text
stringlengths 145
7.65M
|
---|
=====================================================================================================================================
SOURCE CODE FILE: modeling_owlvit.py
LINES: 1
SIZE: 79.81 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\owlvit\modeling_owlvit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Google AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OWL-ViT model."""
from dataclasses import dataclass
from functools import lru_cache
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_vision_available,
logging,
replace_return_docstrings,
torch_int,
)
from .configuration_owlvit import OwlViTConfig, OwlViTTextConfig, OwlViTVisionConfig
if is_vision_available():
from transformers.image_transforms import center_to_corners_format
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/owlvit-base-patch32"
# See all OwlViT models at https://huggingface.co/models?filter=owlvit
# Copied from transformers.models.clip.modeling_clip.contrastive_loss with clip->owlvit
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->owlvit
def owlvit_loss(similarity: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(similarity.t())
return (caption_loss + image_loss) / 2.0
@dataclass
class OwlViTOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds (`torch.FloatTensor` of shape `(batch_size * num_max_text_queries, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`OwlViTTextModel`].
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of
[`OwlViTVisionModel`].
text_model_output (Tuple[`BaseModelOutputWithPooling`]):
The output of the [`OwlViTTextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`OwlViTVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: Optional[torch.FloatTensor] = None
logits_per_text: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
# Copied from transformers.loss.loss_for_object_detection._upcast
def _upcast(t: Tensor) -> Tensor:
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
if t.is_floating_point():
return t if t.dtype in (torch.float32, torch.float64) else t.float()
else:
return t if t.dtype in (torch.int32, torch.int64) else t.int()
# Copied from transformers.loss.loss_for_object_detection.box_area
def box_area(boxes: Tensor) -> Tensor:
"""
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
Args:
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
< x2` and `0 <= y1 < y2`.
Returns:
`torch.FloatTensor`: a tensor containing the area for each box.
"""
boxes = _upcast(boxes)
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# Copied from transformers.loss.loss_for_object_detection.box_iou
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / union
return iou, union
# Copied from transformers.loss.loss_for_object_detection.generalized_box_iou
def generalized_box_iou(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format.
Returns:
`torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)
"""
# degenerate boxes gives inf / nan results
# so do an early check
if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
iou, union = box_iou(boxes1, boxes2)
top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2]
area = width_height[:, :, 0] * width_height[:, :, 1]
return iou - (area - union) / area
@dataclass
class OwlViTObjectDetectionOutput(ModelOutput):
"""
Output type of [`OwlViTForObjectDetection`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_patches, num_queries)`):
Classification logits (including no-object) for all queries.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~OwlViTImageProcessor.post_process_object_detection`] to retrieve the
unnormalized bounding boxes.
text_embeds (`torch.FloatTensor` of shape `(batch_size, num_max_text_queries, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`OwlViTTextModel`].
image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`):
Pooled output of [`OwlViTVisionModel`]. OWL-ViT represents images as a set of image patches and computes
image embeddings for each patch.
class_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`):
Class embeddings of all image patches. OWL-ViT represents images as a set of image patches where the total
number of patches is (image_size / patch_size)**2.
text_model_output (Tuple[`BaseModelOutputWithPooling`]):
The output of the [`OwlViTTextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`OwlViTVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: Optional[torch.FloatTensor] = None
pred_boxes: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
class_embeds: Optional[torch.FloatTensor] = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
@dataclass
class OwlViTImageGuidedObjectDetectionOutput(ModelOutput):
"""
Output type of [`OwlViTForObjectDetection.image_guided_detection`].
