not None: encoding.update(image_features) return encoding elif text is not None: return encoding else: return BatchFeature(data=dict(**image_features), tensor_type=return_tensors) def decode(self, *args, **kwargs): """ This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) __all__ = ["SiglipProcessor"] ```
========================================================================================================================================= SOURCE CODE FILE: tokenization_siglip.py LINES: 1 SIZE: 15.61 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\siglip\tokenization_siglip.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for SigLIP model.""" import os import re import string import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...convert_slow_tokenizer import import_protobuf from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging, requires_backends logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} SPIECE_UNDERLINE = "▁" class SiglipTokenizer(PreTrainedTokenizer): """ Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"</s>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. model_max_length (`int`, *optional*, defaults to 64): The maximum length (in number of tokens) for model inputs. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, eos_token="</s>", unk_token="<unk>", pad_token="</s>", additional_special_tokens=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, model_max_length=64, do_lower_case=True, **kwargs, ) -> None: requires_backends(self, "protobuf") pad_token = ( AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True) if isinstance(pad_token, str) else pad_token ) unk_token = ( AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True) if isinstance(unk_token, str) else unk_token ) eos_token = ( AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True) if isinstance(eos_token, str) else eos_token ) self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_lower_case = do_lower_case self.vocab_file = vocab_file self.sp_model = self.get_spm_processor() self.vocab_file = vocab_file super().__init__( eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, model_max_length=model_max_length, do_lower_case=do_lower_case, **kwargs, ) def get_spm_processor(self): tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs) with open(self.vocab_file, "rb") as f: sp_model = f.read() model_pb2 = import_protobuf() model = model_pb2.ModelProto.FromString(sp_model) normalizer_spec = model_pb2.NormalizerSpec() normalizer_spec.add_dummy_prefix = False model.normalizer_spec.MergeFrom(normalizer_spec) sp_model = model.SerializeToString() tokenizer.LoadFromSerializedProto(sp_model) return tokenizer @property # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size def vocab_size(self): return self.sp_model.get_piece_size() # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # normal case: some special tokens if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: """Do not add eos again if user already added it.""" if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ eos = [self.eos_token_id] if token_ids_1 is None: return len(token_ids_0 + eos) * [0] return len(token_ids_0 + eos + token_ids_1 + eos) * [0] # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format: - single sequence: `X </s>` - pair of sequences: `A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ token_ids_0 = self._add_eos_if_not_present(token_ids_0) if token_ids_1 is None: return token_ids_0 else: token_ids_1 = self._add_eos_if_not_present(token_ids_1) return token_ids_0 + token_ids_1 # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def remove_punctuation(self, text: str) -> str: return text.translate(str.maketrans("", "", string.punctuation)) # source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94 def canonicalize_text(self, text, *, keep_punctuation_exact_string=None): """Returns canonicalized `text` (puncuation removed). Args: text (`str`): String to be canonicalized. keep_punctuation_exact_string (`str`, *optional*): If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}' (but will still remove '{' and '}' that appear separately). """ if keep_punctuation_exact_string: text = keep_punctuation_exact_string.join( self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string) ) else: text = self.remove_punctuation(text) text = re.sub(r"\s+", " ", text) text = text.strip() return text def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]: """ Converts a string to a list of tokens. """ tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs) if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens: tokens = tokens[1:] return tokens @property # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length def unk_token_length(self): return len(self.sp_model.encode(str(self.unk_token))) def _tokenize(self, text, **kwargs): """ Returns a tokenized string. We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`. `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`. """ text = self.canonicalize_text(text, keep_punctuation_exact_string=None) tokens = self.sp_model.encode(text, out_type=str) # 1. Encode string + prefix ex: "<unk> Hey" tokens = self.sp_model.encode(self.unk_token + text, out_type=str) # 2. Remove self.unk_token from ['<','unk','>', '▁Hey'] return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) __all__ = ["SiglipTokenizer"] ```
=============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.05 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\smolvlm\__init__.py ENCODING: utf-8 ```py # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_smolvlm import * from .image_processing_smolvlm import * from .modeling_smolvlm import * from .processing_smolvlm import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
============================================================================================================================================ SOURCE CODE FILE: configuration_smolvlm.py LINES: 1 SIZE: 9.17 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\smolvlm\configuration_smolvlm.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/smolvlm/modular_smolvlm.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_smolvlm.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 the HuggingFace Inc. team. All rights reserved. # Written by Orr Zohar # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING, AutoConfig logger = logging.get_logger(__name__) class SmolVLMVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SmolVLMVisionModel`]. It is used to instantiate a SmolVLM vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) used in SmolVLM [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1152): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers.models.smolvlm.modeling_smolvlm import SmolVLMVisionTransformer >>> from transformers.models.smolvlm.configuration_smolvlm import SmolVLMVisionConfig >>> # Initializing a SmolVLMVisionConfig with google/siglip-so400m-patch14-384 style configuration >>> configuration = SmolVLMVisionConfig() >>> # Initializing a SmolVLMVisionTransformer (with random weights) from the google/siglip-so400m-patch14-384 style configuration >>> model = SmolVLMVisionTransformer(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "smolvlm_vision" base_config_key = "vision_config" def __init__( self, hidden_size=1152, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=16, num_channels=3, image_size=224, patch_size=32, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range class SmolVLMConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SmolVLMModel`]. It is used to instantiate a SmolVLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the SmolVLM [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should cache the key/value pairs of the attention mechanism. Only relevant if `config.is_decoder=True`. image_token_id (`int`, *optional*, defaults to 128257): The id of the "image" token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to tie the word embeddings with the token embeddings. vision_config (`IdeficsVisionConfig` or `dict`, *optional*, defaults to `IdeficsVisionConfig`): Custom vision config or dict for the vision tower text_config (`PretrainedConfig` or `dict`, *optional*, defaults to `LlamaConfig`): Custom text config or dict for the text model scale_factor (`int`, *optional*, defaults to 2): The scale factor for the image encoder. pad_token_id (`int`, *optional*, defaults to 128002): The id of the padding token. Example: ```python >>> from transformers import SmolVLMModel, SmolVLMConfig >>> # Initializing configuration >>> configuration = SmolVLMConfig() >>> # Initializing a model from the configuration >>> model = SmolVLMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "smolvlm" sub_configs = {"text_config": AutoConfig, "vision_config": SmolVLMVisionConfig} def __init__( self, use_cache=True, image_token_id=128257, tie_word_embeddings=False, vision_config=None, text_config=None, scale_factor=2, pad_token_id=128_002, **kwargs, ): self.image_token_id = image_token_id self.use_cache = use_cache self.tie_word_embeddings = tie_word_embeddings if vision_config is None: self.vision_config = SmolVLMVisionConfig() logger.info("vision_config is None, using default vision config") elif isinstance(vision_config, dict): self.vision_config = SmolVLMVisionConfig(**vision_config) elif isinstance(vision_config, SmolVLMVisionConfig): self.vision_config = vision_config if isinstance(text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: logger.info("text_config is None, using default text config") text_config = CONFIG_MAPPING["llama"]( rms_norm_eps=1e-5, pad_token_id=pad_token_id, tie_word_embeddings=False, ) self.text_config = text_config self.scale_factor = scale_factor super().__init__(**kwargs, pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings) __all__ = ["SmolVLMVisionConfig", "SmolVLMConfig"] ```
=============================================================================================================================================== SOURCE CODE FILE: image_processing_smolvlm.py LINES: 1 SIZE: 40.81 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\smolvlm\image_processing_smolvlm.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/smolvlm/modular_smolvlm.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_smolvlm.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 the HuggingFace Inc. team. All rights reserved. # Written by Orr Zohar # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import PaddingMode, pad, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_nested_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL from PIL import Image logger = logging.get_logger(__name__) MAX_IMAGE_SIZE = 4096 # 4k resolution as absolute maximum def _resize_output_size_rescale_to_max_len( height: int, width: int, min_len: Optional[int] = 1, max_len: Optional[int] = None ) -> Tuple[int, int]: """ Get the output size of the image after resizing given a dictionary specifying the max and min sizes. Args: height (`int`): Height of the input image. width (`int`): Width of the input image. min_len (`int`, *optional*, defaults to 1): Minimum size of the output image. max_len (`int`, *optional*, defaults to the maximum size of the image): Maximum size of the output image. Returns: The output size of the image after resizing. """ max_len = max(height, width) if max_len is None else max_len aspect_ratio = width / height if width >= height: width = max_len height = int(width / aspect_ratio) if height % 2 != 0: height += 1 elif height > width: height = max_len width = int(height * aspect_ratio) if width % 2 != 0: width += 1 # Avoid resizing to a size smaller than min_len height = max(height, min_len) width = max(width, min_len) return height, width def _resize_output_size_scale_below_upper_bound( height: int, width: int, max_len: Optional[Dict[str, int]] = None ) -> Tuple[int, int]: """ Get the output size of the image after resizing given a dictionary specifying the max and min sizes. Args: height (`int`): Height of the input image. width (`int`): Width of the input image. max_len (`Dict[str, int]`, *optional*, defaults to the maximum size of the image): Defines the maximum dimensions of the image. Returns: The output size of the image after resizing. """ max_len = max(height, width) if max_len is None else max_len aspect_ratio = width / height if width >= height and width > max_len: width = max_len height = int(width / aspect_ratio) elif height > width and height > max_len: height = max_len width = int(height * aspect_ratio) # Avoid resizing to a size smaller than 1 height = max(height, 1) width = max(width, 1) return height, width def get_resize_output_image_size( image, resolution_max_side: int, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Tuple[int, int]: """ Get the output size of the image after resizing given a dictionary specifying the max and min sizes. Args: image (`np.ndarray`): Image to resize. resolution_max_side (`int`): The longest edge of the image will be resized to this value. The shortest edge will be resized to keep the input aspect ratio. input_data_format (`ChannelDimension` or `str`): The channel dimension format of the input image. Returns: The output size of the image after resizing. """ height, width = get_image_size(image, channel_dim=input_data_format) # Find the output size, when rescaling the longest edge to max_len and preserving the aspect ratio height, width = _resize_output_size_rescale_to_max_len(height, width, max_len=resolution_max_side) # Find the output size when scaling the image to be below the MAX_IMAGE_SIZE height, width = _resize_output_size_scale_below_upper_bound(height, width, max_len=MAX_IMAGE_SIZE) return height, width def get_max_height_width( images_list: List[List[np.ndarray]], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> List[int]: """ Get the maximum height and width across all images in a batch. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(images_list[0][0], num_channels=(1, 3, 4)) max_height = max_width = float("-inf") for images in images_list: for image in images: height, width = get_image_size(image, channel_dim=input_data_format) max_height = max(height, max_height) max_width = max(width, max_width) return (max_height, max_width) def make_pixel_mask( image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask def convert_to_rgb( image: np.ndarray, palette: Optional[PIL.ImagePalette.ImagePalette] = None, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> ImageInput: """ Converts an image to RGB format. Args: image (`np.ndarray`): The image to convert. palette (List[int], *optional*): The palette to use if given. data_format (ChannelDimension or str, *optional*): The channel dimension format for the output image. If not provided, it will be the same as the input image. input_data_format (ChannelDimension or str, *optional*): The channel dimension format of the input image. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(image, num_channels=(1, 3, 4)) # For all transformations, we want to keep the same data format as the input image unless otherwise specified. # The resized image from PIL will always have channels last, so find the input format first. data_format = input_data_format if data_format is None else data_format mode = "P" if palette is not None else None image = to_pil_image(image, image_mode=mode, input_data_format=input_data_format) if image.mode == "P" and palette is not None: image.putpalette(palette) image_rgba = image.convert("RGBA") background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) alpha_composite = Image.alpha_composite(background, image_rgba) alpha_composite = alpha_composite.convert("RGB") output_array = np.array(alpha_composite) # The image is always in channels last format after converting from a PIL image output_array = to_channel_dimension_format(output_array, data_format, input_channel_dim=ChannelDimension.LAST) return output_array # FIXME Amy: make a more general crop function that isn't just centre crop def _crop( image: np.ndarray, w1: int, h1: int, w2: int, h2: int, data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: if data_format is None: data_format = infer_channel_dimension_format(image, num_channels=(1, 3, 4)) if data_format == ChannelDimension.FIRST: image = image[:, h1:h2, w1:w2] elif data_format == ChannelDimension.LAST: image = image[h1:h2, w1:w2, :] else: raise ValueError("Invalid channel dimension format.") return image class SmolVLMImageProcessor(BaseImageProcessor): r""" Constructs a SmolVLM image processor. Args: do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. This is useful if the input image is of a different format e.g. RGBA. Only has an effect if the input image is in the PIL format. do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image. The longest edge of the image is resized to be <= `size["longest_edge"]`, with the shortest edge resized to keep the input aspect ratio. size (`Dict`, *optional*, defaults to `{"longest_edge": 4 * 364}`): Controls the size of the output image. This is a dictionary containing the key "longest_edge". The image will be resized such that the longest edge is <= `size["longest_edge"]` and the shortest edge is resized to keep the input aspect ratio. resample (`Resampling`, *optional*, defaults to `Resampling.LANCZOS`): Resampling filter to use when resizing the image. do_image_splitting (`bool`, *optional*, defaults to `True`): Whether to split the image into sub-images concatenated with the original image. They are split into patches such that each patch has a size of `max_image_size["height"]` x `max_image_size["width"]`. max_image_size (`Dict`, *optional*, defaults to `{"longest_edge": 364}`): Maximum resolution of the patches of images accepted by the model. This is a dictionary containing the key "longest_edge". do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image. If set to `True`, the image is rescaled to have pixel values between 0 and 1. rescale_factor (`float`, *optional*, defaults to `1/255`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. If set to `True`, the image is normalized to have a mean of `image_mean` and a standard deviation of `image_std`. image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Whether or not to pad the images to the largest height and width in the batch and number of images per sample in the batch, such that the returned tensor is of shape (batch_size, max_num_images, num_channels, max_height, max_width). """ model_input_names = ["pixel_values", "pixel_attention_mask"] def __init__( self, do_convert_rgb: bool = True, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.LANCZOS, do_image_splitting: bool = True, max_image_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: float = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) self.do_convert_rgb = do_convert_rgb self.do_resize = do_resize self.size = size if size is not None else {"longest_edge": 4 * 364} self.resample = resample self.do_image_splitting = do_image_splitting self.max_image_size = max_image_size if max_image_size is not None else {"longest_edge": 364} self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.do_pad = do_pad def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.LANCZOS, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The longest edge of the image is resized to size["longest_edge"], with the shortest edge resized to keep the input aspect ratio. Can also be used with size["height"] and size["width"]. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`): Resampling filter to use when resizing the image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the output image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(image, num_channels=(1, 3, 4)) # For all transformations, we want to keep the same data format as the input image unless otherwise specified. # The resized image from PIL will always have channels last, so find the input format first. data_format = input_data_format if data_format is None else data_format if "longest_edge" in size: size = get_resize_output_image_size( image, resolution_max_side=size["longest_edge"], input_data_format=input_data_format ) elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError("size must be a dictionary with key 'longest_edge' or 'height' and 'width'.") image_mode = None if image.ndim == 2 or image.shape[-1] == 1: image_mode = "P" image = to_pil_image(image, image_mode=image_mode, input_data_format=input_data_format) resized_image = image.resize((size[1], size[0]), resample=resample) resized_image = np.array(resized_image) # If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image # so we need to add it back if necessary. resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image # The image is always in channels last format after converting from a PIL image resized_image = to_channel_dimension_format( resized_image, data_format, input_channel_dim=ChannelDimension.LAST ) return resized_image def split_image( self, image, max_image_size: Dict[str, int], resample: PILImageResampling = PILImageResampling.LANCZOS, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Split an image into squares of side max_image_size and the original image resized to max_image_size. That means that a single image becomes a sequence of images. This is a "trick" to spend more compute on each image with no changes in the vision encoder. 1) If one side of the original image is larger than `max_image_size`, resize it to `max_image_size` while preserving the aspect ratio. 2) Divide the resulting image into `ceil(height / max_image_size)` x `ceil(width / max_image_size)` sub-images of the same size each (image_size, image_size). Typically, 364x364. 3) Returns the list of the crops and the original image, in addition to the number of splits for the height and the width. Args: image (`np.ndarray`): Images to split. max_image_size (`Dict[str, int]`): Maximum size of the output image. If the image is larger than this size, it will be split into patches of this size, and the original image will be concatenated with the patches, resized to max_size. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`): Resampling filter to use when resizing the image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the output image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ height, width = get_image_size(image, channel_dim=input_data_format) max_height = max_width = max_image_size["longest_edge"] frames = [] if height > max_height or width > max_width: # Calculate the number of splits num_splits_h = math.ceil(height / max_height) num_splits_w = math.ceil(width / max_width) # Calculate the optimal width and height for the sub-images optimal_height = math.ceil(height / num_splits_h) optimal_width = math.ceil(width / num_splits_w) # Iterate through each row and column for r in range(num_splits_h): for c in range(num_splits_w): # Calculate the starting point of the crop start_x = c * optimal_width start_y = r * optimal_height # Calculate the ending point of the crop end_x = min(start_x + optimal_width, width) end_y = min(start_y + optimal_height, height) # Crop the image cropped_image = _crop( image, start_x, start_y, end_x, end_y, data_format=data_format, ) frames.append(cropped_image) # For the global image at the end, we resize it to match the max_image_size, for cpu memory efficiency global_image_height, global_image_width = max_height, max_width if height != global_image_height or width != global_image_width: image = self.resize( image, {"height": global_image_height, "width": global_image_width}, resample=resample, input_data_format=data_format, ) else: num_splits_h, num_splits_w = 0, 0 frames.append(image) return frames, num_splits_h, num_splits_w def resize_for_vision_encoder( self, image: np.ndarray, vision_encoder_max_size: int, resample: PILImageResampling = PILImageResampling.LANCZOS, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Resize images to be multiples of `vision_encoder_max_size` while preserving the aspect ratio. Args: image (`np.ndarray`): Images to resize. vision_encoder_max_size (`int`): Maximum size of the output image. If the image is larger than this size, it will be split into patches of this size, and the original image will be concatenated with the patches, resized to max_size. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`): Resampling filter to use when resizing the image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the output image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred """ height, width = get_image_size(image, channel_dim=input_data_format) aspect_ratio = width / height if width >= height: width = math.ceil(width / vision_encoder_max_size) * vision_encoder_max_size height = int(width / aspect_ratio) height = math.ceil(height / vision_encoder_max_size) * vision_encoder_max_size elif height > width: height = math.ceil(height / vision_encoder_max_size) * vision_encoder_max_size width = int(height * aspect_ratio) width = math.ceil(width / vision_encoder_max_size) * vision_encoder_max_size new_size = {"height": height, "width": width} return self.resize( image, size=new_size, resample=resample, input_data_format=input_data_format, data_format=data_format ) def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) return padded_image def pad( self, images: List[np.ndarray], constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> BatchFeature: """ For a list of images, for each images, pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width. For each sample in the batch, pads the sample with empty images to the max_number of images per sample in the batch. Optionally returns a pixel mask. Args: images (`List[np.ndarray]`): List of list of images to pad. Pads to the largest height and width in the batch. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ pad_size = get_max_height_width(images, input_data_format=input_data_format) batch_size = len(images) max_num_images = max(len(images_) for images_ in images) input_data_format = ( infer_channel_dimension_format(images[0][0], num_channels=(1, 3, 4)) if input_data_format is None else input_data_format ) data_format = input_data_format if data_format is None else data_format if input_data_format == ChannelDimension.FIRST: n_channels = images[0][0].shape[0] elif input_data_format == ChannelDimension.LAST: n_channels = images[0][0].shape[-1] else: raise ValueError("Invalid channel dimension format.") def empty_image(size, input_data_format): if input_data_format == ChannelDimension.FIRST: return np.zeros((n_channels, *size), dtype=np.uint8) elif input_data_format == ChannelDimension.LAST: return np.zeros((*size, n_channels), dtype=np.uint8) padded_images_list = [ [empty_image(pad_size, data_format) for _ in range(max_num_images)] for _ in range(batch_size) ] padded_masks = [[np.zeros(pad_size) for _ in range(max_num_images)] for _ in range(batch_size)] for batch_idx in range(batch_size): for sample_idx, image in enumerate(images[batch_idx]): padded_images_list[batch_idx][sample_idx] = self._pad_image( image, pad_size, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) padded_masks[batch_idx][sample_idx] = make_pixel_mask( image, output_size=pad_size, input_data_format=input_data_format ) padded_masks = padded_masks if return_pixel_mask else None return padded_images_list, padded_masks def preprocess( self, images: ImageInput, do_convert_rgb: Optional[bool] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_image_splitting: Optional[bool] = None, do_rescale: Optional[bool] = None, max_image_size: Optional[Dict[str, int]] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_row_col_info: bool = False, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Preprocess a batch of images. Args: images (`ImageInput`): A list of images to preprocess. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. With the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_image_splitting (`bool`, *optional*, defaults to `self.do_image_splitting`): Whether to split the image into sub-images concatenated with the original image. They are split into patches such that each patch has a size of `max_image_size["height"]` x `max_image_size["width"]`. max_image_size (`Dict`, *optional*, defaults to `self.max_image_size`): Maximum resolution of the images. If the image is larger than this size, the image is split into patches. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_pad (`bool`, *optional*, defaults to `self.do_pad`): Whether or not to pad the images to the largest height and width in the batch. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. return_row_col_info (`bool`, *optional*, default to `False`): Whether to return the number of rows and columns of the split images. This is used for the `SmolVLMProcessor` to generate prompt strings based on the number of rows and columns. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_image_splitting = do_image_splitting if do_image_splitting is not None else self.do_image_splitting max_image_size = max_image_size if max_image_size is not None else self.max_image_size do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb do_pad = do_pad if do_pad is not None else self.do_pad images_list = make_nested_list_of_images(images) if not valid_images(images_list[0]): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) # save the palettes for conversion to RGB palettes_list = [ [im.getpalette() if isinstance(im, Image.Image) and im.mode == "P" else None for im in images] for images in images_list ] # All transformations expect numpy arrays. images_list = [[to_numpy_array(image) for image in images] for images in images_list] # Extra channel dimension for grayscale images if input_data_format in [ChannelDimension.LAST, None]: images_list = [ [np.expand_dims(img, axis=-1) if img.ndim == 2 else img for img in images] for images in images_list ] elif input_data_format == ChannelDimension.FIRST: images_list = [ [np.expand_dims(img, axis=0) if img.ndim == 2 else img for img in images] for images in images_list ] if do_rescale and is_scaled_image(images_list[0][0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) # We assume that all images have the same channel dimension format. if input_data_format is None: input_data_format = infer_channel_dimension_format(images_list[0][0], num_channels=(1, 3, 4)) if do_resize: images_list = [ [ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] for images in images_list ] if do_image_splitting: # We first resize both height and width of each image to the nearest max_image_size multiple, disregarding the aspect ratio # for size=(10, max_image_size) -> rescaled_size=(max_image_size, max_image_size) # for size=(11, max_image_size+1) -> rescaled_size=(max_image_size, max_image_size*2) images_list = [ [ self.resize_for_vision_encoder( image, max_image_size["longest_edge"], resample=resample, input_data_format=input_data_format ) for image in images ] for images in images_list ] images_list_split_arrays = [] palettes_list_split_arrays = [] images_list_rows = [] images_list_cols = [] for images, palettes in zip(images_list, palettes_list): split_image_arrays = [] split_palettes_arrays = [] image_rows = [] image_cols = [] for image, palette in zip(images, palettes): split_image_array, rows, cols = self.split_image( image, max_image_size=max_image_size, input_data_format=input_data_format, ) split_image_arrays.extend(split_image_array) split_palettes_arrays.extend([palette] * len(split_image_array)) image_rows.append(rows) image_cols.append(cols) images_list_split_arrays.append(split_image_arrays) palettes_list_split_arrays.append(split_palettes_arrays) images_list_rows.append(image_rows) images_list_cols.append(image_cols) images_list = images_list_split_arrays palettes_list = palettes_list_split_arrays else: # We square the images to max_image_size images_list = [ [ self.resize( image=image, size={"height": max_image_size["longest_edge"], "width": max_image_size["longest_edge"]}, resample=resample, input_data_format=input_data_format, ) for image in images ] for images in images_list ] images_list_rows = [[0] * len(images) for images in images_list] images_list_cols = [[0] * len(images) for images in images_list] if do_convert_rgb: images_list = [ [convert_to_rgb(img, palette) for img, palette in zip(images, palettes)] for images, palettes in zip(images_list, palettes_list) ] if do_rescale: images_list = [ [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] for images in images_list ] if do_normalize: images_list = [ [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] for images in images_list ] pixel_attention_mask = None if do_pad: images_list, pixel_attention_mask = self.pad( images_list, return_pixel_mask=True, return_tensors=return_tensors, input_data_format=input_data_format ) if data_format is not None: images_list = [ [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] for images in images_list ] # Faster tensor conversion data = {"pixel_values": np.array(images_list) if do_pad and return_tensors is not None else images_list} if pixel_attention_mask is not None: data["pixel_attention_mask"] = ( np.array(pixel_attention_mask) if do_pad and return_tensors is not None else pixel_attention_mask ) encoding = BatchFeature(data=data, tensor_type=return_tensors) # This is needed for generating correct text inputs in the processor - we don't pad to the max number of images if return_row_col_info: encoding["rows"] = images_list_rows encoding["cols"] = images_list_cols return encoding __all__ = ["SmolVLMImageProcessor"] ```
======================================================================================================================================= SOURCE CODE FILE: modeling_smolvlm.py LINES: 1 SIZE: 54.43 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\smolvlm\modeling_smolvlm.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/smolvlm/modular_smolvlm.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_smolvlm.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 the HuggingFace Inc. team. All rights reserved. # Written by Orr Zohar # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Callable, List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...cache_utils import DynamicCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, ModelOutput from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto import AutoModel from .configuration_smolvlm import SmolVLMConfig, SmolVLMVisionConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "SmolVLMConfig" SMOLVLM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SmolVLMConfig`] or [`SmolVLMVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare SmolVLM Model outputting raw hidden-states without any specific head on top.", SMOLVLM_START_DOCSTRING, ) class SmolVLMPreTrainedModel(PreTrainedModel): config_class = SmolVLMConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["SmolVLMVisionAttention", "SmolVLMDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True def _init_weights(self, module): std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.get_text_config().initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() class SmolVLMVisionEmbeddings(nn.Module): """ This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable resolution. The modifications are adapted from [Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution](https://arxiv.org/abs/2307.06304) which allows treating images in their native aspect ratio and without the need to resize them to the same fixed size. In particular, we start from the original pre-trained SigLIP model (which uses images of fixed-size square images) and adapt it by training on images of variable resolutions. """ def __init__(self, config: SmolVLMVisionConfig): super().__init__() self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, padding="valid", ) self.num_patches_per_side = self.image_size // self.patch_size self.num_patches = self.num_patches_per_side**2 self.num_positions = self.num_patches self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor: batch_size, _, max_im_h, max_im_w = pixel_values.shape patch_embeds = self.patch_embedding(pixel_values) embeddings = patch_embeds.flatten(2).transpose(1, 2) max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side) position_ids = torch.full(size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0) for batch_idx, p_attn_mask in enumerate(patch_attention_mask): nb_patches_h = p_attn_mask[:, 0].sum() nb_patches_w = p_attn_mask[0].sum() fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h) fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w) bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True) bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True) pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten() position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids position_ids = position_ids.to(self.position_embedding.weight.device) embeddings = embeddings + self.position_embedding(position_ids) return embeddings def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class SmolVLMVisionAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) # Ignore copy self.is_causal = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" batch_size, seq_length, embed_dim = hidden_states.shape queries = self.q_proj(hidden_states) keys = self.k_proj(hidden_states) values = self.v_proj(hidden_states) queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and output_attentions: logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, queries, keys, values, attention_mask, is_causal=self.is_causal, scaling=self.scale, dropout=0.0 if not self.training else self.dropout, ) attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous() attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights class SmolVLMVisionMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class SmolVLMEncoderLayer(nn.Module): def __init__(self, config: SmolVLMVisionConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = SmolVLMVisionAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = SmolVLMVisionMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(batch, seq_len, embed_dim)`. attention_mask (`torch.FloatTensor`): Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class SmolVLMEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`SmolVLMEncoderLayer`]. Args: config: SmolVLMConfig """ def __init__(self, config: SmolVLMConfig): super().__init__() self.config = config self.layers = nn.ModuleList([SmolVLMEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False # Ignore copy def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) SMOLVLM_VISION_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SmolVLMVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The SmolVLM Vision Transformer Model outputting raw image embedding.", SMOLVLM_VISION_START_DOCSTRING, ) class SmolVLMVisionTransformer(SmolVLMPreTrainedModel): config_class = SmolVLMVisionConfig _supports_sdpa = True _supports_flash_attention_2 = True _supports_flex_attn = True def __init__(self, config: SmolVLMVisionConfig): super().__init__(config) embed_dim = config.hidden_size self.embeddings = SmolVLMVisionEmbeddings(config) self.encoder = SmolVLMEncoder(config) self.patch_size = config.patch_size self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings = value def forward( self, pixel_values, patch_attention_mask: Optional[torch.BoolTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size = pixel_values.size(0) if patch_attention_mask is None: patch_size = self.patch_size patch_attention_mask = torch.ones( ( batch_size, pixel_values.size(2) // patch_size, pixel_values.size(3) // patch_size, ) ) patch_attention_mask = patch_attention_mask.to(dtype=torch.bool, device=pixel_values.device) hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask) patch_attention_mask = patch_attention_mask.view(batch_size, -1) # The call to `_upad_input` in `_flash_attention_forward` is expensive # So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence), # avoiding passing the attention_mask, which is equivalent to attending to the full sequence if not torch.any(~patch_attention_mask): patch_attention_mask = None elif not self._use_flash_attention_2: patch_attention_mask = _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=patch_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) if not return_dict: return (last_hidden_state,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=last_hidden_state, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @dataclass class SmolVLMBaseModelOutputWithPast(ModelOutput): """ Base class for SmolVLM model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder """ last_hidden_state: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None class SmolVLMSimpleMLP(nn.Module): def __init__(self, config): super().__init__() input_size = config.vision_config.hidden_size * (config.scale_factor**2) output_size = config.text_config.hidden_size self.proj = nn.Linear(input_size, output_size, bias=False) def forward(self, x): return self.proj(x) class SmolVLMConnector(nn.Module): def __init__(self, config): super().__init__() self.scale_factor = config.scale_factor self.modality_projection = SmolVLMSimpleMLP(config) def pixel_shuffle(self, x, scale_factor=2): bsz, seq, embed_dim = x.size() height = width = int(seq**0.5) x = x.view(bsz, height, width, embed_dim) x = x.view(bsz, height, int(width / scale_factor), embed_dim * scale_factor) x = x.permute(0, 2, 1, 3) x = x.reshape(bsz, int(width / scale_factor), int(height / scale_factor), embed_dim * (scale_factor**2)) x = x.permute(0, 2, 1, 3) x = x.reshape(bsz, int(seq / (scale_factor**2)), embed_dim * (scale_factor**2)) return x def forward(self, image_hidden_states): image_hidden_states = self.pixel_shuffle(image_hidden_states, self.scale_factor) image_hidden_states = self.modality_projection(image_hidden_states) return image_hidden_states SMOLVLM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses [`CLIPImageProcessor`] for processing images). pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*): Mask to avoid performing attention on padding pixel indices. image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): The hidden states of the image encoder after modality projection. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( """SmolVLM model consisting of a SIGLIP vision encoder and Llama3 language decoder""", SMOLVLM_START_DOCSTRING, ) class SmolVLMModel(SmolVLMPreTrainedModel): """ A subclass of Idefics3Model. We do *not* remove or block the call to inputs_merger in forward. Instead, we override inputs_merger here with custom logic. """ def __init__(self, config: SmolVLMConfig): super().__init__(config) self.padding_idx = self.config.text_config.pad_token_id self.vocab_size = self.config.text_config.vocab_size self.vision_model = SmolVLMVisionTransformer._from_config(config.vision_config) self.connector = SmolVLMConnector(config) self.text_model = AutoModel.from_config(config.text_config) self.image_seq_len = int( ((config.vision_config.image_size // config.vision_config.patch_size) ** 2) / (config.scale_factor**2) ) self.image_token_id = self.config.image_token_id self._use_flash_attention_2 = config.text_config._attn_implementation == "flash_attention_2" self.post_init() def enable_input_require_grads(self): """ Enables the gradients for the input embeddings. This is useful for lora when using gradient checkpointing. c.f. https://github.com/huggingface/peft/issues/1402#issuecomment-1913675032 Override to set output.requires_grad = True for both the decoder's and vision model's embeddings. """ def get_lowest_module(module): if len(list(module.children())) == 0: # If the module has no children, it is a leaf module (e.g., Linear, Conv2d, etc.) return module else: # Recursively call the function on each child module return get_lowest_module(list(module.children())[0]) def make_inputs_require_grads(module, input, output): output.requires_grad_(True) self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads) self._vision_require_grads_hook = get_lowest_module(self.vision_model).register_forward_hook( make_inputs_require_grads ) def disable_input_require_grads(self): self._text_require_grads_hook.remove() self._vision_require_grads_hook.remove() def get_input_embeddings(self): return self.text_model.get_input_embeddings() def set_input_embeddings(self, value): self.text_model.set_input_embeddings(value) def inputs_merger( self, input_ids: torch.LongTensor, inputs_embeds: torch.Tensor, image_hidden_states: torch.Tensor ): """ This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM. The merging happens as follows: - The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`. - We get the image hidden states for the image through the vision encoder and that hidden state, after a pixel shuffle operation, is then projected into the text embedding space. We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer. - The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM. - To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states. """ _, patch_size, _ = image_hidden_states.shape image_mask = input_ids == self.image_token_id num_image_tokens = image_mask.sum(dim=1) if not torch.all(num_image_tokens % patch_size == 0): raise ValueError("At least one sample has <image> tokens not divisible by patch_size.") blocks_per_sample = num_image_tokens // patch_size offsets = torch.nn.functional.pad(blocks_per_sample.cumsum(dim=0), (1, 0), value=0) block_offset = offsets[:-1] row_cum = image_mask.cumsum(dim=-1) chunk_idx = (row_cum - 1) // patch_size local_idx = (row_cum - 1) % patch_size block_idx = block_offset.unsqueeze(1) + chunk_idx image_embeds = torch.zeros_like(inputs_embeds) image_embeds[image_mask] = image_hidden_states[block_idx[image_mask], local_idx[image_mask], :] merged_embeds = torch.where(image_mask.unsqueeze(-1), image_embeds, inputs_embeds) return merged_embeds @add_start_docstrings_to_model_forward( """ Inputs fed to the model can have an arbitrary number of images. To account for this, pixel_values fed to the model have image padding -> (batch_size, max_num_images, 3, max_heights, max_widths) where max_num_images is the maximum number of images among the batch_size samples in the batch. Padding images are not needed beyond padding the pixel_values at the entrance of the model. For efficiency, we only pass through the vision_model's forward the real images by discarding the padding images i.e. pixel_values of size (image_batch_size, 3, height, width) where image_batch_size would be 7 when num_images_per_sample=[1, 3, 1, 2] and max_num_images would be 3. """, SMOLVLM_INPUTS_DOCSTRING, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_attention_mask: Optional[torch.BoolTensor] = None, image_hidden_states: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, SmolVLMBaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.training and self.text_model.gradient_checkpointing and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # retrieve input_ids and inputs_embeds if input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_seen_tokens = 0 if use_cache: if past_key_values is None: past_key_values = DynamicCache() past_seen_tokens = past_key_values.get_seq_length() if inputs_embeds is not None and input_ids is None and past_seen_tokens == 0: raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.") if inputs_embeds is None: inputs_embeds = self.text_model.get_input_embeddings()(input_ids).to(input_ids.device) # START VISUAL INPUTS INTEGRATION if pixel_values is not None and image_hidden_states is not None: raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time") elif pixel_values is not None: batch_size, num_images, num_channels, height, width = pixel_values.shape pixel_values = pixel_values pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:]) # Remove padding images - padding images are full 0. nb_values_per_image = pixel_values.shape[1:].numel() real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image if not any(real_images_inds): # no images, leave one empty image. real_images_inds[0] = True pixel_values = pixel_values[real_images_inds].contiguous() # Handle the vision attention mask if pixel_attention_mask is None: pixel_attention_mask = torch.ones( size=[pixel_values.shape[i] for i in (0, 2, 3)], dtype=torch.bool, device=pixel_values.device, ) else: # Remove padding images from the mask pixel_attention_mask = pixel_attention_mask.view( batch_size * num_images, *pixel_attention_mask.shape[2:] ) pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous() patch_size = self.config.vision_config.patch_size patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size) patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size) patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool() # Get sequence from the vision encoder image_hidden_states = self.vision_model( pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, ).last_hidden_state # Modality projection & resampling image_hidden_states = self.connector(image_hidden_states) elif image_hidden_states is not None: image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device) if inputs_embeds is not None and image_hidden_states is not None: # When we generate, we don't want to replace the potential image_token_id that we generated by images # that simply don't exist inputs_embeds = self.inputs_merger( input_ids=input_ids, inputs_embeds=inputs_embeds, image_hidden_states=image_hidden_states, ) outputs = self.text_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) if not return_dict: return tuple(v for v in [*outputs, image_hidden_states] if v is not None) return SmolVLMBaseModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_hidden_states, ) @dataclass class SmolVLMCausalLMOutputWithPast(ModelOutput): """ Base class for Idefics causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @add_start_docstrings( """The SmolVLM Model with a language modeling head. It is made up a SigLIP vision encoder, with a language modeling head on top. """, SMOLVLM_START_DOCSTRING, ) class SmolVLMForConditionalGeneration(SmolVLMPreTrainedModel, GenerationMixin): """ A subclass of Idefics3ForConditionalGeneration that uses SmolVLMModel instead of the default Idefics3Model. """ _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = SmolVLMModel(config) self.image_token_id = self.config.image_token_id self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) self.vocab_size = config.text_config.vocab_size # Initialize weights and apply final processing self.post_init() def enable_input_require_grads(self): """ Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping the model weights fixed. """ def make_inputs_require_grads(module, input, output): output.requires_grad_(True) self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads) self._vision_require_grads_hook = self.model.vision_model.get_input_embeddings().register_forward_hook( make_inputs_require_grads ) def disable_input_require_grads(self): self._text_require_grads_hook.remove() self._vision_require_grads_hook.remove() def get_input_embeddings(self): return self.model.text_model.get_input_embeddings() def set_input_embeddings(self, value): self.model.text_model.set_input_embeddings(value) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(SMOLVLM_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SmolVLMCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_attention_mask: Optional[torch.BoolTensor] = None, image_hidden_states: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, logits_to_keep: Union[int, torch.Tensor] = 0, ) -> Union[Tuple, SmolVLMCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or `model.image_token_id` (where `model` is your instance of `SmolVLMForConditionalGeneration`). Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from io import BytesIO >>> from transformers import AutoProcessor, AutoModelForImageTextToText >>> from transformers.image_utils import load_image >>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible >>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg") >>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg") >>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg") >>> processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct") >>> model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct", torch_dtype=torch.bfloat16, device_map="auto") >>> # Create inputs >>> messages = [ ... { ... "role": "user", ... "content": [ ... {"type": "video", "path": path/to/video}, ... {"type": "text", "text": "What is happening in this video?"}, ... ] ... } ... ] >>> inputs = processor.apply_chat_template([messages], add_generation_prompt=True) >>> # Generate >>> generated_ids = model.generate(**inputs, max_new_tokens=256) >>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_texts) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, pixel_values=pixel_values, pixel_attention_mask=pixel_attention_mask, image_hidden_states=image_hidden_states, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, return_dict=return_dict, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: # Upcast to float if we need to compute the loss to avoid potential precision issues logits = logits.float() labels = labels.to(logits.device) # Shift so that tokens < n predict n if attention_mask is not None: # we use the input attention mask to shift the logits and labels, because it is 2D. # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device) shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return SmolVLMCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, pixel_values=None, pixel_attention_mask=None, image_hidden_states=None, logits_to_keep=None, **kwargs, ): # Overwritten -- there are mutually exclusive inputs (if the logic to make `image_hidden_states` take # precedence is moved to the model, we can remove this fn) model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, cache_position=cache_position, pixel_values=pixel_values, pixel_attention_mask=pixel_attention_mask, image_hidden_states=image_hidden_states, logits_to_keep=logits_to_keep, **kwargs, ) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step # but IDEFICS requires both ids and embeds to be present if inputs_embeds is not None and cache_position[0] == 0: model_inputs["input_ids"] = input_ids if image_hidden_states is not None: model_inputs["pixel_values"] = None model_inputs["pixel_attention_mask"] = None return model_inputs def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs): model_kwargs = super()._update_model_kwargs_for_generation( outputs=outputs, model_kwargs=model_kwargs, is_encoder_decoder=is_encoder_decoder, **kwargs, ) # Get the precomputed image_hidden_states model_kwargs["image_hidden_states"] = outputs.image_hidden_states return model_kwargs __all__ = ["SmolVLMForConditionalGeneration", "SmolVLMPreTrainedModel", "SmolVLMModel", "SmolVLMVisionTransformer"] ```
====================================================================================================================================== SOURCE CODE FILE: modular_smolvlm.py LINES: 1 SIZE: 16.76 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\smolvlm\modular_smolvlm.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 the HuggingFace Inc. team. All rights reserved. # Written by Orr Zohar # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...cache_utils import DynamicCache from ...utils import ( logging, ) from ..idefics3.configuration_idefics3 import Idefics3Config, Idefics3VisionConfig from ..idefics3.image_processing_idefics3 import Idefics3ImageProcessor from ..idefics3.modeling_idefics3 import ( Idefics3BaseModelOutputWithPast, Idefics3ForConditionalGeneration, Idefics3Model, Idefics3PreTrainedModel, Idefics3VisionTransformer, ) logger = logging.get_logger(__name__) class SmolVLMVisionConfig(Idefics3VisionConfig): r""" This is the configuration class to store the configuration of a [`SmolVLMVisionModel`]. It is used to instantiate a SmolVLM vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) used in SmolVLM [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1152): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers.models.smolvlm.modeling_smolvlm import SmolVLMVisionTransformer >>> from transformers.models.smolvlm.configuration_smolvlm import SmolVLMVisionConfig >>> # Initializing a SmolVLMVisionConfig with google/siglip-so400m-patch14-384 style configuration >>> configuration = SmolVLMVisionConfig() >>> # Initializing a SmolVLMVisionTransformer (with random weights) from the google/siglip-so400m-patch14-384 style configuration >>> model = SmolVLMVisionTransformer(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "smolvlm_vision" pass class SmolVLMPreTrainedModel(Idefics3PreTrainedModel): pass class SmolVLMVisionTransformer(Idefics3VisionTransformer): pass class SmolVLMConfig(Idefics3Config): r""" This is the configuration class to store the configuration of a [`SmolVLMModel`]. It is used to instantiate a SmolVLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the SmolVLM [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should cache the key/value pairs of the attention mechanism. Only relevant if `config.is_decoder=True`. image_token_id (`int`, *optional*, defaults to 128257): The id of the "image" token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to tie the word embeddings with the token embeddings. vision_config (`IdeficsVisionConfig` or `dict`, *optional*, defaults to `IdeficsVisionConfig`): Custom vision config or dict for the vision tower text_config (`PretrainedConfig` or `dict`, *optional*, defaults to `LlamaConfig`): Custom text config or dict for the text model scale_factor (`int`, *optional*, defaults to 2): The scale factor for the image encoder. pad_token_id (`int`, *optional*, defaults to 128002): The id of the padding token. Example: ```python >>> from transformers import SmolVLMModel, SmolVLMConfig >>> # Initializing configuration >>> configuration = SmolVLMConfig() >>> # Initializing a model from the configuration >>> model = SmolVLMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "smolvlm" pass class SmolVLMImageProcessor(Idefics3ImageProcessor): pass class SmolVLMBaseModelOutputWithPast(Idefics3BaseModelOutputWithPast): pass class SmolVLMModel(Idefics3Model): """ A subclass of Idefics3Model. We do *not* remove or block the call to inputs_merger in forward. Instead, we override inputs_merger here with custom logic. """ def inputs_merger( self, input_ids: torch.LongTensor, inputs_embeds: torch.Tensor, image_hidden_states: torch.Tensor ): _, patch_size, _ = image_hidden_states.shape image_mask = input_ids == self.image_token_id num_image_tokens = image_mask.sum(dim=1) if not torch.all(num_image_tokens % patch_size == 0): raise ValueError("At least one sample has <image> tokens not divisible by patch_size.") blocks_per_sample = num_image_tokens // patch_size offsets = torch.nn.functional.pad(blocks_per_sample.cumsum(dim=0), (1, 0), value=0) block_offset = offsets[:-1] row_cum = image_mask.cumsum(dim=-1) chunk_idx = (row_cum - 1) // patch_size local_idx = (row_cum - 1) % patch_size block_idx = block_offset.unsqueeze(1) + chunk_idx image_embeds = torch.zeros_like(inputs_embeds) image_embeds[image_mask] = image_hidden_states[block_idx[image_mask], local_idx[image_mask], :] merged_embeds = torch.where(image_mask.unsqueeze(-1), image_embeds, inputs_embeds) return merged_embeds def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_attention_mask: Optional[torch.BoolTensor] = None, image_hidden_states: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, SmolVLMBaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.training and self.text_model.gradient_checkpointing and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # retrieve input_ids and inputs_embeds if input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") past_seen_tokens = 0 if use_cache: if past_key_values is None: past_key_values = DynamicCache() past_seen_tokens = past_key_values.get_seq_length() if inputs_embeds is not None and input_ids is None and past_seen_tokens == 0: raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.") if inputs_embeds is None: inputs_embeds = self.text_model.get_input_embeddings()(input_ids).to(input_ids.device) # START VISUAL INPUTS INTEGRATION if pixel_values is not None and image_hidden_states is not None: raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time") elif pixel_values is not None: batch_size, num_images, num_channels, height, width = pixel_values.shape pixel_values = pixel_values pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:]) # Remove padding images - padding images are full 0. nb_values_per_image = pixel_values.shape[1:].numel() real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image if not any(real_images_inds): # no images, leave one empty image. real_images_inds[0] = True pixel_values = pixel_values[real_images_inds].contiguous() # Handle the vision attention mask if pixel_attention_mask is None: pixel_attention_mask = torch.ones( size=[pixel_values.shape[i] for i in (0, 2, 3)], dtype=torch.bool, device=pixel_values.device, ) else: # Remove padding images from the mask pixel_attention_mask = pixel_attention_mask.view( batch_size * num_images, *pixel_attention_mask.shape[2:] ) pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous() patch_size = self.config.vision_config.patch_size patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size) patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size) patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool() # Get sequence from the vision encoder image_hidden_states = self.vision_model( pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, ).last_hidden_state # Modality projection & resampling image_hidden_states = self.connector(image_hidden_states) elif image_hidden_states is not None: image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device) if inputs_embeds is not None and image_hidden_states is not None: # When we generate, we don't want to replace the potential image_token_id that we generated by images # that simply don't exist inputs_embeds = self.inputs_merger( input_ids=input_ids, inputs_embeds=inputs_embeds, image_hidden_states=image_hidden_states, ) outputs = self.text_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) if not return_dict: return tuple(v for v in [*outputs, image_hidden_states] if v is not None) return SmolVLMBaseModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_hidden_states, ) class SmolVLMForConditionalGeneration(Idefics3ForConditionalGeneration): """ A subclass of Idefics3ForConditionalGeneration that uses SmolVLMModel instead of the default Idefics3Model. """ def __init__(self, config): super().__init__(config) self.model = SmolVLMModel(config) self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) self.post_init() def forward(self, **super_kwargs): r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or `model.image_token_id` (where `model` is your instance of `SmolVLMForConditionalGeneration`). Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from io import BytesIO >>> from transformers import AutoProcessor, AutoModelForImageTextToText >>> from transformers.image_utils import load_image >>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible >>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg") >>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg") >>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg") >>> processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct") >>> model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct", torch_dtype=torch.bfloat16, device_map="auto") >>> # Create inputs >>> messages = [ ... { ... "role": "user", ... "content": [ ... {"type": "video", "path": path/to/video}, ... {"type": "text", "text": "What is happening in this video?"}, ... ] ... } ... ] >>> inputs = processor.apply_chat_template([messages], add_generation_prompt=True) >>> # Generate >>> generated_ids = model.generate(**inputs, max_new_tokens=256) >>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_texts) ```""" super().forward(**super_kwargs) __all__ = [ "SmolVLMVisionConfig", "SmolVLMConfig", "SmolVLMImageProcessor", "SmolVLMForConditionalGeneration", "SmolVLMPreTrainedModel", "SmolVLMModel", "SmolVLMVisionTransformer", ] ```
========================================================================================================================================= SOURCE CODE FILE: processing_smolvlm.py LINES: 4 SIZE: 20.27 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\smolvlm\processing_smolvlm.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for SmolVLM. """ import copy from datetime import timedelta from typing import TYPE_CHECKING, Dict, List, Optional, Union from ...feature_extraction_utils import BatchFeature from ...image_utils import ( ImageInput, VideoInput, make_batched_videos, make_nested_list_of_images, ) from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack from ...tokenization_utils_base import BatchEncoding, TextInput from ...utils import is_num2words_available, logging from .video_processing_smolvlm import ( DEFAULT_MEDIA_OUTTRO, DEFAULT_VIDEO_INTRO, FRAME_TIMESTAMP_MESSAGE, smolvlm_sample_indices_fn, ) if TYPE_CHECKING: from ...tokenization_utils_base import PreTokenizedInput logger = logging.get_logger(__name__) if is_num2words_available(): from num2words import num2words else: num2words = None def _prompt_split_image( image_seq_len, image_rows, image_cols, fake_token_around_image, image_token, global_image_token ): """Prompt with expanded image tokens for when the image is split into patches.""" text_split_images = "" for n_h in range(image_rows): for n_w in range(image_cols): text_split_images += ( f"{fake_token_around_image}" + f"<row_{n_h + 1}_col_{n_w + 1}>" + f"{image_token}" * image_seq_len ) text_split_images += "\n" text_split_images += ( f"\n{fake_token_around_image}" + f"{global_image_token}" + f"{image_token}" * image_seq_len + f"{fake_token_around_image}" ) return text_split_images def _prompt_single_image(image_seq_len, fake_token_around_image, image_token, global_image_token): """Prompt with expanded image tokens for a single image.""" return ( f"{fake_token_around_image}" + f"{global_image_token}" + f"{image_token}" * image_seq_len + f"{fake_token_around_image}" ) def get_image_prompt_string( image_rows, image_cols, image_seq_len, fake_token_around_image, image_token, global_image_token ): if image_rows == 0 and image_cols == 0: return _prompt_single_image( image_seq_len, fake_token_around_image=fake_token_around_image, image_token=image_token, global_image_token=global_image_token, ) return _prompt_split_image( image_seq_len, image_rows, image_cols, fake_token_around_image, image_token, global_image_token ) class SmolVLMImagesKwargs(ImagesKwargs, total=False): return_row_col_info: Optional[bool] max_image_size: Optional[Dict[str, int]] class SmolVLMProcessorKwargs(ProcessingKwargs, total=False): images_kwargs: SmolVLMImagesKwargs _defaults = { "text_kwargs": { "add_special_tokens": True, "padding": False, "is_split_into_words": False, }, "images_kwargs": { "return_row_col_info": True, }, } class SmolVLMProcessor(ProcessorMixin): r""" Constructs a SmolVLM processor which wraps a LLama tokenizer and SmolVLM image processor into a single processor. [`SmolVLMProcessor`] offers all the functionalities of [`SmolVLMImageProcessor`] and [`SmolVLMTokenizerFast`]. See the docstring of [`~IdeficsProcessor.__call__`] and [`~IdeficsProcessor.decode`] for more information. Args: image_processor (`SmolVLMImageProcessor`): An instance of [`SmolVLMImageProcessor`]. The image processor is a required input. tokenizer (`PreTrainedTokenizerBase`, *optional*): An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input. image_seq_len (`int`, *optional*, defaults to 169): The length of the image sequence i.e. the number of <image> tokens per image in the input. This parameter is used to build the string from the input prompt and image tokens and should match the value the model used. It is computed as: image_seq_len = int(((image_size // patch_size) ** 2) / (scale_factor**2)) chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = ["image_seq_len", "chat_template"] image_processor_class = "SmolVLMImageProcessor" tokenizer_class = "AutoTokenizer" def __init__( self, image_processor, tokenizer=None, image_seq_len: int = 169, chat_template: Optional[str] = None, **kwargs ): self.fake_image_token = getattr(tokenizer, "fake_image_token", "<fake_token_around_image>") self.image_token = getattr(tokenizer, "image_token", "<image>") self.end_of_utterance_token = getattr(tokenizer, "end_of_utterance_token", "<end_of_utterance>") self.global_image_token = getattr(tokenizer, "global_image_token", "<global-img>") self.image_seq_len = image_seq_len self.video_size = image_processor.video_sampling["video_size"] self.image_size = image_processor.size self.do_image_splitting = image_processor.do_image_splitting self.do_video_splitting = image_processor.video_sampling.get("do_image_splitting", False) self.default_max_frames = image_processor.video_sampling["max_frames"] self.default_fps = image_processor.video_sampling["fps"] # Matches one or more occurrences of <row_x_col_y> tags (where x and y are digits, optionally surrounded by newline characters # self._regex_to_remove_extra_special_tokens = re.compile(r"(<row_\d+_col_\d+>\n?)+") if not num2words: raise ImportError( "Package `num2words` is required to run SmolVLM processor. Install it with `pip install num2words`." ) super().__init__(image_processor, tokenizer, chat_template=chat_template, **kwargs) def process_vision(self, text, images, output_kwargs, do_image_splitting=False, image_processor_size=None): if text is not None: n_images_in_text = [sample.count(self.image_token) for sample in text] n_images_in_images = [len(sublist) for sublist in images] image_inputs = self.image_processor( images, do_image_splitting=do_image_splitting, size=image_processor_size, **output_kwargs["images_kwargs"] ) if text is None: return None, image_inputs if n_images_in_images != n_images_in_text: raise ValueError( f"The number of images in the text {n_images_in_text} and images {n_images_in_images} should be the same." ) image_rows = image_inputs.pop("rows", [[0] * len(text)]) image_cols = image_inputs.pop("cols", [[0] * len(text)]) prompt_strings = [] for sample, sample_rows, sample_cols in zip(text, image_rows, image_cols): # Replace the image token with fake tokens around the expanded image token sequence of length `image_seq_len` image_prompt_strings = [] for n_rows, n_cols in zip(sample_rows, sample_cols): image_prompt_string = get_image_prompt_string( n_rows, n_cols, self.image_seq_len, image_token=self.image_token, fake_token_around_image=self.fake_image_token, global_image_token=self.global_image_token, ) image_prompt_strings.append(image_prompt_string) split_sample = sample.split(self.image_token) if len(split_sample) == 0: raise ValueError("The image token should be present in the text.") # Place in the image prompt strings where the image tokens are sample = split_sample[0] for i, image_prompt_string in enumerate(image_prompt_strings): sample += image_prompt_string + split_sample[i + 1] prompt_strings.append(sample) return prompt_strings, image_inputs def __call__( self, images: Union[ImageInput, List[ImageInput], List[List[ImageInput]]] = None, text: Union[TextInput, "PreTokenizedInput", List[TextInput], List["PreTokenizedInput"]] = None, audio=None, videos: VideoInput = None, **kwargs: Unpack[SmolVLMProcessorKwargs], ) -> BatchEncoding: """ Processes the input prompts and returns a BatchEncoding. Example: ```python >>> import requests >>> from transformers import SmolVLMProcessor >>> from transformers.image_utils import load_image >>> processor = SmolVLMProcessor.from_pretrained("HuggingFaceM4/SmolVLM2-256M-Video-Instruct") >>> processor.image_processor.do_image_splitting = False # Force as False to simplify the example >>> url1 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" >>> url2 = "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg" >>> image1, image2 = load_image(url1), load_image(url2) >>> images = [[image1], [image2]] >>> text = [ ... "<image>In this image, we see", ... "bla bla bla<image>", ... ] >>> outputs = processor(images=images, text=text, return_tensors="pt", padding=True) >>> input_ids = outputs.input_ids >>> input_tokens = processor.tokenizer.batch_decode(input_ids) >>> print(input_tokens) ['<|begin_of_text|><fake_token_around_image><global-img>((<image>)*169)<fake_token_around_image> In this image, we see', '<|reserved_special_token_0|><|reserved_special_token_0|><|reserved_special_token_0|><|begin_of_text|>bla bla bla<fake_token_around_image><global-img>((<image>)*169)<fake_token_around_image>'] ``` Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. If is of type `List[ImageInput]`, it's assumed that this is for a single prompt i.e. of batch size 1. text (`Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]`, *optional*): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). Wherever an image token, `<image>` is encountered it is expanded to `<fake_token_around_image>` + `<row_x_col_y>` + `<image>` * `image_seq_len` * <fake_token_around_image>`. return_tensors (`Union[str, TensorType]`, *optional*): If set, will return tensors of a particular framework. See [`PreTrainedTokenizerFast.__call__`] for more information. """ if text is None and images is None and videos is None: raise ValueError("You must provide one of `text`, `images` or `videos'.") if text is None and ((images is None) ^ (videos is not None)): raise ValueError("You must specify exactly one of `images` or `videos`") output_kwargs = self._merge_kwargs( SmolVLMProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if text is not None: if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise ValueError("Invalid input text. Please provide a string, or a list of strings") n_images_in_text = sum([sample.count(self.image_token) for sample in text]) if n_images_in_text > 0 and (images is None and videos is None): raise ValueError(f"We detected {n_images_in_text} tokens in the text but no images/videos were passed") inputs = BatchFeature() # Images and videos are mutually exclusive, so process one which is present if images is not None: images = make_nested_list_of_images(images) text, vision_inputs = self.process_vision( text, images, output_kwargs, do_image_splitting=self.do_image_splitting, image_processor_size=self.image_size, ) inputs.update(vision_inputs) elif videos is not None: videos = make_batched_videos(videos) text, vision_inputs = self.process_vision( text, videos, output_kwargs, do_image_splitting=self.do_image_splitting, image_processor_size=self.video_size, ) inputs.update(vision_inputs) if text is not None: text_inputs = self.tokenizer(text=text, **output_kwargs["text_kwargs"]) inputs.update(text_inputs) return inputs def _process_messages_for_chat_template( self, conversations: List[List[Dict[str, str]]], batch_images: List[ImageInput], batch_videos: List[VideoInput], batch_video_metadata: List[List[Dict[str, any]]], **chat_template_kwargs, ): """ Used within `apply_chat_template` when a model has special way to process conversation history. For example, video models might want to specify in the prompt the duration of video or which frame indices at which timestamps were sampled. This information cannot be accessed before the video is loaded. For most models it is a no-op, must be overriden by model processors which require special processing. Args: conversation (`List[Dict, str, str]`): The conversation to process. Always comes in batched format. batch_images (`List[List[ImageInput]]`): Batch of images that were loaded from url/path defined in the conversation. The images are ordered in the same way as in the conversation. Comes in nested list format, one list of `PIL` images per batch. batch_videos (`List[List[ImageInput]]`): Batch of videos that were loaded from url/path defined in the conversation. The videos are ordered in the same way as in the conversation. Comes in nested list format, one list of 4D video arrays per batch. batch_video_metadata (`List[List[Dict[[str, any]]]]`): Batch of metadata returned from loading videos. That includes video fps, duration and total number of framer in original video. Metadata are ordered in the same way as `batch_videos`. Comes in nested list format, one list of 4D video arrays per batch. """ # We don't want to modify in-place the messages passed by user # The user might want to add new turn on conv and continue generation conversations = copy.deepcopy(conversations) batch_num_frames, batch_timestamps = [], [] for metadata_list, video_list in zip(batch_video_metadata, batch_videos): for metadata, video in zip(metadata_list, video_list): duration_sec = getattr(metadata, "duration") frames_idx = getattr(metadata, "frames_indices") fps = getattr(metadata, "fps") timestamps = [] for idx, frame_np in zip(frames_idx, video): sec = idx / fps mm = int(sec // 60) ss = int(sec % 60) timestamps.append(f"{mm:02d}:{ss:02d}") batch_timestamps.append(timestamps) batch_num_frames.append(len(video)) for conversation in conversations: # For each message, scan content for {"type": "video"} for msg in conversation: if "content" not in msg: continue new_content = [] for block in msg["content"]: if block.get("type") == "video": curr_timestamps = batch_timestamps.pop(0) curr_num_frames = batch_num_frames.pop(0) # Build the video intro texts td = timedelta(seconds=int(duration_sec)) new_content.append( { "type": "text", "text": DEFAULT_VIDEO_INTRO.format( frame_count=num2words(curr_num_frames), video_duration=str(td) ), } ) # 2) Insert per-frame lines: "Frame from {timestamp}:", then an "image" block for i, ts in enumerate(curr_timestamps): new_content.append({"type": "text", "text": FRAME_TIMESTAMP_MESSAGE.format(timestamp=ts)}) new_content.append({"type": "image"}) # 3) Optionally add an outro (e.g. "Now answer the question:") new_content.append({"type": "text", "text": DEFAULT_MEDIA_OUTTRO}) # Do NOT add the original block => we skip it (since we've replaced it) else: # keep original block new_content.append(block) # update the content msg["content"] = new_content return conversations def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to SmolVLMTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ batched_decode_output = self.tokenizer.batch_decode(*args, **kwargs) return batched_decode_output def decode(self, *args, **kwargs): """ This method forwards all its arguments to SmolVLMTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ decode_output = self.tokenizer.decode(*args, **kwargs) return decode_output @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(image_processor_input_names + tokenizer_input_names)) # Add model-specific video sampling method when applying the template def apply_chat_template( self, conversation, max_frames=None, target_fps=None, skip_secs=1, video_load_backend="pyav", sample_indices_fn=None, **kwargs, ): max_frames = self.default_max_frames if max_frames is None else max_frames target_fps = self.default_fps if target_fps is None else target_fps def sample_indices_fn_func(metadata, **fn_kwargs): return smolvlm_sample_indices_fn( metadata, max_frames=max_frames, target_fps=target_fps, skip_secs=skip_secs, **fn_kwargs ) # word of caution- we are blindly overriding a callable kwarg here. # typed kwargs would be a way to avoid that @molbap if not sample_indices_fn: sample_indices_fn = sample_indices_fn_func return super().apply_chat_template( conversation, video_load_backend=video_load_backend, sample_indices_fn=sample_indices_fn, **kwargs ) __all__ = ["SmolVLMProcessor"] ```
=============================================================================================================================================== SOURCE CODE FILE: video_processing_smolvlm.py LINES: 5 SIZE: 3.36 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\smolvlm\video_processing_smolvlm.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np # Make sure these are imported from your library from ...utils import logging logger = logging.get_logger(__name__) DEFAULT_SYSTEM_MESSAGE = "You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." DEFAULT_VIDEO_INTRO = ( "You are provided the following series of {frame_count} frames from a {video_duration} [H:MM:SS] video.\n" ) DEFAULT_MEDIA_OUTTRO = "\n\n" FRAME_TIMESTAMP_MESSAGE = "\nFrame from {timestamp}:" def smolvlm_sample_indices_fn(metadata, max_frames, target_fps, skip_secs=0): """ Example sampling function which: - Uses `max_frames` (if provided) or calculates it from `fps` and metadata. - Applies a basic center-skip if fewer frames than available, otherwise optionally skips `skip_secs` from both the start and end. - Uniformly samples the desired number of frames between the start and end indices. Args: max_frames (`int`): Maximum number of frames to sample. target_fps (`int`): Target frames to sample per second. metadata (`dict`): Contains video metadata such as "n_frames" and "video_fps". skip_secs (`float`, *optional*, defaults to 1.0): Number of seconds to skip from the start and end if the video is long enough. Returns: numpy.ndarray: An array of unique frame indices to sample. """ total_num_frames = getattr(metadata, "total_num_frames", 0) if total_num_frames <= 0: raise ValueError(f"Invalid total_num_frames={total_num_frames} in metadata.") native_fps = getattr(metadata, "fps", 30.0) duration_seconds = getattr(metadata, "duration", 0) if duration_seconds <= 0: raise ValueError(f"Invalid duration_seconds={duration_seconds} in metadata.") # Step 1) Estimate how many frames we'd sample at `target_fps`, fallback if target_fps <= 0 estimated_frames = int(round(target_fps * duration_seconds)) # Step 2) desired_frames desired_frames = min(estimated_frames, max_frames) if desired_frames < 1: desired_frames = 1 # Step 3) center skip logic start_idx = 0 end_idx = total_num_frames - 1 if skip_secs > 0 and (duration_seconds - 2 * skip_secs) > (max_frames * target_fps): start_idx = int(skip_secs * native_fps) end_idx = int(total_num_frames - skip_secs * native_fps) start_idx = max(0, start_idx) end_idx = min(end_idx, total_num_frames - 1) if start_idx >= end_idx: start_idx, end_idx = 0, total_num_frames - 1 indices = np.linspace(start_idx, end_idx, desired_frames, dtype=int) indices = np.unique(indices) return indices ```
============================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.06 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speech_encoder_decoder\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_speech_encoder_decoder import * from .modeling_flax_speech_encoder_decoder import * from .modeling_speech_encoder_decoder import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
========================================================================================================================================================================== SOURCE CODE FILE: configuration_speech_encoder_decoder.py LINES: 1 SIZE: 4.57 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speech_encoder_decoder\configuration_speech_encoder_decoder.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig logger = logging.get_logger(__name__) class SpeechEncoderDecoderConfig(PretrainedConfig): r""" [`SpeechEncoderDecoderConfig`] is the configuration class to store the configuration of a [`SpeechEncoderDecoderModel`]. It is used to instantiate an Encoder Decoder model according to the specified arguments, defining the encoder and decoder configs. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: kwargs (*optional*): Dictionary of keyword arguments. Notably: - **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the encoder config. - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the decoder config. Examples: ```python >>> from transformers import BertConfig, Wav2Vec2Config, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel >>> # Initializing a Wav2Vec2 & BERT style configuration >>> config_encoder = Wav2Vec2Config() >>> config_decoder = BertConfig() >>> config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> # Initializing a Wav2Vec2Bert model from a Wav2Vec2 & google-bert/bert-base-uncased style configurations >>> model = SpeechEncoderDecoderModel(config=config) >>> # Accessing the model configuration >>> config_encoder = model.config.encoder >>> config_decoder = model.config.decoder >>> # set decoder config to causal lm >>> config_decoder.is_decoder = True >>> config_decoder.add_cross_attention = True >>> # Saving the model, including its configuration >>> model.save_pretrained("my-model") >>> # loading model and config from pretrained folder >>> encoder_decoder_config = SpeechEncoderDecoderConfig.from_pretrained("my-model") >>> model = SpeechEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config) ```""" model_type = "speech-encoder-decoder" sub_configs = {"encoder": AutoConfig, "decoder": AutoConfig} is_composition = True def __init__(self, **kwargs): super().__init__(**kwargs) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because not both `encoder` and" f" `decoder` sub-configurations are passed, but only {kwargs}" ) encoder_config = kwargs.pop("encoder") encoder_model_type = encoder_config.pop("model_type") decoder_config = kwargs.pop("decoder") decoder_model_type = decoder_config.pop("model_type") self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) self.is_encoder_decoder = True @classmethod def from_encoder_decoder_configs( cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs ) -> PretrainedConfig: r""" Instantiate a [`SpeechEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and decoder model configuration. Returns: [`SpeechEncoderDecoderConfig`]: An instance of a configuration object """ logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") decoder_config.is_decoder = True decoder_config.add_cross_attention = True return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs) __all__ = ["SpeechEncoderDecoderConfig"] ```
========================================================================================================================================================================== SOURCE CODE FILE: modeling_flax_speech_encoder_decoder.py LINES: 1 SIZE: 43.64 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speech_encoder_decoder\modeling_flax_speech_encoder_decoder.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classes to support Flax Speech-Encoder-Decoder architectures""" import os from typing import Optional, Tuple, Union import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput from ...modeling_flax_utils import FlaxPreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from ..auto.configuration_auto import AutoConfig from ..auto.modeling_flax_auto import FlaxAutoModel, FlaxAutoModelForCausalLM from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "SpeechEncoderDecoderConfig" SPEECH_ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize a speech-sequence-to-text-sequence model with any pretrained speech autoencoding model as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. Additionally, in [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) it is shown how leveraging large pretrained speech models for speech translation yields a significant performance improvement. After such an Speech-Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Parameters: config ([`SpeechEncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ SPEECH_ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: inputs (`jnp.ndarray` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, feature_dim)`, *optional*): Float values of input raw speech waveform or speech features. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `inputs`, either the [`Wav2Vec2Processor`] or [`Speech2TextProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For sequence to sequence training, `decoder_input_ids` should be provided. `decoder_input_ids` should be created outside of the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`. decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.decoder.max_position_embeddings - 1]`. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.FlaxSeq2SeqLMOutput`] instead of a plain tuple. """ SPEECH_ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING = r""" Args: inputs (`jnp.ndarray` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, feature_dim)`, *optional*): Float values of input raw speech waveform or speech features. Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type *List[float]* or a *numpy.ndarray*, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array into *inputs*, either the [`Wav2Vec2Processor`] or [`Speech2TextProcessor`] should be used for padding and conversion into a tensor of type *torch.FloatTensor*. attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.FlaxBaseModelOutput`] instead of a plain tuple. """ SPEECH_ENCODER_DECODER_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For sequence to sequence training, `decoder_input_ids` should be provided. `decoder_input_ids` should be created outside of the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.decoder.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.FlaxCausalLMOutputWithCrossAttentions`] instead of a plain tuple. """ class FlaxSpeechEncoderDecoderModule(nn.Module): config: SpeechEncoderDecoderConfig dtype: jnp.dtype = jnp.float32 def setup(self): encoder_config = self.config.encoder decoder_config = self.config.decoder # Copied from `modeling_hybrid_clip.py` with modifications. from ...models.auto.modeling_flax_auto import FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_MAPPING encoder_module = FLAX_MODEL_MAPPING[encoder_config.__class__].module_class decoder_module = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING[decoder_config.__class__].module_class self.encoder = encoder_module(encoder_config, dtype=self.dtype) self.decoder = decoder_module(decoder_config, dtype=self.dtype) # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = nn.Dense( self.decoder.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.decoder.config.initializer_range), dtype=self.dtype, ) else: self.enc_to_dec_proj = None def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.encoder.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.encoder.conv_kernel, self.config.encoder.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.encoder.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.encoder.adapter_stride) return input_lengths def _get_encoder_module(self): return self.encoder def _get_projection_module(self): return self.enc_to_dec_proj def _get_decoder_module(self): return self.decoder def __call__( self, inputs, attention_mask, decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_outputs=None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, freeze_feature_encoder: bool = False, ): if encoder_outputs is None: encoder_outputs = self.encoder( inputs, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, freeze_feature_encoder=freeze_feature_encoder, ) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if self.enc_to_dec_proj is not None: encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) # compute correct encoder attention mask if attention_mask is not None: encoder_attention_mask = self.encoder._get_feature_vector_attention_mask( encoder_hidden_states.shape[1], attention_mask ) else: encoder_attention_mask = None # flax script modeling_flax_wav2vec2.py decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqLMOutput( logits=decoder_outputs.logits, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_hidden_states, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings(SPEECH_ENCODER_DECODER_START_DOCSTRING) class FlaxSpeechEncoderDecoderModel(FlaxPreTrainedModel): r""" [`FlaxSpeechEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with the module (flax.nn.Module) of one of the base model classes of the library as encoder module and another one as decoder module when created with the :meth*~transformers.FlaxAutoModel.from_pretrained* class method for the encoder and :meth*~transformers.FlaxAutoModelForCausalLM.from_pretrained* class method for the decoder. """ config_class = SpeechEncoderDecoderConfig base_model_prefix: str = "speech_encoder_decoder" module_class = FlaxSpeechEncoderDecoderModule def __init__( self, config: SpeechEncoderDecoderConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if not _do_init: raise ValueError( "`FlaxSpeechEncoderDecoderModel` cannot be created without initializing, `_do_init` must be `True`." ) if config.decoder.cross_attention_hidden_size is not None: # Raise ValueError or option to project enc to dec hidden_size (eg EncAdapterLayer) if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # make sure input & output embeddings are not tied config.tie_word_embeddings = False module = self.module_class(config=config, dtype=dtype, **kwargs) if input_shape is None: # speech encoders almost always downsample the sequence length dimension encoder_input_length = 1024 decoder_input_length = module._get_feat_extract_output_lengths(encoder_input_length) input_shape = ((1, encoder_input_length), (1, decoder_input_length)) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: encoder_input_shape, decoder_input_shape = input_shape # init input DeviceArrays inputs = jnp.zeros(encoder_input_shape, dtype="f4") attention_mask = jnp.ones_like(inputs, dtype="i4") decoder_input_ids = jnp.zeros(decoder_input_shape, dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) batch_size, sequence_length = inputs.shape decoder_batch_size, decoder_sequence_length = decoder_input_ids.shape if not decoder_batch_size == batch_size: raise ValueError( f"The inputs of encoder and decoder should have the same batch size, but got {batch_size} for encoder" f" and {decoder_batch_size} for decoder." ) decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_sequence_length)[None, :], (decoder_batch_size, decoder_sequence_length) ) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, inputs, attention_mask, decoder_input_ids, decoder_attention_mask, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None ): return self.module._get_feat_extract_output_lengths(input_lengths, add_adapter=add_adapter) @add_start_docstrings(SPEECH_ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=_CONFIG_FOR_DOC) def encode( self, inputs: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, freeze_feature_encoder: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import FlaxSpeechEncoderDecoderModel >>> # initialize a wav2vec2-2-bart from pretrained wav2vec2 and bart models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained( ... "facebook/wav2vec2-large-lv60", "facebook/bart-large" ... ) >>> inputs = jnp.ones((2, 5000), dtype=jnp.float32) >>> encoder_outputs = model.encode(inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(inputs, dtype="i4") # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, inputs, attention_mask, **kwargs): encode_module = module._get_encoder_module() return encode_module(inputs, attention_mask, **kwargs) outputs = self.module.apply( {"params": params or self.params}, inputs=jnp.array(inputs, dtype="f4"), attention_mask=jnp.array(attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, freeze_feature_encoder=freeze_feature_encoder, rngs=rngs, method=_encoder_forward, ) if return_dict: outputs = FlaxBaseModelOutput( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) return outputs @add_start_docstrings(SPEECH_ENCODER_DECODER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import FlaxSpeechEncoderDecoderModel >>> import jax.numpy as jnp >>> # initialize a wav2vec2-2-bart from pretrained wav2vec2 and bart models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained( ... "facebook/wav2vec2-large-lv60", "facebook/bart-large" ... ) >>> inputs = jnp.ones((2, 5000), dtype=jnp.float32) >>> encoder_outputs = model.encode(inputs) >>> decoder_start_token_id = model.config.decoder.bos_token_id >>> decoder_input_ids = jnp.ones((inputs.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng params = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBartAttention module if past_key_values: params["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward( module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states, **kwargs ): projection_module = module._get_projection_module() decoder_module = module._get_decoder_module() # optionally project encoder_hidden_states if projection_module is not None: encoder_hidden_states = projection_module(encoder_hidden_states) return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states=encoder_hidden_states, **kwargs, ) outputs = self.module.apply( params, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(SPEECH_ENCODER_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def __call__( self, inputs: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, freeze_feature_encoder: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Examples: ```python >>> from transformers import FlaxSpeechEncoderDecoderModel, AutoTokenizer >>> # load a fine-tuned wav2vec2-2-bart model >>> model = FlaxSpeechEncoderDecoderModel.from_pretrained("patrickvonplaten/wav2vec2-2-bart-large") >>> # load output tokenizer >>> tokenizer_output = AutoTokenizer.from_pretrained("facebook/bart-large") >>> inputs = jnp.ones((2, 5000), dtype=jnp.float32) >>> # use bart's special bos, pad and eos tokens >>> model.config.decoder_start_token_id = model.decoder.config.bos_token_id >>> model.config.pad_token_id = model.decoder.config.pad_token_id >>> model.config.eos_token_id = model.decoder.config.eos_token_id >>> outputs = model.generate(inputs) # Assert something? More interesting input? dtype correct? ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(inputs, dtype="i4") # prepare decoder inputs if decoder_input_ids is None: raise ValueError( "`decoder_input_ids` cannot be `None`. For sequence to sequence training, `decoder_position_ids` must" " be specified as an input argument." ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, inputs=jnp.array(inputs, dtype="f4"), attention_mask=jnp.array(attention_mask, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, freeze_feature_encoder=freeze_feature_encoder, rngs=rngs, ) def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: decoder_position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: decoder_position_ids = jnp.broadcast_to( jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length) ) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": decoder_position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, decoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, *model_args, **kwargs, ) -> FlaxPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. decoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import FlaxSpeechEncoderDecoderModel >>> # initialize a wav2vec2-2-bart from pretrained wav2vec2 and bart models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained( ... "facebook/wav2vec2-large-lv60", "facebook/bart-large" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./wav2vec2-2-bart-large") >>> # load fine-tuned model >>> model = FlaxSpeechEncoderDecoderModel.from_pretrained("./wav2vec2-2-bart-large") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config, kwargs_encoder = AutoConfig.from_pretrained( encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config encoder = FlaxAutoModel.from_pretrained( encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder ) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) decoder = FlaxAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs dtype = kwargs.pop("dtype", jnp.float32) config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) # make sure input & output word embeddings are not tied config.tie_word_embeddings = False # init model model = cls(config, dtype=dtype) model.params["encoder"] = encoder.params model.params["decoder"] = decoder.params return model __all__ = ["FlaxSpeechEncoderDecoderModel"] ```