Args:
logits (`torch.FloatTensor` of shape `(batch_size, num_patches, num_queries)`):
Classification logits (including no-object) for all queries.
target_pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual target image in the batch
(disregarding possible padding). You can use [`~OwlViTImageProcessor.post_process_object_detection`] to
retrieve the unnormalized bounding boxes.
query_pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_patches, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual query image in the batch
(disregarding possible padding). You can use [`~OwlViTImageProcessor.post_process_object_detection`] to
retrieve the unnormalized bounding boxes.
image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`):
Pooled output of [`OwlViTVisionModel`]. OWL-ViT represents images as a set of image patches and computes
image embeddings for each patch.
query_image_embeds (`torch.FloatTensor` of shape `(batch_size, patch_size, patch_size, output_dim`):
Pooled output of [`OwlViTVisionModel`]. OWL-ViT represents images as a set of image patches and computes
image embeddings for each patch.
class_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`):
Class embeddings of all image patches. OWL-ViT represents images as a set of image patches where the total
number of patches is (image_size / patch_size)**2.
text_model_output (Tuple[`BaseModelOutputWithPooling`]):
The output of the [`OwlViTTextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`OwlViTVisionModel`].
"""
logits: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
query_image_embeds: Optional[torch.FloatTensor] = None
target_pred_boxes: Optional[torch.FloatTensor] = None
query_pred_boxes: Optional[torch.FloatTensor] = None
class_embeds: Optional[torch.FloatTensor] = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
class OwlViTVisionEmbeddings(nn.Module):
def __init__(self, config: OwlViTVisionConfig):
super().__init__()
self.patch_size = config.patch_size
self.config = config
self.embed_dim = config.hidden_size
self.class_embedding = nn.Parameter(torch.randn(config.hidden_size))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=config.patch_size,
stride=config.patch_size,
bias=False,
)
self.num_patches = (config.image_size // config.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings.interpolate_pos_encoding
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
position_embedding = self.position_embedding.weight.unsqueeze(0)
num_positions = position_embedding.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embedding(self.position_ids)
class_pos_embed = position_embedding[:, :1]
patch_pos_embed = position_embedding[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
patch_embeds = self.patch_embedding(pixel_values) # shape = [batch_size, num_channels, height, width]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
class OwlViTTextEmbeddings(nn.Module):
def __init__(self, config: OwlViTTextConfig):
super().__init__()
self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
class OwlViTAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# For int8 compatibility, sometimes the `attn_probs` are in `fp32`
attn_probs = attn_probs.to(value_states.dtype)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->OwlViT
class OwlViTMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer with AltCLIP->OwlViT
class OwlViTEncoderLayer(nn.Module):
def __init__(self, config: OwlViTConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = OwlViTAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = OwlViTMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class OwlViTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = OwlViTConfig
base_model_prefix = "owlvit"
supports_gradient_checkpointing = True
_no_split_modules = ["OwlViTEncoderLayer"]
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, OwlViTTextEmbeddings):
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, OwlViTVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, OwlViTAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, OwlViTMLP):
factor = self.config.initializer_factor
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, OwlViTModel):
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
OWLVIT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`OwlViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
OWLVIT_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size * num_max_text_queries, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, num_max_text_queries, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
OWLVIT_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
OWLVIT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
OWLVIT_OBJECT_DETECTION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values.
input_ids (`torch.LongTensor` of shape `(batch_size * num_max_text_queries, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids).
attention_mask (`torch.Tensor` of shape `(batch_size, num_max_text_queries, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_hidden_states (`bool`, *optional*):
Whether or not to return the last hidden state. See `text_model_last_hidden_state` and
`vision_model_last_hidden_state` under returned tensors for more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
OWLVIT_IMAGE_GUIDED_OBJECT_DETECTION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values.
query_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values of query image(s) to be detected. Pass in one query image per target image.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class OwlViTEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`OwlViTEncoderLayer`].
Args:
config: OwlViTConfig
"""
def __init__(self, config: OwlViTConfig):
super().__init__()
self.layers = nn.ModuleList([OwlViTEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`).
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class OwlViTTextTransformer(nn.Module):
def __init__(self, config: OwlViTTextConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = OwlViTTextEmbeddings(config)
self.encoder = OwlViTEncoder(config)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(OWLVIT_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTTextConfig)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
# num_samples, seq_len = input_shape where num_samples = batch_size * num_max_text_queries
# OWLVIT's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = _create_4d_causal_attention_mask(
input_shape, hidden_states.dtype, device=hidden_states.device
)
# expand attention_mask
if attention_mask is not None:
# [num_samples, seq_len] -> [num_samples, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
# take features from the end of tokens embedding (end of token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(torch.int).argmax(dim=-1).to(last_hidden_state.device),
]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class OwlViTTextModel(OwlViTPreTrainedModel):
config_class = OwlViTTextConfig
def __init__(self, config: OwlViTTextConfig):
super().__init__(config)
self.text_model = OwlViTTextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@add_start_docstrings_to_model_forward(OWLVIT_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTTextConfig)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, OwlViTTextModel
>>> model = OwlViTTextModel.from_pretrained("google/owlvit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32")
>>> inputs = processor(
... text=[["a photo of a cat", "a photo of a dog"], ["photo of a astranaut"]], return_tensors="pt"
... )
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
# Get embeddings for all text queries in all batch samples
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class OwlViTVisionTransformer(nn.Module):
def __init__(self, config: OwlViTVisionConfig):
super().__init__()
self.config = config
self.embeddings = OwlViTVisionEmbeddings(config)
self.pre_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.encoder = OwlViTEncoder(config)
self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(OWLVIT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTVisionConfig)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Cast the input to the expected `dtype`
expected_input_dtype = self.embeddings.patch_embedding.weight.dtype
pixel_values = pixel_values.to(expected_input_dtype)
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layernorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class OwlViTVisionModel(OwlViTPreTrainedModel):
config_class = OwlViTVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: OwlViTVisionConfig):
super().__init__(config)
self.vision_model = OwlViTVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(OWLVIT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=OwlViTVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, OwlViTVisionModel
>>> model = OwlViTVisionModel.from_pretrained("google/owlvit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
@add_start_docstrings(OWLVIT_START_DOCSTRING)
class OwlViTModel(OwlViTPreTrainedModel):
config_class = OwlViTConfig
def __init__(self, config: OwlViTConfig):
super().__init__(config)
if not isinstance(config.text_config, OwlViTTextConfig):
raise TypeError(
"config.text_config is expected to be of type OwlViTTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, OwlViTVisionConfig):
raise TypeError(
"config.vision_config is expected to be of type OwlViTVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = OwlViTTextTransformer(text_config)
self.vision_model = OwlViTVisionTransformer(vision_config)
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.tensor(config.logit_scale_init_value))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(OWLVIT_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`OwlViTTextModel`].
Examples:
```python
>>> from transformers import AutoProcessor, OwlViTModel
>>> model = OwlViTModel.from_pretrained("google/owlvit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32")
>>> inputs = processor(
... text=[["a photo of a cat", "a photo of a dog"], ["photo of a astranaut"]], return_tensors="pt"
... )
>>> text_features = model.get_text_features(**inputs)
```"""