===================================================================================================================================================================== SOURCE CODE FILE: modeling_speech_encoder_decoder.py LINES: 1 SIZE: 30.92 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speech_encoder_decoder\modeling_speech_encoder_decoder.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classes to support Speech-Encoder-Text-Decoder architectures""" from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...configuration_utils import PretrainedConfig from ...generation import GenerationMixin from ...modeling_outputs import BaseModelOutput, Seq2SeqLMOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from ..auto.configuration_auto import AutoConfig from ..auto.modeling_auto import AutoModel, AutoModelForCausalLM from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "SpeechEncoderDecoderConfig" SPEECH_ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize a speech-sequence-to-text-sequence model with any pretrained speech autoencoding model as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. Additionally, in [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) it is shown how leveraging large pretrained speech models for speech translation yields a significant performance improvement. After such an Speech-Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SpeechEncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SPEECH_ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: inputs (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, feature_dim)`, *optional*): Float values of input raw speech waveform or speech features. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `inputs`, either the [`Wav2Vec2Processor`] or [`Speech2TextProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`. decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(torch.FloatTensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type *List[float]* or a *numpy.ndarray*, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array into *input_values*, the [`Wav2Vec2Processor`] should be used for padding and conversion into a tensor of type *torch.FloatTensor*. See [`Wav2Vec2Processor.__call__`] for details. input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`, *optional*): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`Speech2TextFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~Speech2TextFeatureExtractor.__call__`] return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. """ # Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids @add_start_docstrings(SPEECH_ENCODER_DECODER_START_DOCSTRING) class SpeechEncoderDecoderModel(PreTrainedModel, GenerationMixin): r""" [`SpeechEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the :meth*~transformers.AutoModel.from_pretrained* class method for the encoder and :meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder. """ config_class = SpeechEncoderDecoderConfig base_model_prefix = "speech_encoder_decoder" main_input_name = "inputs" supports_gradient_checkpointing = True _supports_param_buffer_assignment = False _supports_flash_attn_2 = True _supports_sdpa = True def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[PreTrainedModel] = None, decoder: Optional[PreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"Config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config # make sure input & output embeddings is not tied config.tie_word_embeddings = False super().__init__(config) if encoder is None: encoder = AutoModel.from_config(config.encoder) if decoder is None: decoder = AutoModelForCausalLM.from_config(config.decoder) self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.config.encoder._attn_implementation = self.encoder.config._attn_implementation self.config.decoder._attn_implementation = self.decoder.config._attn_implementation self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # get encoder output hidden size self.encoder_output_dim = getattr(config.encoder, "output_hidden_size", config.encoder.hidden_size) if ( self.encoder_output_dim != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): # encoder outputs might need to be projected to different dimension for decoder self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.decoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder of the speech encoder so that its parameters will not be updated during training. """ self.encoder.freeze_feature_encoder() @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: Optional[str] = None, decoder_pretrained_model_name_or_path: Optional[str] = None, *model_args, **kwargs, ) -> PreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import SpeechEncoderDecoderModel >>> # initialize a wav2vec2bert from a pretrained Wav2Vec2 and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized >>> model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained( ... "facebook/wav2vec2-base-960h", "google-bert/bert-base-uncased" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./wav2vec2bert") >>> # load fine-tuned model >>> model = SpeechEncoderDecoderModel.from_pretrained("./wav2vec2bert") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config, kwargs_encoder = AutoConfig.from_pretrained( encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) # make sure input & output embeddings is not tied config.tie_word_embeddings = False return cls(encoder=encoder, decoder=decoder, config=config) @add_start_docstrings_to_model_forward(SPEECH_ENCODER_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, input_values: Optional[torch.FloatTensor] = None, input_features: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" Returns: Examples: ```python >>> from transformers import SpeechEncoderDecoderModel, AutoProcessor >>> from datasets import load_dataset >>> import torch >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values >>> # Inference: Translate English speech to German >>> generated = model.generate(input_values) >>> decoded = processor.batch_decode(generated, skip_special_tokens=True)[0] >>> decoded 'Mr. Quilter ist der Apostel der Mittelschicht und wir freuen uns, sein Evangelium willkommen heißen zu können.' >>> # Training: Train model on English transcription >>> labels = processor(text=ds[0]["text"], return_tensors="pt").input_ids >>> loss = model(input_values, labels=labels).loss >>> loss.backward() ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if "num_items_in_batch" in kwargs_encoder: kwargs_decoder["num_items_in_batch"] = kwargs_encoder.pop("num_items_in_batch", None) if encoder_outputs is None: if inputs is None: if input_values is not None and input_features is not None: raise ValueError("You cannot specify both input_values and input_features at the same time") elif input_values is not None: inputs = input_values elif input_features is not None: inputs = input_features else: raise ValueError("You have to specify either input_values or input_features") encoder_outputs = self.encoder( inputs, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_encoder, ) elif isinstance(encoder_outputs, tuple): encoder_outputs = BaseModelOutput(*encoder_outputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder_output_dim != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) # compute correct encoder attention mask if attention_mask is not None: encoder_attention_mask = self.encoder._get_feature_vector_attention_mask( encoder_hidden_states.shape[1], attention_mask ) else: encoder_attention_mask = None if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, **kwargs_decoder, ) # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: logits = decoder_outputs.logits if return_dict else decoder_outputs[0] loss_fct = CrossEntropyLoss() loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1)) if not return_dict: if loss is not None: return (loss,) + decoder_outputs + encoder_outputs else: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_hidden_states, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the SpeechEncoderDecoderModel directly is not supported. Please use the" " respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))" ) def _reorder_cache(self, past_key_values, beam_idx): # apply decoder cache reordering here return self.decoder._reorder_cache(past_key_values, beam_idx) __all__ = ["SpeechEncoderDecoderModel"] ```
====================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.17 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speech_to_text\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_speech_to_text import * from .feature_extraction_speech_to_text import * from .modeling_speech_to_text import * from .modeling_tf_speech_to_text import * from .processing_speech_to_text import * from .tokenization_speech_to_text import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
========================================================================================================================================================== SOURCE CODE FILE: configuration_speech_to_text.py LINES: 1 SIZE: 9.58 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speech_to_text\configuration_speech_to_text.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Speech2Text model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class Speech2TextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Speech2TextModel`]. It is used to instantiate a Speech2Text model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Speech2Text [facebook/s2t-small-librispeech-asr](https://huggingface.co/facebook/s2t-small-librispeech-asr) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 10000): Vocabulary size of the Speech2Text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Speech2TextModel`] encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. encoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (often named feed-forward) layer in encoder. encoder_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. decoder_layers (`int`, *optional*, defaults to 6): Number of decoder layers. decoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. decoder_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer decoder. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](https://arxiv.org/abs/1909.11556) for more details. use_cache (`bool`, *optional*, defaults to `True`): Whether the model should return the last key/values attentions (not used by all models). is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model is set up as an encoder-decoder architecture for sequence-to-sequence tasks. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. d_model (`int`, *optional*, defaults to 256): Dimensionality of the layers and the pooler layer. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. decoder_start_token_id (`int`, *optional*, defaults to 2): The initial token ID of the decoder when decoding sequences. scale_embedding (`bool`, *optional*, defaults to `True`): Whether the embeddings are scaled by the square root of `d_model`. pad_token_id (`int`, *optional*, defaults to 1): Padding token id. bos_token_id (`int`, *optional*, defaults to 0): The id of the beginning-of-sequence token. eos_token_id (`int`, *optional*, defaults to 2): The id of the end-of-sequence token. max_source_positions (`int`, *optional*, defaults to 6000): The maximum sequence length of log-mel filter-bank features that this model might ever be used with. max_target_positions (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically, set this to something large just in case (e.g., 512 or 1024 or 2048). num_conv_layers (`int`, *optional*, defaults to 2): Number of 1D convolutional layers in the conv module. conv_kernel_sizes (`Tuple[int]`, *optional*, defaults to `(5, 5)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the conv module. The length of `conv_kernel_sizes` has to match `num_conv_layers`. conv_channels (`int`, *optional*, defaults to 1024): An integer defining the number of output channels of each convolution layers except the final one in the conv module. input_feat_per_channel (`int`, *optional*, defaults to 80): An integer specifying the size of feature vector. This is also the dimensions of log-mel filter-bank features. input_channels (`int`, *optional*, defaults to 1): An integer specifying number of input channels of the input feature vector. Example: ```python >>> from transformers import Speech2TextConfig, Speech2TextModel >>> # Initializing a Speech2Text s2t_transformer_s style configuration >>> configuration = Speech2TextConfig() >>> # Initializing a model (with random weights) from the s2t_transformer_s style configuration >>> model = Speech2TextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "speech_to_text" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=10000, encoder_layers=12, encoder_ffn_dim=2048, encoder_attention_heads=4, decoder_layers=6, decoder_ffn_dim=2048, decoder_attention_heads=4, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="relu", d_model=256, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=2, scale_embedding=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, max_source_positions=6000, max_target_positions=1024, num_conv_layers=2, conv_kernel_sizes=(5, 5), conv_channels=1024, input_feat_per_channel=80, input_channels=1, **kwargs, ): self.vocab_size = vocab_size self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions self.num_conv_layers = num_conv_layers self.conv_kernel_sizes = list(conv_kernel_sizes) self.conv_channels = conv_channels self.input_feat_per_channel = input_feat_per_channel self.input_channels = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, **kwargs, ) __all__ = ["Speech2TextConfig"] ```
=============================================================================================================================================================== SOURCE CODE FILE: feature_extraction_speech_to_text.py LINES: 1 SIZE: 13.63 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speech_to_text\feature_extraction_speech_to_text.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for Speech2Text """ from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, is_speech_available, logging if is_speech_available(): import torch import torchaudio.compliance.kaldi as ta_kaldi logger = logging.get_logger(__name__) class Speech2TextFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a Speech2Text feature extractor. This feature extractor inherits from [`Speech2TextFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts mel-filter bank features from raw speech using TorchAudio if installed or using numpy otherwise, and applies utterance-level cepstral mean and variance normalization to the extracted features. Args: feature_size (`int`, *optional*, defaults to 80): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). num_mel_bins (`int`, *optional*, defaults to 80): Number of Mel-frequency bins. padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding vectors. dither (`float`, *optional*, defaults to 0.0): Adds dithering. In other words, adds a small Gaussian noise to each frame. E.g. use 4.0 to add dithering with a normal distribution centered around 0.0 with standard deviation 4.0 (assuming [-32k,+32k] range of kaldi waveform). The value 0.0 means no dithering. Dithering has similar effect as `mel_floor`. It reduces the high log_mel_fbank values for signals with hard-zero sections, when VAD cutoff is present in the signal. do_ceptral_normalize (`bool`, *optional*, defaults to `True`): Whether or not to apply utterance-level cepstral mean and variance normalization to extracted features. normalize_means (`bool`, *optional*, defaults to `True`): Whether or not to zero-mean normalize the extracted features. normalize_vars (`bool`, *optional*, defaults to `True`): Whether or not to unit-variance normalize the extracted features. """ model_input_names = ["input_features", "attention_mask"] def __init__( self, feature_size=80, sampling_rate=16000, num_mel_bins=80, padding_value=0.0, dither=0.0, do_ceptral_normalize=True, normalize_means=True, normalize_vars=True, **kwargs, ): super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) self.num_mel_bins = num_mel_bins self.dither = dither self.do_ceptral_normalize = do_ceptral_normalize self.normalize_means = normalize_means self.normalize_vars = normalize_vars self.return_attention_mask = True if not is_speech_available(): mel_filters = mel_filter_bank( num_frequency_bins=257, num_mel_filters=self.num_mel_bins, min_frequency=20, max_frequency=sampling_rate // 2, sampling_rate=sampling_rate, norm=None, mel_scale="kaldi", triangularize_in_mel_space=True, ) self.mel_filters = mel_filters self.window = window_function(400, "povey", periodic=False) def _extract_fbank_features( self, waveform: np.ndarray, ) -> np.ndarray: """ Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs and hence the waveform should not be normalized before feature extraction. """ waveform = waveform * (2**15) # Kaldi compliance: 16-bit signed integers if is_speech_available(): waveform = torch.from_numpy(waveform).unsqueeze(0) features = ta_kaldi.fbank( waveform, dither=self.dither, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate, ) features = features.numpy() else: waveform = np.squeeze(waveform) features = spectrogram( waveform, self.window, frame_length=400, hop_length=160, fft_length=512, power=2.0, center=False, dither=self.dither, preemphasis=0.97, mel_filters=self.mel_filters, log_mel="log", mel_floor=1.192092955078125e-07, remove_dc_offset=True, ).T return features @staticmethod def utterance_cmvn( x: np.ndarray, input_length: int, normalize_means: Optional[bool] = True, normalize_vars: Optional[bool] = True, padding_value: float = 0.0, ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: mean = x[:input_length].mean(axis=0) x = np.subtract(x, mean) if normalize_vars: std = x[:input_length].std(axis=0) x = np.divide(x, std) if input_length < x.shape[0]: x[input_length:] = padding_value # make sure array is in float32 x = x.astype(np.float32) return x def normalize( self, input_features: List[np.ndarray], attention_mask: Optional[np.ndarray] = None ) -> List[np.ndarray]: lengths = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(x, n, self.normalize_means, self.normalize_vars, self.padding_value) for x, n in zip(input_features, lengths) ] def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, truncation: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, sampling_rate: Optional[int] = None, return_attention_mask: Optional[bool] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> For Speech2TextTransformer models, `attention_mask` should always be passed for batched inference, to avoid subtle bugs. </Tip> return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding values / vectors. """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( f"It is strongly recommended to pass the `sampling_rate` argument to `{self.__class__.__name__}()`. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [raw_speech] # extract fbank features features = [self._extract_fbank_features(waveform) for waveform in raw_speech] # convert into correct format for padding encoded_inputs = BatchFeature({"input_features": features}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, **kwargs, ) # make sure list is in array format input_features = padded_inputs.get("input_features") if isinstance(input_features[0], list): padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features] attention_mask = padded_inputs.get("attention_mask") if attention_mask is not None: padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: attention_mask = ( np.array(attention_mask, dtype=np.int32) if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD else None ) padded_inputs["input_features"] = self.normalize( padded_inputs["input_features"], attention_mask=attention_mask ) if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs __all__ = ["Speech2TextFeatureExtractor"] ```
===================================================================================================================================================== SOURCE CODE FILE: modeling_speech_to_text.py LINES: 1 SIZE: 62.06 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speech_to_text\modeling_speech_to_text.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Speech2Text model.""" import math from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation import GenerationMixin from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_speech_to_text import Speech2TextConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "Speech2TextConfig" # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class Conv1dSubsampler(nn.Module): """ Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation via gated linear units (https://arxiv.org/abs/1911.08460) """ def __init__(self, config): super(Conv1dSubsampler, self).__init__() self.config = config self.num_layers = config.num_conv_layers self.in_channels = config.input_feat_per_channel * config.input_channels self.mid_channels = config.conv_channels self.out_channels = config.d_model self.kernel_sizes = config.conv_kernel_sizes self.conv_layers = nn.ModuleList( nn.Conv1d( self.in_channels if i == 0 else self.mid_channels // 2, self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2, kernel_size=k, stride=2, padding=k // 2, ) for i, k in enumerate(self.kernel_sizes) ) def forward(self, input_features): hidden_states = input_features.transpose(1, 2).contiguous() # -> B x (C x D) x T for conv in self.conv_layers: hidden_states = conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) hidden_states = hidden_states.transpose(1, 2).contiguous() # -> T x B x (C x D) return hidden_states class Speech2TextSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.weights = nn.Parameter(emb_weights) self.weights.requires_grad = False self.weights.detach_() @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): bsz, seq_len = input_ids.size() # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( input_ids.device ) # expand embeddings if needed max_pos = self.padding_idx + 1 + seq_len if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach() def create_position_ids_from_input_ids( self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 ): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Speech2Text class Speech2TextAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[Speech2TextConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value SPEECH_TO_TEXT_ATTENTION_CLASSES = {"eager": Speech2TextAttention} # Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Speech2Text, MBART->SPEECH_TO_TEXT class Speech2TextEncoderLayer(nn.Module): def __init__(self, config: Speech2TextConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16: clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Speech2Text, MBART->SPEECH_TO_TEXT class Speech2TextDecoderLayer(nn.Module): def __init__(self, config: Speech2TextConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class Speech2TextPreTrainedModel(PreTrainedModel): config_class = Speech2TextConfig base_model_prefix = "model" main_input_name = "input_features" supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ for i in range(self.config.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask): # generate creates 3D attention mask, because of the shape of input_features # convert it to 2D if thats the case if len(attention_mask.shape) > 2: attention_mask = attention_mask[:, :, -1] subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) bsz = attention_mask.size()[0] attention_mask = torch.zeros( (bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values # before the output lengths indices are attended to attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long() return attention_mask SPEECH_TO_TEXT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Speech2TextConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SPEECH_TO_TEXT_INPUTS_DOCSTRING = r""" Args: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~Speech2TextFeatureExtractor.__call__`] attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`SpeechToTextTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should read [`modeling_speech_to_text._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class Speech2TextEncoder(Speech2TextPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`Speech2TextEncoderLayer`]. Args: config: Speech2TextConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: Speech2TextConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.conv = Conv1dSubsampler(config) self.embed_positions = Speech2TextSinusoidalPositionalEmbedding( self.max_source_positions, embed_dim, self.padding_idx, ) self.layers = nn.ModuleList([Speech2TextEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_features, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_features (`torch.LongTensor` of shape `(batch_size, sequence_length, feature_size)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~Speech2TextFeatureExtractor.__call__`] attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict inputs_embeds = self.conv(input_features) inputs_embeds = self.embed_scale * inputs_embeds # subsample attention mask if necessary if attention_mask is not None: attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask) padding_mask = attention_mask.ne(1).long() else: padding_mask = torch.zeros(inputs_embeds.shape[:2], dtype=torch.long, device=inputs_embeds.device) embed_pos = self.embed_positions(padding_mask) hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == (len(self.layers)), ( f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class Speech2TextDecoder(Speech2TextPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Speech2TextDecoderLayer`] Args: config: Speech2TextConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: Speech2TextConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_target_positions self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = Speech2TextSinusoidalPositionalEmbedding( self.max_target_positions, config.d_model, self.padding_idx, ) self.layers = nn.ModuleList([Speech2TextDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == (len(self.layers)), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Speech2Text Model outputting raw hidden-states without any specific head on top.", SPEECH_TO_TEXT_START_DOCSTRING, ) class Speech2TextModel(Speech2TextPreTrainedModel): def __init__(self, config: Speech2TextConfig): super().__init__(config) self.encoder = Speech2TextEncoder(config) self.decoder = Speech2TextDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" Returns: Example: ```python >>> import torch >>> from transformers import Speech2TextModel, AutoFeatureExtractor >>> from datasets import load_dataset >>> model = Speech2TextModel.from_pretrained("facebook/s2t-small-librispeech-asr") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-librispeech-asr") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor( ... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt" ... ) >>> input_features = inputs.input_features >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 256] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # downsample encoder attention mask if attention_mask is not None: encoder_attention_mask = self._get_feature_vector_attention_mask( encoder_outputs[0].shape[1], attention_mask ) else: encoder_attention_mask = None # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The Speech2Text Model with a language modeling head. Can be used for summarization.", SPEECH_TO_TEXT_START_DOCSTRING, ) class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel, GenerationMixin): base_model_prefix = "model" _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: Speech2TextConfig): super().__init__(config) self.model = Speech2TextModel(config) self.lm_head = nn.Linear(config.d_model, self.config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import torch >>> from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration >>> from datasets import load_dataset >>> model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") >>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor( ... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt" ... ) >>> input_features = inputs.input_features >>> generated_ids = model.generate(inputs=input_features) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription 'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel' ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_features, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past __all__ = ["Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel"] ```
======================================================================================================================================================== SOURCE CODE FILE: modeling_tf_speech_to_text.py LINES: 1 SIZE: 72.68 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speech_to_text\modeling_tf_speech_to_text.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TensorFlow Speech2Text model.""" from __future__ import annotations import random from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation, glu from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFSharedEmbeddings, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_speech_to_text import Speech2TextConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "Speech2TextConfig" _CHECKPOINT_FOR_DOC = "facebook/s2t-small-librispeech-asr" LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): pad_token_id = tf.cast(pad_token_id, input_ids.dtype) decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill( (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) ) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFConv1dSubsampler(keras.layers.Layer): """ Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation via gated linear units (https://arxiv.org/abs/1911.08460) """ def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.num_layers = config.num_conv_layers self.in_channels = config.input_feat_per_channel * config.input_channels self.mid_channels = config.conv_channels self.out_channels = config.d_model self.kernel_sizes = config.conv_kernel_sizes self.conv_layers = [ keras.layers.Conv1D( filters=self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2, kernel_size=k, strides=2, name=f"conv_layers.{i}", ) for i, k in enumerate(self.kernel_sizes) ] def call(self, input_features: tf.Tensor) -> tf.Tensor: # TF Conv1D assumes Batch x Time x Channels, same as the input hidden_states = tf.cast(input_features, tf.float32) for i, conv in enumerate(self.conv_layers): # equivalent to `padding=k // 2` on PT's `nn.Conv1d` pad_len = self.kernel_sizes[i] // 2 hidden_shapes = shape_list(hidden_states) hidden_states = tf.concat( ( tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])), hidden_states, tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])), ), axis=1, ) hidden_states = conv(hidden_states) hidden_states = glu(hidden_states, axis=2) # GLU over the Channel dimension return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv_layers", None) is not None: for i, layer in enumerate(self.conv_layers): with tf.name_scope(layer.name): layer.build([None, None, self.in_channels] if i == 0 else [None, None, self.mid_channels // 2]) class TFSpeech2TextSinusoidalPositionalEmbedding(keras.layers.Layer): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None, **kwargs): super().__init__(**kwargs) self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.embedding_weights = self._get_embedding(num_positions + self.offset, embedding_dim, padding_idx) @staticmethod def _get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None) -> tf.Tensor: """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = tf.math.log(10000.0) / (half_dim - 1) emb = tf.math.exp(tf.range(half_dim, dtype=tf.float32) * -emb) emb = tf.expand_dims(tf.range(num_embeddings, dtype=tf.float32), axis=1) * tf.expand_dims(emb, axis=0) emb = tf.reshape(tf.concat([tf.math.sin(emb), tf.math.cos(emb)], axis=1), shape=[num_embeddings, -1]) if embedding_dim % 2 == 1: # zero pad emb = tf.concat([emb, tf.zeros(num_embeddings, 1)], axis=1) if padding_idx is not None: emb = tf.concat([emb[:padding_idx, :], tf.zeros((1, tf.shape(emb)[1])), emb[padding_idx + 1 :, :]], axis=0) return emb def call(self, input_ids: tf.Tensor, past_key_values_length: int = 0) -> tf.Tensor: bsz, seq_len = shape_list(input_ids) # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) # Matt: The PyTorch code does a lot of work to cache the embeddings, setting the cached values as a # model attribute in the forward pass. This is extremely forbidden in TF, which wants forward calls to be # idempotent. TF doesn't need that caching anyway, since it can just store constants during compilation, # so we just remove all of that code. embeddings = self._get_embedding( self.padding_idx + 1 + seq_len + self.offset + past_key_values_length, self.embedding_dim, self.padding_idx ) return tf.reshape(tf.gather(embeddings, tf.reshape(position_ids, (-1,)), axis=0), (bsz, seq_len, -1)) @staticmethod def create_position_ids_from_input_ids( input_ids: tf.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 ) -> tf.Tensor: """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: tf.Tensor x: Returns: tf.Tensor """ mask = tf.cast(tf.math.not_equal(input_ids, padding_idx), dtype=tf.int32) incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask return tf.cast(incremental_indices, dtype=tf.int64) + padding_idx # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Speech2Text class TFSpeech2TextAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) class TFSpeech2TextEncoderLayer(keras.layers.Layer): def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFSpeech2TextAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False ): """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, training=training, ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return hidden_states, self_attn_weights def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.encoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) class TFSpeech2TextDecoderLayer(keras.layers.Layer): def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFSpeech2TextAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFSpeech2TextAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Tuple[tf.Tensor] | None = None, training=False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, training=training, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, training=training, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "encoder_attn", None) is not None: with tf.name_scope(self.encoder_attn.name): self.encoder_attn.build(None) if getattr(self, "encoder_attn_layer_norm", None) is not None: with tf.name_scope(self.encoder_attn_layer_norm.name): self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.decoder_ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) class TFSpeech2TextPreTrainedModel(TFPreTrainedModel): config_class = Speech2TextConfig base_model_prefix = "model" main_input_name = "input_features" _keys_to_ignore_on_load_unexpected = [r"encoder.embed_positions.weights"] def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor): """ Computes the output length of the convolutional layers """ for _ in range(self.config.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths @property def input_signature(self): return { "input_features": tf.TensorSpec( (None, None, self.config.input_feat_per_channel * self.config.input_channels), tf.float32, name="input_features", ), "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), "decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"), "decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"), } SPEECH_TO_TEXT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`Speech2TextConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SPEECH_TO_TEXT_INPUTS_DOCSTRING = r""" Args: input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of floats. See [`~Speech2TextFeatureExtractor.__call__`] attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tf.FloatTensor`, *optional*): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape `(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`tf.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFSpeech2TextEncoder(keras.layers.Layer): config_class = Speech2TextConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFSpeech2TextEncoderLayer`]. Args: config: Speech2TextConfig """ def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = tf.math.sqrt(float(embed_dim)) if config.scale_embedding else 1.0 self.conv = TFConv1dSubsampler(config, name="conv") self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding( num_positions=config.max_source_positions, embedding_dim=embed_dim, padding_idx=self.padding_idx, name="embed_positions", ) self.layers = [TFSpeech2TextEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor): """ Computes the output length of the convolutional layers """ for _ in range(self.config.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask): # generate creates 3D attention mask, because of the shape of input_features # convert it to 2D if thats the case if len(attention_mask.shape) > 2: attention_mask = attention_mask[:, :, -1] subsampled_lengths = self._get_feat_extract_output_lengths(tf.math.reduce_sum(attention_mask, -1)) bsz = shape_list(attention_mask)[0] indices = tf.concat( ( tf.expand_dims(tf.range(bsz, dtype=attention_mask.dtype), -1), tf.expand_dims(subsampled_lengths - 1, -1), ), axis=-1, ) attention_mask = tf.scatter_nd(indices=indices, updates=tf.ones(bsz), shape=[bsz, feature_vector_length]) attention_mask = tf.cast(tf.reverse(tf.math.cumsum(tf.reverse(attention_mask, [-1]), -1), [-1]), tf.int64) return attention_mask @unpack_inputs def call( self, input_features=None, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): """ Args: input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of floats. See [`~Speech2TextFeatureExtractor.__call__`] attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ if input_features is None: raise ValueError("You have to specify input_features") inputs_embeds = self.conv(input_features) inputs_embeds = self.embed_scale * inputs_embeds # subsample attention mask if necessary if attention_mask is not None: attention_mask = self._get_feature_vector_attention_mask(tf.shape(inputs_embeds)[1], attention_mask) padding_mask = tf.cast(tf.math.not_equal(attention_mask, 1), tf.int64) else: padding_mask = tf.zeros(tf.shape(inputs_embeds)[:-1], dtype=tf.int64) embed_pos = self.embed_positions(padding_mask) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, training=training, ) if output_attentions: all_attentions += (attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build(None) if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFSpeech2TextDecoder(keras.layers.Layer): config_class = Speech2TextConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFSpeech2TextDecoderLayer`] Args: config: Speech2TextConfig """ def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_target_positions self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = TFSharedEmbeddings(config.vocab_size, config.d_model, name="embed_tokens") self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding( num_positions=config.max_target_positions, embedding_dim=config.d_model, padding_idx=self.padding_idx, name="embed_positions", ) self.layers = [TFSpeech2TextDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale else: inputs_embeds = inputs_embeds # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) # embed positions positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length) hidden_states = inputs_embeds + positions hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None cross_attn_layer_head_mask = cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, ) if use_cache: next_decoder_cache += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_tokens", None) is not None: with tf.name_scope(self.embed_tokens.name): self.embed_tokens.build(None) if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFSpeech2TextMainLayer(keras.layers.Layer): config_class = Speech2TextConfig def __init__(self, config: Speech2TextConfig, **kwargs): super().__init__(**kwargs) self.config = config self.encoder = TFSpeech2TextEncoder(config, name="encoder") self.decoder = TFSpeech2TextDecoder(config, name="decoder") def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, new_embeddings): self.decoder.embed_tokens = new_embeddings @unpack_inputs def call( self, input_features=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features=input_features, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() # downsample encoder attention mask if attention_mask is not None: encoder_attention_mask = self.encoder._get_feature_vector_attention_mask( tf.shape(encoder_outputs[0])[1], attention_mask ) else: encoder_attention_mask = None # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) @add_start_docstrings( "The bare Speech2Text Model outputting raw hidden-states without any specific head on top.", SPEECH_TO_TEXT_START_DOCSTRING, ) class TFSpeech2TextModel(TFSpeech2TextPreTrainedModel): def __init__(self, config: Speech2TextConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFSpeech2TextMainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_features: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[Tuple, TFSeq2SeqModelOutput]: outputs = self.model( input_features=input_features, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) @add_start_docstrings( "The Speech2Text Model with a language modeling head. Can be used for summarization.", SPEECH_TO_TEXT_START_DOCSTRING, ) class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config: Speech2TextConfig): super().__init__(config) self.model = TFSpeech2TextMainLayer(config, name="model") self.lm_head = keras.layers.Dense(self.config.vocab_size, use_bias=False, name="lm_head") # TODO (Joao): investigate why Speech2Text has numerical issues in XLA generate self.supports_xla_generation = False self.config = config def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder def resize_token_embeddings(self, new_num_tokens: int) -> tf.Variable: new_embeddings = super().resize_token_embeddings(new_num_tokens) return new_embeddings def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @unpack_inputs @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_features: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[Tuple, TFSeq2SeqLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import Speech2TextProcessor, TFSpeech2TextForConditionalGeneration >>> from datasets import load_dataset >>> import soundfile as sf >>> model = TFSpeech2TextForConditionalGeneration.from_pretrained( ... "facebook/s2t-small-librispeech-asr", from_pt=True ... ) >>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> ds.set_format(type="tf") >>> input_features = processor( ... ds["speech"][0], sampling_rate=16000, return_tensors="tf" ... ).input_features # Batch size 1 >>> generated_ids = model.generate(input_features) >>> transcription = processor.batch_decode(generated_ids) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_features=input_features, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = self.lm_head(outputs[0]) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_features": None, # needs to be passed to make Keras.layer.__call__ happy "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build([None, None, self.config.d_model]) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "lm_head.weight": return tf_weight, "model.decoder.embed_tokens.weight" else: return (tf_weight,) __all__ = ["TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel"] ```
======================================================================================================================================================= SOURCE CODE FILE: processing_speech_to_text.py LINES: 1 SIZE: 4.74 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speech_to_text\processing_speech_to_text.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Speech processor class for Speech2Text """ import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class Speech2TextProcessor(ProcessorMixin): r""" Constructs a Speech2Text processor which wraps a Speech2Text feature extractor and a Speech2Text tokenizer into a single processor. [`Speech2TextProcessor`] offers all the functionalities of [`Speech2TextFeatureExtractor`] and [`Speech2TextTokenizer`]. See the [`~Speech2TextProcessor.__call__`] and [`~Speech2TextProcessor.decode`] for more information. Args: feature_extractor (`Speech2TextFeatureExtractor`): An instance of [`Speech2TextFeatureExtractor`]. The feature extractor is a required input. tokenizer (`Speech2TextTokenizer`): An instance of [`Speech2TextTokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "Speech2TextFeatureExtractor" tokenizer_class = "Speech2TextTokenizer" def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) self.current_processor = self.feature_extractor self._in_target_context_manager = False def __call__(self, *args, **kwargs): """ When used in normal mode, this method forwards all its arguments to Speech2TextFeatureExtractor's [`~Speech2TextFeatureExtractor.__call__`] and returns its output. If used in the context [`~Speech2TextProcessor.as_target_processor`] this method forwards all its arguments to Speech2TextTokenizer's [`~Speech2TextTokenizer.__call__`]. Please refer to the docstring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor(*args, **kwargs) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") audio = kwargs.pop("raw_speech") else: audio = kwargs.pop("audio", None) sampling_rate = kwargs.pop("sampling_rate", None) text = kwargs.pop("text", None) if len(args) > 0: audio = args[0] args = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) if text is not None: encodings = self.tokenizer(text, **kwargs) if text is None: return inputs elif audio is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @contextmanager def as_target_processor(self): """ Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning Speech2Text. """ warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) self._in_target_context_manager = True self.current_processor = self.tokenizer yield self.current_processor = self.feature_extractor self._in_target_context_manager = False __all__ = ["Speech2TextProcessor"] ```
========================================================================================================================================================= SOURCE CODE FILE: tokenization_speech_to_text.py LINES: 1 SIZE: 11.17 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speech_to_text\tokenization_speech_to_text.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Speech2Text.""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } MAX_MODEL_INPUT_SIZES = { "facebook/s2t-small-librispeech-asr": 1024, } MUSTC_LANGS = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] LANGUAGES = {"mustc": MUSTC_LANGS} class Speech2TextTokenizer(PreTrainedTokenizer): """ Construct an Speech2Text tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): File containing the vocabulary. spm_file (`str`): Path to the [SentencePiece](https://github.com/google/sentencepiece) model file bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. do_upper_case (`bool`, *optional*, defaults to `False`): Whether or not to uppercase the output when decoding. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the input when tokenizing. tgt_lang (`str`, *optional*): A string representing the target language. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. **kwargs Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] def __init__( self, vocab_file, spm_file, bos_token="<s>", eos_token="</s>", pad_token="<pad>", unk_token="<unk>", do_upper_case=False, do_lower_case=False, tgt_lang=None, lang_codes=None, additional_special_tokens=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_upper_case = do_upper_case self.do_lower_case = do_lower_case self.encoder = load_json(vocab_file) self.decoder = {v: k for k, v in self.encoder.items()} self.spm_file = spm_file self.sp_model = load_spm(spm_file, self.sp_model_kwargs) if lang_codes is not None: self.lang_codes = lang_codes self.langs = LANGUAGES[lang_codes] self.lang_tokens = [f"<lang:{lang}>" for lang in self.langs] self.lang_code_to_id = {lang: self.sp_model.PieceToId(f"<lang:{lang}>") for lang in self.langs} if additional_special_tokens is not None: additional_special_tokens = self.lang_tokens + additional_special_tokens else: additional_special_tokens = self.lang_tokens self._tgt_lang = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang) else: self.lang_code_to_id = {} super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, do_upper_case=do_upper_case, do_lower_case=do_lower_case, tgt_lang=tgt_lang, lang_codes=lang_codes, sp_model_kwargs=self.sp_model_kwargs, additional_special_tokens=additional_special_tokens, **kwargs, ) @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self) -> Dict: vocab = self.encoder.copy() vocab.update(self.added_tokens_encoder) return vocab @property def tgt_lang(self) -> str: return self._tgt_lang @tgt_lang.setter def tgt_lang(self, new_tgt_lang) -> None: self._tgt_lang = new_tgt_lang self.set_tgt_lang_special_tokens(new_tgt_lang) def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. prefix=[eos, tgt_lang_code] and suffix=[eos].""" lang_code_id = self.lang_code_to_id[tgt_lang] self.prefix_tokens = [lang_code_id] def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): return self.encoder.get(token, self.encoder[self.unk_token]) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the decoder.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens: List[str]) -> str: """Converts a sequence of tokens (strings for sub-words) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: decoded = self.sp_model.decode(current_sub_tokens) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " current_sub_tokens = [] else: current_sub_tokens.append(token) decoded = self.sp_model.decode(current_sub_tokens) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id] def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones def __getstate__(self) -> Dict: state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d: Dict) -> None: self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: save_dir = Path(save_directory) assert save_dir.is_dir(), f"{save_directory} should be a directory" vocab_save_path = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) spm_save_path = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder, vocab_save_path) if os.path.abspath(self.spm_file) != os.path.abspath(spm_save_path) and os.path.isfile(self.spm_file): copyfile(self.spm_file, spm_save_path) elif not os.path.isfile(self.spm_file): with open(spm_save_path, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (str(vocab_save_path), str(spm_save_path)) def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs) spm.Load(str(path)) return spm def load_json(path: str) -> Union[Dict, List]: with open(path, "r") as f: return json.load(f) def save_json(data, path: str) -> None: with open(path, "w") as f: json.dump(data, f, indent=2) __all__ = ["Speech2TextTokenizer"] ```
================================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.10 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speecht5\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_speecht5 import * from .feature_extraction_speecht5 import * from .modeling_speecht5 import * from .processing_speecht5 import * from .tokenization_speecht5 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