# Use OWL-ViT model's config for some fields (if specified) instead of those of vision & text components.
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Get embeddings for all text queries in all batch samples
text_output = self.text_model(input_ids=input_ids, attention_mask=attention_mask, return_dict=return_dict)
pooled_output = text_output[1]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(OWLVIT_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`OwlViTVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, OwlViTModel
>>> model = OwlViTModel.from_pretrained("google/owlvit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```"""
# Use OWL-ViT model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = vision_outputs[1]
image_features = self.visual_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(OWLVIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=OwlViTOutput, config_class=OwlViTConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_base_image_embeds: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, OwlViTOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, OwlViTModel
>>> model = OwlViTModel.from_pretrained("google/owlvit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=[["a photo of a cat", "a photo of a dog"]], images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
# Use OWL-ViT model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
# Get embeddings for all text queries in all batch samples
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
# normalized features
image_embeds = image_embeds / torch.linalg.norm(image_embeds, ord=2, dim=-1, keepdim=True)
text_embeds_norm = text_embeds / torch.linalg.norm(text_embeds, ord=2, dim=-1, keepdim=True)
# cosine similarity as logits and set it on the correct device
logit_scale = self.logit_scale.exp().to(image_embeds.device)
logits_per_text = torch.matmul(text_embeds_norm, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
loss = owlvit_loss(logits_per_text)
text_embeds = text_embeds_norm
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return OwlViTOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
class OwlViTBoxPredictionHead(nn.Module):
def __init__(self, config: OwlViTConfig, out_dim: int = 4):
super().__init__()
width = config.vision_config.hidden_size
self.dense0 = nn.Linear(width, width)
self.dense1 = nn.Linear(width, width)
self.gelu = nn.GELU()
self.dense2 = nn.Linear(width, out_dim)
def forward(self, image_features: torch.Tensor) -> torch.FloatTensor:
output = self.dense0(image_features)
output = self.gelu(output)
output = self.dense1(output)
output = self.gelu(output)
output = self.dense2(output)
return output
class OwlViTClassPredictionHead(nn.Module):
def __init__(self, config: OwlViTConfig):
super().__init__()
out_dim = config.text_config.hidden_size
self.query_dim = config.vision_config.hidden_size
self.dense0 = nn.Linear(self.query_dim, out_dim)
self.logit_shift = nn.Linear(self.query_dim, 1)
self.logit_scale = nn.Linear(self.query_dim, 1)
self.elu = nn.ELU()
def forward(
self,
image_embeds: torch.FloatTensor,
query_embeds: Optional[torch.FloatTensor],
query_mask: Optional[torch.Tensor],
) -> Tuple[torch.FloatTensor]:
image_class_embeds = self.dense0(image_embeds)
if query_embeds is None:
device = image_class_embeds.device
batch_size, num_patches = image_class_embeds.shape[:2]
pred_logits = torch.zeros((batch_size, num_patches, self.query_dim)).to(device)
return (pred_logits, image_class_embeds)
# Normalize image and text features
image_class_embeds = image_class_embeds / (torch.linalg.norm(image_class_embeds, dim=-1, keepdim=True) + 1e-6)
query_embeds = query_embeds / (torch.linalg.norm(query_embeds, dim=-1, keepdim=True) + 1e-6)
# Get class predictions
pred_logits = torch.einsum("...pd,...qd->...pq", image_class_embeds, query_embeds)
# Apply a learnable shift and scale to logits
logit_shift = self.logit_shift(image_embeds)
logit_scale = self.logit_scale(image_embeds)
logit_scale = self.elu(logit_scale) + 1
pred_logits = (pred_logits + logit_shift) * logit_scale
if query_mask is not None:
if query_mask.ndim > 1:
query_mask = torch.unsqueeze(query_mask, dim=-2)
pred_logits = torch.where(query_mask == 0, torch.finfo(pred_logits.dtype).min, pred_logits)
pred_logits = pred_logits.to(torch.float32)
return (pred_logits, image_class_embeds)
class OwlViTForObjectDetection(OwlViTPreTrainedModel):
config_class = OwlViTConfig
def __init__(self, config: OwlViTConfig):
super().__init__(config)
self.owlvit = OwlViTModel(config)
self.class_head = OwlViTClassPredictionHead(config)
self.box_head = OwlViTBoxPredictionHead(config)
self.layer_norm = nn.LayerNorm(config.vision_config.hidden_size, eps=config.vision_config.layer_norm_eps)
self.sigmoid = nn.Sigmoid()
self.config = config
self.num_patches_height = self.config.vision_config.image_size // self.config.vision_config.patch_size
self.num_patches_width = self.config.vision_config.image_size // self.config.vision_config.patch_size
self.box_bias = self.compute_box_bias(self.num_patches_height, self.num_patches_width)
@staticmethod
def normalize_grid_corner_coordinates(num_patches_height: int, num_patches_width: int) -> torch.Tensor:
# Create grid coordinates using torch
x_coordinates = torch.arange(1, num_patches_width + 1, dtype=torch.float32)
y_coordinates = torch.arange(1, num_patches_height + 1, dtype=torch.float32)
xx, yy = torch.meshgrid(x_coordinates, y_coordinates, indexing="xy")
# Stack the coordinates and divide by their respective patch counts
box_coordinates = torch.stack((xx, yy), dim=-1)
box_coordinates[..., 0] /= num_patches_width
box_coordinates[..., 1] /= num_patches_height
# Flatten (h, w, 2) -> (h*w, 2)
box_coordinates = box_coordinates.view(-1, 2)
return box_coordinates
@lru_cache(maxsize=2)
def compute_box_bias(
self, num_patches_height: int, num_patches_width: int, feature_map: Optional[torch.FloatTensor] = None
) -> torch.Tensor:
if feature_map is not None:
raise ValueError("feature_map has been deprecated as an input. Please pass in num_patches instead")
# The box center is biased to its position on the feature grid
box_coordinates = self.normalize_grid_corner_coordinates(num_patches_height, num_patches_width)
box_coordinates = torch.clip(box_coordinates, 0.0, 1.0)
# Unnormalize xy
box_coord_bias = torch.log(box_coordinates + 1e-4) - torch.log1p(-box_coordinates + 1e-4)
# The box size is biased to the patch size
box_size = torch.full_like(box_coord_bias, 1.0)
box_size[..., 0] /= num_patches_width
box_size[..., 1] /= num_patches_height
box_size_bias = torch.log(box_size + 1e-4) - torch.log1p(-box_size + 1e-4)
# Compute box bias
box_bias = torch.cat([box_coord_bias, box_size_bias], dim=-1)
return box_bias
def box_predictor(
self,
image_feats: torch.FloatTensor,
feature_map: torch.FloatTensor,
interpolate_pos_encoding: bool = False,
) -> torch.FloatTensor:
"""
Args:
image_feats:
Features extracted from the image, returned by the `image_text_embedder` method.
feature_map:
A spatial re-arrangement of image_features, also returned by the `image_text_embedder` method.
interpolate_pos_encoding:
Whether to interpolate the pre-trained position encodings.
Returns:
pred_boxes:
List of predicted boxes (cxcywh normalized to 0, 1) nested within a dictionary.
"""
# Bounding box detection head [batch_size, num_boxes, 4].
pred_boxes = self.box_head(image_feats)
# Compute the location of each token on the grid and use it to compute a bias for the bbox prediction
if interpolate_pos_encoding:
_, num_patches_height, num_patches_width, _ = feature_map.shape
box_bias = self.compute_box_bias(num_patches_height, num_patches_width)
else:
box_bias = self.box_bias
box_bias = box_bias.to(feature_map.device)
pred_boxes += box_bias
pred_boxes = self.sigmoid(pred_boxes)
return pred_boxes
def class_predictor(
self,
image_feats: torch.FloatTensor,
query_embeds: Optional[torch.FloatTensor] = None,
query_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.FloatTensor]:
"""
Args:
image_feats:
Features extracted from the `image_text_embedder`.
query_embeds:
Text query embeddings.
query_mask:
Must be provided with query_embeddings. A mask indicating which query embeddings are valid.