============================================================================================================================================== SOURCE CODE FILE: configuration_speecht5.py LINES: 1 SIZE: 22.88 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speecht5\configuration_speecht5.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SpeechT5 model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SpeechT5Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SpeechT5Model`]. It is used to instantiate a SpeechT5 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SpeechT5 [microsoft/speecht5_asr](https://huggingface.co/microsoft/speecht5_asr) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 81): Vocabulary size of the SpeechT5 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed to the forward method of [`SpeechT5Model`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. encoder_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. encoder_ffn_dim (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. encoder_layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer decoder. decoder_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer decoder. decoder_layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. positional_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the text position encoding layers. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(d_model). feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in the speech encoder pre-net. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the speech encoder pre-net. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the speech encoder pre-net. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the speech encoder pre-net. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the speech encoder pre-net. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the speech encoder pre-net. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' num_mel_bins (`int`, *optional*, defaults to 80): Number of mel features used per input features. Used by the speech decoder pre-net. Should correspond to the value used in the [`SpeechT5Processor`] class. speech_decoder_prenet_layers (`int`, *optional*, defaults to 2): Number of layers in the speech decoder pre-net. speech_decoder_prenet_units (`int`, *optional*, defaults to 256): Dimensionality of the layers in the speech decoder pre-net. speech_decoder_prenet_dropout (`float`, *optional*, defaults to 0.5): The dropout probability for the speech decoder pre-net layers. speaker_embedding_dim (`int`, *optional*, defaults to 512): Dimensionality of the *XVector* embedding vectors. speech_decoder_postnet_layers (`int`, *optional*, defaults to 5): Number of layers in the speech decoder post-net. speech_decoder_postnet_units (`int`, *optional*, defaults to 256): Dimensionality of the layers in the speech decoder post-net. speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5): Number of convolutional filter channels in the speech decoder post-net. speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5): The dropout probability for the speech decoder post-net layers. reduction_factor (`int`, *optional*, defaults to 2): Spectrogram length reduction factor for the speech decoder inputs. max_speech_positions (`int`, *optional*, defaults to 4000): The maximum sequence length of speech features that this model might ever be used with. max_text_positions (`int`, *optional*, defaults to 450): The maximum sequence length of text features that this model might ever be used with. encoder_max_relative_position (`int`, *optional*, defaults to 160): Maximum distance for relative position embedding in the encoder. use_guided_attention_loss (`bool`, *optional*, defaults to `True`): Whether to apply guided attention loss while training the TTS model. guided_attention_loss_num_heads (`int`, *optional*, defaults to 2): Number of attention heads the guided attention loss will be applied to. Use -1 to apply this loss to all attention heads. guided_attention_loss_sigma (`float`, *optional*, defaults to 0.4): Standard deviation for guided attention loss. guided_attention_loss_scale (`float`, *optional*, defaults to 10.0): Scaling coefficient for guided attention loss (also known as lambda). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Example: ```python >>> from transformers import SpeechT5Model, SpeechT5Config >>> # Initializing a "microsoft/speecht5_asr" style configuration >>> configuration = SpeechT5Config() >>> # Initializing a model (with random weights) from the "microsoft/speecht5_asr" style configuration >>> model = SpeechT5Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "speecht5" attribute_map = {"num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers"} def __init__( self, vocab_size=81, hidden_size=768, encoder_layers=12, encoder_attention_heads=12, encoder_ffn_dim=3072, encoder_layerdrop=0.1, decoder_layers=6, decoder_ffn_dim=3072, decoder_attention_heads=12, decoder_layerdrop=0.1, hidden_act="gelu", positional_dropout=0.1, hidden_dropout=0.1, attention_dropout=0.1, activation_dropout=0.1, initializer_range=0.02, layer_norm_eps=1e-5, scale_embedding=False, feat_extract_norm="group", feat_proj_dropout=0.0, feat_extract_activation="gelu", conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, pad_token_id=1, bos_token_id=0, eos_token_id=2, decoder_start_token_id=2, num_mel_bins=80, speech_decoder_prenet_layers=2, speech_decoder_prenet_units=256, speech_decoder_prenet_dropout=0.5, speaker_embedding_dim=512, speech_decoder_postnet_layers=5, speech_decoder_postnet_units=256, speech_decoder_postnet_kernel=5, speech_decoder_postnet_dropout=0.5, reduction_factor=2, max_speech_positions=4000, max_text_positions=450, encoder_max_relative_position=160, use_guided_attention_loss=True, guided_attention_loss_num_heads=2, guided_attention_loss_sigma=0.4, guided_attention_loss_scale=10.0, use_cache=True, is_encoder_decoder=True, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.encoder_layers = encoder_layers self.encoder_ffn_dim = encoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.encoder_layerdrop = encoder_layerdrop self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.decoder_attention_heads = decoder_attention_heads self.decoder_layerdrop = decoder_layerdrop self.hidden_act = hidden_act self.positional_dropout = positional_dropout self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.scale_embedding = scale_embedding self.feat_extract_norm = feat_extract_norm self.feat_proj_dropout = feat_proj_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks self.num_mel_bins = num_mel_bins self.speech_decoder_prenet_layers = speech_decoder_prenet_layers self.speech_decoder_prenet_units = speech_decoder_prenet_units self.speech_decoder_prenet_dropout = speech_decoder_prenet_dropout self.speaker_embedding_dim = speaker_embedding_dim self.speech_decoder_postnet_layers = speech_decoder_postnet_layers self.speech_decoder_postnet_units = speech_decoder_postnet_units self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout self.reduction_factor = reduction_factor self.max_speech_positions = max_speech_positions self.max_text_positions = max_text_positions self.encoder_max_relative_position = encoder_max_relative_position self.use_guided_attention_loss = use_guided_attention_loss self.guided_attention_loss_num_heads = guided_attention_loss_num_heads self.guided_attention_loss_sigma = guided_attention_loss_sigma self.guided_attention_loss_scale = guided_attention_loss_scale self.use_cache = use_cache self.is_encoder_decoder = is_encoder_decoder super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, **kwargs, ) def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1) class SpeechT5HifiGanConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SpeechT5HifiGanModel`]. It is used to instantiate a SpeechT5 HiFi-GAN vocoder model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SpeechT5 [microsoft/speecht5_hifigan](https://huggingface.co/microsoft/speecht5_hifigan) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: model_in_dim (`int`, *optional*, defaults to 80): The number of frequency bins in the input log-mel spectrogram. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the output audio will be generated, expressed in hertz (Hz). upsample_initial_channel (`int`, *optional*, defaults to 512): The number of input channels into the upsampling network. upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[4, 4, 4, 4]`): A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The length of *upsample_rates* defines the number of convolutional layers and has to match the length of *upsample_kernel_sizes*. upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 8, 8]`): A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of *upsample_rates*. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field fusion (MRF) module. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the multi-receptive field fusion (MRF) module. initializer_range (`float`, *optional*, defaults to 0.01): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. leaky_relu_slope (`float`, *optional*, defaults to 0.1): The angle of the negative slope used by the leaky ReLU activation. normalize_before (`bool`, *optional*, defaults to `True`): Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance. Example: ```python >>> from transformers import SpeechT5HifiGan, SpeechT5HifiGanConfig >>> # Initializing a "microsoft/speecht5_hifigan" style configuration >>> configuration = SpeechT5HifiGanConfig() >>> # Initializing a model (with random weights) from the "microsoft/speecht5_hifigan" style configuration >>> model = SpeechT5HifiGan(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "hifigan" def __init__( self, model_in_dim=80, sampling_rate=16000, upsample_initial_channel=512, upsample_rates=[4, 4, 4, 4], upsample_kernel_sizes=[8, 8, 8, 8], resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], initializer_range=0.01, leaky_relu_slope=0.1, normalize_before=True, **kwargs, ): self.model_in_dim = model_in_dim self.sampling_rate = sampling_rate self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.initializer_range = initializer_range self.leaky_relu_slope = leaky_relu_slope self.normalize_before = normalize_before super().__init__(**kwargs) __all__ = ["SpeechT5Config", "SpeechT5HifiGanConfig"] ```
=================================================================================================================================================== SOURCE CODE FILE: feature_extraction_speecht5.py LINES: 1 SIZE: 17.45 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speecht5\feature_extraction_speecht5.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for SpeechT5.""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging logger = logging.get_logger(__name__) class SpeechT5FeatureExtractor(SequenceFeatureExtractor): r""" Constructs a SpeechT5 feature extractor. This class can pre-process a raw speech signal by (optionally) normalizing to zero-mean unit-variance, for use by the SpeechT5 speech encoder prenet. This class can also extract log-mel filter bank features from raw speech, for use by the SpeechT5 speech decoder prenet. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: feature_size (`int`, *optional*, defaults to 1): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding values. do_normalize (`bool`, *optional*, defaults to `False`): Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly improve the performance for some models. num_mel_bins (`int`, *optional*, defaults to 80): The number of mel-frequency bins in the extracted spectrogram features. hop_length (`int`, *optional*, defaults to 16): Number of ms between windows. Otherwise referred to as "shift" in many papers. win_length (`int`, *optional*, defaults to 64): Number of ms per window. win_function (`str`, *optional*, defaults to `"hann_window"`): Name for the window function used for windowing, must be accessible via `torch.{win_function}` frame_signal_scale (`float`, *optional*, defaults to 1.0): Constant multiplied in creating the frames before applying DFT. This argument is deprecated. fmin (`float`, *optional*, defaults to 80): Minimum mel frequency in Hz. fmax (`float`, *optional*, defaults to 7600): Maximum mel frequency in Hz. mel_floor (`float`, *optional*, defaults to 1e-10): Minimum value of mel frequency banks. reduction_factor (`int`, *optional*, defaults to 2): Spectrogram length reduction factor. This argument is deprecated. return_attention_mask (`bool`, *optional*, defaults to `True`): Whether or not [`~SpeechT5FeatureExtractor.__call__`] should return `attention_mask`. """ model_input_names = ["input_values", "attention_mask"] def __init__( self, feature_size: int = 1, sampling_rate: int = 16000, padding_value: float = 0.0, do_normalize: bool = False, num_mel_bins: int = 80, hop_length: int = 16, win_length: int = 64, win_function: str = "hann_window", frame_signal_scale: float = 1.0, fmin: float = 80, fmax: float = 7600, mel_floor: float = 1e-10, reduction_factor: int = 2, return_attention_mask: bool = True, **kwargs, ): super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) self.do_normalize = do_normalize self.return_attention_mask = return_attention_mask self.num_mel_bins = num_mel_bins self.hop_length = hop_length self.win_length = win_length self.win_function = win_function self.frame_signal_scale = frame_signal_scale self.fmin = fmin self.fmax = fmax self.mel_floor = mel_floor self.reduction_factor = reduction_factor self.sample_size = win_length * sampling_rate // 1000 self.sample_stride = hop_length * sampling_rate // 1000 self.n_fft = optimal_fft_length(self.sample_size) self.n_freqs = (self.n_fft // 2) + 1 self.window = window_function(window_length=self.sample_size, name=self.win_function, periodic=True) self.mel_filters = mel_filter_bank( num_frequency_bins=self.n_freqs, num_mel_filters=self.num_mel_bins, min_frequency=self.fmin, max_frequency=self.fmax, sampling_rate=self.sampling_rate, norm="slaney", mel_scale="slaney", ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers", FutureWarning, ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers", FutureWarning, ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def zero_mean_unit_var_norm( input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0 ) -> List[np.ndarray]: """ Every array in the list is normalized to have zero mean and unit variance """ if attention_mask is not None: attention_mask = np.array(attention_mask, np.int32) normed_input_values = [] for vector, length in zip(input_values, attention_mask.sum(-1)): normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: normed_slice[length:] = padding_value normed_input_values.append(normed_slice) else: normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def _extract_mel_features( self, one_waveform: np.ndarray, ) -> np.ndarray: """ Extracts log-mel filterbank features for one waveform array (unbatched). """ log_mel_spec = spectrogram( one_waveform, window=self.window, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, mel_filters=self.mel_filters, mel_floor=self.mel_floor, log_mel="log10", ) return log_mel_spec.T def __call__( self, audio: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None, audio_target: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None, padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, truncation: bool = False, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, sampling_rate: Optional[int] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Pass in a value for `audio` to extract waveform features. Pass in a value for `audio_target` to extract log-mel spectrogram features. Args: audio (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`, *optional*): The sequence or batch of sequences to be processed. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. This outputs waveform features. Must be mono channel audio, not stereo, i.e. single float per timestep. audio_target (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`, *optional*): The sequence or batch of sequences to be processed as targets. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. This outputs log-mel spectrogram features. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `audio` or `audio_target` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. """ if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values.") if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( f"It is strongly recommended to pass the `sampling_rate` argument to `{self.__class__.__name__}()`. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: inputs = self._process_audio( audio, False, padding, max_length, truncation, pad_to_multiple_of, return_attention_mask, return_tensors, **kwargs, ) else: inputs = None if audio_target is not None: inputs_target = self._process_audio( audio_target, True, padding, max_length, truncation, pad_to_multiple_of, return_attention_mask, return_tensors, **kwargs, ) if inputs is None: return inputs_target else: inputs["labels"] = inputs_target["input_values"] decoder_attention_mask = inputs_target.get("attention_mask") if decoder_attention_mask is not None: inputs["decoder_attention_mask"] = decoder_attention_mask return inputs def _process_audio( self, speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], is_target: bool = False, padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, truncation: bool = False, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchFeature: is_batched_numpy = isinstance(speech, np.ndarray) and len(speech.shape) > 1 if is_batched_numpy and len(speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(speech, (list, tuple)) and (isinstance(speech[0], (np.ndarray, tuple, list))) ) if is_batched: speech = [np.asarray(speech, dtype=np.float32) for speech in speech] elif not is_batched and not isinstance(speech, np.ndarray): speech = np.asarray(speech, dtype=np.float32) elif isinstance(speech, np.ndarray) and speech.dtype is np.dtype(np.float64): speech = speech.astype(np.float32) # always return batch if not is_batched: speech = [speech] # needed to make pad() work on spectrogram inputs feature_size_hack = self.feature_size # convert into correct format for padding if is_target: features = [self._extract_mel_features(waveform) for waveform in speech] encoded_inputs = BatchFeature({"input_values": features}) self.feature_size = self.num_mel_bins else: encoded_inputs = BatchFeature({"input_values": speech}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, **kwargs, ) self.feature_size = feature_size_hack # convert input values to correct format input_values = padded_inputs["input_values"] if not isinstance(input_values[0], np.ndarray): padded_inputs["input_values"] = [np.asarray(array, dtype=np.float32) for array in input_values] elif ( not isinstance(input_values, np.ndarray) and isinstance(input_values[0], np.ndarray) and input_values[0].dtype is np.dtype(np.float64) ): padded_inputs["input_values"] = [array.astype(np.float32) for array in input_values] elif isinstance(input_values, np.ndarray) and input_values.dtype is np.dtype(np.float64): padded_inputs["input_values"] = input_values.astype(np.float32) # convert attention_mask to correct format attention_mask = padded_inputs.get("attention_mask") if attention_mask is not None: padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: attention_mask = ( attention_mask if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD else None ) padded_inputs["input_values"] = self.zero_mean_unit_var_norm( padded_inputs["input_values"], attention_mask=attention_mask, padding_value=self.padding_value ) if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs def to_dict(self) -> Dict[str, Any]: output = super().to_dict() # Don't serialize these as they are derived from the other properties. names = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output __all__ = ["SpeechT5FeatureExtractor"] ```
========================================================================================================================================= SOURCE CODE FILE: modeling_speecht5.py LINES: 1 SIZE: 151.49 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speecht5\modeling_speecht5.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SpeechT5 model.""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, L1Loss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...integrations.fsdp import is_fsdp_managed_module from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, Seq2SeqSpectrogramOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_speecht5 import SpeechT5Config, SpeechT5HifiGanConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 1 # General docstring _CONFIG_FOR_DOC = "SpeechT5Config" # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids def shift_spectrograms_right( input_values: torch.Tensor, reduction_factor: int = 1, attention_mask: Optional[torch.Tensor] = None ): """ Shift input spectrograms one timestep to the right. Also applies the reduction factor to the sequence length. """ # thin out frames for reduction factor if reduction_factor > 1: input_values = input_values[:, reduction_factor - 1 :: reduction_factor] if attention_mask is not None: attention_mask = attention_mask[:, reduction_factor - 1 :: reduction_factor] shifted_input_values = input_values.new_zeros(input_values.shape) shifted_input_values[:, 1:] = input_values[:, :-1].clone() # replace possible -100 values in labels by zeros shifted_input_values.masked_fill_(shifted_input_values == -100.0, 0.0) return shifted_input_values, attention_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.detach().sum(-1).tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SpeechT5 class SpeechT5NoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SpeechT5 class SpeechT5LayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SpeechT5 class SpeechT5GroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextSinusoidalPositionalEmbedding with Speech2Text->SpeechT5 class SpeechT5SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.weights = nn.Parameter(emb_weights) self.weights.requires_grad = False self.weights.detach_() @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): bsz, seq_len = input_ids.size() # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( input_ids.device ) # expand embeddings if needed max_pos = self.padding_idx + 1 + seq_len if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach() def create_position_ids_from_input_ids( self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 ): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->SpeechT5 class SpeechT5PositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) if hasattr(self.conv, "parametrizations"): weight_g = self.conv.parametrizations.weight.original0 weight_v = self.conv.parametrizations.weight.original1 else: weight_g = self.conv.weight_g weight_v = self.conv.weight_v deepspeed.zero.register_external_parameter(self, weight_v) deepspeed.zero.register_external_parameter(self, weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = SpeechT5SamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class SpeechT5ScaledPositionalEncoding(nn.Module): """ Scaled positional encoding, see §3.2 in https://arxiv.org/abs/1809.08895 """ def __init__(self, dropout, dim, max_len=5000): pe = torch.zeros(max_len, dim) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / dim))) pe[:, 0::2] = torch.sin(position.float() * div_term) pe[:, 1::2] = torch.cos(position.float() * div_term) pe = pe.unsqueeze(0) super().__init__() self.register_buffer("pe", pe, persistent=False) self.dropout = nn.Dropout(p=dropout) self.dim = dim self.alpha = torch.nn.Parameter(torch.tensor(1.0)) def forward(self, emb): emb = emb + self.alpha * self.pe[:, : emb.size(1)] emb = self.dropout(emb) return emb class SpeechT5RelativePositionalEncoding(torch.nn.Module): def __init__(self, dim, max_length=1000): super().__init__() self.dim = dim self.max_length = max_length self.pe_k = torch.nn.Embedding(2 * max_length, dim) def forward(self, hidden_states): seq_len = hidden_states.shape[1] pos_seq = torch.arange(0, seq_len).to(device=hidden_states.device, dtype=torch.long) pos_seq = pos_seq[:, None] - pos_seq[None, :] pos_seq[pos_seq < -self.max_length] = -self.max_length pos_seq[pos_seq >= self.max_length] = self.max_length - 1 pos_seq = pos_seq + self.max_length return self.pe_k(pos_seq) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SpeechT5 class SpeechT5SamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SpeechT5 class SpeechT5FeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [SpeechT5GroupNormConvLayer(config, layer_id=0)] + [ SpeechT5NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ SpeechT5LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->SpeechT5 class SpeechT5FeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states class SpeechT5SpeechEncoderPrenet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.feature_encoder = SpeechT5FeatureEncoder(config) self.feature_projection = SpeechT5FeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_()) self.pos_conv_embed = SpeechT5PositionalConvEmbedding(config) self.pos_sinusoidal_embed = SpeechT5SinusoidalPositionalEmbedding( config.max_speech_positions + config.pad_token_id + 1, config.hidden_size, config.pad_token_id, ) def freeze_feature_encoder(self): self.feature_encoder._freeze_parameters() def forward( self, input_values: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, ): extract_features = self.feature_encoder(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) positional_conv_embedding = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + positional_conv_embedding if attention_mask is not None: padding_mask = attention_mask.ne(1).long() else: padding_mask = torch.zeros(hidden_states.shape[:2], dtype=torch.long, device=hidden_states.device) positional_sinusoidal_embeddings = self.pos_sinusoidal_embed(padding_mask) hidden_states = hidden_states + positional_sinusoidal_embeddings return hidden_states, attention_mask # Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feature_vector_attention_mask def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask # Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feat_extract_output_lengths def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states class SpeechT5SpeechDecoderPrenet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList( [ nn.Linear( config.num_mel_bins if i == 0 else config.speech_decoder_prenet_units, config.speech_decoder_prenet_units, ) for i in range(config.speech_decoder_prenet_layers) ] ) self.final_layer = nn.Linear(config.speech_decoder_prenet_units, config.hidden_size) self.encode_positions = SpeechT5ScaledPositionalEncoding( config.positional_dropout, config.hidden_size, config.max_speech_positions, ) self.speaker_embeds_layer = nn.Linear(config.speaker_embedding_dim + config.hidden_size, config.hidden_size) def _consistent_dropout(self, inputs_embeds, p): mask = torch.bernoulli(inputs_embeds[0], p=p) all_masks = mask.unsqueeze(0).repeat(inputs_embeds.size(0), 1, 1) return torch.where(all_masks == 1, inputs_embeds, 0) * 1 / (1 - p) def forward( self, input_values: torch.Tensor, speaker_embeddings: Optional[torch.Tensor] = None, ): # Dropout is always applied, even when evaluating. See §2.2 in https://arxiv.org/abs/1712.05884. inputs_embeds = input_values for layer in self.layers: inputs_embeds = nn.functional.relu(layer(inputs_embeds)) inputs_embeds = self._consistent_dropout(inputs_embeds, self.config.speech_decoder_prenet_dropout) inputs_embeds = self.final_layer(inputs_embeds) inputs_embeds = self.encode_positions(inputs_embeds) if speaker_embeddings is not None: speaker_embeddings = nn.functional.normalize(speaker_embeddings) speaker_embeddings = speaker_embeddings.unsqueeze(1).expand(-1, inputs_embeds.size(1), -1) inputs_embeds = torch.cat([inputs_embeds, speaker_embeddings], dim=-1) inputs_embeds = nn.functional.relu(self.speaker_embeds_layer(inputs_embeds)) return inputs_embeds class SpeechT5BatchNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() if layer_id == 0: in_conv_dim = config.num_mel_bins else: in_conv_dim = config.speech_decoder_postnet_units if layer_id == config.speech_decoder_postnet_layers - 1: out_conv_dim = config.num_mel_bins else: out_conv_dim = config.speech_decoder_postnet_units self.conv = nn.Conv1d( in_conv_dim, out_conv_dim, kernel_size=config.speech_decoder_postnet_kernel, stride=1, padding=(config.speech_decoder_postnet_kernel - 1) // 2, bias=False, ) self.batch_norm = nn.BatchNorm1d(out_conv_dim) if layer_id < config.speech_decoder_postnet_layers - 1: self.activation = nn.Tanh() else: self.activation = None self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.batch_norm(hidden_states) if self.activation is not None: hidden_states = self.activation(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class SpeechT5SpeechDecoderPostnet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor) self.prob_out = nn.Linear(config.hidden_size, config.reduction_factor) self.layers = nn.ModuleList( [SpeechT5BatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)] ) def forward(self, hidden_states: torch.Tensor): outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins) outputs_after_postnet = self.postnet(outputs_before_postnet) logits = self.prob_out(hidden_states).view(hidden_states.size(0), -1) return outputs_before_postnet, outputs_after_postnet, logits def postnet(self, hidden_states: torch.Tensor): layer_output = hidden_states.transpose(1, 2) for layer in self.layers: layer_output = layer(layer_output) return hidden_states + layer_output.transpose(1, 2) class SpeechT5TextEncoderPrenet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.encode_positions = SpeechT5ScaledPositionalEncoding( config.positional_dropout, config.hidden_size, config.max_text_positions, ) def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward(self, input_ids: torch.Tensor): inputs_embeds = self.embed_tokens(input_ids) inputs_embeds = self.encode_positions(inputs_embeds) return inputs_embeds class SpeechT5TextDecoderPrenet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.dropout = nn.Dropout(config.positional_dropout) self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.embed_positions = SpeechT5SinusoidalPositionalEmbedding( config.max_text_positions + config.pad_token_id + 1, config.hidden_size, config.pad_token_id, ) def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, ): if input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) else: raise ValueError("You have to specify `decoder_input_ids`") past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 positions = self.embed_positions(input_ids, past_key_values_length) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale inputs_embeds += positions inputs_embeds = self.dropout(inputs_embeds) return inputs_embeds, attention_mask class SpeechT5TextDecoderPostnet(nn.Module): def __init__(self, config): super().__init__() self.config = config self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) def forward(self, hidden_states: torch.Tensor): return self.lm_head(hidden_states) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings class SpeechT5Attention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper with relative position bias (see https://aclanthology.org/N18-2074.pdf) """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, position_bias: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # relative attention bias if position_bias is not None: reshape_q = query_states.contiguous().view(bsz * self.num_heads, -1, self.head_dim).transpose(0, 1) rel_pos_bias = torch.matmul(reshape_q, position_bias.transpose(-2, -1)) rel_pos_bias = rel_pos_bias.transpose(0, 1).view( bsz * self.num_heads, position_bias.size(0), position_bias.size(1) ) attn_weights += rel_pos_bias if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned aross GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class SpeechT5FeedForward(nn.Module): def __init__(self, config, intermediate_size): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class SpeechT5EncoderLayer(nn.Module): def __init__(self, config: SpeechT5Config): super().__init__() self.attention = SpeechT5Attention( embed_dim=config.hidden_size, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = SpeechT5FeedForward(config, config.encoder_ffn_dim) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, position_bias: Optional[torch.Tensor] = None, output_attentions: bool = False, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(config.encoder_attention_heads,)`. position_bias (`torch.FloatTensor`): relative position embeddings of size `(seq_len, seq_len, hidden_size // encoder_attention_heads)` output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, position_bias=position_bias, output_attentions=output_attentions, ) hidden_states = self.dropout(hidden_states) hidden_states = residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class SpeechT5DecoderLayer(nn.Module): def __init__(self, config: SpeechT5Config): super().__init__() self.self_attn = SpeechT5Attention( embed_dim=config.hidden_size, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = nn.Dropout(config.hidden_dropout) self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.encoder_attn = SpeechT5Attention( config.hidden_size, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.encoder_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = SpeechT5FeedForward(config, config.decoder_ffn_dim) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, hidden_size)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = self.dropout(hidden_states) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = self.dropout(hidden_states) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class SpeechT5PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SpeechT5Config base_model_prefix = "speecht5" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, SpeechT5PositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, SpeechT5FeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() class SpeechT5Encoder(SpeechT5PreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* layers. Each layer is a [`SpeechT5EncoderLayer`]. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layerdrop = config.encoder_layerdrop self.layers = nn.ModuleList([SpeechT5EncoderLayer(config) for _ in range(config.encoder_layers)]) self.embed_positions = SpeechT5RelativePositionalEncoding( config.hidden_size // config.encoder_attention_heads, config.encoder_max_relative_position ) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`): Features extracted from the speech or text input by the encoder prenet. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) position_bias = self.embed_positions(hidden_states) synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) skip_the_layer = False if self.training: dropout_probability = torch.rand([]) skip_the_layer = dropout_probability < self.layerdrop if not skip_the_layer or synced_gpus: # under fsdp or deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), position_bias, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class SpeechT5EncoderWithSpeechPrenet(SpeechT5PreTrainedModel): """ Wrapper around SpeechT5Encoder that applies SpeechT5SpeechEncoderPrenet to convert the audio waveform data to hidden features. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.prenet = SpeechT5SpeechEncoderPrenet(config) self.wrapped_encoder = SpeechT5Encoder(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_values: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: hidden_states, attention_mask = self.prenet(input_values, attention_mask) outputs = self.wrapped_encoder( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs class SpeechT5EncoderWithTextPrenet(SpeechT5PreTrainedModel): """ Wrapper around SpeechT5Encoder that applies SpeechT5TextEncoderPrenet to convert the input_ids to hidden features. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.prenet = SpeechT5TextEncoderPrenet(config) self.wrapped_encoder = SpeechT5Encoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.prenet.get_input_embeddings() def set_input_embeddings(self, value): self.prenet.set_input_embeddings(value) def forward( self, input_values: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: hidden_states = self.prenet(input_values) outputs = self.wrapped_encoder( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs class SpeechT5EncoderWithoutPrenet(SpeechT5PreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with [`SpeechT5Model`]. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.wrapped_encoder = SpeechT5Encoder(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_values: torch.FloatTensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: return self.wrapped_encoder( hidden_states=input_values, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class SpeechT5Decoder(SpeechT5PreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SpeechT5DecoderLayer`] """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.layerdrop = config.decoder_layerdrop self.layers = nn.ModuleList([SpeechT5DecoderLayer(config) for _ in range(config.decoder_layers)]) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`): Features extracted from the speech or text input by the decoder prenet. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_shape = hidden_states.size()[:-1] past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, hidden_states, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, hidden_states.dtype, tgt_len=input_shape[-1] ) synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != (len(self.layers)): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) skip_the_layer = False if self.training: dropout_probability = torch.rand([]) skip_the_layer = dropout_probability < self.layerdrop if skip_the_layer and not synced_gpus: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class SpeechT5DecoderWithSpeechPrenet(SpeechT5PreTrainedModel): """ Wrapper around SpeechT5Decoder that applies SpeechT5SpeechDecoderPrenet to convert log-mel filterbanks to hidden features. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.prenet = SpeechT5SpeechDecoderPrenet(config) self.wrapped_decoder = SpeechT5Decoder(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, speaker_embeddings: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: decoder_hidden_states = self.prenet(input_values, speaker_embeddings) outputs = self.wrapped_decoder( hidden_states=decoder_hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs class SpeechT5DecoderWithTextPrenet(SpeechT5PreTrainedModel): """ Wrapper around SpeechT5Decoder that applies SpeechT5TextDecoderPrenet to convert input tokens to hidden features. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.prenet = SpeechT5TextDecoderPrenet(config) self.wrapped_decoder = SpeechT5Decoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.prenet.get_input_embeddings() def set_input_embeddings(self, value): self.prenet.set_input_embeddings(value) def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: decoder_hidden_states, attention_mask = self.prenet(input_values, attention_mask, past_key_values) outputs = self.wrapped_decoder( hidden_states=decoder_hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs class SpeechT5DecoderWithoutPrenet(SpeechT5PreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with [`SpeechT5Model`]. """ def __init__(self, config: SpeechT5Config): super().__init__(config) self.wrapped_decoder = SpeechT5Decoder(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: outputs = self.wrapped_decoder( hidden_states=input_values, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return outputs class SpeechT5GuidedMultiheadAttentionLoss(nn.Module): """ Guided attention loss from the paper [Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention](https://arxiv.org/abs/1710.08969), adapted for multi-head attention. """ def __init__(self, config: SpeechT5Config): super().__init__() self.sigma = config.guided_attention_loss_sigma self.scale = config.guided_attention_loss_scale def forward( self, attentions: torch.FloatTensor, input_masks: torch.BoolTensor, output_masks: torch.BoolTensor ) -> torch.Tensor: """ Compute the attention loss. Args: attentions (`torch.FloatTensor` of shape `(batch_size, layers * heads, output_sequence_length, input_sequence_length)`): Batch of multi-head attention weights input_masks (`torch.BoolTensor` of shape `(batch_size, input_sequence_length)`): Input attention mask as booleans. output_masks (`torch.BoolTensor` of shape `(batch_size, output_sequence_length)`): Target attention mask as booleans. Returns: `torch.Tensor` with the loss value """ guided_attn_masks = self._make_guided_attention_masks(input_masks, output_masks, attentions.device) masks = output_masks.unsqueeze(-1) & input_masks.unsqueeze(-2) masks = masks.to(attentions.device).unsqueeze(1) losses = guided_attn_masks * attentions loss = torch.mean(losses.masked_select(masks)) return self.scale * loss def _make_guided_attention_masks(self, input_masks, output_masks, device): input_lengths = input_masks.sum(-1) output_lengths = output_masks.sum(-1) guided_attn_masks = torch.zeros((len(input_masks), output_masks.shape[1], input_masks.shape[1]), device=device) for idx, (ilen, olen) in enumerate(zip(input_lengths, output_lengths)): guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask(ilen, olen, self.sigma, device) return guided_attn_masks.unsqueeze(1) @staticmethod def _make_guided_attention_mask(input_length, output_length, sigma, device): grid_y, grid_x = torch.meshgrid( torch.arange(input_length, device=device), torch.arange(output_length, device=device), indexing="xy", ) grid_x = grid_x.float() / output_length grid_y = grid_y.float() / input_length return 1.0 - torch.exp(-((grid_y - grid_x) ** 2) / (2 * (sigma**2))) class SpeechT5SpectrogramLoss(nn.Module): """ Loss computation used by SpeechT5ForTextToSpeech. """ def __init__(self, config: SpeechT5Config): super().__init__() self.use_guided_attention_loss = config.use_guided_attention_loss self.guided_attention_loss_num_heads = config.guided_attention_loss_num_heads self.reduction_factor = config.reduction_factor self.l1_criterion = L1Loss() self.bce_criterion = BCEWithLogitsLoss(pos_weight=torch.tensor(5.0)) if self.use_guided_attention_loss: self.attn_criterion = SpeechT5GuidedMultiheadAttentionLoss(config) def forward( self, attention_mask: torch.LongTensor, outputs_before_postnet: torch.FloatTensor, outputs_after_postnet: torch.FloatTensor, logits: torch.FloatTensor, labels: torch.FloatTensor, cross_attentions: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: padding_mask = labels != -100.0 # mask out the padded portions labels = labels.masked_select(padding_mask) outputs_before_postnet = outputs_before_postnet.masked_select(padding_mask) outputs_after_postnet = outputs_after_postnet.masked_select(padding_mask) # spectrogram loss l1_loss = self.l1_criterion(outputs_after_postnet, labels) + self.l1_criterion(outputs_before_postnet, labels) # construct stop labels from the padding mask masks = padding_mask[:, :, 0] stop_labels = torch.cat([~masks * 1.0, torch.ones(masks.size(0), 1).to(masks.device)], dim=1) stop_labels = stop_labels[:, 1:].masked_select(masks) logits = logits.masked_select(masks) # stop token loss bce_loss = self.bce_criterion(logits, stop_labels) # combined loss loss = l1_loss + bce_loss # guided attention loss if self.use_guided_attention_loss: attn = torch.cat([x[:, : self.guided_attention_loss_num_heads] for x in cross_attentions], dim=1) input_masks = attention_mask == 1 output_masks = padding_mask[:, :, 0] if self.reduction_factor > 1: output_masks = output_masks[:, self.reduction_factor - 1 :: self.reduction_factor] attn_loss = self.attn_criterion(attn, input_masks, output_masks) loss += attn_loss return loss SPEECHT5_BASE_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SpeechT5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. encoder ([`SpeechT5EncoderWithSpeechPrenet`] or [`SpeechT5EncoderWithTextPrenet`] or `None`): The Transformer encoder module that applies the appropiate speech or text encoder prenet. If `None`, [`SpeechT5EncoderWithoutPrenet`] will be used and the `input_values` are assumed to be hidden states. decoder ([`SpeechT5DecoderWithSpeechPrenet`] or [`SpeechT5DecoderWithTextPrenet`] or `None`): The Transformer decoder module that applies the appropiate speech or text decoder prenet. If `None`, [`SpeechT5DecoderWithoutPrenet`] will be used and the `decoder_input_values` are assumed to be hidden states. """ SPEECHT5_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SpeechT5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SPEECHT5_INPUTS_DOCSTRING = r""" Args: attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_values`. Causal mask will also be used by default. If you want to change padding behavior, you should read [`SpeechT5Decoder._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. head_mask (`torch.FloatTensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_values` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_values` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_values` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_values` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SpeechT5 Encoder-Decoder Model outputting raw hidden-states without any specific pre- or post-nets.", SPEECHT5_BASE_START_DOCSTRING, ) class SpeechT5Model(SpeechT5PreTrainedModel): def __init__( self, config: SpeechT5Config, encoder: Optional[nn.Module] = None, decoder: Optional[nn.Module] = None, ): super().__init__(config) self.config = config self.encoder = SpeechT5EncoderWithoutPrenet(config) if encoder is None else encoder self.decoder = SpeechT5DecoderWithoutPrenet(config) if decoder is None else decoder # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet): return self.encoder.get_input_embeddings() if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet): return self.decoder.get_input_embeddings() raise NotImplementedError def set_input_embeddings(self, value): if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet): self.encoder.set_input_embeddings(value) if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet): self.decoder.set_input_embeddings(value) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ if isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet): self.encoder.prenet.freeze_feature_encoder() @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_values: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, speaker_embeddings: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" input_values (`torch.Tensor` of shape `(batch_size, sequence_length)`): Depending on which encoder is being used, the `input_values` are either: float values of the input raw speech waveform, or indices of input sequence tokens in the vocabulary, or hidden states. decoder_input_values (`torch.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Depending on which decoder is being used, the `decoder_input_values` are either: float values of log-mel filterbank features extracted from the raw speech waveform, or indices of decoder input sequence tokens in the vocabulary, or hidden states. speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_values=input_values, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # downsample encoder attention mask (only for encoders with speech input) if attention_mask is not None and isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet): encoder_attention_mask = self.encoder.prenet._get_feature_vector_attention_mask( encoder_outputs[0].shape[1], attention_mask ) else: encoder_attention_mask = attention_mask if isinstance(self.decoder, SpeechT5DecoderWithSpeechPrenet): decoder_args = {"speaker_embeddings": speaker_embeddings} else: decoder_args = {} decoder_outputs = self.decoder( input_values=decoder_input_values, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=encoder_attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **decoder_args, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( """SpeechT5 Model with a speech encoder and a text decoder.""", SPEECHT5_START_DOCSTRING, ) class SpeechT5ForSpeechToText(SpeechT5PreTrainedModel): _tied_weights_keys = ["text_decoder_postnet.lm_head.weight"] def __init__(self, config: SpeechT5Config): super().__init__(config) if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that does not define the" " vocabulary size of the language model head. Please instantiate the model as follows:" " `SpeechT5ForSpeechToText.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of" " your model's configuration." ) speech_encoder = SpeechT5EncoderWithSpeechPrenet(config) text_decoder = SpeechT5DecoderWithTextPrenet(config) self.speecht5 = SpeechT5Model(config, speech_encoder, text_decoder) self.text_decoder_postnet = SpeechT5TextDecoderPostnet(config) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.speecht5.get_encoder() def get_decoder(self): return self.speecht5.get_decoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.get_encoder().prenet.freeze_feature_encoder() def get_output_embeddings(self): return self.text_decoder_postnet.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.text_decoder_postnet.set_output_embeddings(new_embeddings) @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple, Seq2SeqLMOutput]: r""" input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) SpeechT5 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Label indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. Returns: Example: ```python >>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToText >>> from datasets import load_dataset >>> dataset = load_dataset( ... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation", trust_remote_code=True ... ) # doctest: +IGNORE_RESULT >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_asr") >>> model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr") >>> # audio file is decoded on the fly >>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") >>> predicted_ids = model.generate(**inputs, max_length=100) >>> # transcribe speech >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) >>> transcription[0] 'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel' ``` ```python >>> inputs["labels"] = processor(text_target=dataset[0]["text"], return_tensors="pt").input_ids >>> # compute loss >>> loss = model(**inputs).loss >>> round(loss.item(), 2) 19.68 ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.speecht5( input_values=input_values, attention_mask=attention_mask, decoder_input_values=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) logits = self.text_decoder_postnet(outputs[0]) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # Note that this model doesn't inherit from the generation mixin, has unique generate function # cut decoder_input_ids if past is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if decoder_input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = decoder_input_ids.shape[1] - 1 decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] return { "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past def _generate_speech( model: SpeechT5PreTrainedModel, input_values: torch.FloatTensor, speaker_embeddings: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, threshold: float = 0.5, minlenratio: float = 0.0, maxlenratio: float = 20.0, vocoder: Optional[nn.Module] = None, output_cross_attentions: bool = False, return_output_lengths: bool = False, ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: if speaker_embeddings is None: raise ValueError( """`speaker_embeddings` must be specified. For example, you can use a speaker embeddings by following the code snippet provided in this link: https://huggingface.co/datasets/Matthijs/cmu-arctic-xvectors """ ) if attention_mask is None: encoder_attention_mask = 1 - (input_values == model.config.pad_token_id).int() else: encoder_attention_mask = attention_mask bsz = input_values.size(0) encoder_out = model.speecht5.encoder( input_values=input_values, attention_mask=encoder_attention_mask, return_dict=True, ) encoder_last_hidden_state = encoder_out.last_hidden_state # downsample encoder attention mask if isinstance(model.speecht5.encoder, SpeechT5EncoderWithSpeechPrenet): encoder_attention_mask = model.speecht5.encoder.prenet._get_feature_vector_attention_mask( encoder_out[0].shape[1], encoder_attention_mask ) maxlen = int(encoder_last_hidden_state.size(1) * maxlenratio / model.config.reduction_factor) minlen = int(encoder_last_hidden_state.size(1) * minlenratio / model.config.reduction_factor) # Start the output sequence with a mel spectrum that is all zeros. output_sequence = encoder_last_hidden_state.new_zeros(bsz, 1, model.config.num_mel_bins) spectrogram = [] cross_attentions = [] past_key_values = None idx = 0 result_spectrogram = {} while True: idx += 1 # Run the decoder prenet on the entire output sequence. decoder_hidden_states = model.speecht5.decoder.prenet(output_sequence, speaker_embeddings) # Run the decoder layers on the last element of the prenet output. decoder_out = model.speecht5.decoder.wrapped_decoder( hidden_states=decoder_hidden_states[:, -1:], attention_mask=None, encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=True, output_attentions=output_cross_attentions, return_dict=True, ) if output_cross_attentions: cross_attentions.append(torch.cat(decoder_out.cross_attentions, dim=0)) last_decoder_output = decoder_out.last_hidden_state.squeeze(1) past_key_values = decoder_out.past_key_values # Predict the new mel spectrum for this step in the sequence. spectrum = model.speech_decoder_postnet.feat_out(last_decoder_output) spectrum = spectrum.view(bsz, model.config.reduction_factor, model.config.num_mel_bins) spectrogram.append(spectrum) # Extend the output sequence with the new mel spectrum. new_spectrogram = spectrum[:, -1, :].view(bsz, 1, model.config.num_mel_bins) output_sequence = torch.cat((output_sequence, new_spectrogram), dim=1) # Predict the probability that this is the stop token. prob = torch.sigmoid(model.speech_decoder_postnet.prob_out(last_decoder_output)) if idx < minlen: continue else: # If the generation loop is less than maximum length time, check the ones in the batch that have met # the prob threshold. Otherwise, assume all have met thresholds and fill other spectrograms for the batch. if idx < maxlen: meet_thresholds = torch.sum(prob, dim=-1) >= threshold meet_indexes = torch.where(meet_thresholds)[0].tolist() else: meet_indexes = range(len(prob)) meet_indexes = [i for i in meet_indexes if i not in result_spectrogram] if len(meet_indexes) > 0: spectrograms = torch.stack(spectrogram) spectrograms = spectrograms.transpose(0, 1).flatten(1, 2) spectrograms = model.speech_decoder_postnet.postnet(spectrograms) for meet_index in meet_indexes: result_spectrogram[meet_index] = spectrograms[meet_index] if len(result_spectrogram) >= bsz: break spectrograms = [result_spectrogram[i] for i in range(len(result_spectrogram))] if not return_output_lengths: spectrogram = spectrograms[0] if bsz == 1 else torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) if vocoder is not None: outputs = vocoder(spectrogram) else: outputs = spectrogram if output_cross_attentions: cross_attentions = torch.cat(cross_attentions, dim=2) if bsz > 1: cross_attentions = cross_attentions.view( bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:] ) outputs = (outputs, cross_attentions) else: # batched return values should also include the spectrogram/waveform lengths spectrogram_lengths = [] for i in range(bsz): spectrogram_lengths.append(spectrograms[i].size(0)) if vocoder is None: spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) outputs = (spectrograms, spectrogram_lengths) else: waveforms = [] spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) waveforms = vocoder(spectrograms) waveform_lengths = [int(waveforms.size(1) / max(spectrogram_lengths)) * i for i in spectrogram_lengths] outputs = (waveforms, waveform_lengths) if output_cross_attentions: cross_attentions = torch.cat(cross_attentions, dim=2) cross_attentions = cross_attentions.view( bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:] ) outputs = (*outputs, cross_attentions) return outputs @add_start_docstrings( """SpeechT5 Model with a text encoder and a speech decoder.""", SPEECHT5_START_DOCSTRING, ) class SpeechT5ForTextToSpeech(SpeechT5PreTrainedModel): main_input_name = "input_ids" def __init__(self, config: SpeechT5Config): super().__init__(config) if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that does not define the" " vocabulary size of the language model head. Please instantiate the model as follows:" " `SpeechT5ForTextToSpeech.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of" " your model's configuration." ) text_encoder = SpeechT5EncoderWithTextPrenet(config) speech_decoder = SpeechT5DecoderWithSpeechPrenet(config) self.speecht5 = SpeechT5Model(config, text_encoder, speech_decoder) self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config) # Initialize weights and apply final processing self.post_init() @classmethod def can_generate(cls) -> bool: # Speecht5 has a unique model structure, where the external class (`SpeechT5ForTextToSpeech`) doesn't need to inherit from # `GenerationMixin` (it has a non-standard generation method). This means that the base `can_generate()` will return `False`, # but we need to override it so as to do `GenerationConfig` handling in multiple parts of the codebase. return True def get_encoder(self): return self.speecht5.get_encoder() def get_decoder(self): return self.speecht5.get_decoder() @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_values: Optional[torch.FloatTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, speaker_embeddings: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, stop_labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, Seq2SeqSpectrogramOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and [`~PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`): Float values of input mel spectrogram. SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If `past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see `past_key_values`). speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*): Float values of target mel spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss computation. Spectrograms can be obtained using [`SpeechT5Processor`]. See [`SpeechT5Processor.__call__`] for details. Returns: Example: ```python >>> from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, set_seed >>> import torch >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") >>> model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") >>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") >>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt") >>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file >>> set_seed(555) # make deterministic >>> # generate speech >>> speech = model.generate(inputs["input_ids"], speaker_embeddings=speaker_embeddings, vocoder=vocoder) >>> speech.shape torch.Size([15872]) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_values is None: decoder_input_values, decoder_attention_mask = shift_spectrograms_right( labels, self.config.reduction_factor, decoder_attention_mask ) if self.config.use_guided_attention_loss: output_attentions = True outputs = self.speecht5( input_values=input_ids, attention_mask=attention_mask, decoder_input_values=decoder_input_values, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, use_cache=use_cache, speaker_embeddings=speaker_embeddings, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) outputs_before_postnet, outputs_after_postnet, logits = self.speech_decoder_postnet(outputs[0]) loss = None if labels is not None: criterion = SpeechT5SpectrogramLoss(self.config) loss = criterion( attention_mask, outputs_before_postnet, outputs_after_postnet, logits, labels, outputs.cross_attentions, ) if not return_dict: output = (outputs_after_postnet,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqSpectrogramOutput( loss=loss, spectrogram=outputs_after_postnet, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @torch.no_grad() def generate( self, input_ids: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, speaker_embeddings: Optional[torch.FloatTensor] = None, threshold: float = 0.5, minlenratio: float = 0.0, maxlenratio: float = 20.0, vocoder: Optional[nn.Module] = None, output_cross_attentions: bool = False, return_output_lengths: bool = False, **kwargs, ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: r""" Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a speech waveform using a vocoder. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and [`~PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Attention mask from the tokenizer, required for batched inference to signal to the model where to ignore padded tokens from the input_ids. speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. threshold (`float`, *optional*, defaults to 0.5): The generated sequence ends when the predicted stop token probability exceeds this value. minlenratio (`float`, *optional*, defaults to 0.0): Used to calculate the minimum required length for the output sequence. maxlenratio (`float`, *optional*, defaults to 20.0): Used to calculate the maximum allowed length for the output sequence. vocoder (`nn.Module`, *optional*): The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel spectrogram. output_cross_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of the decoder's cross-attention layers. return_output_lengths (`bool`, *optional*, defaults to `False`): Whether or not to return the concrete spectrogram/waveform lengths. Returns: `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: - when `return_output_lengths` is False - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(num_frames,)` -- The predicted speech waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. - when `return_output_lengths` is True - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that are padded to the maximum length. - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each spectrogram. - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. """ if speaker_embeddings is not None: batch_size = input_ids.size(0) if speaker_embeddings.size(0) != batch_size: if speaker_embeddings.size(0) == 1: speaker_embeddings = speaker_embeddings.repeat(batch_size, 1) else: raise ValueError( "The first dimension of speaker_embeddings must be either 1 or the same as batch_size." ) return _generate_speech( self, input_ids, speaker_embeddings, attention_mask, threshold, minlenratio, maxlenratio, vocoder, output_cross_attentions, return_output_lengths, ) @torch.no_grad() def generate_speech( self, input_ids: torch.LongTensor, speaker_embeddings: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, threshold: float = 0.5, minlenratio: float = 0.0, maxlenratio: float = 20.0, vocoder: Optional[nn.Module] = None, output_cross_attentions: bool = False, return_output_lengths: bool = False, ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: r""" Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a speech waveform using a vocoder. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and [`~PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) threshold (`float`, *optional*, defaults to 0.5): The generated sequence ends when the predicted stop token probability exceeds this value. minlenratio (`float`, *optional*, defaults to 0.0): Used to calculate the minimum required length for the output sequence. maxlenratio (`float`, *optional*, defaults to 20.0): Used to calculate the maximum allowed length for the output sequence. vocoder (`nn.Module`, *optional*, defaults to `None`): The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel spectrogram. output_cross_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of the decoder's cross-attention layers. return_output_lengths (`bool`, *optional*, defaults to `False`): Whether or not to return the concrete spectrogram/waveform lengths. Returns: `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: - when `return_output_lengths` is False - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(num_frames,)` -- The predicted speech waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. - when `return_output_lengths` is True - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that are padded to the maximum length. - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each spectrogram. - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. """ if speaker_embeddings is not None: batch_size = input_ids.size(0) if speaker_embeddings.size(0) != batch_size: if speaker_embeddings.size(0) == 1: speaker_embeddings = speaker_embeddings.repeat(batch_size, 1) else: raise ValueError( "The first dimension of speaker_embeddings must be either 1 or the same as batch size." ) return _generate_speech( self, input_ids, speaker_embeddings, attention_mask, threshold, minlenratio, maxlenratio, vocoder, output_cross_attentions, return_output_lengths, ) @add_start_docstrings( """SpeechT5 Model with a speech encoder and a speech decoder.""", SPEECHT5_START_DOCSTRING, ) class SpeechT5ForSpeechToSpeech(SpeechT5PreTrainedModel): def __init__(self, config: SpeechT5Config): super().__init__(config) speech_encoder = SpeechT5EncoderWithSpeechPrenet(config) speech_decoder = SpeechT5DecoderWithSpeechPrenet(config) self.speecht5 = SpeechT5Model(config, speech_encoder, speech_decoder) self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.speecht5.get_encoder() def get_decoder(self): return self.speecht5.get_decoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.get_encoder().prenet.freeze_feature_encoder() @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_values: Optional[torch.FloatTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, speaker_embeddings: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, stop_labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, Seq2SeqSpectrogramOutput]: r""" input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`): Float values of input mel spectrogram. SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If `past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see `past_key_values`). speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*): Float values of target mel spectrogram. Spectrograms can be obtained using [`SpeechT5Processor`]. See [`SpeechT5Processor.__call__`] for details. Returns: Example: ```python >>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan, set_seed >>> from datasets import load_dataset >>> import torch >>> dataset = load_dataset( ... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation", trust_remote_code=True ... ) # doctest: +IGNORE_RESULT >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_vc") >>> model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc") >>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") >>> # audio file is decoded on the fly >>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") >>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file >>> set_seed(555) # make deterministic >>> # generate speech >>> speech = model.generate_speech(inputs["input_values"], speaker_embeddings, vocoder=vocoder) >>> speech.shape torch.Size([77824]) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_values is None: decoder_input_values, decoder_attention_mask = shift_spectrograms_right( labels, self.config.reduction_factor, decoder_attention_mask ) outputs = self.speecht5( input_values=input_values, attention_mask=attention_mask, decoder_input_values=decoder_input_values, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, use_cache=use_cache, speaker_embeddings=speaker_embeddings, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) _, spectrogram, logits = self.speech_decoder_postnet(outputs[0]) loss = None if not return_dict: output = (spectrogram,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqSpectrogramOutput( loss=loss, spectrogram=spectrogram, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @torch.no_grad() def generate_speech( self, input_values: torch.FloatTensor, speaker_embeddings: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, threshold: float = 0.5, minlenratio: float = 0.0, maxlenratio: float = 20.0, vocoder: Optional[nn.Module] = None, output_cross_attentions: bool = False, return_output_lengths: bool = False, ) -> torch.FloatTensor: r""" Converts a raw speech waveform into a sequence of mel spectrograms, which are subsequently turned back into a speech waveform using a vocoder. Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): Tensor containing the speaker embeddings. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) threshold (`float`, *optional*, defaults to 0.5): The generated sequence ends when the predicted stop token probability exceeds this value. minlenratio (`float`, *optional*, defaults to 0.0): Used to calculate the minimum required length for the output sequence. maxlenratio (`float`, *optional*, defaults to 20.0): Used to calculate the maximum allowed length for the output sequence. vocoder (`nn.Module`, *optional*, defaults to `None`): The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel spectrogram. output_cross_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of the decoder's cross-attention layers. return_output_lengths (`bool`, *optional*, defaults to `False`): Whether or not to return the concrete spectrogram/waveform lengths. Returns: `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: - when `return_output_lengths` is False - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(num_frames,)` -- The predicted speech waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. - when `return_output_lengths` is True - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that are padded to the maximum length. - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each spectrogram. - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all the concrete lengths for each waveform. - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. """ if speaker_embeddings is None: speaker_embeddings = torch.zeros((1, 512), device=input_values.device) return _generate_speech( self, input_values, speaker_embeddings, attention_mask, threshold, minlenratio, maxlenratio, vocoder, output_cross_attentions, return_output_lengths, ) HIFIGAN_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SpeechT5HifiGanConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ class HifiGanResidualBlock(nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): super().__init__() self.leaky_relu_slope = leaky_relu_slope self.convs1 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=dilation[i], padding=self.get_padding(kernel_size, dilation[i]), ) for i in range(len(dilation)) ] ) self.convs2 = nn.ModuleList( [ nn.Conv1d( channels, channels, kernel_size, stride=1, dilation=1, padding=self.get_padding(kernel_size, 1), ) for _ in range(len(dilation)) ] ) def get_padding(self, kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm for layer in self.convs1: weight_norm(layer) for layer in self.convs2: weight_norm(layer) def remove_weight_norm(self): for layer in self.convs1: nn.utils.remove_weight_norm(layer) for layer in self.convs2: nn.utils.remove_weight_norm(layer) def forward(self, hidden_states): for conv1, conv2 in zip(self.convs1, self.convs2): residual = hidden_states hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv1(hidden_states) hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) hidden_states = conv2(hidden_states) hidden_states = hidden_states + residual return hidden_states @add_start_docstrings( """HiFi-GAN vocoder.""", HIFIGAN_START_DOCSTRING, ) class SpeechT5HifiGan(PreTrainedModel): config_class = SpeechT5HifiGanConfig main_input_name = "spectrogram" def __init__(self, config: SpeechT5HifiGanConfig): super().__init__(config) self.num_kernels = len(config.resblock_kernel_sizes) self.num_upsamples = len(config.upsample_rates) self.conv_pre = nn.Conv1d( config.model_in_dim, config.upsample_initial_channel, kernel_size=7, stride=1, padding=3, ) self.upsampler = nn.ModuleList() for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): self.upsampler.append( nn.ConvTranspose1d( config.upsample_initial_channel // (2**i), config.upsample_initial_channel // (2 ** (i + 1)), kernel_size=kernel_size, stride=upsample_rate, padding=(kernel_size - upsample_rate) // 2, ) ) self.resblocks = nn.ModuleList() for i in range(len(self.upsampler)): channels = config.upsample_initial_channel // (2 ** (i + 1)) for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3) self.register_buffer("mean", torch.zeros(config.model_in_dim)) self.register_buffer("scale", torch.ones(config.model_in_dim)) # Initialize weights and apply final processing self.post_init() def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() def apply_weight_norm(self): weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm weight_norm(self.conv_pre) for layer in self.upsampler: weight_norm(layer) for layer in self.resblocks: layer.apply_weight_norm() weight_norm(self.conv_post) def remove_weight_norm(self): nn.utils.remove_weight_norm(self.conv_pre) for layer in self.upsampler: nn.utils.remove_weight_norm(layer) for layer in self.resblocks: layer.remove_weight_norm() nn.utils.remove_weight_norm(self.conv_post) def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor: r""" Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech waveform. Args: spectrogram (`torch.FloatTensor`): Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length, config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`. Returns: `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`. """ if self.config.normalize_before: spectrogram = (spectrogram - self.mean) / self.scale is_batched = spectrogram.dim() == 3 if not is_batched: spectrogram = spectrogram.unsqueeze(0) hidden_states = spectrogram.transpose(2, 1) hidden_states = self.conv_pre(hidden_states) for i in range(self.num_upsamples): hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) hidden_states = self.upsampler[i](hidden_states) res_state = self.resblocks[i * self.num_kernels](hidden_states) for j in range(1, self.num_kernels): res_state += self.resblocks[i * self.num_kernels + j](hidden_states) hidden_states = res_state / self.num_kernels hidden_states = nn.functional.leaky_relu(hidden_states) hidden_states = self.conv_post(hidden_states) hidden_states = torch.tanh(hidden_states) if not is_batched: # remove batch dim and collapse tensor to 1-d audio waveform waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1) else: # remove seq-len dim since this collapses to 1 waveform = hidden_states.squeeze(1) return waveform __all__ = [ "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] ```
========================================================================================================================================= SOURCE CODE FILE: number_normalizer.py LINES: 1 SIZE: 6.85 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speecht5\number_normalizer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Number Normalizer class for SpeechT5.""" import re class EnglishNumberNormalizer: def __init__(self): self.ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"] self.teens = [ "", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", ] self.tens = ["", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"] self.thousands = [ "", "thousand", "million", "billion", "trillion", "quadrillion", "quintillion", "sextillion", "septillion", "octillion", "nonillion", "decillion", ] # Define a dictionary to map currency symbols to their names # Top most traded currencies according to # https://en.wikipedia.org/wiki/Template:Most_traded_currencies self.currency_symbols = { "$": " dollars", "€": " euros", "£": " pounds", "¢": " cents", "¥": " japanese yen", "﷼": " saudi riyal", "₹": " indian rupees", "₽": " russian rubles", "฿": " thai baht", "₺": " turkish liras", "₴": " ukrainian hryvnia", "₣": " swiss francs", "₡": " costa rican colon", "₱": " philippine peso", "₪": " israeli shekels", "₮": " mongolian tögrög", "₩": " south korean won", "₦": " nigerian naira", "₫": " vietnamese Đồng", } def spell_number(self, num): if num == 0: return "zero" parts = [] for i in range(0, len(self.thousands)): if num % 1000 != 0: part = "" hundreds = num % 1000 // 100 tens_units = num % 100 if hundreds > 0: part += self.ones[hundreds] + " hundred" if tens_units > 0: part += " and " if tens_units > 10 and tens_units < 20: part += self.teens[tens_units - 10] else: tens_digit = self.tens[tens_units // 10] ones_digit = self.ones[tens_units % 10] if tens_digit: part += tens_digit if ones_digit: if tens_digit: part += " " part += ones_digit parts.append(part) num //= 1000 return " ".join(reversed(parts)) def convert(self, number): """ Converts an individual number passed in string form to spelt-out form """ if "." in number: integer_part, decimal_part = number.split(".") else: integer_part, decimal_part = number, "00" # Extract currency symbol if present currency_symbol = "" for symbol, name in self.currency_symbols.items(): if integer_part.startswith(symbol): currency_symbol = name integer_part = integer_part[len(symbol) :] break if integer_part.startswith("-"): if integer_part[1:].startswith(symbol): currency_symbol = name integer_part = "-" + integer_part[len(symbol) + 1 :] break # Extract 'minus' prefix for negative numbers minus_prefix = "" if integer_part.startswith("-"): minus_prefix = "minus " integer_part = integer_part[1:] elif integer_part.startswith("minus"): minus_prefix = "minus " integer_part = integer_part[len("minus") :] percent_suffix = "" if "%" in integer_part or "%" in decimal_part: percent_suffix = " percent" integer_part = integer_part.replace("%", "") decimal_part = decimal_part.replace("%", "") integer_part = integer_part.zfill(3 * ((len(integer_part) - 1) // 3 + 1)) parts = [] for i in range(0, len(integer_part), 3): chunk = int(integer_part[i : i + 3]) if chunk > 0: part = self.spell_number(chunk) unit = self.thousands[len(integer_part[i:]) // 3 - 1] if unit: part += " " + unit parts.append(part) spelled_integer = " ".join(parts) # Format the spelt-out number based on conditions, such as: # If it has decimal parts, currency symbol, minus prefix, etc if decimal_part == "00": return ( f"{minus_prefix}{spelled_integer}{percent_suffix}{currency_symbol}" if minus_prefix or currency_symbol else f"{spelled_integer}{percent_suffix}" ) else: spelled_decimal = " ".join([self.spell_number(int(digit)) for digit in decimal_part]) return ( f"{minus_prefix}{spelled_integer} point {spelled_decimal}{percent_suffix}{currency_symbol}" if minus_prefix or currency_symbol else f"{minus_prefix}{spelled_integer} point {spelled_decimal}{percent_suffix}" ) def __call__(self, text): """ Convert numbers / number-like quantities in a string to their spelt-out counterparts """ # Form part of the pattern for all currency symbols pattern = r"(?<!\w)(-?\$?\€?\£?\¢?\¥?\₹?\₽?\฿?\₺?\₴?\₣?\₡?\₱?\₪?\₮?\₩?\₦?\₫?\﷼?\d+(?:\.\d{1,2})?%?)(?!\w)" # Find and replace commas in numbers (15,000 -> 15000, etc) text = re.sub(r"(\d+,\d+)", lambda match: match.group(1).replace(",", ""), text) # Use regex to find and replace numbers in the text converted_text = re.sub(pattern, lambda match: self.convert(match.group(1)), text) converted_text = re.sub(" +", " ", converted_text) return converted_text ```
=========================================================================================================================================== SOURCE CODE FILE: processing_speecht5.py LINES: 1 SIZE: 7.42 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speecht5\processing_speecht5.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Speech processor class for SpeechT5.""" from ...processing_utils import ProcessorMixin class SpeechT5Processor(ProcessorMixin): r""" Constructs a SpeechT5 processor which wraps a feature extractor and a tokenizer into a single processor. [`SpeechT5Processor`] offers all the functionalities of [`SpeechT5FeatureExtractor`] and [`SpeechT5Tokenizer`]. See the docstring of [`~SpeechT5Processor.__call__`] and [`~SpeechT5Processor.decode`] for more information. Args: feature_extractor (`SpeechT5FeatureExtractor`): An instance of [`SpeechT5FeatureExtractor`]. The feature extractor is a required input. tokenizer (`SpeechT5Tokenizer`): An instance of [`SpeechT5Tokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "SpeechT5FeatureExtractor" tokenizer_class = "SpeechT5Tokenizer" def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) def __call__(self, *args, **kwargs): """ Processes audio and text input, as well as audio and text targets. You can process audio by using the argument `audio`, or process audio targets by using the argument `audio_target`. This forwards the arguments to SpeechT5FeatureExtractor's [`~SpeechT5FeatureExtractor.__call__`]. You can process text by using the argument `text`, or process text labels by using the argument `text_target`. This forwards the arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.__call__`]. Valid input combinations are: - `text` only - `audio` only - `text_target` only - `audio_target` only - `text` and `audio_target` - `audio` and `audio_target` - `text` and `text_target` - `audio` and `text_target` Please refer to the docstring of the above two methods for more information. """ audio = kwargs.pop("audio", None) text = kwargs.pop("text", None) text_target = kwargs.pop("text_target", None) audio_target = kwargs.pop("audio_target", None) sampling_rate = kwargs.pop("sampling_rate", None) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) elif text is not None: inputs = self.tokenizer(text, **kwargs) else: inputs = None if audio_target is not None: targets = self.feature_extractor(audio_target=audio_target, *args, sampling_rate=sampling_rate, **kwargs) labels = targets["input_values"] elif text_target is not None: targets = self.tokenizer(text_target, **kwargs) labels = targets["input_ids"] else: targets = None if inputs is None: return targets if targets is not None: inputs["labels"] = labels decoder_attention_mask = targets.get("attention_mask") if decoder_attention_mask is not None: inputs["decoder_attention_mask"] = decoder_attention_mask return inputs def pad(self, *args, **kwargs): """ Collates the audio and text inputs, as well as their targets, into a padded batch. Audio inputs are padded by SpeechT5FeatureExtractor's [`~SpeechT5FeatureExtractor.pad`]. Text inputs are padded by SpeechT5Tokenizer's [`~SpeechT5Tokenizer.pad`]. Valid input combinations are: - `input_ids` only - `input_values` only - `labels` only, either log-mel spectrograms or text tokens - `input_ids` and log-mel spectrogram `labels` - `input_values` and text `labels` Please refer to the docstring of the above two methods for more information. """ input_values = kwargs.pop("input_values", None) input_ids = kwargs.pop("input_ids", None) labels = kwargs.pop("labels", None) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs.") if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: inputs = self.feature_extractor.pad(input_values, *args, **kwargs) elif input_ids is not None: inputs = self.tokenizer.pad(input_ids, **kwargs) else: inputs = None if labels is not None: if "input_ids" in labels or (isinstance(labels, list) and "input_ids" in labels[0]): targets = self.tokenizer.pad(labels, **kwargs) labels = targets["input_ids"] else: feature_size_hack = self.feature_extractor.feature_size self.feature_extractor.feature_size = self.feature_extractor.num_mel_bins targets = self.feature_extractor.pad(labels, *args, **kwargs) self.feature_extractor.feature_size = feature_size_hack labels = targets["input_values"] else: targets = None if inputs is None: return targets if targets is not None: inputs["labels"] = labels decoder_attention_mask = targets.get("attention_mask") if decoder_attention_mask is not None: inputs["decoder_attention_mask"] = decoder_attention_mask return inputs def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) __all__ = ["SpeechT5Processor"] ```
============================================================================================================================================= SOURCE CODE FILE: tokenization_speecht5.py LINES: 1 SIZE: 8.74 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\speecht5\tokenization_speecht5.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for SpeechT5.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from .number_normalizer import EnglishNumberNormalizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spm_char.model"} class SpeechT5Tokenizer(PreTrainedTokenizer): """ Construct a SpeechT5 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The begin of sequence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. normalize (`bool`, *optional*, defaults to `False`): Whether to convert numeric quantities in the text to their spelt-out english counterparts. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", normalize=False, sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.vocab_file = vocab_file self.normalize = normalize self._normalizer = None self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, normalize=normalize, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): normalize = kwargs.pop("normalize", self.normalize) if is_split_into_words: text = " " + text if normalize: text = self.normalizer(text) return (text, kwargs) @property def vocab_size(self): return self.sp_model.get_piece_size() @property def normalizer(self): if self._normalizer is None: self._normalizer = EnglishNumberNormalizer() return self._normalizer @normalizer.setter def normalizer(self, value): self._normalizer = value def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_0 + token_ids_1 + [self.eos_token_id] def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) suffix_ones = [1] if token_ids_1 is None: return ([0] * len(token_ids_0)) + suffix_ones return ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) __all__ = ["SpeechT5Tokenizer"] ```
================================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.06 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\splinter\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_splinter import * from .modeling_splinter import * from .tokenization_splinter import * from .tokenization_splinter_fast import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
============================================================================================================================================== SOURCE CODE FILE: configuration_splinter.py LINES: 1 SIZE: 5.49 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\splinter\configuration_splinter.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Splinter model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SplinterConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SplinterModel`]. It is used to instantiate an Splinter model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Splinter [tau/splinter-base](https://huggingface.co/tau/splinter-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Splinter model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`SplinterModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`SplinterModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. question_token_id (`int`, *optional*, defaults to 104): The id of the `[QUESTION]` token. Example: ```python >>> from transformers import SplinterModel, SplinterConfig >>> # Initializing a Splinter tau/splinter-base style configuration >>> configuration = SplinterConfig() >>> # Initializing a model from the tau/splinter-base style configuration >>> model = SplinterModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "splinter" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, use_cache=True, pad_token_id=0, question_token_id=104, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.question_token_id = question_token_id __all__ = ["SplinterConfig"] ```
========================================================================================================================================= SOURCE CODE FILE: modeling_splinter.py LINES: 1 SIZE: 52.13 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\splinter\modeling_splinter.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Splinter model.""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, ModelOutput, QuestionAnsweringModelOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_splinter import SplinterConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "tau/splinter-base" _CONFIG_FOR_DOC = "SplinterConfig" class SplinterEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: Optional[int] = 0, ) -> Tuple: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Splinter class SplinterSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in SplinterModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Splinter class SplinterSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states SPLINTER_SELF_ATTENTION_CLASSES = { "eager": SplinterSelfAttention, } # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Splinter,BERT->SPLINTER class SplinterAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = SPLINTER_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = SplinterSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Splinter class SplinterIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Splinter class SplinterOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Splinter class SplinterLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = SplinterAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = SplinterAttention(config, position_embedding_type="absolute") self.intermediate = SplinterIntermediate(config) self.output = SplinterOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Splinter class SplinterEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([SplinterLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class SplinterPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SplinterConfig base_model_prefix = "splinter" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) SPLINTER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SplinterConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SPLINTER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `{0}`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `{0}`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Splinter Model transformer outputting raw hidden-states without any specific head on top.", SPLINTER_START_DOCSTRING, ) class SplinterModel(SplinterPreTrainedModel): """ The model is an encoder (with only self-attention) following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. """ def __init__(self, config): super().__init__(config) self.config = config self.embeddings = SplinterEmbeddings(config) self.encoder = SplinterEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(SPLINTER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=sequence_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) class SplinterFullyConnectedLayer(nn.Module): def __init__(self, input_dim, output_dim, hidden_act="gelu"): super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.dense = nn.Linear(self.input_dim, self.output_dim) self.act_fn = ACT2FN[hidden_act] self.LayerNorm = nn.LayerNorm(self.output_dim) def forward(self, inputs: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(inputs) hidden_states = self.act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class QuestionAwareSpanSelectionHead(nn.Module): """ Implementation of Question-Aware Span Selection (QASS) head, described in Splinter's paper: """ def __init__(self, config): super().__init__() self.query_start_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) self.query_end_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) self.start_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) self.end_transform = SplinterFullyConnectedLayer(config.hidden_size, config.hidden_size) self.start_classifier = nn.Linear(config.hidden_size, config.hidden_size, bias=False) self.end_classifier = nn.Linear(config.hidden_size, config.hidden_size, bias=False) def forward(self, inputs, positions): _, _, dim = inputs.size() index = positions.unsqueeze(-1).repeat(1, 1, dim) # [batch_size, num_positions, dim] gathered_reps = torch.gather(inputs, dim=1, index=index) # [batch_size, num_positions, dim] query_start_reps = self.query_start_transform(gathered_reps) # [batch_size, num_positions, dim] query_end_reps = self.query_end_transform(gathered_reps) # [batch_size, num_positions, dim] start_reps = self.start_transform(inputs) # [batch_size, seq_length, dim] end_reps = self.end_transform(inputs) # [batch_size, seq_length, dim] hidden_states = self.start_classifier(query_start_reps) # [batch_size, num_positions, dim] start_reps = start_reps.permute(0, 2, 1) # [batch_size, dim, seq_length] start_logits = torch.matmul(hidden_states, start_reps) hidden_states = self.end_classifier(query_end_reps) end_reps = end_reps.permute(0, 2, 1) end_logits = torch.matmul(hidden_states, end_reps) return start_logits, end_logits @add_start_docstrings( """ Splinter Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, SPLINTER_START_DOCSTRING, ) class SplinterForQuestionAnswering(SplinterPreTrainedModel): def __init__(self, config): super().__init__(config) self.splinter = SplinterModel(config) self.splinter_qass = QuestionAwareSpanSelectionHead(config) self.question_token_id = config.question_token_id # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SPLINTER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, question_positions: Optional[torch.LongTensor] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. question_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): The positions of all question tokens. If given, start_logits and end_logits will be of shape `(batch_size, num_questions, sequence_length)`. If None, the first question token in each sequence in the batch will be the only one for which start_logits and end_logits are calculated and they will be of shape `(batch_size, sequence_length)`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict question_positions_were_none = False if question_positions is None: if input_ids is not None: question_position_for_each_example = torch.argmax( (torch.eq(input_ids, self.question_token_id)).int(), dim=-1 ) else: question_position_for_each_example = torch.zeros( inputs_embeds.size(0), dtype=torch.long, layout=inputs_embeds.layout, device=inputs_embeds.device ) question_positions = question_position_for_each_example.unsqueeze(-1) question_positions_were_none = True outputs = self.splinter( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] start_logits, end_logits = self.splinter_qass(sequence_output, question_positions) if question_positions_were_none: start_logits, end_logits = start_logits.squeeze(1), end_logits.squeeze(1) if attention_mask is not None: start_logits = start_logits + (1 - attention_mask) * torch.finfo(start_logits.dtype).min end_logits = end_logits + (1 - attention_mask) * torch.finfo(end_logits.dtype).min total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @dataclass class SplinterForPreTrainingOutput(ModelOutput): """ Class for outputs of Splinter as a span selection model. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when start and end positions are provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`): Span-start scores (before SoftMax). end_logits (`torch.FloatTensor` of shape `(batch_size, num_questions, sequence_length)`): Span-end scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_logits: Optional[torch.FloatTensor] = None end_logits: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @add_start_docstrings( """ Splinter Model for the recurring span selection task as done during the pretraining. The difference to the QA task is that we do not have a question, but multiple question tokens that replace the occurrences of recurring spans instead. """, SPLINTER_START_DOCSTRING, ) class SplinterForPreTraining(SplinterPreTrainedModel): def __init__(self, config): super().__init__(config) self.splinter = SplinterModel(config) self.splinter_qass = QuestionAwareSpanSelectionHead(config) self.question_token_id = config.question_token_id # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( SPLINTER_INPUTS_DOCSTRING.format("batch_size, num_questions, sequence_length") ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, question_positions: Optional[torch.LongTensor] = None, ) -> Union[Tuple, SplinterForPreTrainingOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. question_positions (`torch.LongTensor` of shape `(batch_size, num_questions)`, *optional*): The positions of all question tokens. If given, start_logits and end_logits will be of shape `(batch_size, num_questions, sequence_length)`. If None, the first question token in each sequence in the batch will be the only one for which start_logits and end_logits are calculated and they will be of shape `(batch_size, sequence_length)`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if question_positions is None and start_positions is not None and end_positions is not None: raise TypeError("question_positions must be specified in order to calculate the loss") elif question_positions is None and input_ids is None: raise TypeError("question_positions must be specified when input_embeds is used") elif question_positions is None: question_positions = self._prepare_question_positions(input_ids) outputs = self.splinter( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] batch_size, sequence_length, dim = sequence_output.size() # [batch_size, num_questions, sequence_length] start_logits, end_logits = self.splinter_qass(sequence_output, question_positions) num_questions = question_positions.size(1) if attention_mask is not None: attention_mask_for_each_question = attention_mask.unsqueeze(1).expand( batch_size, num_questions, sequence_length ) start_logits = start_logits + (1 - attention_mask_for_each_question) * torch.finfo(start_logits.dtype).min end_logits = end_logits + (1 - attention_mask_for_each_question) * torch.finfo(end_logits.dtype).min total_loss = None # [batch_size, num_questions, sequence_length] if start_positions is not None and end_positions is not None: # sometimes the start/end positions are outside our model inputs, we ignore these terms start_positions.clamp_(0, max(0, sequence_length - 1)) end_positions.clamp_(0, max(0, sequence_length - 1)) # Ignore zero positions in the loss. Splinter never predicts zero # during pretraining and zero is used for padding question # tokens as well as for start and end positions of padded # question tokens. loss_fct = CrossEntropyLoss(ignore_index=self.config.pad_token_id) start_loss = loss_fct( start_logits.view(batch_size * num_questions, sequence_length), start_positions.view(batch_size * num_questions), ) end_loss = loss_fct( end_logits.view(batch_size * num_questions, sequence_length), end_positions.view(batch_size * num_questions), ) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return SplinterForPreTrainingOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def _prepare_question_positions(self, input_ids: torch.Tensor) -> torch.Tensor: rows, flat_positions = torch.where(input_ids == self.config.question_token_id) num_questions = torch.bincount(rows) positions = torch.full( (input_ids.size(0), num_questions.max()), self.config.pad_token_id, dtype=torch.long, device=input_ids.device, ) cols = torch.cat([torch.arange(n) for n in num_questions]) positions[rows, cols] = flat_positions return positions __all__ = [ "SplinterForQuestionAnswering", "SplinterForPreTraining", "SplinterLayer", "SplinterModel", "SplinterPreTrainedModel", ] ```
============================================================================================================================================= SOURCE CODE FILE: tokenization_splinter.py LINES: 3 SIZE: 20.49 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\splinter\tokenization_splinter.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Splinter.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class SplinterTokenizer(PreTrainedTokenizer): r""" Construct a Splinter tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. question_token (`str`, *optional*, defaults to `"[QUESTION]"`): The token used for constructing question representations. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", question_token="[QUESTION]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) self.question_token = question_token super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, question_token=question_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) @property def question_token_id(self): """ `Optional[int]`: Id of the question token in the vocabulary, used to condition the answer on a question representation. """ return self.convert_tokens_to_ids(self.question_token) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a pair of sequence for question answering tasks by concatenating and adding special tokens. A Splinter sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences for question answering: `[CLS] question_tokens [QUESTION] . [SEP] context_tokens [SEP]` Args: token_ids_0 (`List[int]`): The question token IDs if pad_on_right, else context tokens IDs token_ids_1 (`List[int]`, *optional*): The context token IDs if pad_on_right, else question token IDs Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] if self.padding_side == "right": # Input is question-then-context return cls + token_ids_0 + question_suffix + sep + token_ids_1 + sep else: # Input is context-then-question return cls + token_ids_0 + sep + token_ids_1 + question_suffix + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create the token type IDs corresponding to the sequences passed. [What are token type IDs?](../glossary#token-type-ids) Should be overridden in a subclass if the model has a special way of building those. Args: token_ids_0 (`List[int]`): The first tokenized sequence. token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. Returns: `List[int]`: The token type ids. """ sep = [self.sep_token_id] cls = [self.cls_token_id] question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] if self.padding_side == "right": # Input is question-then-context return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1] else: # Input is context-then-question return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) class BasicTokenizer: """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer. Args: **never_split**: (*optional*) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if never_split is not None and text in never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer: """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens __all__ = ["SplinterTokenizer"] ```