"""
(pred_logits, image_class_embeds) = self.class_head(image_feats, query_embeds, query_mask)
return (pred_logits, image_class_embeds)
def image_text_embedder(
self,
input_ids: torch.Tensor,
pixel_values: torch.FloatTensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Tuple[torch.FloatTensor]:
# Encode text and image
outputs = self.owlvit(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=True,
)
if interpolate_pos_encoding:
_, _, height, width = pixel_values.shape
num_patches_height = height // self.config.vision_config.patch_size
num_patches_width = width // self.config.vision_config.patch_size
else:
num_patches_height = self.num_patches_height
num_patches_width = self.num_patches_width
# Get image embeddings
last_hidden_state = outputs.vision_model_output[0]
image_embeds = self.owlvit.vision_model.post_layernorm(last_hidden_state)
# Resize class token
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], image_embeds[:, :-1].shape)
# Merge image embedding with class tokens
image_embeds = image_embeds[:, 1:, :] * class_token_out
image_embeds = self.layer_norm(image_embeds)
# Resize to [batch_size, num_patches_height, num_patches_width, hidden_size]
new_size = (
image_embeds.shape[0],
num_patches_height,
num_patches_width,
image_embeds.shape[-1],
)
image_embeds = image_embeds.reshape(new_size)
text_embeds = outputs[-4]
return (text_embeds, image_embeds, outputs)
def image_embedder(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Tuple[torch.FloatTensor]:
# Get OwlViTModel vision embeddings (same as CLIP)
vision_outputs = self.owlvit.vision_model(
pixel_values=pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=True
)
if interpolate_pos_encoding:
_, _, height, width = pixel_values.shape
num_patches_height = height // self.config.vision_config.patch_size
num_patches_width = width // self.config.vision_config.patch_size
else:
num_patches_height = self.num_patches_height
num_patches_width = self.num_patches_width
# Apply post_layernorm to last_hidden_state, return non-projected output
last_hidden_state = vision_outputs[0]
image_embeds = self.owlvit.vision_model.post_layernorm(last_hidden_state)
# Resize class token
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], image_embeds[:, :-1].shape)
# Merge image embedding with class tokens
image_embeds = image_embeds[:, 1:, :] * class_token_out
image_embeds = self.layer_norm(image_embeds)
# Resize to [batch_size, num_patches_height, num_patches_width, hidden_size]
new_size = (
image_embeds.shape[0],
num_patches_height,
num_patches_width,
image_embeds.shape[-1],
)
image_embeds = image_embeds.reshape(new_size)
return (image_embeds, vision_outputs)
def embed_image_query(
self,
query_image_features: torch.FloatTensor,
query_feature_map: torch.FloatTensor,
interpolate_pos_encoding: bool = False,
) -> torch.FloatTensor:
_, class_embeds = self.class_predictor(query_image_features)
pred_boxes = self.box_predictor(query_image_features, query_feature_map, interpolate_pos_encoding)
pred_boxes_as_corners = center_to_corners_format(pred_boxes)
# Loop over query images
best_class_embeds = []
best_box_indices = []
pred_boxes_device = pred_boxes_as_corners.device
for i in range(query_image_features.shape[0]):
each_query_box = torch.tensor([[0, 0, 1, 1]], device=pred_boxes_device)
each_query_pred_boxes = pred_boxes_as_corners[i]
ious, _ = box_iou(each_query_box, each_query_pred_boxes)
# If there are no overlapping boxes, fall back to generalized IoU
if torch.all(ious[0] == 0.0):
ious = generalized_box_iou(each_query_box, each_query_pred_boxes)
# Use an adaptive threshold to include all boxes within 80% of the best IoU
iou_threshold = torch.max(ious) * 0.8
selected_inds = (ious[0] >= iou_threshold).nonzero()
if selected_inds.numel():
selected_embeddings = class_embeds[i][selected_inds.squeeze(1)]
mean_embeds = torch.mean(class_embeds[i], axis=0)
mean_sim = torch.einsum("d,id->i", mean_embeds, selected_embeddings)
best_box_ind = selected_inds[torch.argmin(mean_sim)]
best_class_embeds.append(class_embeds[i][best_box_ind])
best_box_indices.append(best_box_ind)
if best_class_embeds:
query_embeds = torch.stack(best_class_embeds)
box_indices = torch.stack(best_box_indices)
else:
query_embeds, box_indices = None, None
return query_embeds, box_indices, pred_boxes
@add_start_docstrings_to_model_forward(OWLVIT_IMAGE_GUIDED_OBJECT_DETECTION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=OwlViTImageGuidedObjectDetectionOutput, config_class=OwlViTConfig)
def image_guided_detection(
self,
pixel_values: torch.FloatTensor,
query_pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> OwlViTImageGuidedObjectDetectionOutput:
r"""
Returns:
Examples:
```python
>>> import requests
>>> from PIL import Image
>>> import torch
>>> from transformers import AutoProcessor, OwlViTForObjectDetection
>>> processor = AutoProcessor.from_pretrained("google/owlvit-base-patch16")
>>> model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch16")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> query_url = "http://images.cocodataset.org/val2017/000000001675.jpg"
>>> query_image = Image.open(requests.get(query_url, stream=True).raw)
>>> inputs = processor(images=image, query_images=query_image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model.image_guided_detection(**inputs)
>>> # Target image sizes (height, width) to rescale box predictions [batch_size, 2]
>>> target_sizes = torch.Tensor([image.size[::-1]])
>>> # Convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> results = processor.post_process_image_guided_detection(
... outputs=outputs, threshold=0.6, nms_threshold=0.3, target_sizes=target_sizes
... )
>>> i = 0 # Retrieve predictions for the first image
>>> boxes, scores = results[i]["boxes"], results[i]["scores"]
>>> for box, score in zip(boxes, scores):
... box = [round(i, 2) for i in box.tolist()]
... print(f"Detected similar object with confidence {round(score.item(), 3)} at location {box}")
Detected similar object with confidence 0.856 at location [10.94, 50.4, 315.8, 471.39]
Detected similar object with confidence 1.0 at location [334.84, 25.33, 636.16, 374.71]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# Compute feature maps for the input and query images
query_feature_map = self.image_embedder(
pixel_values=query_pixel_values, interpolate_pos_encoding=interpolate_pos_encoding
)[0]
feature_map, vision_outputs = self.image_embedder(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
)
batch_size, num_patches_height, num_patches_width, hidden_dim = feature_map.shape
image_feats = torch.reshape(feature_map, (batch_size, num_patches_height * num_patches_width, hidden_dim))
batch_size, num_patches_height, num_patches_width, hidden_dim = query_feature_map.shape
query_image_feats = torch.reshape(
query_feature_map, (batch_size, num_patches_height * num_patches_width, hidden_dim)
)
# Get top class embedding and best box index for each query image in batch
query_embeds, best_box_indices, query_pred_boxes = self.embed_image_query(
query_image_feats, query_feature_map, interpolate_pos_encoding
)
# Predict object classes [batch_size, num_patches, num_queries+1]
(pred_logits, class_embeds) = self.class_predictor(image_feats=image_feats, query_embeds=query_embeds)
# Predict object boxes
target_pred_boxes = self.box_predictor(image_feats, feature_map, interpolate_pos_encoding)
if not return_dict:
output = (
feature_map,
query_feature_map,
target_pred_boxes,
query_pred_boxes,
pred_logits,
class_embeds,
vision_outputs.to_tuple(),
)
output = tuple(x for x in output if x is not None)
return output
return OwlViTImageGuidedObjectDetectionOutput(
image_embeds=feature_map,
query_image_embeds=query_feature_map,
target_pred_boxes=target_pred_boxes,
query_pred_boxes=query_pred_boxes,
logits=pred_logits,
class_embeds=class_embeds,
text_model_output=None,
vision_model_output=vision_outputs,
)
@add_start_docstrings_to_model_forward(OWLVIT_OBJECT_DETECTION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=OwlViTObjectDetectionOutput, config_class=OwlViTConfig)
def forward(
self,
input_ids: torch.Tensor,
pixel_values: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> OwlViTObjectDetectionOutput:
r"""
Returns:
Examples:
```python
>>> import requests
>>> from PIL import Image
>>> import torch
>>> from transformers import OwlViTProcessor, OwlViTForObjectDetection
>>> processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
>>> model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text_labels = [["a photo of a cat", "a photo of a dog"]]
>>> inputs = processor(text=text_labels, images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # Target image sizes (height, width) to rescale box predictions [batch_size, 2]
>>> target_sizes = torch.tensor([(image.height, image.width)])
>>> # Convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> results = processor.post_process_grounded_object_detection(
... outputs=outputs, target_sizes=target_sizes, threshold=0.1, text_labels=text_labels
... )
>>> # Retrieve predictions for the first image for the corresponding text queries
>>> result = results[0]
>>> boxes, scores, text_labels = result["boxes"], result["scores"], result["text_labels"]
>>> for box, score, text_label in zip(boxes, scores, text_labels):
... box = [round(i, 2) for i in box.tolist()]
... print(f"Detected {text_label} with confidence {round(score.item(), 3)} at location {box}")
Detected a photo of a cat with confidence 0.707 at location [324.97, 20.44, 640.58, 373.29]
Detected a photo of a cat with confidence 0.717 at location [1.46, 55.26, 315.55, 472.17]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# Embed images and text queries
query_embeds, feature_map, outputs = self.image_text_embedder(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
)
# Text and vision model outputs
text_outputs = outputs.text_model_output
vision_outputs = outputs.vision_model_output
batch_size, num_patches_height, num_patches_width, hidden_dim = feature_map.shape
image_feats = torch.reshape(feature_map, (batch_size, num_patches_height * num_patches_width, hidden_dim))
# Reshape from [batch_size * max_text_queries, hidden_dim] -> [batch_size, max_text_queries, hidden_dim]
max_text_queries = input_ids.shape[0] // batch_size
query_embeds = query_embeds.reshape(batch_size, max_text_queries, query_embeds.shape[-1])