================================================================================================================================================== SOURCE CODE FILE: tokenization_splinter_fast.py LINES: 1 SIZE: 8.40 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\splinter\tokenization_splinter_fast.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Tokenization classes for Splinter.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_splinter import SplinterTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} class SplinterTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" Splinter tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. question_token (`str`, *optional*, defaults to `"[QUESTION]"`): The token used for constructing question representations. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = SplinterTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", question_token="[QUESTION]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, additional_special_tokens=(question_token,), **kwargs, ) pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get("lowercase", do_lower_case) != do_lower_case or pre_tok_state.get("strip_accents", strip_accents) != strip_accents ): pre_tok_class = getattr(normalizers, pre_tok_state.pop("type")) pre_tok_state["lowercase"] = do_lower_case pre_tok_state["strip_accents"] = strip_accents self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state) self.do_lower_case = do_lower_case @property def question_token_id(self): """ `Optional[int]`: Id of the question token in the vocabulary, used to condition the answer on a question representation. """ return self.convert_tokens_to_ids(self.question_token) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a pair of sequence for question answering tasks by concatenating and adding special tokens. A Splinter sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences for question answering: `[CLS] question_tokens [QUESTION] . [SEP] context_tokens [SEP]` Args: token_ids_0 (`List[int]`): The question token IDs if pad_on_right, else context tokens IDs token_ids_1 (`List[int]`, *optional*): The context token IDs if pad_on_right, else question token IDs Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] if self.padding_side == "right": # Input is question-then-context return cls + token_ids_0 + question_suffix + sep + token_ids_1 + sep else: # Input is context-then-question return cls + token_ids_0 + sep + token_ids_1 + question_suffix + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create the token type IDs corresponding to the sequences passed. [What are token type IDs?](../glossary#token-type-ids) Should be overridden in a subclass if the model has a special way of building those. Args: token_ids_0 (`List[int]`): The first tokenized sequence. token_ids_1 (`List[int]`, *optional*): The second tokenized sequence. Returns: `List[int]`: The token type ids. """ sep = [self.sep_token_id] cls = [self.cls_token_id] question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] if self.padding_side == "right": # Input is question-then-context return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1] else: # Input is context-then-question return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) __all__ = ["SplinterTokenizerFast"] ```
=================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.07 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\squeezebert\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_squeezebert import * from .modeling_squeezebert import * from .tokenization_squeezebert import * from .tokenization_squeezebert_fast import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
==================================================================================================================================================== SOURCE CODE FILE: configuration_squeezebert.py LINES: 1 SIZE: 7.13 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\squeezebert\configuration_squeezebert.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SqueezeBERT model configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class SqueezeBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SqueezeBertModel`]. It is used to instantiate a SqueezeBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SqueezeBERT [squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the SqueezeBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`SqueezeBertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): pad_token_id (`int`, *optional*, defaults to 0): The ID of the token in the word embedding to use as padding. embedding_size (`int`, *optional*, defaults to 768): The dimension of the word embedding vectors. q_groups (`int`, *optional*, defaults to 4): The number of groups in Q layer. k_groups (`int`, *optional*, defaults to 4): The number of groups in K layer. v_groups (`int`, *optional*, defaults to 4): The number of groups in V layer. post_attention_groups (`int`, *optional*, defaults to 1): The number of groups in the first feed forward network layer. intermediate_groups (`int`, *optional*, defaults to 4): The number of groups in the second feed forward network layer. output_groups (`int`, *optional*, defaults to 4): The number of groups in the third feed forward network layer. Examples: ```python >>> from transformers import SqueezeBertConfig, SqueezeBertModel >>> # Initializing a SqueezeBERT configuration >>> configuration = SqueezeBertConfig() >>> # Initializing a model (with random weights) from the configuration above >>> model = SqueezeBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "squeezebert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, embedding_size=768, q_groups=4, k_groups=4, v_groups=4, post_attention_groups=1, intermediate_groups=4, output_groups=4, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.embedding_size = embedding_size self.q_groups = q_groups self.k_groups = k_groups self.v_groups = v_groups self.post_attention_groups = post_attention_groups self.intermediate_groups = intermediate_groups self.output_groups = output_groups # # Copied from transformers.models.bert.configuration_bert.BertOnxxConfig with Bert->SqueezeBert class SqueezeBertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] ) __all__ = ["SqueezeBertConfig", "SqueezeBertOnnxConfig"] ```
=============================================================================================================================================== SOURCE CODE FILE: modeling_squeezebert.py LINES: 1 SIZE: 44.37 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\squeezebert\modeling_squeezebert.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SqueezeBert model.""" import math from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_squeezebert import SqueezeBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "squeezebert/squeezebert-uncased" _CONFIG_FOR_DOC = "SqueezeBertConfig" class SqueezeBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MatMulWrapper(nn.Module): """ Wrapper for torch.matmul(). This makes flop-counting easier to implement. Note that if you directly call torch.matmul() in your code, the flop counter will typically ignore the flops of the matmul. """ def __init__(self): super().__init__() def forward(self, mat1, mat2): """ :param inputs: two torch tensors :return: matmul of these tensors Here are the typical dimensions found in BERT (the B is optional) mat1.shape: [B, <optional extra dims>, M, K] mat2.shape: [B, <optional extra dims>, K, N] output shape: [B, <optional extra dims>, M, N] """ return torch.matmul(mat1, mat2) class SqueezeBertLayerNorm(nn.LayerNorm): """ This is a nn.LayerNorm subclass that accepts NCW data layout and performs normalization in the C dimension. N = batch C = channels W = sequence length """ def __init__(self, hidden_size, eps=1e-12): nn.LayerNorm.__init__(self, normalized_shape=hidden_size, eps=eps) # instantiates self.{weight, bias, eps} def forward(self, x): x = x.permute(0, 2, 1) x = nn.LayerNorm.forward(self, x) return x.permute(0, 2, 1) class ConvDropoutLayerNorm(nn.Module): """ ConvDropoutLayerNorm: Conv, Dropout, LayerNorm """ def __init__(self, cin, cout, groups, dropout_prob): super().__init__() self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups) self.layernorm = SqueezeBertLayerNorm(cout) self.dropout = nn.Dropout(dropout_prob) def forward(self, hidden_states, input_tensor): x = self.conv1d(hidden_states) x = self.dropout(x) x = x + input_tensor x = self.layernorm(x) return x class ConvActivation(nn.Module): """ ConvActivation: Conv, Activation """ def __init__(self, cin, cout, groups, act): super().__init__() self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups) self.act = ACT2FN[act] def forward(self, x): output = self.conv1d(x) return self.act(output) class SqueezeBertSelfAttention(nn.Module): def __init__(self, config, cin, q_groups=1, k_groups=1, v_groups=1): """ config = used for some things; ignored for others (work in progress...) cin = input channels = output channels groups = number of groups to use in conv1d layers """ super().__init__() if cin % config.num_attention_heads != 0: raise ValueError( f"cin ({cin}) is not a multiple of the number of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(cin / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=q_groups) self.key = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=k_groups) self.value = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=v_groups) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.softmax = nn.Softmax(dim=-1) self.matmul_qk = MatMulWrapper() self.matmul_qkv = MatMulWrapper() def transpose_for_scores(self, x): """ - input: [N, C, W] - output: [N, C1, W, C2] where C1 is the head index, and C2 is one head's contents """ new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W] x = x.view(*new_x_shape) return x.permute(0, 1, 3, 2) # [N, C1, C2, W] --> [N, C1, W, C2] def transpose_key_for_scores(self, x): """ - input: [N, C, W] - output: [N, C1, C2, W] where C1 is the head index, and C2 is one head's contents """ new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W] x = x.view(*new_x_shape) # no `permute` needed return x def transpose_output(self, x): """ - input: [N, C1, W, C2] - output: [N, C, W] """ x = x.permute(0, 1, 3, 2).contiguous() # [N, C1, C2, W] new_x_shape = (x.size()[0], self.all_head_size, x.size()[3]) # [N, C, W] x = x.view(*new_x_shape) return x def forward(self, hidden_states, attention_mask, output_attentions): """ expects hidden_states in [N, C, W] data layout. The attention_mask data layout is [N, W], and it does not need to be transposed. """ mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_key_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_score = self.matmul_qk(query_layer, key_layer) attention_score = attention_score / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_score = attention_score + attention_mask # Normalize the attention scores to probabilities. attention_probs = self.softmax(attention_score) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = self.matmul_qkv(attention_probs, value_layer) context_layer = self.transpose_output(context_layer) result = {"context_layer": context_layer} if output_attentions: result["attention_score"] = attention_score return result class SqueezeBertModule(nn.Module): def __init__(self, config): """ - hidden_size = input chans = output chans for Q, K, V (they are all the same ... for now) = output chans for the module - intermediate_size = output chans for intermediate layer - groups = number of groups for all layers in the BertModule. (eventually we could change the interface to allow different groups for different layers) """ super().__init__() c0 = config.hidden_size c1 = config.hidden_size c2 = config.intermediate_size c3 = config.hidden_size self.attention = SqueezeBertSelfAttention( config=config, cin=c0, q_groups=config.q_groups, k_groups=config.k_groups, v_groups=config.v_groups ) self.post_attention = ConvDropoutLayerNorm( cin=c0, cout=c1, groups=config.post_attention_groups, dropout_prob=config.hidden_dropout_prob ) self.intermediate = ConvActivation(cin=c1, cout=c2, groups=config.intermediate_groups, act=config.hidden_act) self.output = ConvDropoutLayerNorm( cin=c2, cout=c3, groups=config.output_groups, dropout_prob=config.hidden_dropout_prob ) def forward(self, hidden_states, attention_mask, output_attentions): att = self.attention(hidden_states, attention_mask, output_attentions) attention_output = att["context_layer"] post_attention_output = self.post_attention(attention_output, hidden_states) intermediate_output = self.intermediate(post_attention_output) layer_output = self.output(intermediate_output, post_attention_output) output_dict = {"feature_map": layer_output} if output_attentions: output_dict["attention_score"] = att["attention_score"] return output_dict class SqueezeBertEncoder(nn.Module): def __init__(self, config): super().__init__() assert config.embedding_size == config.hidden_size, ( "If you want embedding_size != intermediate hidden_size, " "please insert a Conv1d layer to adjust the number of channels " "before the first SqueezeBertModule." ) self.layers = nn.ModuleList(SqueezeBertModule(config) for _ in range(config.num_hidden_layers)) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): if head_mask is None: head_mask_is_all_none = True elif head_mask.count(None) == len(head_mask): head_mask_is_all_none = True else: head_mask_is_all_none = False assert head_mask_is_all_none is True, "head_mask is not yet supported in the SqueezeBert implementation." # [batch_size, sequence_length, hidden_size] --> [batch_size, hidden_size, sequence_length] hidden_states = hidden_states.permute(0, 2, 1) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for layer in self.layers: if output_hidden_states: hidden_states = hidden_states.permute(0, 2, 1) all_hidden_states += (hidden_states,) hidden_states = hidden_states.permute(0, 2, 1) layer_output = layer.forward(hidden_states, attention_mask, output_attentions) hidden_states = layer_output["feature_map"] if output_attentions: all_attentions += (layer_output["attention_score"],) # [batch_size, hidden_size, sequence_length] --> [batch_size, sequence_length, hidden_size] hidden_states = hidden_states.permute(0, 2, 1) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class SqueezeBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class SqueezeBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class SqueezeBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = SqueezeBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self) -> None: self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class SqueezeBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = SqueezeBertLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class SqueezeBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SqueezeBertConfig base_model_prefix = "transformer" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv1d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, SqueezeBertLMPredictionHead): module.bias.data.zero_() SQUEEZEBERT_START_DOCSTRING = r""" The SqueezeBERT model was proposed in [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. For best results finetuning SqueezeBERT on text classification tasks, it is recommended to use the *squeezebert/squeezebert-mnli-headless* checkpoint as a starting point. Parameters: config ([`SqueezeBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. Hierarchy: ``` Internal class hierarchy: SqueezeBertModel SqueezeBertEncoder SqueezeBertModule SqueezeBertSelfAttention ConvActivation ConvDropoutLayerNorm ``` Data layouts: ``` Input data is in [batch, sequence_length, hidden_size] format. Data inside the encoder is in [batch, hidden_size, sequence_length] format. But, if `output_hidden_states == True`, the data from inside the encoder is returned in [batch, sequence_length, hidden_size] format. The final output of the encoder is in [batch, sequence_length, hidden_size] format. ``` """ SQUEEZEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SqueezeBERT Model transformer outputting raw hidden-states without any specific head on top.", SQUEEZEBERT_START_DOCSTRING, ) class SqueezeBertModel(SqueezeBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = SqueezeBertEmbeddings(config) self.encoder = SqueezeBertEncoder(config) self.pooler = SqueezeBertPooler(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings): self.embeddings.word_embeddings = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings("""SqueezeBERT Model with a `language modeling` head on top.""", SQUEEZEBERT_START_DOCSTRING) class SqueezeBertForMaskedLM(SqueezeBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.transformer = SqueezeBertModel(config) self.cls = SqueezeBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ SqueezeBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, SQUEEZEBERT_START_DOCSTRING, ) class SqueezeBertForSequenceClassification(SqueezeBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.transformer = SqueezeBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ SqueezeBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, SQUEEZEBERT_START_DOCSTRING, ) class SqueezeBertForMultipleChoice(SqueezeBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = SqueezeBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ SqueezeBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, SQUEEZEBERT_START_DOCSTRING, ) class SqueezeBertForTokenClassification(SqueezeBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = SqueezeBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ SqueezeBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, SQUEEZEBERT_START_DOCSTRING, ) class SqueezeBertForQuestionAnswering(SqueezeBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = SqueezeBertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] ```
=================================================================================================================================================== SOURCE CODE FILE: tokenization_squeezebert.py LINES: 3 SIZE: 20.75 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\squeezebert\tokenization_squeezebert.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for SqueezeBERT.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} # Copied from transformers.models.bert.tokenization_bert.load_vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens # Copied from transformers.models.bert.tokenization_bert.BertTokenizer with Bert->SqueezeBert,BERT->SqueezeBERT class SqueezeBertTokenizer(PreTrainedTokenizer): r""" Construct a SqueezeBERT tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original SqueezeBERT). clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, clean_up_tokenization_spaces=True, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = SqueezeBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text, split_special_tokens=False): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize( text, never_split=self.all_special_tokens if not split_special_tokens else None ): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A SqueezeBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A SqueezeBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer: """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer: """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens __all__ = ["SqueezeBertTokenizer"] ```
======================================================================================================================================================== SOURCE CODE FILE: tokenization_squeezebert_fast.py LINES: 1 SIZE: 7.68 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\squeezebert\tokenization_squeezebert_fast.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for SqueezeBERT.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with Bert->SqueezeBert,BERT->SqueezeBERT class SqueezeBertTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" SqueezeBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original SqueezeBERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = SqueezeBertTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", do_lower_case) != do_lower_case or normalizer_state.get("strip_accents", strip_accents) != strip_accents or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars ): normalizer_class = getattr(normalizers, normalizer_state.pop("type")) normalizer_state["lowercase"] = do_lower_case normalizer_state["strip_accents"] = strip_accents normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) self.do_lower_case = do_lower_case def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A SqueezeBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1 is not None: output += token_ids_1 + [self.sep_token_id] return output def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A SqueezeBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) __all__ = ["SqueezeBertTokenizerFast"] ```
================================================================================================================================ SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.97 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\stablelm\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_stablelm import * from .modeling_stablelm import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
============================================================================================================================================== SOURCE CODE FILE: configuration_stablelm.py LINES: 1 SIZE: 10.58 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\stablelm\configuration_stablelm.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 Stability AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """StableLM model configuration""" from ...configuration_utils import PretrainedConfig from ...modeling_rope_utils import rope_config_validation from ...utils import logging logger = logging.get_logger(__name__) class StableLmConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`~StableLmModel`]. It is used to instantiate an StableLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the StableLM [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50304): Vocabulary size of the StableLM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`StableLmModel`]. intermediate_size (`int`, *optional*, defaults to 6912): Dimension of the MLP representations. hidden_size (`int`, *optional*, defaults to 2560): Number of hidden layers in the Transformer decoder. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 32): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string). max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to `10000.0`): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE use_qkv_bias (`bool`, *optional*, defaults to `False`): Whether or not the model should use bias for qkv layers. qk_layernorm (`bool`, *optional*, defaults to `False`): Whether or not to normalize, per head, the Queries and Keys after projecting the hidden states. use_parallel_residual (`bool`, *optional*, defaults to `False`): Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training speedup at large scales. hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after applying the MLP to the hidden states. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. partial_rotary_factor (`float`, *optional*, defaults to 0.25): Percentage of the query and keys which will have rotary embedding. bos_token_id (int, *optional*, defaults to 0): The id of the `BOS` token in the vocabulary. eos_token_id (int, *optional*, defaults to 0): The id of the `EOS` token in the vocabulary. Example: ```python >>> from transformers import StableLmModel, StableLmConfig >>> # Initializing a StableLM stablelm-3b style configuration >>> configuration = StableLmConfig() ```""" model_type = "stablelm" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=50304, intermediate_size=6912, hidden_size=2560, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act="silu", max_position_embeddings=4096, initializer_range=0.02, layer_norm_eps=1.0e-5, use_cache=True, tie_word_embeddings=False, rope_theta=10_000, rope_scaling=None, use_qkv_bias=False, qk_layernorm=False, use_parallel_residual=False, hidden_dropout=0.0, attention_dropout=0.0, partial_rotary_factor=0.25, bos_token_id=0, eos_token_id=0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.use_qkv_bias = use_qkv_bias self.qk_layernorm = qk_layernorm self.use_parallel_residual = use_parallel_residual self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.partial_rotary_factor = partial_rotary_factor # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) __all__ = ["StableLmConfig"] ```
========================================================================================================================================= SOURCE CODE FILE: modeling_stablelm.py LINES: 1 SIZE: 60.97 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\stablelm\modeling_stablelm.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch StableLM model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, StaticCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, can_return_tuple, is_torch_flex_attn_available, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from .configuration_stablelm import StableLmConfig if is_torch_flex_attn_available(): from torch.nn.attention.flex_attention import BlockMask from ...integrations.flex_attention import make_flex_block_causal_mask if is_flash_attn_available(): from ...modeling_flash_attention_utils import _flash_attention_forward logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "stabilityai/stablelm-3b-4e1t" _CONFIG_FOR_DOC = "StableLmConfig" # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->StableLm class StableLmRotaryEmbedding(nn.Module): def __init__(self, config: StableLmConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->StableLm class StableLmMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj class StableLmLayerNormPerHead(nn.Module): def __init__(self, dim, num_heads, eps=1e-5, bias=False): super().__init__() self.dim = dim self.num_heads = num_heads self.norms = nn.ModuleList([nn.LayerNorm(dim, eps=eps, bias=bias) for _ in range(self.num_heads)]) def forward(self, hidden_states: torch.Tensor): # Split along the num_heads axis to get per-head inputs # [batch_size, num_heads, seq_len, head_dim] -> [batch_size, 1, seq_len, head_dim] * num_heads states_per_heads = torch.split(hidden_states, 1, dim=1) # Normalize and merge the heads back together return torch.cat([norm(hidden_states) for norm, hidden_states in zip(self.norms, states_per_heads)], dim=1) # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class StableLmAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: StableLmConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.rope_theta = config.rope_theta self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor) self.is_causal = True if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.qk_layernorm = config.qk_layernorm if self.qk_layernorm: self.q_layernorm = StableLmLayerNormPerHead(self.head_dim, self.num_heads, eps=config.layer_norm_eps) self.k_layernorm = StableLmLayerNormPerHead( self.head_dim, self.num_key_value_heads, eps=config.layer_norm_eps ) self.attention_dropout = nn.Dropout(config.attention_dropout) self.rotary_emb = StableLmRotaryEmbedding(config=self.config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) cos, sin = position_embeddings # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_ndims], query_states[..., self.rotary_ndims :], ) key_rot, key_pass = ( key_states[..., : self.rotary_ndims], key_states[..., self.rotary_ndims :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: # Specific to RoPE models with partial rotation cache_kwargs = { "sin": sin, "cos": cos, "partial_rotation_size": self.rotary_ndims, "cache_position": cache_position, } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # Repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights += causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query_states.dtype) attn_weights = self.attention_dropout(attn_weights) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class StableLmSdpaAttention(StableLmAttention): def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "StableLmModel is using StableLmSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) cos, sin = position_embeddings # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_ndims], query_states[..., self.rotary_ndims :], ) key_rot, key_pass = ( key_states[..., : self.rotary_ndims], key_states[..., self.rotary_ndims :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: # Specific to RoPE models with partial rotation cache_kwargs = { "sin": sin, "cos": cos, "partial_rotation_size": self.rotary_ndims, "cache_position": cache_position, } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # Repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout.p if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value class StableLmFlashAttention2(StableLmAttention): """ StableLM flash attention module. This module inherits from `StableLmAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # StableLmFlashAttention2 attention does not support output_attentions output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) cos, sin = position_embeddings # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_ndims], query_states[..., self.rotary_ndims :], ) key_rot, key_pass = ( key_states[..., : self.rotary_ndims], key_states[..., self.rotary_ndims :], ) query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: cache_kwargs = { "sin": sin, "cos": cos, "partial_rotation_size": self.rotary_ndims, "cache_position": cache_position, } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout.p if self.training else 0.0 attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, position_ids=position_ids, dropout=dropout_rate, use_top_left_mask=self._flash_attn_uses_top_left_mask, is_causal=self.is_causal, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value ATTENTION_CLASSES = { "eager": StableLmAttention, "sdpa": StableLmSdpaAttention, "flash_attention_2": StableLmFlashAttention2, } class StableLmDecoderLayer(nn.Module): def __init__(self, config: StableLmConfig, layer_idx: int): super().__init__() self.use_parallel_residual = config.use_parallel_residual self.hidden_size = config.hidden_size self.self_attn = ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) self.mlp = StableLmMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.post_attention_layernorm = None if not self.use_parallel_residual: self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention self_attn_output, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) # copied from transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXLayer.forward if self.use_parallel_residual: # x = x + attn(ln1(x)) + mlp(ln1(x)) # Fully Connected mlp_output = self.mlp(hidden_states) mlp_output = self.dropout(mlp_output) hidden_states = residual + self_attn_output + mlp_output else: # x = x + attn(ln1(x)) # x = x + mlp(ln2(x)) residual = residual + self_attn_output # Fully Connected mlp_output = self.mlp(self.post_attention_layernorm(residual)) mlp_output = self.dropout(mlp_output) hidden_states = residual + mlp_output outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs STABLELM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`StableLmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare StableLm Model outputting raw hidden-states without any specific head on top.", STABLELM_START_DOCSTRING, ) class StableLmPreTrainedModel(PreTrainedModel): config_class = StableLmConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["StableLmDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_cache_class = True _supports_sdpa = True _supports_quantized_cache = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() STABLELM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare StableLm Model outputting raw hidden-states without any specific head on top.", STABLELM_START_DOCSTRING, ) class StableLmModel(StableLmPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`StableLmDecoderLayer`] Args: config: StableLmConfig """ def __init__(self, config: StableLmConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [StableLmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.rotary_emb = StableLmRotaryEmbedding(config=config) self._attn_implementation = config._attn_implementation self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> BaseModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # kept for BC (non `Cache` `past_key_values` inputs) return_legacy_cache = False if use_cache and not isinstance(past_key_values, Cache): return_legacy_cache = True if past_key_values is None: past_key_values = DynamicCache() else: past_key_values = DynamicCache.from_legacy_cache(past_key_values) logger.warning_once( "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" ) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if return_legacy_cache: next_cache = next_cache.to_legacy_cache() return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None if self.config._attn_implementation == "flex_attention": if isinstance(attention_mask, torch.Tensor): attention_mask = make_flex_block_causal_mask(attention_mask) if isinstance(attention_mask, BlockMask): return attention_mask # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to place the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM with PERSIMMON->STABLELM,Persimmon->StableLm class StableLmForCausalLM(StableLmPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with LLAMA->STABLELM,Llama->StableLm def __init__(self, config): super().__init__(config) self.model = StableLmModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings def get_input_embeddings(self): return self.model.embed_tokens # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings def set_input_embeddings(self, value): self.model.embed_tokens = value # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder def set_decoder(self, decoder): self.model = decoder # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder def get_decoder(self): return self.model @can_return_tuple @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) # Ignore copy def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs, ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, StableLmForCausalLM >>> model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t") >>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t") >>> prompt = "The weather is always wonderful in" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 'The weather is always wonderful in the summer in the city of San Diego. The city is located on the coast of the Pacific Ocean and is surrounded by' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, ) hidden_states = outputs.last_hidden_state # No upscaling to float was ever done for StableLm slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function( logits, labels, vocab_size=self.config.vocab_size, **kwargs, ) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The StableLm transformer with a sequence classification head on top (linear layer). [`StableLmForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, STABLELM_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->STABLELM,Llama->StableLm class StableLmForSequenceClassification(StableLmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = StableLmModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> SequenceClassifierOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) hidden_states = transformer_outputs.last_hidden_state logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The StableLm Model transformer with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, STABLELM_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->StableLm, LLAMA->STABLELM class StableLmForTokenClassification(StableLmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = StableLmModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> TokenClassifierOutput: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "StableLmForCausalLM", "StableLmModel", "StableLmPreTrainedModel", "StableLmForSequenceClassification", "StableLmForTokenClassification", ] ```
================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 0.98 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\starcoder2\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_starcoder2 import * from .modeling_starcoder2 import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
================================================================================================================================================== SOURCE CODE FILE: configuration_starcoder2.py LINES: 1 SIZE: 10.64 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\starcoder2\configuration_starcoder2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Starcoder2 model configuration""" from ...configuration_utils import PretrainedConfig from ...modeling_rope_utils import rope_config_validation from ...utils import logging logger = logging.get_logger(__name__) class Starcoder2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Starcoder2Model`]. It is used to instantiate a Starcoder2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [bigcode/starcoder2-7b](https://huggingface.co/bigcode/starcoder2-7b) model. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 49152): Vocabulary size of the Starcoder2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Starcoder2Model`] hidden_size (`int`, *optional*, defaults to 3072): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 12288): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 30): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 24): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 2): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. Starcoder2's sliding window attention allows sequence of up to 4096*32 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. norm_epsilon (`float`, *optional*, defaults to 1e-05): Epsilon value for the layer norm use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. bos_token_id (`int`, *optional*, defaults to 50256): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 50256): The id of the "end-of-sequence" token. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE sliding_window (`int`, *optional*): Sliding window attention window size. If not specified, will default to `None` (no sliding window). attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. residual_dropout (`float`, *optional*, defaults to 0.0): Residual connection dropout value. embedding_dropout (`float`, *optional*, defaults to 0.0): Embedding dropout. use_bias (`bool`, *optional*, defaults to `True`): Whether to use bias term on linear layers of the model. ```python >>> from transformers import Starcoder2Model, Starcoder2Config >>> # Initializing a Starcoder2 7B style configuration >>> configuration = Starcoder2Config() >>> # Initializing a model from the Starcoder2 7B style configuration >>> model = Starcoder2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "starcoder2" keys_to_ignore_at_inference = ["past_key_values"] # Default tensor parallel plan for base model `Starcoder2` base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.c_fc": "colwise", "layers.*.mlp.c_proj": "colwise", } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, vocab_size=49152, hidden_size=3072, intermediate_size=12288, num_hidden_layers=30, num_attention_heads=24, num_key_value_heads=2, hidden_act="gelu_pytorch_tanh", max_position_embeddings=4096, initializer_range=0.018042, norm_epsilon=1e-5, use_cache=True, bos_token_id=50256, eos_token_id=50256, rope_theta=10000.0, rope_scaling=None, sliding_window=None, attention_dropout=0.0, residual_dropout=0.0, embedding_dropout=0.0, use_bias=True, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window self.use_bias = use_bias self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.norm_epsilon = norm_epsilon self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_dropout = attention_dropout self.residual_dropout = residual_dropout self.embedding_dropout = embedding_dropout # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) __all__ = ["Starcoder2Config"] ```
============================================================================================================================================= SOURCE CODE FILE: modeling_starcoder2.py LINES: 2 SIZE: 46.05 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\starcoder2\modeling_starcoder2.py ENCODING: utf-8 ```py # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/starcoder2/modular_starcoder2.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_starcoder2.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, List, Optional, Tuple, Union import torch from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import ( LossKwargs, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, can_return_tuple, logging, replace_return_docstrings, ) from ...utils.deprecation import deprecate_kwarg from .configuration_starcoder2 import Starcoder2Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bigcode/starcoder2-7b" _CONFIG_FOR_DOC = "Starcoder2Config" class Starcoder2MLP(nn.Module): def __init__(self, config: Starcoder2Config): super().__init__() embed_dim = config.hidden_size self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias) self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias) self.act = ACT2FN[config.hidden_act] self.residual_dropout = config.residual_dropout def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training) return hidden_states def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class Starcoder2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Starcoder2Config, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias) self.residual_dropout = config.residual_dropout def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=getattr(self.config, "sliding_window", None), # diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) attn_output = nn.functional.dropout( attn_output, p=self.residual_dropout, training=self.training ) # diff with Llama return attn_output, attn_weights class Starcoder2DecoderLayer(nn.Module): def __init__(self, config: Starcoder2Config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = Starcoder2Attention(config=config, layer_idx=layer_idx) self.mlp = Starcoder2MLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class Starcoder2RotaryEmbedding(nn.Module): def __init__(self, config: Starcoder2Config, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) STARCODER2_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Starcoder2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Starcoder2 Model outputting raw hidden-states without any specific head on top.", STARCODER2_START_DOCSTRING, ) class Starcoder2PreTrainedModel(PreTrainedModel): config_class = Starcoder2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Starcoder2DecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True _supports_attention_backend = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() STARCODER2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare Starcoder2 Model outputting raw hidden-states without any specific head on top.", STARCODER2_START_DOCSTRING, ) class Starcoder2Model(Starcoder2PreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Starcoder2DecoderLayer`] Args: config: Starcoder2Config """ def __init__(self, config: Starcoder2Config): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [Starcoder2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) self.rotary_emb = Starcoder2RotaryEmbedding(config=config) self.gradient_checkpointing = False self.embedding_dropout = config.embedding_dropout # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> BaseModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds hidden_states = nn.functional.dropout( hidden_states, p=self.embedding_dropout, training=self.training ) # main diff with Llama # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and past_key_values is not None: is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Starcoder2. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if ( self.config._attn_implementation == "sdpa" and not (using_static_cache or using_sliding_window_cache) and not output_attentions ): if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, sliding_window=self.config.sliding_window, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] # SlidingWindowCache or StaticCache if using_sliding_window_cache or using_static_cache: target_length = past_key_values.get_max_cache_shape() # DynamicCache or no cache else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], config=self.config, past_key_values=past_key_values, ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, config: Starcoder2Config, past_key_values: Cache, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to place the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. config (`Starcoder2Config`): The model's configuration class past_key_values (`Cache`): The cache class that is being used currently to generate """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) if config.sliding_window is not None: # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also # the check is needed to verify is current checkpoint was trained with sliding window or not if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: sliding_attend_mask = torch.arange(target_length, device=device) <= ( cache_position.reshape(-1, 1) - config.sliding_window ) diagonal_attend_mask.bitwise_or_(sliding_attend_mask) causal_mask *= diagonal_attend_mask causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.shape[-1] > target_length: attention_mask = attention_mask[:, :target_length] mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... class Starcoder2ForCausalLM(Starcoder2PreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config): super().__init__(config) self.model = Starcoder2Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @can_return_tuple @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. logits_to_keep (`int` or `torch.Tensor`, *optional*): If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. This is useful when using packed tensor format (single dimension for batch and sequence length). Returns: Example: ```python >>> from transformers import AutoTokenizer, Starcoder2ForCausalLM >>> model = Starcoder2ForCausalLM.from_pretrained("meta-starcoder2/Starcoder2-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-starcoder2/Starcoder2-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The Starcoder2 Model transformer with a sequence classification head on top (linear layer). [`Starcoder2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, STARCODER2_START_DOCSTRING, ) class Starcoder2ForSequenceClassification(Starcoder2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Starcoder2Model(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> SequenceClassifierOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) hidden_states = transformer_outputs.last_hidden_state logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The Starcoder2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, STARCODER2_START_DOCSTRING, ) class Starcoder2ForTokenClassification(Starcoder2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Starcoder2Model(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @can_return_tuple @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> TokenClassifierOutput: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs: BaseModelOutputWithPast = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) sequence_output = outputs.last_hidden_state sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "Starcoder2ForCausalLM", "Starcoder2Model", "Starcoder2PreTrainedModel", "Starcoder2ForSequenceClassification", "Starcoder2ForTokenClassification", ] ```
============================================================================================================================================ SOURCE CODE FILE: modular_starcoder2.py LINES: 1 SIZE: 11.07 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\starcoder2\modular_starcoder2.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Starcoder2 model.""" from typing import Callable, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_outputs import ( BaseModelOutputWithPast, ) from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...processing_utils import Unpack from ...utils import add_start_docstrings_to_model_forward, can_return_tuple, logging from ..mistral.modeling_mistral import ( MistralAttention, MistralDecoderLayer, MistralForCausalLM, MistralForSequenceClassification, MistralForTokenClassification, MistralModel, apply_rotary_pos_emb, eager_attention_forward, ) from .configuration_starcoder2 import Starcoder2Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "Starcoder2Config" _CHECKPOINT_FOR_DOC = "bigcode/starcoder2-7b" class Starcoder2MLP(nn.Module): def __init__(self, config: Starcoder2Config): super().__init__() embed_dim = config.hidden_size self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias) self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias) self.act = ACT2FN[config.hidden_act] self.residual_dropout = config.residual_dropout def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training) return hidden_states class Starcoder2Attention(MistralAttention): def __init__(self, config: Starcoder2Config, layer_idx: Optional[int] = None): super().__init__() self.residual_dropout = config.residual_dropout self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=getattr(self.config, "sliding_window", None), # diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) attn_output = nn.functional.dropout( attn_output, p=self.residual_dropout, training=self.training ) # diff with Llama return attn_output, attn_weights class Starcoder2DecoderLayer(MistralDecoderLayer): def __init__(self, config: Starcoder2Config, layer_idx: int): super().__init__(self) self.self_attn = Starcoder2Attention(config=config, layer_idx=layer_idx) self.mlp = Starcoder2MLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) STARCODER2_INPUTS_DOCSTRING = None # will be automatically redefined class Starcoder2Model(MistralModel): def __init__(self, config: Starcoder2Config): super().__init__(config) self.layers = nn.ModuleList( [Starcoder2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) self.embedding_dropout = config.embedding_dropout @can_return_tuple @add_start_docstrings_to_model_forward(STARCODER2_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> BaseModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds hidden_states = nn.functional.dropout( hidden_states, p=self.embedding_dropout, training=self.training ) # main diff with Llama # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) class Starcoder2ForCausalLM(MistralForCausalLM): pass class Starcoder2ForSequenceClassification(MistralForSequenceClassification): pass class Starcoder2ForTokenClassification(MistralForTokenClassification): pass __all__ = [ "Starcoder2ForCausalLM", "Starcoder2Model", "Starcoder2PreTrainedModel", # noqa: F822 "Starcoder2ForSequenceClassification", "Starcoder2ForTokenClassification", ] ```
================================================================================================================================= SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.02 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\superglue\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_superglue import * from .image_processing_superglue import * from .modeling_superglue import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
================================================================================================================================================ SOURCE CODE FILE: configuration_superglue.py LINES: 1 SIZE: 5.28 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\superglue\configuration_superglue.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, List from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING if TYPE_CHECKING: from ..superpoint import SuperPointConfig logger = logging.get_logger(__name__) class SuperGlueConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SuperGlueModel`]. It is used to instantiate a SuperGlue model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SuperGlue [magic-leap-community/superglue_indoor](https://huggingface.co/magic-leap-community/superglue_indoor) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: keypoint_detector_config (`Union[AutoConfig, dict]`, *optional*, defaults to `SuperPointConfig`): The config object or dictionary of the keypoint detector. hidden_size (`int`, *optional*, defaults to 256): The dimension of the descriptors. keypoint_encoder_sizes (`List[int]`, *optional*, defaults to `[32, 64, 128, 256]`): The sizes of the keypoint encoder layers. gnn_layers_types (`List[str]`, *optional*, defaults to `['self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross']`): The types of the GNN layers. Must be either 'self' or 'cross'. num_attention_heads (`int`, *optional*, defaults to 4): The number of heads in the GNN layers. sinkhorn_iterations (`int`, *optional*, defaults to 100): The number of Sinkhorn iterations. matching_threshold (`float`, *optional*, defaults to 0.0): The matching threshold. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Examples: ```python >>> from transformers import SuperGlueConfig, SuperGlueModel >>> # Initializing a SuperGlue superglue style configuration >>> configuration = SuperGlueConfig() >>> # Initializing a model from the superglue style configuration >>> model = SuperGlueModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "superglue" def __init__( self, keypoint_detector_config: "SuperPointConfig" = None, hidden_size: int = 256, keypoint_encoder_sizes: List[int] = None, gnn_layers_types: List[str] = None, num_attention_heads: int = 4, sinkhorn_iterations: int = 100, matching_threshold: float = 0.0, initializer_range: float = 0.02, **kwargs, ): self.gnn_layers_types = gnn_layers_types if gnn_layers_types is not None else ["self", "cross"] * 9 # Check whether all gnn_layers_types are either 'self' or 'cross' if not all(layer_type in ["self", "cross"] for layer_type in self.gnn_layers_types): raise ValueError("All gnn_layers_types must be either 'self' or 'cross'") if hidden_size % num_attention_heads != 0: raise ValueError("hidden_size % num_attention_heads is different from zero") self.keypoint_encoder_sizes = ( keypoint_encoder_sizes if keypoint_encoder_sizes is not None else [32, 64, 128, 256] ) self.hidden_size = hidden_size self.keypoint_encoder_sizes = keypoint_encoder_sizes self.gnn_layers_types = gnn_layers_types self.num_attention_heads = num_attention_heads self.sinkhorn_iterations = sinkhorn_iterations self.matching_threshold = matching_threshold if isinstance(keypoint_detector_config, dict): keypoint_detector_config["model_type"] = ( keypoint_detector_config["model_type"] if "model_type" in keypoint_detector_config else "superpoint" ) keypoint_detector_config = CONFIG_MAPPING[keypoint_detector_config["model_type"]]( **keypoint_detector_config ) if keypoint_detector_config is None: keypoint_detector_config = CONFIG_MAPPING["superpoint"]() self.keypoint_detector_config = keypoint_detector_config self.initializer_range = initializer_range self.attention_probs_dropout_prob = 0 self.is_decoder = False super().__init__(**kwargs) __all__ = ["SuperGlueConfig"] ```
=================================================================================================================================================== SOURCE CODE FILE: image_processing_superglue.py LINES: 1 SIZE: 18.32 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\superglue\image_processing_superglue.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for SuperPoint.""" from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import numpy as np from ... import is_torch_available, is_vision_available from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, ImageType, PILImageResampling, get_image_type, infer_channel_dimension_format, is_pil_image, is_scaled_image, is_valid_image, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, logging, requires_backends if is_torch_available(): import torch if TYPE_CHECKING: from .modeling_superglue import KeypointMatchingOutput if is_vision_available(): import PIL logger = logging.get_logger(__name__) # Copied from transformers.models.superpoint.image_processing_superpoint.is_grayscale def is_grayscale( image: ImageInput, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): if input_data_format == ChannelDimension.FIRST: if image.shape[0] == 1: return True return np.all(image[0, ...] == image[1, ...]) and np.all(image[1, ...] == image[2, ...]) elif input_data_format == ChannelDimension.LAST: if image.shape[-1] == 1: return True return np.all(image[..., 0] == image[..., 1]) and np.all(image[..., 1] == image[..., 2]) # Copied from transformers.models.superpoint.image_processing_superpoint.convert_to_grayscale def convert_to_grayscale( image: ImageInput, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> ImageInput: """ Converts an image to grayscale format using the NTSC formula. Only support numpy and PIL Image. TODO support torch and tensorflow grayscale conversion This function is supposed to return a 1-channel image, but it returns a 3-channel image with the same value in each channel, because of an issue that is discussed in : https://github.com/huggingface/transformers/pull/25786#issuecomment-1730176446 Args: image (Image): The image to convert. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. """ requires_backends(convert_to_grayscale, ["vision"]) if isinstance(image, np.ndarray): if is_grayscale(image, input_data_format=input_data_format): return image if input_data_format == ChannelDimension.FIRST: gray_image = image[0, ...] * 0.2989 + image[1, ...] * 0.5870 + image[2, ...] * 0.1140 gray_image = np.stack([gray_image] * 3, axis=0) elif input_data_format == ChannelDimension.LAST: gray_image = image[..., 0] * 0.2989 + image[..., 1] * 0.5870 + image[..., 2] * 0.1140 gray_image = np.stack([gray_image] * 3, axis=-1) return gray_image if not isinstance(image, PIL.Image.Image): return image image = image.convert("L") return image def validate_and_format_image_pairs(images: ImageInput): error_message = ( "Input images must be a one of the following :", " - A pair of PIL images.", " - A pair of 3D arrays.", " - A list of pairs of PIL images.", " - A list of pairs of 3D arrays.", ) def _is_valid_image(image): """images is a PIL Image or a 3D array.""" return is_pil_image(image) or ( is_valid_image(image) and get_image_type(image) != ImageType.PIL and len(image.shape) == 3 ) if isinstance(images, list): if len(images) == 2 and all((_is_valid_image(image)) for image in images): return images if all( isinstance(image_pair, list) and len(image_pair) == 2 and all(_is_valid_image(image) for image in image_pair) for image_pair in images ): return [image for image_pair in images for image in image_pair] raise ValueError(error_message) class SuperGlueImageProcessor(BaseImageProcessor): r""" Constructs a SuperGlue image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 480, "width": 640}`): Resolution of the output image after `resize` is applied. Only has an effect if `do_resize` is set to `True`. Can be overriden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overriden by `resample` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess` method. do_grayscale (`bool`, *optional*, defaults to `True`): Whether to convert the image to grayscale. Can be overriden by `do_grayscale` in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: float = 1 / 255, do_grayscale: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 480, "width": 640} size = get_size_dict(size, default_to_square=False) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_grayscale = do_grayscale # Copied from transformers.models.superpoint.image_processing_superpoint.SuperPointImageProcessor.resize def resize( self, image: np.ndarray, size: Dict[str, int], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ): """ Resize an image. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary of the form `{"height": int, "width": int}`, specifying the size of the output image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the output image. If not provided, it will be inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ size = get_size_dict(size, default_to_square=False) return resize( image, size=(size["height"], size["width"]), data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_grayscale: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image pairs to preprocess. Expects either a list of 2 images or a list of list of 2 images list with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to `(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of `PILImageResampling`, filters. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_grayscale (`bool`, *optional*, defaults to `self.do_grayscale`): Whether to convert the image to grayscale. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_grayscale = do_grayscale if do_grayscale is not None else self.do_grayscale size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) # Validate and convert the input images into a flattened list of images for all subsequent processing steps. images = validate_and_format_image_pairs(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) all_images = [] for image in images: if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_grayscale: image = convert_to_grayscale(image, input_data_format=input_data_format) image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) all_images.append(image) # Convert back the flattened list of images into a list of pairs of images. image_pairs = [all_images[i : i + 2] for i in range(0, len(all_images), 2)] data = {"pixel_values": image_pairs} return BatchFeature(data=data, tensor_type=return_tensors) def post_process_keypoint_matching( self, outputs: "KeypointMatchingOutput", target_sizes: Union[TensorType, List[Tuple]], threshold: float = 0.0, ) -> List[Dict[str, torch.Tensor]]: """ Converts the raw output of [`KeypointMatchingOutput`] into lists of keypoints, scores and descriptors with coordinates absolute to the original image sizes. Args: outputs ([`KeypointMatchingOutput`]): Raw outputs of the model. target_sizes (`torch.Tensor` or `List[Tuple[Tuple[int, int]]]`, *optional*): Tensor of shape `(batch_size, 2, 2)` or list of tuples of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. This must be the original image size (before any processing). threshold (`float`, *optional*, defaults to 0.0): Threshold to filter out the matches with low scores. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the keypoints in the first and second image of the pair, the matching scores and the matching indices. """ if outputs.mask.shape[0] != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the mask") if not all(len(target_size) == 2 for target_size in target_sizes): raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") if isinstance(target_sizes, List): image_pair_sizes = torch.tensor(target_sizes, device=outputs.mask.device) else: if target_sizes.shape[1] != 2 or target_sizes.shape[2] != 2: raise ValueError( "Each element of target_sizes must contain the size (h, w) of each image of the batch" ) image_pair_sizes = target_sizes keypoints = outputs.keypoints.clone() keypoints = keypoints * image_pair_sizes.flip(-1).reshape(-1, 2, 1, 2) keypoints = keypoints.to(torch.int32) results = [] for mask_pair, keypoints_pair, matches, scores in zip( outputs.mask, keypoints, outputs.matches[:, 0], outputs.matching_scores[:, 0] ): mask0 = mask_pair[0] > 0 mask1 = mask_pair[1] > 0 keypoints0 = keypoints_pair[0][mask0] keypoints1 = keypoints_pair[1][mask1] matches0 = matches[mask0] scores0 = scores[mask0] # Filter out matches with low scores valid_matches = torch.logical_and(scores0 > threshold, matches0 > -1) matched_keypoints0 = keypoints0[valid_matches] matched_keypoints1 = keypoints1[matches0[valid_matches]] matching_scores = scores0[valid_matches] results.append( { "keypoints0": matched_keypoints0, "keypoints1": matched_keypoints1, "matching_scores": matching_scores, } ) return results __all__ = ["SuperGlueImageProcessor"] ```
=========================================================================================================================================== SOURCE CODE FILE: modeling_superglue.py LINES: 1 SIZE: 38.78 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\superglue\modeling_superglue.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SuperGlue model.""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from transformers import PreTrainedModel, add_start_docstrings from transformers.models.superglue.configuration_superglue import SuperGlueConfig from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ModelOutput, add_start_docstrings_to_model_forward, logging from ..auto import AutoModelForKeypointDetection logger = logging.get_logger(__name__) _CONFIG_FOR_DOC_ = "SuperGlueConfig" _CHECKPOINT_FOR_DOC_ = "magic-leap-community/superglue_indoor" def concat_pairs(tensor_tuple0: Tuple[torch.Tensor], tensor_tuple1: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]: """ Concatenate two tuples of tensors pairwise Args: tensor_tuple0 (`Tuple[torch.Tensor]`): Tuple of tensors. tensor_tuple1 (`Tuple[torch.Tensor]`): Tuple of tensors. Returns: (`Tuple[torch.Tensor]`): Tuple of concatenated tensors. """ return tuple([torch.cat([tensor0, tensor1]) for tensor0, tensor1 in zip(tensor_tuple0, tensor_tuple1)]) def normalize_keypoints(keypoints: torch.Tensor, height: int, width: int) -> torch.Tensor: """ Normalize keypoints locations based on image image_shape Args: keypoints (`torch.Tensor` of shape `(batch_size, num_keypoints, 2)`): Keypoints locations in (x, y) format. height (`int`): Image height. width (`int`): Image width. Returns: Normalized keypoints locations of shape (`torch.Tensor` of shape `(batch_size, num_keypoints, 2)`). """ size = torch.tensor([width, height], device=keypoints.device, dtype=keypoints.dtype)[None] center = size / 2 scaling = size.max(1, keepdim=True).values * 0.7 return (keypoints - center[:, None, :]) / scaling[:, None, :] def log_sinkhorn_iterations( log_cost_matrix: torch.Tensor, log_source_distribution: torch.Tensor, log_target_distribution: torch.Tensor, num_iterations: int, ) -> torch.Tensor: """ Perform Sinkhorn Normalization in Log-space for stability Args: log_cost_matrix (`torch.Tensor` of shape `(batch_size, num_rows, num_columns)`): Logarithm of the cost matrix. log_source_distribution (`torch.Tensor` of shape `(batch_size, num_rows)`): Logarithm of the source distribution. log_target_distribution (`torch.Tensor` of shape `(batch_size, num_columns)`): Logarithm of the target distribution. Returns: log_cost_matrix (`torch.Tensor` of shape `(batch_size, num_rows, num_columns)`): Logarithm of the optimal transport matrix. """ log_u_scaling = torch.zeros_like(log_source_distribution) log_v_scaling = torch.zeros_like(log_target_distribution) for _ in range(num_iterations): log_u_scaling = log_source_distribution - torch.logsumexp(log_cost_matrix + log_v_scaling.unsqueeze(1), dim=2) log_v_scaling = log_target_distribution - torch.logsumexp(log_cost_matrix + log_u_scaling.unsqueeze(2), dim=1) return log_cost_matrix + log_u_scaling.unsqueeze(2) + log_v_scaling.unsqueeze(1) def log_optimal_transport(scores: torch.Tensor, reg_param: torch.Tensor, iterations: int) -> torch.Tensor: """ Perform Differentiable Optimal Transport in Log-space for stability Args: scores: (`torch.Tensor` of shape `(batch_size, num_rows, num_columns)`): Cost matrix. reg_param: (`torch.Tensor` of shape `(batch_size, 1, 1)`): Regularization parameter. iterations: (`int`): Number of Sinkhorn iterations. Returns: log_optimal_transport_matrix: (`torch.Tensor` of shape `(batch_size, num_rows, num_columns)`): Logarithm of the optimal transport matrix. """ batch_size, num_rows, num_columns = scores.shape one_tensor = scores.new_tensor(1) num_rows_tensor, num_columns_tensor = (num_rows * one_tensor).to(scores), (num_columns * one_tensor).to(scores) source_reg_param = reg_param.expand(batch_size, num_rows, 1) target_reg_param = reg_param.expand(batch_size, 1, num_columns) reg_param = reg_param.expand(batch_size, 1, 1) couplings = torch.cat([torch.cat([scores, source_reg_param], -1), torch.cat([target_reg_param, reg_param], -1)], 1) log_normalization = -(num_rows_tensor + num_columns_tensor).log() log_source_distribution = torch.cat( [log_normalization.expand(num_rows), num_columns_tensor.log()[None] + log_normalization] ) log_target_distribution = torch.cat( [log_normalization.expand(num_columns), num_rows_tensor.log()[None] + log_normalization] ) log_source_distribution, log_target_distribution = ( log_source_distribution[None].expand(batch_size, -1), log_target_distribution[None].expand(batch_size, -1), ) log_optimal_transport_matrix = log_sinkhorn_iterations( couplings, log_source_distribution, log_target_distribution, num_iterations=iterations ) log_optimal_transport_matrix = log_optimal_transport_matrix - log_normalization # multiply probabilities by M+N return log_optimal_transport_matrix def arange_like(x, dim: int) -> torch.Tensor: return x.new_ones(x.shape[dim]).cumsum(0) - 1 @dataclass class KeypointMatchingOutput(ModelOutput): """ Base class for outputs of keypoint matching models. Due to the nature of keypoint detection and matching, the number of keypoints is not fixed and can vary from image to image, which makes batching non-trivial. In the batch of images, the maximum number of matches is set as the dimension of the matches and matching scores. The mask tensor is used to indicate which values in the keypoints, matches and matching_scores tensors are keypoint matching information. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*): Loss computed during training. mask (`torch.IntTensor` of shape `(batch_size, num_keypoints)`): Mask indicating which values in matches and matching_scores are keypoint matching information. matches (`torch.FloatTensor` of shape `(batch_size, 2, num_matches)`): Index of keypoint matched in the other image. matching_scores (`torch.FloatTensor` of shape `(batch_size, 2, num_matches)`): Scores of predicted matches. keypoints (`torch.FloatTensor` of shape `(batch_size, num_keypoints, 2)`): Absolute (x, y) coordinates of predicted keypoints in a given image. hidden_states (`Tuple[torch.FloatTensor, ...]`, *optional*): Tuple of `torch.FloatTensor` (one for the output of each stage) of shape `(batch_size, 2, num_channels, num_keypoints)`, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`) attentions (`Tuple[torch.FloatTensor, ...]`, *optional*): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, 2, num_heads, num_keypoints, num_keypoints)`, returned when `output_attentions=True` is passed or when `config.output_attentions=True`) """ loss: Optional[torch.FloatTensor] = None matches: Optional[torch.FloatTensor] = None matching_scores: Optional[torch.FloatTensor] = None keypoints: Optional[torch.FloatTensor] = None mask: Optional[torch.IntTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None class SuperGlueMultiLayerPerceptron(nn.Module): def __init__(self, config: SuperGlueConfig, in_channels: int, out_channels: int) -> None: super().__init__() self.linear = nn.Linear(in_channels, out_channels) self.batch_norm = nn.BatchNorm1d(out_channels) self.activation = nn.ReLU() def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.linear(hidden_state) hidden_state = hidden_state.transpose(-1, -2) hidden_state = self.batch_norm(hidden_state) hidden_state = hidden_state.transpose(-1, -2) hidden_state = self.activation(hidden_state) return hidden_state class SuperGlueKeypointEncoder(nn.Module): def __init__(self, config: SuperGlueConfig) -> None: super().__init__() layer_sizes = config.keypoint_encoder_sizes hidden_size = config.hidden_size # 3 here consists of 2 for the (x, y) coordinates and 1 for the score of the keypoint encoder_channels = [3] + layer_sizes + [hidden_size] layers = [ SuperGlueMultiLayerPerceptron(config, encoder_channels[i - 1], encoder_channels[i]) for i in range(1, len(encoder_channels) - 1) ] layers.append(nn.Linear(encoder_channels[-2], encoder_channels[-1])) self.encoder = nn.ModuleList(layers) def forward( self, keypoints: torch.Tensor, scores: torch.Tensor, output_hidden_states: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]: scores = scores.unsqueeze(2) hidden_state = torch.cat([keypoints, scores], dim=2) all_hidden_states = () if output_hidden_states else None for layer in self.encoder: hidden_state = layer(hidden_state) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) return hidden_state, all_hidden_states # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->SuperGlue class SuperGlueSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in SuperGlueModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class SuperGlueSelfOutput(nn.Module): def __init__(self, config: SuperGlueConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor, *args) -> torch.Tensor: hidden_states = self.dense(hidden_states) return hidden_states SUPERGLUE_SELF_ATTENTION_CLASSES = { "eager": SuperGlueSelfAttention, } # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->SuperGlue,BERT->SUPERGLUE class SuperGlueAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = SUPERGLUE_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = SuperGlueSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class SuperGlueAttentionalPropagation(nn.Module): def __init__(self, config: SuperGlueConfig) -> None: super().__init__() hidden_size = config.hidden_size self.attention = SuperGlueAttention(config) mlp_channels = [hidden_size * 2, hidden_size * 2, hidden_size] layers = [ SuperGlueMultiLayerPerceptron(config, mlp_channels[i - 1], mlp_channels[i]) for i in range(1, len(mlp_channels) - 1) ] layers.append(nn.Linear(mlp_channels[-2], mlp_channels[-1])) self.mlp = nn.ModuleList(layers) def forward( self, descriptors: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]], Optional[Tuple[torch.Tensor]]]: attention_outputs = self.attention( descriptors, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) output = attention_outputs[0] attention = attention_outputs[1:] hidden_state = torch.cat([descriptors, output], dim=2) all_hidden_states = () if output_hidden_states else None for layer in self.mlp: hidden_state = layer(hidden_state) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) return hidden_state, all_hidden_states, attention class SuperGlueAttentionalGNN(nn.Module): def __init__(self, config: SuperGlueConfig) -> None: super().__init__() self.hidden_size = config.hidden_size self.layers_types = config.gnn_layers_types self.layers = nn.ModuleList([SuperGlueAttentionalPropagation(config) for _ in range(len(self.layers_types))]) def forward( self, descriptors: torch.Tensor, mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[Tuple], Optional[Tuple]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None batch_size, num_keypoints, _ = descriptors.shape if output_hidden_states: all_hidden_states = all_hidden_states + (descriptors,) for gnn_layer, layer_type in zip(self.layers, self.layers_types): encoder_hidden_states = None encoder_attention_mask = None if layer_type == "cross": encoder_hidden_states = ( descriptors.reshape(-1, 2, num_keypoints, self.hidden_size) .flip(1) .reshape(batch_size, num_keypoints, self.hidden_size) ) encoder_attention_mask = ( mask.reshape(-1, 2, 1, 1, num_keypoints).flip(1).reshape(batch_size, 1, 1, num_keypoints) if mask is not None else None ) gnn_outputs = gnn_layer( descriptors, attention_mask=mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) delta = gnn_outputs[0] if output_hidden_states: all_hidden_states = all_hidden_states + gnn_outputs[1] if output_attentions: all_attentions = all_attentions + gnn_outputs[2] descriptors = descriptors + delta return descriptors, all_hidden_states, all_attentions class SuperGlueFinalProjection(nn.Module): def __init__(self, config: SuperGlueConfig) -> None: super().__init__() hidden_size = config.hidden_size self.final_proj = nn.Linear(hidden_size, hidden_size, bias=True) def forward(self, descriptors: torch.Tensor) -> torch.Tensor: return self.final_proj(descriptors) class SuperGluePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SuperGlueConfig base_model_prefix = "superglue" main_input_name = "pixel_values" def _init_weights(self, module: nn.Module) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv1d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, SuperGlueMultiLayerPerceptron): nn.init.constant_(module.linear.bias, 0.0) SUPERGLUE_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SuperGlueConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SUPERGLUE_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`SuperGlueImageProcessor`]. See [`SuperGlueImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "SuperGlue model taking images as inputs and outputting the matching of them.", SUPERGLUE_START_DOCSTRING, ) class SuperGlueForKeypointMatching(SuperGluePreTrainedModel): """SuperGlue feature matching middle-end Given two sets of keypoints and locations, we determine the correspondences by: 1. Keypoint Encoding (normalization + visual feature and location fusion) 2. Graph Neural Network with multiple self and cross-attention layers 3. Final projection layer 4. Optimal Transport Layer (a differentiable Hungarian matching algorithm) 5. Thresholding matrix based on mutual exclusivity and a match_threshold The correspondence ids use -1 to indicate non-matching points. Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperGlue: Learning Feature Matching with Graph Neural Networks. In CVPR, 2020. https://arxiv.org/abs/1911.11763 """ def __init__(self, config: SuperGlueConfig) -> None: super().__init__(config) self.keypoint_detector = AutoModelForKeypointDetection.from_config(config.keypoint_detector_config) self.keypoint_encoder = SuperGlueKeypointEncoder(config) self.gnn = SuperGlueAttentionalGNN(config) self.final_projection = SuperGlueFinalProjection(config) bin_score = torch.nn.Parameter(torch.tensor(1.0)) self.register_parameter("bin_score", bin_score) self.post_init() def _match_image_pair( self, keypoints: torch.Tensor, descriptors: torch.Tensor, scores: torch.Tensor, height: int, width: int, mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Tuple[torch.Tensor, torch.Tensor, Tuple, Tuple]: """ Perform keypoint matching between two images. Args: keypoints (`torch.Tensor` of shape `(batch_size, 2, num_keypoints, 2)`): Keypoints detected in the pair of image. descriptors (`torch.Tensor` of shape `(batch_size, 2, descriptor_dim, num_keypoints)`): Descriptors of the keypoints detected in the image pair. scores (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`): Confidence scores of the keypoints detected in the image pair. height (`int`): Image height. width (`int`): Image width. mask (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`, *optional*): Mask indicating which values in the keypoints, matches and matching_scores tensors are keypoint matching information. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors. Default to `config.output_attentions`. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. Default to `config.output_hidden_states`. Returns: matches (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`): For each image pair, for each keypoint in image0, the index of the keypoint in image1 that was matched with. And for each keypoint in image1, the index of the keypoint in image0 that was matched with. matching_scores (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`): Scores of predicted matches for each image pair all_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of each stage) of shape `(1, 2, num_keypoints, num_channels)`. all_attentions (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for each layer) of shape `(1, 2, num_heads, num_keypoints, num_keypoints)`. """ all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None if keypoints.shape[2] == 0: # no keypoints shape = keypoints.shape[:-1] return ( keypoints.new_full(shape, -1, dtype=torch.int), keypoints.new_zeros(shape), all_hidden_states, all_attentions, ) batch_size, _, num_keypoints, _ = keypoints.shape # (batch_size, 2, num_keypoints, 2) -> (batch_size * 2, num_keypoints, 2) keypoints = keypoints.reshape(batch_size * 2, num_keypoints, 2) descriptors = descriptors.reshape(batch_size * 2, num_keypoints, self.config.hidden_size) scores = scores.reshape(batch_size * 2, num_keypoints) mask = mask.reshape(batch_size * 2, num_keypoints) if mask is not None else None # Keypoint normalization keypoints = normalize_keypoints(keypoints, height, width) encoded_keypoints = self.keypoint_encoder(keypoints, scores, output_hidden_states=output_hidden_states) last_hidden_state = encoded_keypoints[0] # Keypoint MLP encoder. descriptors = descriptors + last_hidden_state if mask is not None: input_shape = descriptors.size() extended_attention_mask = self.get_extended_attention_mask(mask, input_shape) else: extended_attention_mask = torch.ones((batch_size, num_keypoints), device=keypoints.device) # Multi-layer Transformer network. gnn_outputs = self.gnn( descriptors, mask=extended_attention_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) descriptors = gnn_outputs[0] # Final MLP projection. projected_descriptors = self.final_projection(descriptors) # (batch_size * 2, num_keypoints, descriptor_dim) -> (batch_size, 2, num_keypoints, descriptor_dim) final_descriptors = projected_descriptors.reshape(batch_size, 2, num_keypoints, self.config.hidden_size) final_descriptors0 = final_descriptors[:, 0] final_descriptors1 = final_descriptors[:, 1] # Compute matching descriptor distance. scores = final_descriptors0 @ final_descriptors1.transpose(1, 2) scores = scores / self.config.hidden_size**0.5 if mask is not None: mask = mask.reshape(batch_size, 2, num_keypoints) mask0 = mask[:, 0].unsqueeze(-1).expand(-1, -1, num_keypoints) scores = scores.masked_fill(mask0 == 0, -1e9) # Run the optimal transport. scores = log_optimal_transport(scores, self.bin_score, iterations=self.config.sinkhorn_iterations) # Get the matches with score above "match_threshold". max0 = scores[:, :-1, :-1].max(2) max1 = scores[:, :-1, :-1].max(1) indices0 = max0.indices indices1 = max1.indices mutual0 = arange_like(indices0, 1)[None] == indices1.gather(1, indices0) mutual1 = arange_like(indices1, 1)[None] == indices0.gather(1, indices1) zero = scores.new_tensor(0) matching_scores0 = torch.where(mutual0, max0.values.exp(), zero) matching_scores0 = torch.where(matching_scores0 > self.config.matching_threshold, matching_scores0, zero) matching_scores1 = torch.where(mutual1, matching_scores0.gather(1, indices1), zero) valid0 = mutual0 & (matching_scores0 > zero) valid1 = mutual1 & valid0.gather(1, indices1) matches0 = torch.where(valid0, indices0, indices0.new_tensor(-1)) matches1 = torch.where(valid1, indices1, indices1.new_tensor(-1)) matches = torch.cat([matches0, matches1]).reshape(batch_size, 2, -1) matching_scores = torch.cat([matching_scores0, matching_scores1]).reshape(batch_size, 2, -1) if output_hidden_states: all_hidden_states = all_hidden_states + encoded_keypoints[1] all_hidden_states = all_hidden_states + gnn_outputs[1] all_hidden_states = all_hidden_states + (projected_descriptors,) all_hidden_states = tuple( x.reshape(batch_size, 2, num_keypoints, -1).transpose(-1, -2) for x in all_hidden_states ) if output_attentions: all_attentions = all_attentions + gnn_outputs[2] all_attentions = tuple(x.reshape(batch_size, 2, -1, num_keypoints, num_keypoints) for x in all_attentions) return ( matches, matching_scores, all_hidden_states, all_attentions, ) @add_start_docstrings_to_model_forward(SUPERGLUE_INPUTS_DOCSTRING) def forward( self, pixel_values: torch.FloatTensor, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, KeypointMatchingOutput]: """ Examples: ```python >>> from transformers import AutoImageProcessor, AutoModel >>> import torch >>> from PIL import Image >>> import requests >>> url = "https://github.com/magicleap/SuperGluePretrainedNetwork/blob/master/assets/phototourism_sample_images/london_bridge_78916675_4568141288.jpg?raw=true" >>> image1 = Image.open(requests.get(url, stream=True).raw) >>> url = "https://github.com/magicleap/SuperGluePretrainedNetwork/blob/master/assets/phototourism_sample_images/london_bridge_19481797_2295892421.jpg?raw=true" >>> image2 = Image.open(requests.get(url, stream=True).raw) >>> images = [image1, image2] >>> processor = AutoImageProcessor.from_pretrained("magic-leap-community/superglue_outdoor") >>> model = AutoModel.from_pretrained("magic-leap-community/superglue_outdoor") >>> with torch.no_grad(): >>> inputs = processor(images, return_tensors="pt") >>> outputs = model(**inputs) ```""" loss = None if labels is not None: raise ValueError("SuperGlue is not trainable, no labels should be provided.") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values.ndim != 5 or pixel_values.size(1) != 2: raise ValueError("Input must be a 5D tensor of shape (batch_size, 2, num_channels, height, width)") batch_size, _, channels, height, width = pixel_values.shape pixel_values = pixel_values.reshape(batch_size * 2, channels, height, width) keypoint_detections = self.keypoint_detector(pixel_values) keypoints, scores, descriptors, mask = keypoint_detections[:4] keypoints = keypoints.reshape(batch_size, 2, -1, 2).to(pixel_values) scores = scores.reshape(batch_size, 2, -1).to(pixel_values) descriptors = descriptors.reshape(batch_size, 2, -1, self.config.hidden_size).to(pixel_values) mask = mask.reshape(batch_size, 2, -1) absolute_keypoints = keypoints.clone() absolute_keypoints[:, :, :, 0] = absolute_keypoints[:, :, :, 0] * width absolute_keypoints[:, :, :, 1] = absolute_keypoints[:, :, :, 1] * height matches, matching_scores, hidden_states, attentions = self._match_image_pair( absolute_keypoints, descriptors, scores, height, width, mask=mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) if not return_dict: return tuple( v for v in [loss, matches, matching_scores, keypoints, mask, hidden_states, attentions] if v is not None ) return KeypointMatchingOutput( loss=loss, matches=matches, matching_scores=matching_scores, keypoints=keypoints, mask=mask, hidden_states=hidden_states, attentions=attentions, ) __all__ = ["SuperGluePreTrainedModel", "SuperGlueForKeypointMatching"] ```
================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.02 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\superpoint\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_superpoint import * from .image_processing_superpoint import * from .modeling_superpoint import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
================================================================================================================================================== SOURCE CODE FILE: configuration_superpoint.py LINES: 1 SIZE: 3.98 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\superpoint\configuration_superpoint.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class SuperPointConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SuperPointForKeypointDetection`]. It is used to instantiate a SuperPoint model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SuperPoint [magic-leap-community/superpoint](https://huggingface.co/magic-leap-community/superpoint) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: encoder_hidden_sizes (`List`, *optional*, defaults to `[64, 64, 128, 128]`): The number of channels in each convolutional layer in the encoder. decoder_hidden_size (`int`, *optional*, defaults to 256): The hidden size of the decoder. keypoint_decoder_dim (`int`, *optional*, defaults to 65): The output dimension of the keypoint decoder. descriptor_decoder_dim (`int`, *optional*, defaults to 256): The output dimension of the descriptor decoder. keypoint_threshold (`float`, *optional*, defaults to 0.005): The threshold to use for extracting keypoints. max_keypoints (`int`, *optional*, defaults to -1): The maximum number of keypoints to extract. If `-1`, will extract all keypoints. nms_radius (`int`, *optional*, defaults to 4): The radius for non-maximum suppression. border_removal_distance (`int`, *optional*, defaults to 4): The distance from the border to remove keypoints. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import SuperPointConfig, SuperPointForKeypointDetection >>> # Initializing a SuperPoint superpoint style configuration >>> configuration = SuperPointConfig() >>> # Initializing a model from the superpoint style configuration >>> model = SuperPointForKeypointDetection(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "superpoint" def __init__( self, encoder_hidden_sizes: List[int] = [64, 64, 128, 128], decoder_hidden_size: int = 256, keypoint_decoder_dim: int = 65, descriptor_decoder_dim: int = 256, keypoint_threshold: float = 0.005, max_keypoints: int = -1, nms_radius: int = 4, border_removal_distance: int = 4, initializer_range=0.02, **kwargs, ): self.encoder_hidden_sizes = encoder_hidden_sizes self.decoder_hidden_size = decoder_hidden_size self.keypoint_decoder_dim = keypoint_decoder_dim self.descriptor_decoder_dim = descriptor_decoder_dim self.keypoint_threshold = keypoint_threshold self.max_keypoints = max_keypoints self.nms_radius = nms_radius self.border_removal_distance = border_removal_distance self.initializer_range = initializer_range super().__init__(**kwargs) __all__ = ["SuperPointConfig"] ```
===================================================================================================================================================== SOURCE CODE FILE: image_processing_superpoint.py LINES: 1 SIZE: 15.53 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\superpoint\image_processing_superpoint.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for SuperPoint.""" from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import numpy as np from ... import is_torch_available, is_vision_available from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging, requires_backends if is_torch_available(): import torch if TYPE_CHECKING: from .modeling_superpoint import SuperPointKeypointDescriptionOutput if is_vision_available(): import PIL logger = logging.get_logger(__name__) def is_grayscale( image: ImageInput, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): if input_data_format == ChannelDimension.FIRST: if image.shape[0] == 1: return True return np.all(image[0, ...] == image[1, ...]) and np.all(image[1, ...] == image[2, ...]) elif input_data_format == ChannelDimension.LAST: if image.shape[-1] == 1: return True return np.all(image[..., 0] == image[..., 1]) and np.all(image[..., 1] == image[..., 2]) def convert_to_grayscale( image: ImageInput, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> ImageInput: """ Converts an image to grayscale format using the NTSC formula. Only support numpy and PIL Image. TODO support torch and tensorflow grayscale conversion This function is supposed to return a 1-channel image, but it returns a 3-channel image with the same value in each channel, because of an issue that is discussed in : https://github.com/huggingface/transformers/pull/25786#issuecomment-1730176446 Args: image (Image): The image to convert. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. """ requires_backends(convert_to_grayscale, ["vision"]) if isinstance(image, np.ndarray): if is_grayscale(image, input_data_format=input_data_format): return image if input_data_format == ChannelDimension.FIRST: gray_image = image[0, ...] * 0.2989 + image[1, ...] * 0.5870 + image[2, ...] * 0.1140 gray_image = np.stack([gray_image] * 3, axis=0) elif input_data_format == ChannelDimension.LAST: gray_image = image[..., 0] * 0.2989 + image[..., 1] * 0.5870 + image[..., 2] * 0.1140 gray_image = np.stack([gray_image] * 3, axis=-1) return gray_image if not isinstance(image, PIL.Image.Image): return image image = image.convert("L") return image class SuperPointImageProcessor(BaseImageProcessor): r""" Constructs a SuperPoint image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 480, "width": 640}`): Resolution of the output image after `resize` is applied. Only has an effect if `do_resize` is set to `True`. Can be overriden by `size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess` method. do_grayscale (`bool`, *optional*, defaults to `False`): Whether to convert the image to grayscale. Can be overriden by `do_grayscale` in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: float = 1 / 255, do_grayscale: bool = False, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 480, "width": 640} size = get_size_dict(size, default_to_square=False) self.do_resize = do_resize self.size = size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_grayscale = do_grayscale def resize( self, image: np.ndarray, size: Dict[str, int], data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ): """ Resize an image. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary of the form `{"height": int, "width": int}`, specifying the size of the output image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the output image. If not provided, it will be inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ size = get_size_dict(size, default_to_square=False) return resize( image, size=(size["height"], size["width"]), data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images, do_resize: Optional[bool] = None, size: Dict[str, int] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_grayscale: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to `(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_grayscale (`bool`, *optional*, defaults to `self.do_grayscale`): Whether to convert the image to grayscale. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_grayscale = do_grayscale if do_grayscale is not None else self.do_grayscale size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [self.resize(image=image, size=size, input_data_format=input_data_format) for image in images] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_grayscale: images = [convert_to_grayscale(image, input_data_format=input_data_format) for image in images] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) def post_process_keypoint_detection( self, outputs: "SuperPointKeypointDescriptionOutput", target_sizes: Union[TensorType, List[Tuple]] ) -> List[Dict[str, "torch.Tensor"]]: """ Converts the raw output of [`SuperPointForKeypointDetection`] into lists of keypoints, scores and descriptors with coordinates absolute to the original image sizes. Args: outputs ([`SuperPointKeypointDescriptionOutput`]): Raw outputs of the model containing keypoints in a relative (x, y) format, with scores and descriptors. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. This must be the original image size (before any processing). Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the keypoints in absolute format according to target_sizes, scores and descriptors for an image in the batch as predicted by the model. """ if len(outputs.mask) != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the mask") if isinstance(target_sizes, List): image_sizes = torch.tensor(target_sizes, device=outputs.mask.device) else: if target_sizes.shape[1] != 2: raise ValueError( "Each element of target_sizes must contain the size (h, w) of each image of the batch" ) image_sizes = target_sizes # Flip the image sizes to (width, height) and convert keypoints to absolute coordinates image_sizes = torch.flip(image_sizes, [1]) masked_keypoints = outputs.keypoints * image_sizes[:, None] # Convert masked_keypoints to int masked_keypoints = masked_keypoints.to(torch.int32) results = [] for image_mask, keypoints, scores, descriptors in zip( outputs.mask, masked_keypoints, outputs.scores, outputs.descriptors ): indices = torch.nonzero(image_mask).squeeze(1) keypoints = keypoints[indices] scores = scores[indices] descriptors = descriptors[indices] results.append({"keypoints": keypoints, "scores": scores, "descriptors": descriptors}) return results __all__ = ["SuperPointImageProcessor"] ```
============================================================================================================================================= SOURCE CODE FILE: modeling_superpoint.py LINES: 1 SIZE: 21.15 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\superpoint\modeling_superpoint.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SuperPoint model.""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from transformers import PreTrainedModel from transformers.modeling_outputs import ( BaseModelOutputWithNoAttention, ) from transformers.models.superpoint.configuration_superpoint import SuperPointConfig from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "SuperPointConfig" _CHECKPOINT_FOR_DOC = "magic-leap-community/superpoint" def remove_keypoints_from_borders( keypoints: torch.Tensor, scores: torch.Tensor, border: int, height: int, width: int ) -> Tuple[torch.Tensor, torch.Tensor]: """Removes keypoints (and their associated scores) that are too close to the border""" mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border)) mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border)) mask = mask_h & mask_w return keypoints[mask], scores[mask] def top_k_keypoints(keypoints: torch.Tensor, scores: torch.Tensor, k: int) -> Tuple[torch.Tensor, torch.Tensor]: """Keeps the k keypoints with highest score""" if k >= len(keypoints): return keypoints, scores scores, indices = torch.topk(scores, k, dim=0) return keypoints[indices], scores def simple_nms(scores: torch.Tensor, nms_radius: int) -> torch.Tensor: """Applies non-maximum suppression on scores""" if nms_radius < 0: raise ValueError("Expected positive values for nms_radius") def max_pool(x): return nn.functional.max_pool2d(x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius) zeros = torch.zeros_like(scores) max_mask = scores == max_pool(scores) for _ in range(2): supp_mask = max_pool(max_mask.float()) > 0 supp_scores = torch.where(supp_mask, zeros, scores) new_max_mask = supp_scores == max_pool(supp_scores) max_mask = max_mask | (new_max_mask & (~supp_mask)) return torch.where(max_mask, scores, zeros) @dataclass class SuperPointKeypointDescriptionOutput(ModelOutput): """ Base class for outputs of image point description models. Due to the nature of keypoint detection, the number of keypoints is not fixed and can vary from image to image, which makes batching non-trivial. In the batch of images, the maximum number of keypoints is set as the dimension of the keypoints, scores and descriptors tensors. The mask tensor is used to indicate which values in the keypoints, scores and descriptors tensors are keypoint information and which are padding. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*): Loss computed during training. keypoints (`torch.FloatTensor` of shape `(batch_size, num_keypoints, 2)`): Relative (x, y) coordinates of predicted keypoints in a given image. scores (`torch.FloatTensor` of shape `(batch_size, num_keypoints)`): Scores of predicted keypoints. descriptors (`torch.FloatTensor` of shape `(batch_size, num_keypoints, descriptor_size)`): Descriptors of predicted keypoints. mask (`torch.BoolTensor` of shape `(batch_size, num_keypoints)`): Mask indicating which values in keypoints, scores and descriptors are keypoint information. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the model at the output of each stage. """ loss: Optional[torch.FloatTensor] = None keypoints: Optional[torch.IntTensor] = None scores: Optional[torch.FloatTensor] = None descriptors: Optional[torch.FloatTensor] = None mask: Optional[torch.BoolTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None class SuperPointConvBlock(nn.Module): def __init__( self, config: SuperPointConfig, in_channels: int, out_channels: int, add_pooling: bool = False ) -> None: super().__init__() self.conv_a = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1, ) self.conv_b = nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1, ) self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) if add_pooling else None def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.relu(self.conv_a(hidden_states)) hidden_states = self.relu(self.conv_b(hidden_states)) if self.pool is not None: hidden_states = self.pool(hidden_states) return hidden_states class SuperPointEncoder(nn.Module): """ SuperPoint encoder module. It is made of 4 convolutional layers with ReLU activation and max pooling, reducing the dimensionality of the image. """ def __init__(self, config: SuperPointConfig) -> None: super().__init__() # SuperPoint uses 1 channel images self.input_dim = 1 conv_blocks = [] conv_blocks.append( SuperPointConvBlock(config, self.input_dim, config.encoder_hidden_sizes[0], add_pooling=True) ) for i in range(1, len(config.encoder_hidden_sizes) - 1): conv_blocks.append( SuperPointConvBlock( config, config.encoder_hidden_sizes[i - 1], config.encoder_hidden_sizes[i], add_pooling=True ) ) conv_blocks.append( SuperPointConvBlock( config, config.encoder_hidden_sizes[-2], config.encoder_hidden_sizes[-1], add_pooling=False ) ) self.conv_blocks = nn.ModuleList(conv_blocks) def forward( self, input, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for conv_block in self.conv_blocks: input = conv_block(input) if output_hidden_states: all_hidden_states = all_hidden_states + (input,) output = input if not return_dict: return tuple(v for v in [output, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=output, hidden_states=all_hidden_states, ) class SuperPointInterestPointDecoder(nn.Module): """ The SuperPointInterestPointDecoder uses the output of the SuperPointEncoder to compute the keypoint with scores. The scores are first computed by a convolutional layer, then a softmax is applied to get a probability distribution over the 65 possible keypoint classes. The keypoints are then extracted from the scores by thresholding and non-maximum suppression. Post-processing is then applied to remove keypoints too close to the image borders as well as to keep only the k keypoints with highest score. """ def __init__(self, config: SuperPointConfig) -> None: super().__init__() self.keypoint_threshold = config.keypoint_threshold self.max_keypoints = config.max_keypoints self.nms_radius = config.nms_radius self.border_removal_distance = config.border_removal_distance self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv_score_a = nn.Conv2d( config.encoder_hidden_sizes[-1], config.decoder_hidden_size, kernel_size=3, stride=1, padding=1, ) self.conv_score_b = nn.Conv2d( config.decoder_hidden_size, config.keypoint_decoder_dim, kernel_size=1, stride=1, padding=0 ) def forward(self, encoded: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: scores = self._get_pixel_scores(encoded) keypoints, scores = self._extract_keypoints(scores) return keypoints, scores def _get_pixel_scores(self, encoded: torch.Tensor) -> torch.Tensor: """Based on the encoder output, compute the scores for each pixel of the image""" scores = self.relu(self.conv_score_a(encoded)) scores = self.conv_score_b(scores) scores = nn.functional.softmax(scores, 1)[:, :-1] batch_size, _, height, width = scores.shape scores = scores.permute(0, 2, 3, 1).reshape(batch_size, height, width, 8, 8) scores = scores.permute(0, 1, 3, 2, 4).reshape(batch_size, height * 8, width * 8) scores = simple_nms(scores, self.nms_radius) return scores def _extract_keypoints(self, scores: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Based on their scores, extract the pixels that represent the keypoints that will be used for descriptors computation. The keypoints are in the form of relative (x, y) coordinates. """ _, height, width = scores.shape # Threshold keypoints by score value keypoints = torch.nonzero(scores[0] > self.keypoint_threshold) scores = scores[0][tuple(keypoints.t())] # Discard keypoints near the image borders keypoints, scores = remove_keypoints_from_borders( keypoints, scores, self.border_removal_distance, height * 8, width * 8 ) # Keep the k keypoints with highest score if self.max_keypoints >= 0: keypoints, scores = top_k_keypoints(keypoints, scores, self.max_keypoints) # Convert (y, x) to (x, y) keypoints = torch.flip(keypoints, [1]).float() return keypoints, scores class SuperPointDescriptorDecoder(nn.Module): """ The SuperPointDescriptorDecoder uses the outputs of both the SuperPointEncoder and the SuperPointInterestPointDecoder to compute the descriptors at the keypoints locations. The descriptors are first computed by a convolutional layer, then normalized to have a norm of 1. The descriptors are then interpolated at the keypoints locations. """ def __init__(self, config: SuperPointConfig) -> None: super().__init__() self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv_descriptor_a = nn.Conv2d( config.encoder_hidden_sizes[-1], config.decoder_hidden_size, kernel_size=3, stride=1, padding=1, ) self.conv_descriptor_b = nn.Conv2d( config.decoder_hidden_size, config.descriptor_decoder_dim, kernel_size=1, stride=1, padding=0, ) def forward(self, encoded: torch.Tensor, keypoints: torch.Tensor) -> torch.Tensor: """Based on the encoder output and the keypoints, compute the descriptors for each keypoint""" descriptors = self.conv_descriptor_b(self.relu(self.conv_descriptor_a(encoded))) descriptors = nn.functional.normalize(descriptors, p=2, dim=1) descriptors = self._sample_descriptors(keypoints[None], descriptors[0][None], 8)[0] # [descriptor_dim, num_keypoints] -> [num_keypoints, descriptor_dim] descriptors = torch.transpose(descriptors, 0, 1) return descriptors @staticmethod def _sample_descriptors(keypoints, descriptors, scale: int = 8) -> torch.Tensor: """Interpolate descriptors at keypoint locations""" batch_size, num_channels, height, width = descriptors.shape keypoints = keypoints - scale / 2 + 0.5 divisor = torch.tensor([[(width * scale - scale / 2 - 0.5), (height * scale - scale / 2 - 0.5)]]) divisor = divisor.to(keypoints) keypoints /= divisor keypoints = keypoints * 2 - 1 # normalize to (-1, 1) kwargs = {"align_corners": True} # [batch_size, num_channels, num_keypoints, 2] -> [batch_size, num_channels, num_keypoints, 2] keypoints = keypoints.view(batch_size, 1, -1, 2) descriptors = nn.functional.grid_sample(descriptors, keypoints, mode="bilinear", **kwargs) # [batch_size, descriptor_decoder_dim, num_channels, num_keypoints] -> [batch_size, descriptor_decoder_dim, num_keypoints] descriptors = descriptors.reshape(batch_size, num_channels, -1) descriptors = nn.functional.normalize(descriptors, p=2, dim=1) return descriptors class SuperPointPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SuperPointConfig base_model_prefix = "superpoint" main_input_name = "pixel_values" supports_gradient_checkpointing = False def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def extract_one_channel_pixel_values(self, pixel_values: torch.FloatTensor) -> torch.FloatTensor: """ Assuming pixel_values has shape (batch_size, 3, height, width), and that all channels values are the same, extract the first channel value to get a tensor of shape (batch_size, 1, height, width) for SuperPoint. This is a workaround for the issue discussed in : https://github.com/huggingface/transformers/pull/25786#issuecomment-1730176446 Args: pixel_values: torch.FloatTensor of shape (batch_size, 3, height, width) Returns: pixel_values: torch.FloatTensor of shape (batch_size, 1, height, width) """ return pixel_values[:, 0, :, :][:, None, :, :] SUPERPOINT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SuperPointConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SUPERPOINT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`SuperPointImageProcessor`]. See [`SuperPointImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "SuperPoint model outputting keypoints and descriptors.", SUPERPOINT_START_DOCSTRING, ) class SuperPointForKeypointDetection(SuperPointPreTrainedModel): """ SuperPoint model. It consists of a SuperPointEncoder, a SuperPointInterestPointDecoder and a SuperPointDescriptorDecoder. SuperPoint was proposed in `SuperPoint: Self-Supervised Interest Point Detection and Description <https://arxiv.org/abs/1712.07629>`__ by Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. It is a fully convolutional neural network that extracts keypoints and descriptors from an image. It is trained in a self-supervised manner, using a combination of a photometric loss and a loss based on the homographic adaptation of keypoints. It is made of a convolutional encoder and two decoders: one for keypoints and one for descriptors. """ def __init__(self, config: SuperPointConfig) -> None: super().__init__(config) self.config = config self.encoder = SuperPointEncoder(config) self.keypoint_decoder = SuperPointInterestPointDecoder(config) self.descriptor_decoder = SuperPointDescriptorDecoder(config) self.post_init() @add_start_docstrings_to_model_forward(SUPERPOINT_INPUTS_DOCSTRING) def forward( self, pixel_values: torch.FloatTensor, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SuperPointKeypointDescriptionOutput]: """ Examples: ```python >>> from transformers import AutoImageProcessor, SuperPointForKeypointDetection >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint") >>> model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint") >>> inputs = processor(image, return_tensors="pt") >>> outputs = model(**inputs) ```""" loss = None if labels is not None: raise ValueError("SuperPoint does not support training for now.") output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict pixel_values = self.extract_one_channel_pixel_values(pixel_values) batch_size, _, height, width = pixel_values.shape encoder_outputs = self.encoder( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] list_keypoints_scores = [ self.keypoint_decoder(last_hidden_state[None, ...]) for last_hidden_state in last_hidden_state ] list_keypoints = [keypoints_scores[0] for keypoints_scores in list_keypoints_scores] list_scores = [keypoints_scores[1] for keypoints_scores in list_keypoints_scores] list_descriptors = [ self.descriptor_decoder(last_hidden_state[None, ...], keypoints[None, ...]) for last_hidden_state, keypoints in zip(last_hidden_state, list_keypoints) ] maximum_num_keypoints = max(keypoints.shape[0] for keypoints in list_keypoints) keypoints = torch.zeros((batch_size, maximum_num_keypoints, 2), device=pixel_values.device) scores = torch.zeros((batch_size, maximum_num_keypoints), device=pixel_values.device) descriptors = torch.zeros( (batch_size, maximum_num_keypoints, self.config.descriptor_decoder_dim), device=pixel_values.device, ) mask = torch.zeros((batch_size, maximum_num_keypoints), device=pixel_values.device, dtype=torch.int) for i, (_keypoints, _scores, _descriptors) in enumerate(zip(list_keypoints, list_scores, list_descriptors)): keypoints[i, : _keypoints.shape[0]] = _keypoints scores[i, : _scores.shape[0]] = _scores descriptors[i, : _descriptors.shape[0]] = _descriptors mask[i, : _scores.shape[0]] = 1 # Convert to relative coordinates keypoints = keypoints / torch.tensor([width, height], device=keypoints.device) hidden_states = encoder_outputs[1] if output_hidden_states else None if not return_dict: return tuple(v for v in [loss, keypoints, scores, descriptors, mask, hidden_states] if v is not None) return SuperPointKeypointDescriptionOutput( loss=loss, keypoints=keypoints, scores=scores, descriptors=descriptors, mask=mask, hidden_states=hidden_states, ) __all__ = ["SuperPointForKeypointDetection", "SuperPointPreTrainedModel"] ```
=================================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.02 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\swiftformer\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_swiftformer import * from .modeling_swiftformer import * from .modeling_tf_swiftformer import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
==================================================================================================================================================== SOURCE CODE FILE: configuration_swiftformer.py LINES: 1 SIZE: 5.72 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\swiftformer\configuration_swiftformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 MBZUAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SwiftFormer model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) class SwiftFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SwiftFormerModel`]. It is used to instantiate an SwiftFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SwiftFormer [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image num_channels (`int`, *optional*, defaults to 3): The number of input channels depths (`List[int]`, *optional*, defaults to `[3, 3, 6, 4]`): Depth of each stage embed_dims (`List[int]`, *optional*, defaults to `[48, 56, 112, 220]`): The embedding dimension at each stage mlp_ratio (`int`, *optional*, defaults to 4): Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input. downsamples (`List[bool]`, *optional*, defaults to `[True, True, True, True]`): Whether or not to downsample inputs between two stages. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (string). `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. down_patch_size (`int`, *optional*, defaults to 3): The size of patches in downsampling layers. down_stride (`int`, *optional*, defaults to 2): The stride of convolution kernels in downsampling layers. down_pad (`int`, *optional*, defaults to 1): Padding in downsampling layers. drop_path_rate (`float`, *optional*, defaults to 0.0): Rate at which to increase dropout probability in DropPath. drop_mlp_rate (`float`, *optional*, defaults to 0.0): Dropout rate for the MLP component of SwiftFormer. drop_conv_encoder_rate (`float`, *optional*, defaults to 0.0): Dropout rate for the ConvEncoder component of SwiftFormer. use_layer_scale (`bool`, *optional*, defaults to `True`): Whether to scale outputs from token mixers. layer_scale_init_value (`float`, *optional*, defaults to 1e-05): Factor by which outputs from token mixers are scaled. batch_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the batch normalization layers. Example: ```python >>> from transformers import SwiftFormerConfig, SwiftFormerModel >>> # Initializing a SwiftFormer swiftformer-base-patch16-224 style configuration >>> configuration = SwiftFormerConfig() >>> # Initializing a model (with random weights) from the swiftformer-base-patch16-224 style configuration >>> model = SwiftFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "swiftformer" def __init__( self, image_size=224, num_channels=3, depths=[3, 3, 6, 4], embed_dims=[48, 56, 112, 220], mlp_ratio=4, downsamples=[True, True, True, True], hidden_act="gelu", down_patch_size=3, down_stride=2, down_pad=1, drop_path_rate=0.0, drop_mlp_rate=0.0, drop_conv_encoder_rate=0.0, use_layer_scale=True, layer_scale_init_value=1e-5, batch_norm_eps=1e-5, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.num_channels = num_channels self.depths = depths self.embed_dims = embed_dims self.mlp_ratio = mlp_ratio self.downsamples = downsamples self.hidden_act = hidden_act self.down_patch_size = down_patch_size self.down_stride = down_stride self.down_pad = down_pad self.drop_path_rate = drop_path_rate self.drop_mlp_rate = drop_mlp_rate self.drop_conv_encoder_rate = drop_conv_encoder_rate self.use_layer_scale = use_layer_scale self.layer_scale_init_value = layer_scale_init_value self.batch_norm_eps = batch_norm_eps class SwiftFormerOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 __all__ = ["SwiftFormerConfig", "SwiftFormerOnnxConfig"] ```
=============================================================================================================================================== SOURCE CODE FILE: modeling_swiftformer.py LINES: 1 SIZE: 22.31 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\swiftformer\modeling_swiftformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2023 MBZUAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch SwiftFormer model.""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2CLS from ...modeling_outputs import ( BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_swiftformer import SwiftFormerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SwiftFormerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "MBZUAI/swiftformer-xs" _EXPECTED_OUTPUT_SHAPE = [1, 220, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "MBZUAI/swiftformer-xs" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" class SwiftFormerPatchEmbedding(nn.Module): """ Patch Embedding Layer constructed of two 2D convolutional layers. Input: tensor of shape `[batch_size, in_channels, height, width]` Output: tensor of shape `[batch_size, out_channels, height/4, width/4]` """ def __init__(self, config: SwiftFormerConfig): super().__init__() in_chs = config.num_channels out_chs = config.embed_dims[0] self.patch_embedding = nn.Sequential( nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_chs // 2, eps=config.batch_norm_eps), nn.ReLU(), nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_chs, eps=config.batch_norm_eps), nn.ReLU(), ) def forward(self, x): return self.patch_embedding(x) # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output class SwiftFormerDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, config: SwiftFormerConfig) -> None: super().__init__() self.drop_prob = config.drop_path_rate def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class SwiftFormerEmbeddings(nn.Module): """ Embeddings layer consisting of a single 2D convolutional and batch normalization layer. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height/stride, width/stride]` """ def __init__(self, config: SwiftFormerConfig, index: int): super().__init__() patch_size = config.down_patch_size stride = config.down_stride padding = config.down_pad embed_dims = config.embed_dims in_chans = embed_dims[index] embed_dim = embed_dims[index + 1] patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride) padding = padding if isinstance(padding, collections.abc.Iterable) else (padding, padding) self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding) self.norm = nn.BatchNorm2d(embed_dim, eps=config.batch_norm_eps) def forward(self, x): x = self.proj(x) x = self.norm(x) return x class SwiftFormerConvEncoder(nn.Module): """ `SwiftFormerConvEncoder` with 3*3 and 1*1 convolutions. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int): super().__init__() hidden_dim = int(config.mlp_ratio * dim) self.depth_wise_conv = nn.Conv2d(dim, dim, kernel_size=3, padding=1, groups=dim) self.norm = nn.BatchNorm2d(dim, eps=config.batch_norm_eps) self.point_wise_conv1 = nn.Conv2d(dim, hidden_dim, kernel_size=1) self.act = nn.GELU() self.point_wise_conv2 = nn.Conv2d(hidden_dim, dim, kernel_size=1) self.drop_path = nn.Dropout(p=config.drop_conv_encoder_rate) self.layer_scale = nn.Parameter(torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True) def forward(self, x): input = x x = self.depth_wise_conv(x) x = self.norm(x) x = self.point_wise_conv1(x) x = self.act(x) x = self.point_wise_conv2(x) x = input + self.drop_path(self.layer_scale * x) return x class SwiftFormerMlp(nn.Module): """ MLP layer with 1*1 convolutions. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, in_features: int): super().__init__() hidden_features = int(in_features * config.mlp_ratio) self.norm1 = nn.BatchNorm2d(in_features, eps=config.batch_norm_eps) self.fc1 = nn.Conv2d(in_features, hidden_features, 1) act_layer = ACT2CLS[config.hidden_act] self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, in_features, 1) self.drop = nn.Dropout(p=config.drop_mlp_rate) def forward(self, x): x = self.norm1(x) x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class SwiftFormerEfficientAdditiveAttention(nn.Module): """ Efficient Additive Attention module for SwiftFormer. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int = 512): super().__init__() self.to_query = nn.Linear(dim, dim) self.to_key = nn.Linear(dim, dim) self.w_g = nn.Parameter(torch.randn(dim, 1)) self.scale_factor = dim**-0.5 self.proj = nn.Linear(dim, dim) self.final = nn.Linear(dim, dim) def forward(self, x): query = self.to_query(x) key = self.to_key(x) query = torch.nn.functional.normalize(query, dim=-1) key = torch.nn.functional.normalize(key, dim=-1) query_weight = query @ self.w_g scaled_query_weight = query_weight * self.scale_factor scaled_query_weight = scaled_query_weight.softmax(dim=-1) global_queries = torch.sum(scaled_query_weight * query, dim=1) global_queries = global_queries.unsqueeze(1).repeat(1, key.shape[1], 1) out = self.proj(global_queries * key) + query out = self.final(out) return out class SwiftFormerLocalRepresentation(nn.Module): """ Local Representation module for SwiftFormer that is implemented by 3*3 depth-wise and point-wise convolutions. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int): super().__init__() self.depth_wise_conv = nn.Conv2d(dim, dim, kernel_size=3, padding=1, groups=dim) self.norm = nn.BatchNorm2d(dim, eps=config.batch_norm_eps) self.point_wise_conv1 = nn.Conv2d(dim, dim, kernel_size=1) self.act = nn.GELU() self.point_wise_conv2 = nn.Conv2d(dim, dim, kernel_size=1) self.drop_path = nn.Identity() self.layer_scale = nn.Parameter(torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True) def forward(self, x): input = x x = self.depth_wise_conv(x) x = self.norm(x) x = self.point_wise_conv1(x) x = self.act(x) x = self.point_wise_conv2(x) x = input + self.drop_path(self.layer_scale * x) return x class SwiftFormerEncoderBlock(nn.Module): """ SwiftFormer Encoder Block for SwiftFormer. It consists of (1) Local representation module, (2) SwiftFormerEfficientAdditiveAttention, and (3) MLP block. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels,height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int, drop_path: float = 0.0) -> None: super().__init__() layer_scale_init_value = config.layer_scale_init_value use_layer_scale = config.use_layer_scale self.local_representation = SwiftFormerLocalRepresentation(config, dim=dim) self.attn = SwiftFormerEfficientAdditiveAttention(config, dim=dim) self.linear = SwiftFormerMlp(config, in_features=dim) self.drop_path = SwiftFormerDropPath(config) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = use_layer_scale if use_layer_scale: self.layer_scale_1 = nn.Parameter( layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True ) self.layer_scale_2 = nn.Parameter( layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True ) def forward(self, x): x = self.local_representation(x) batch_size, channels, height, width = x.shape res = self.attn(x.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)) res = res.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2) if self.use_layer_scale: x = x + self.drop_path(self.layer_scale_1 * res) x = x + self.drop_path(self.layer_scale_2 * self.linear(x)) else: x = x + self.drop_path(res) x = x + self.drop_path(self.linear(x)) return x class SwiftFormerStage(nn.Module): """ A Swiftformer stage consisting of a series of `SwiftFormerConvEncoder` blocks and a final `SwiftFormerEncoderBlock`. Input: tensor in shape `[batch_size, channels, height, width]` Output: tensor in shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, index: int) -> None: super().__init__() layer_depths = config.depths dim = config.embed_dims[index] depth = layer_depths[index] blocks = [] for block_idx in range(depth): block_dpr = config.drop_path_rate * (block_idx + sum(layer_depths[:index])) / (sum(layer_depths) - 1) if depth - block_idx <= 1: blocks.append(SwiftFormerEncoderBlock(config, dim=dim, drop_path=block_dpr)) else: blocks.append(SwiftFormerConvEncoder(config, dim=dim)) self.blocks = nn.ModuleList(blocks) def forward(self, input): for block in self.blocks: input = block(input) return input class SwiftFormerEncoder(nn.Module): def __init__(self, config: SwiftFormerConfig) -> None: super().__init__() self.config = config embed_dims = config.embed_dims downsamples = config.downsamples layer_depths = config.depths # Transformer model network = [] for i in range(len(layer_depths)): stage = SwiftFormerStage(config=config, index=i) network.append(stage) if i >= len(layer_depths) - 1: break if downsamples[i] or embed_dims[i] != embed_dims[i + 1]: # downsampling between two stages network.append(SwiftFormerEmbeddings(config, index=i)) self.network = nn.ModuleList(network) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict all_hidden_states = (hidden_states,) if output_hidden_states else None for block in self.network: hidden_states = block(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) class SwiftFormerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SwiftFormerConfig base_model_prefix = "swiftformer" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["SwiftFormerEncoderBlock"] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Conv2d, nn.Linear)): nn.init.trunc_normal_(module.weight, std=0.02) if module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, (nn.LayerNorm)): nn.init.constant_(module.bias, 0) nn.init.constant_(module.weight, 1.0) SWIFTFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SwiftFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SWIFTFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SwiftFormer Model transformer outputting raw hidden-states without any specific head on top.", SWIFTFORMER_START_DOCSTRING, ) class SwiftFormerModel(SwiftFormerPreTrainedModel): def __init__(self, config: SwiftFormerConfig): super().__init__(config) self.config = config self.patch_embed = SwiftFormerPatchEmbedding(config) self.encoder = SwiftFormerEncoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SWIFTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: r""" """ output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.patch_embed(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return tuple(v for v in encoder_outputs if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=encoder_outputs.last_hidden_state, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ SwiftFormer Model transformer with an image classification head on top (e.g. for ImageNet). """, SWIFTFORMER_START_DOCSTRING, ) class SwiftFormerForImageClassification(SwiftFormerPreTrainedModel): def __init__(self, config: SwiftFormerConfig) -> None: super().__init__(config) embed_dims = config.embed_dims self.num_labels = config.num_labels self.swiftformer = SwiftFormerModel(config) # Classifier head self.norm = nn.BatchNorm2d(embed_dims[-1], eps=config.batch_norm_eps) self.head = nn.Linear(embed_dims[-1], self.num_labels) if self.num_labels > 0 else nn.Identity() self.dist_head = nn.Linear(embed_dims[-1], self.num_labels) if self.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SWIFTFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict # run base model outputs = self.swiftformer( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs.last_hidden_state if return_dict else outputs[0] # run classification head sequence_output = self.norm(sequence_output) sequence_output = sequence_output.flatten(2).mean(-1) cls_out = self.head(sequence_output) distillation_out = self.dist_head(sequence_output) logits = (cls_out + distillation_out) / 2 # calculate loss loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) __all__ = ["SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel"] ```
================================================================================================================================================== SOURCE CODE FILE: modeling_tf_swiftformer.py LINES: 1 SIZE: 34.15 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\swiftformer\modeling_tf_swiftformer.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2024 MBZUAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TensorFlow SwiftFormer model.""" import collections.abc from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFImageClassifierOutputWithNoAttention, ) from ...modeling_tf_utils import TFPreTrainedModel, keras, keras_serializable, unpack_inputs from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_swiftformer import SwiftFormerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SwiftFormerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "MBZUAI/swiftformer-xs" _EXPECTED_OUTPUT_SHAPE = [1, 220, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "MBZUAI/swiftformer-xs" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" class TFSwiftFormerPatchEmbeddingSequential(keras.layers.Layer): """ The sequential component of the patch embedding layer. Input: tensor of shape `[batch_size, in_channels, height, width]` Output: tensor of shape `[batch_size, out_channels, height/4, width/4]` """ def __init__(self, config: SwiftFormerConfig, **kwargs): super().__init__(**kwargs) self.out_chs = config.embed_dims[0] self.zero_padding = keras.layers.ZeroPadding2D(padding=(1, 1)) self.conv1 = keras.layers.Conv2D(self.out_chs // 2, kernel_size=3, strides=2, name="0") self.batch_norm1 = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="1") self.conv2 = keras.layers.Conv2D(self.out_chs, kernel_size=3, strides=2, name="3") self.batch_norm2 = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="4") self.config = config def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor: x = self.zero_padding(x) x = self.conv1(x) x = self.batch_norm1(x, training=training) x = get_tf_activation("relu")(x) x = self.zero_padding(x) x = self.conv2(x) x = self.batch_norm2(x, training=training) x = get_tf_activation("relu")(x) return x def build(self, input_shape=None): if self.built: return if getattr(self, "conv1", None) is not None: with tf.name_scope(self.conv1.name): self.conv1.build(self.config.num_channels) if getattr(self, "batch_norm1", None) is not None: with tf.name_scope(self.batch_norm1.name): self.batch_norm1.build((None, None, None, self.out_chs // 2)) if getattr(self, "conv2", None) is not None: with tf.name_scope(self.conv2.name): self.conv2.build((None, None, None, self.out_chs // 2)) if getattr(self, "batch_norm2", None) is not None: with tf.name_scope(self.batch_norm2.name): self.batch_norm2.build((None, None, None, self.out_chs)) self.built = True class TFSwiftFormerPatchEmbedding(keras.layers.Layer): """ Patch Embedding Layer constructed of two 2D convolutional layers. Input: tensor of shape `[batch_size, in_channels, height, width]` Output: tensor of shape `[batch_size, out_channels, height/4, width/4]` """ def __init__(self, config: SwiftFormerConfig, **kwargs): super().__init__(**kwargs) self.patch_embedding = TFSwiftFormerPatchEmbeddingSequential(config, name="patch_embedding") def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor: return self.patch_embedding(x, training=training) def build(self, input_shape=None): if self.built: return if getattr(self, "patch_embedding", None) is not None: with tf.name_scope(self.patch_embedding.name): self.patch_embedding.build(None) self.built = True class TFSwiftFormerDropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, config: SwiftFormerConfig, **kwargs) -> None: super().__init__(**kwargs) raise NotImplementedError("Drop path is not implemented in TF port") def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: raise NotImplementedError("Drop path is not implemented in TF port") class TFSwiftFormerEmbeddings(keras.layers.Layer): """ Embeddings layer consisting of a single 2D convolutional and batch normalization layer. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height/stride, width/stride]` """ def __init__(self, config: SwiftFormerConfig, index: int, **kwargs): super().__init__(**kwargs) patch_size = config.down_patch_size stride = config.down_stride padding = config.down_pad embed_dims = config.embed_dims self.in_chans = embed_dims[index] self.embed_dim = embed_dims[index + 1] patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride) padding = padding if isinstance(padding, collections.abc.Iterable) else (padding, padding) self.pad = keras.layers.ZeroPadding2D(padding=padding) self.proj = keras.layers.Conv2D(self.embed_dim, kernel_size=patch_size, strides=stride, name="proj") self.norm = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="norm") def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor: x = self.pad(x) x = self.proj(x) x = self.norm(x, training=training) return x def build(self, input_shape=None): if self.built: return if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build(self.in_chans) if getattr(self, "norm", None) is not None: with tf.name_scope(self.norm.name): self.norm.build((None, None, None, self.embed_dim)) self.built = True class TFSwiftFormerConvEncoder(keras.layers.Layer): """ `SwiftFormerConvEncoder` with 3*3 and 1*1 convolutions. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int, **kwargs): super().__init__(**kwargs) hidden_dim = int(config.mlp_ratio * dim) self.dim = dim self.pad = keras.layers.ZeroPadding2D(padding=(1, 1)) self.depth_wise_conv = keras.layers.Conv2D(dim, kernel_size=3, groups=dim, name="depth_wise_conv") self.norm = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="norm") self.point_wise_conv1 = keras.layers.Conv2D(hidden_dim, kernel_size=1, name="point_wise_conv1") self.act = get_tf_activation("gelu") self.point_wise_conv2 = keras.layers.Conv2D(dim, kernel_size=1, name="point_wise_conv2") self.drop_path = keras.layers.Dropout(name="drop_path", rate=config.drop_conv_encoder_rate) self.hidden_dim = int(config.mlp_ratio * self.dim) def build(self, input_shape=None): if self.built: return self.layer_scale = self.add_weight( name="layer_scale", shape=self.dim, initializer="ones", trainable=True, ) if getattr(self, "depth_wise_conv", None) is not None: with tf.name_scope(self.depth_wise_conv.name): self.depth_wise_conv.build(self.dim) if getattr(self, "norm", None) is not None: with tf.name_scope(self.norm.name): self.norm.build((None, None, None, self.dim)) if getattr(self, "point_wise_conv1", None) is not None: with tf.name_scope(self.point_wise_conv1.name): self.point_wise_conv1.build(self.dim) if getattr(self, "point_wise_conv2", None) is not None: with tf.name_scope(self.point_wise_conv2.name): self.point_wise_conv2.build(self.hidden_dim) if getattr(self, "drop_path", None) is not None: with tf.name_scope(self.drop_path.name): self.drop_path.build(None) self.built = True def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor: input = x x = self.pad(x) x = self.depth_wise_conv(x) x = self.norm(x, training=training) x = self.point_wise_conv1(x) x = self.act(x) x = self.point_wise_conv2(x) x = input + self.drop_path(self.layer_scale * x) return x class TFSwiftFormerMlp(keras.layers.Layer): """ MLP layer with 1*1 convolutions. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, in_features: int, **kwargs): super().__init__(**kwargs) hidden_features = int(in_features * config.mlp_ratio) self.norm1 = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="norm1") self.fc1 = keras.layers.Conv2D(hidden_features, 1, name="fc1") act_layer = get_tf_activation(config.hidden_act) self.act = act_layer self.fc2 = keras.layers.Conv2D(in_features, 1, name="fc2") self.drop = keras.layers.Dropout(rate=config.drop_mlp_rate) self.hidden_features = hidden_features self.in_features = in_features def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor: x = self.norm1(x, training=training) x = self.fc1(x) x = self.act(x) x = self.drop(x, training=training) x = self.fc2(x) x = self.drop(x, training=training) return x def build(self, input_shape=None): if self.built: return if getattr(self, "norm1", None) is not None: with tf.name_scope(self.norm1.name): self.norm1.build((None, None, None, self.in_features)) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build((None, None, None, self.in_features)) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build((None, None, None, self.hidden_features)) self.built = True class TFSwiftFormerEfficientAdditiveAttention(keras.layers.Layer): """ Efficient Additive Attention module for SwiftFormer. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int = 512, **kwargs): super().__init__(**kwargs) self.dim = dim self.to_query = keras.layers.Dense(dim, name="to_query") self.to_key = keras.layers.Dense(dim, name="to_key") self.scale_factor = dim**-0.5 self.proj = keras.layers.Dense(dim, name="proj") self.final = keras.layers.Dense(dim, name="final") def build(self, input_shape=None): if self.built: return self.w_g = self.add_weight( name="w_g", shape=(self.dim, 1), initializer=keras.initializers.RandomNormal(mean=0, stddev=1), trainable=True, ) if getattr(self, "to_query", None) is not None: with tf.name_scope(self.to_query.name): self.to_query.build(self.dim) if getattr(self, "to_key", None) is not None: with tf.name_scope(self.to_key.name): self.to_key.build(self.dim) if getattr(self, "proj", None) is not None: with tf.name_scope(self.proj.name): self.proj.build(self.dim) if getattr(self, "final", None) is not None: with tf.name_scope(self.final.name): self.final.build(self.dim) self.built = True def call(self, x: tf.Tensor) -> tf.Tensor: query = self.to_query(x) key = self.to_key(x) query = tf.math.l2_normalize(query, dim=-1) key = tf.math.l2_normalize(key, dim=-1) query_weight = query @ self.w_g scaled_query_weight = query_weight * self.scale_factor scaled_query_weight = tf.nn.softmax(scaled_query_weight, axis=-1) global_queries = tf.math.reduce_sum(scaled_query_weight * query, axis=1) global_queries = tf.tile(tf.expand_dims(global_queries, 1), (1, key.shape[1], 1)) out = self.proj(global_queries * key) + query out = self.final(out) return out class TFSwiftFormerLocalRepresentation(keras.layers.Layer): """ Local Representation module for SwiftFormer that is implemented by 3*3 depth-wise and point-wise convolutions. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int, **kwargs): super().__init__(**kwargs) self.dim = dim self.pad = keras.layers.ZeroPadding2D(padding=(1, 1)) self.depth_wise_conv = keras.layers.Conv2D(dim, kernel_size=3, groups=dim, name="depth_wise_conv") self.norm = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="norm") self.point_wise_conv1 = keras.layers.Conv2D(dim, kernel_size=1, name="point_wise_conv1") self.act = get_tf_activation("gelu") self.point_wise_conv2 = keras.layers.Conv2D(dim, kernel_size=1, name="point_wise_conv2") self.drop_path = keras.layers.Identity(name="drop_path") def build(self, input_shape=None): if self.built: return self.layer_scale = self.add_weight( name="layer_scale", shape=(self.dim), initializer="ones", trainable=True, ) if getattr(self, "depth_wise_conv", None) is not None: with tf.name_scope(self.depth_wise_conv.name): self.depth_wise_conv.build((None, None, None, self.dim)) if getattr(self, "norm", None) is not None: with tf.name_scope(self.norm.name): self.norm.build((None, None, None, self.dim)) if getattr(self, "point_wise_conv1", None) is not None: with tf.name_scope(self.point_wise_conv1.name): self.point_wise_conv1.build(self.dim) if getattr(self, "point_wise_conv2", None) is not None: with tf.name_scope(self.point_wise_conv2.name): self.point_wise_conv2.build(self.dim) if getattr(self, "drop_path", None) is not None: with tf.name_scope(self.drop_path.name): self.drop_path.build(None) self.built = True def call(self, x: tf.Tensor, training: bool = False) -> tf.Tensor: input = x x = self.pad(x) x = self.depth_wise_conv(x) x = self.norm(x, training=training) x = self.point_wise_conv1(x) x = self.act(x) x = self.point_wise_conv2(x) x = input + self.drop_path(self.layer_scale * x, training=training) return x class TFSwiftFormerEncoderBlock(keras.layers.Layer): """ SwiftFormer Encoder Block for SwiftFormer. It consists of (1) Local representation module, (2) SwiftFormerEfficientAdditiveAttention, and (3) MLP block. Input: tensor of shape `[batch_size, channels, height, width]` Output: tensor of shape `[batch_size, channels,height, width]` """ def __init__(self, config: SwiftFormerConfig, dim: int, drop_path: float = 0.0, **kwargs): super().__init__(**kwargs) layer_scale_init_value = config.layer_scale_init_value use_layer_scale = config.use_layer_scale self.local_representation = TFSwiftFormerLocalRepresentation(config, dim=dim, name="local_representation") self.attn = TFSwiftFormerEfficientAdditiveAttention(config, dim=dim, name="attn") self.linear = TFSwiftFormerMlp(config, in_features=dim, name="linear") self.drop_path = TFSwiftFormerDropPath(config) if drop_path > 0.0 else keras.layers.Identity() self.use_layer_scale = use_layer_scale if use_layer_scale: self.dim = dim self.layer_scale_init_value = layer_scale_init_value def build(self, input_shape=None): if self.built: return self.layer_scale_1 = self.add_weight( name="layer_scale_1", shape=self.dim, initializer=keras.initializers.constant(self.layer_scale_init_value), trainable=True, ) self.layer_scale_2 = self.add_weight( name="layer_scale_2", shape=self.dim, initializer=keras.initializers.constant(self.layer_scale_init_value), trainable=True, ) if getattr(self, "local_representation", None) is not None: with tf.name_scope(self.local_representation.name): self.local_representation.build(None) if getattr(self, "attn", None) is not None: with tf.name_scope(self.attn.name): self.attn.build(None) if getattr(self, "linear", None) is not None: with tf.name_scope(self.linear.name): self.linear.build(None) self.built = True def call(self, x: tf.Tensor, training: bool = False): x = self.local_representation(x, training=training) batch_size, height, width, channels = x.shape res = tf.reshape(x, [-1, height * width, channels]) res = self.attn(res) res = tf.reshape(res, [-1, height, width, channels]) if self.use_layer_scale: x = x + self.drop_path(self.layer_scale_1 * res, training=training) x = x + self.drop_path(self.layer_scale_2 * self.linear(x), training=training) else: x = x + self.drop_path(res, training=training) x = x + self.drop_path(self.linear(x), training=training) return x class TFSwiftFormerStage(keras.layers.Layer): """ A Swiftformer stage consisting of a series of `SwiftFormerConvEncoder` blocks and a final `SwiftFormerEncoderBlock`. Input: tensor in shape `[batch_size, channels, height, width]` Output: tensor in shape `[batch_size, channels, height, width]` """ def __init__(self, config: SwiftFormerConfig, index: int, **kwargs) -> None: super().__init__(**kwargs) layer_depths = config.depths dim = config.embed_dims[index] depth = layer_depths[index] self.blocks = [] for block_idx in range(depth): block_dpr = config.drop_path_rate * (block_idx + sum(layer_depths[:index])) / (sum(layer_depths) - 1) if depth - block_idx <= 1: self.blocks.append( TFSwiftFormerEncoderBlock(config, dim=dim, drop_path=block_dpr, name=f"blocks_._{block_idx}") ) else: self.blocks.append(TFSwiftFormerConvEncoder(config, dim=dim, name=f"blocks_._{block_idx}")) def call(self, input: tf.Tensor, training: bool = False) -> tf.Tensor: for i, block in enumerate(self.blocks): input = block(input, training=training) return input def build(self, input_shape=None): for layer in self.blocks: with tf.name_scope(layer.name): layer.build(None) class TFSwiftFormerEncoder(keras.layers.Layer): def __init__(self, config: SwiftFormerConfig, **kwargs) -> None: super().__init__(**kwargs) self.config = config embed_dims = config.embed_dims downsamples = config.downsamples layer_depths = config.depths # Transformer model self.network = [] name_i = 0 for i in range(len(layer_depths)): stage = TFSwiftFormerStage(config, index=i, name=f"network_._{name_i}") self.network.append(stage) name_i += 1 if i >= len(layer_depths) - 1: break if downsamples[i] or embed_dims[i] != embed_dims[i + 1]: # downsampling between two stages self.network.append(TFSwiftFormerEmbeddings(config, index=i, name=f"network_._{name_i}")) name_i += 1 self.gradient_checkpointing = False def call( self, hidden_states: tf.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFBaseModelOutputWithNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict all_hidden_states = (hidden_states,) if output_hidden_states else None for i, block in enumerate(self.network): hidden_states = block(hidden_states, training=training) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = tf.transpose(hidden_states, perm=[0, 3, 1, 2]) if all_hidden_states: all_hidden_states = tuple(tf.transpose(s, perm=[0, 3, 1, 2]) for s in all_hidden_states) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return TFBaseModelOutputWithNoAttention( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) def build(self, input_shape=None): for layer in self.network: with tf.name_scope(layer.name): layer.build(None) class TFSwiftFormerPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SwiftFormerConfig base_model_prefix = "swiftformer" main_input_name = "pixel_values" TFSWIFTFORMER_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using [`keras.Model.fit`] method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` </Tip> Parameters: config ([`SwiftFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TFSWIFTFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to run the model in training mode. """ @keras_serializable class TFSwiftFormerMainLayer(keras.layers.Layer): config_class = SwiftFormerConfig def __init__(self, config: SwiftFormerConfig, **kwargs): super().__init__(**kwargs) self.config = config self.patch_embed = TFSwiftFormerPatchEmbedding(config, name="patch_embed") self.encoder = TFSwiftFormerEncoder(config, name="encoder") @unpack_inputs def call( self, pixel_values: Optional[tf.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutputWithNoAttention]: r""" """ output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # TF 2.0 image layers can't use NCHW format when running on CPU. # We transpose to NHWC format and then transpose back after the full forward pass. # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) pixel_values = tf.transpose(pixel_values, perm=[0, 2, 3, 1]) if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.patch_embed(pixel_values, training=training) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return tuple(v for v in encoder_outputs if v is not None) return TFBaseModelOutputWithNoAttention( last_hidden_state=encoder_outputs.last_hidden_state, hidden_states=encoder_outputs.hidden_states, ) def build(self, input_shape=None): if self.built: return if getattr(self, "patch_embed", None) is not None: with tf.name_scope(self.patch_embed.name): self.patch_embed.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) self.built = True @add_start_docstrings( "The bare TFSwiftFormer Model transformer outputting raw hidden-states without any specific head on top.", TFSWIFTFORMER_START_DOCSTRING, ) class TFSwiftFormerModel(TFSwiftFormerPreTrainedModel): def __init__(self, config: SwiftFormerConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.swiftformer = TFSwiftFormerMainLayer(config, name="swiftformer") @unpack_inputs @add_start_docstrings_to_model_forward(TFSWIFTFORMER_INPUTS_DOCSTRING) def call( self, pixel_values: Optional[tf.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithNoAttention, Tuple[tf.Tensor]]: outputs = self.swiftformer( pixel_values=pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return if getattr(self, "swiftformer", None) is not None: with tf.name_scope(self.swiftformer.name): self.swiftformer.build(None) self.built = True @add_start_docstrings( """ TFSwiftFormer Model transformer with an image classification head on top (e.g. for ImageNet). """, TFSWIFTFORMER_START_DOCSTRING, ) class TFSwiftFormerForImageClassification(TFSwiftFormerPreTrainedModel): def __init__(self, config: SwiftFormerConfig, **kwargs) -> None: super().__init__(config, **kwargs) self.num_labels = config.num_labels self.swiftformer = TFSwiftFormerMainLayer(config, name="swiftformer") # Classifier head self.norm = keras.layers.BatchNormalization(epsilon=config.batch_norm_eps, momentum=0.9, name="norm") self.head = ( keras.layers.Dense(self.num_labels, name="head") if self.num_labels > 0 else keras.layers.Identity(name="head") ) self.dist_head = ( keras.layers.Dense(self.num_labels, name="dist_head") if self.num_labels > 0 else keras.layers.Identity(name="dist_head") ) def hf_compute_loss(self, labels, logits): if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == tf.int64 or labels.dtype == tf.int32): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = keras.losses.MSE if self.num_labels == 1: loss = loss_fct(labels.squeeze(), logits.squeeze()) else: loss = loss_fct(labels, logits) elif self.config.problem_type == "single_label_classification": loss_fct = keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=keras.losses.Reduction.NONE ) loss = loss_fct(labels, logits) elif self.config.problem_type == "multi_label_classification": loss_fct = keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=keras.losses.Reduction.NONE, ) loss = loss_fct(labels, logits) else: loss = None return loss @unpack_inputs @add_start_docstrings_to_model_forward(TFSWIFTFORMER_INPUTS_DOCSTRING) def call( self, pixel_values: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFImageClassifierOutputWithNoAttention]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict # run base model outputs = self.swiftformer( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs.last_hidden_state if return_dict else outputs[0] sequence_output = tf.transpose(sequence_output, perm=[0, 2, 3, 1]) # run classification head sequence_output = self.norm(sequence_output, training=training) sequence_output = tf.transpose(sequence_output, perm=[0, 3, 1, 2]) _, num_channels, height, width = sequence_output.shape sequence_output = tf.reshape(sequence_output, [-1, num_channels, height * width]) sequence_output = tf.reduce_mean(sequence_output, axis=-1) cls_out = self.head(sequence_output) distillation_out = self.dist_head(sequence_output) logits = (cls_out + distillation_out) / 2 # calculate loss loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) def build(self, input_shape=None): if self.built: return if getattr(self, "swiftformer", None) is not None: with tf.name_scope(self.swiftformer.name): self.swiftformer.build(None) if getattr(self, "norm", None) is not None: with tf.name_scope(self.norm.name): self.norm.build((None, None, None, self.config.embed_dims[-1])) if getattr(self, "head", None) is not None: with tf.name_scope(self.head.name): self.head.build(self.config.embed_dims[-1]) if getattr(self, "dist_head", None) is not None: with tf.name_scope(self.dist_head.name): self.dist_head.build(self.config.embed_dims[-1]) self.built = True __all__ = ["TFSwiftFormerForImageClassification", "TFSwiftFormerModel", "TFSwiftFormerPreTrainedModel"] ```
=============================================================================================================================== SOURCE CODE FILE: __init__.py LINES: 1 SIZE: 1.01 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\swin2sr\__init__.py ENCODING: utf-8 ```py # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule from ...utils.import_utils import define_import_structure if TYPE_CHECKING: from .configuration_swin2sr import * from .image_processing_swin2sr import * from .modeling_swin2sr import * else: import sys _file = globals()["__file__"] sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__) ```
============================================================================================================================================ SOURCE CODE FILE: configuration_swin2sr.py LINES: 1 SIZE: 6.68 KB PATH: scripts\freecad_env\Lib\site-packages\transformers\models\swin2sr\configuration_swin2sr.py ENCODING: utf-8 ```py # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Swin2SR Transformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class Swin2SRConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Swin2SRModel`]. It is used to instantiate a Swin Transformer v2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Swin Transformer v2 [caidas/swin2sr-classicalsr-x2-64](https://huggingface.co/caidas/swin2sr-classicalsr-x2-64) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 64): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 1): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_channels_out (`int`, *optional*, defaults to `num_channels`): The number of output channels. If not set, it will be set to `num_channels`. embed_dim (`int`, *optional*, defaults to 180): Dimensionality of patch embedding. depths (`list(int)`, *optional*, defaults to `[6, 6, 6, 6, 6, 6]`): Depth of each layer in the Transformer encoder. num_heads (`list(int)`, *optional*, defaults to `[6, 6, 6, 6, 6, 6]`): Number of attention heads in each layer of the Transformer encoder. window_size (`int`, *optional*, defaults to 8): Size of windows. mlp_ratio (`float`, *optional*, defaults to 2.0): Ratio of MLP hidden dimensionality to embedding dimensionality. qkv_bias (`bool`, *optional*, defaults to `True`): Whether or not a learnable bias should be added to the queries, keys and values. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings and encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. use_absolute_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to add absolute position embeddings to the patch embeddings. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. upscale (`int`, *optional*, defaults to 2): The upscale factor for the image. 2/3/4/8 for image super resolution, 1 for denoising and compress artifact reduction img_range (`float`, *optional*, defaults to 1.0): The range of the values of the input image. resi_connection (`str`, *optional*, defaults to `"1conv"`): The convolutional block to use before the residual connection in each stage. upsampler (`str`, *optional*, defaults to `"pixelshuffle"`): The reconstruction reconstruction module. Can be 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None. Example: ```python >>> from transformers import Swin2SRConfig, Swin2SRModel >>> # Initializing a Swin2SR caidas/swin2sr-classicalsr-x2-64 style configuration >>> configuration = Swin2SRConfig() >>> # Initializing a model (with random weights) from the caidas/swin2sr-classicalsr-x2-64 style configuration >>> model = Swin2SRModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "swin2sr" attribute_map = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, image_size=64, patch_size=1, num_channels=3, num_channels_out=None, embed_dim=180, depths=[6, 6, 6, 6, 6, 6], num_heads=[6, 6, 6, 6, 6, 6], window_size=8, mlp_ratio=2.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, initializer_range=0.02, layer_norm_eps=1e-5, upscale=2, img_range=1.0, resi_connection="1conv", upsampler="pixelshuffle", **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_channels_out = num_channels if num_channels_out is None else num_channels_out self.embed_dim = embed_dim self.depths = depths self.num_layers = len(depths) self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.upscale = upscale self.img_range = img_range self.resi_connection = resi_connection self.upsampler = upsampler __all__ = ["Swin2SRConfig"] ```