# If first token is 0, then this is a padded query [batch_size, num_queries].
input_ids = input_ids.reshape(batch_size, max_text_queries, input_ids.shape[-1])
query_mask = input_ids[..., 0] > 0
# Predict object classes [batch_size, num_patches, num_queries+1]
(pred_logits, class_embeds) = self.class_predictor(image_feats, query_embeds, query_mask)
# Predict object boxes
pred_boxes = self.box_predictor(image_feats, feature_map, interpolate_pos_encoding)
if not return_dict:
output = (
pred_logits,
pred_boxes,
query_embeds,
feature_map,
class_embeds,
text_outputs.to_tuple(),
vision_outputs.to_tuple(),
)
output = tuple(x for x in output if x is not None)
return output
return OwlViTObjectDetectionOutput(
image_embeds=feature_map,
text_embeds=query_embeds,
pred_boxes=pred_boxes,
logits=pred_logits,
class_embeds=class_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
__all__ = ["OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: processing_owlvit.py
LINES: 1
SIZE: 16.62 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\owlvit\processing_owlvit.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for OWL-ViT
"""
import warnings
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import (
ImagesKwargs,
ProcessingKwargs,
ProcessorMixin,
Unpack,
_validate_images_text_input_order,
)
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available
if TYPE_CHECKING:
from .modeling_owlvit import OwlViTImageGuidedObjectDetectionOutput, OwlViTObjectDetectionOutput
class OwlViTImagesKwargs(ImagesKwargs, total=False):
query_images: Optional[ImageInput]
class OwlViTProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: OwlViTImagesKwargs
_defaults = {
"text_kwargs": {
"padding": "max_length",
},
"images_kwargs": {},
"common_kwargs": {
"return_tensors": "np",
},
}
class OwlViTProcessor(ProcessorMixin):
r"""
Constructs an OWL-ViT processor which wraps [`OwlViTImageProcessor`] and [`CLIPTokenizer`]/[`CLIPTokenizerFast`]
into a single processor that interits both the image processor and tokenizer functionalities. See the
[`~OwlViTProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information.
Args:
image_processor ([`OwlViTImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "OwlViTImageProcessor"
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
# For backward compatibility. See transformers.processing_utils.ProcessorMixin.prepare_and_validate_optional_call_args for more details.
optional_call_args = ["query_images"]
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
def __call__(
self,
images: Optional[ImageInput] = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
# The following is to capture `query_images` argument that may be passed as a positional argument.
# See transformers.processing_utils.ProcessorMixin.prepare_and_validate_optional_call_args for more details,
# or this conversation for more context: https://github.com/huggingface/transformers/pull/32544#discussion_r1720208116
# This behavior is only needed for backward compatibility and will be removed in future versions.
#
*args,
audio=None,
videos=None,
**kwargs: Unpack[OwlViTProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several text(s) and image(s). This method forwards the `text` and
`kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode:
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The query image to be prepared, one query image is expected per target image to be queried. Each image
can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image
should be of shape (C, H, W), where C is a number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **query_pixel_values** -- Pixel values of the query images to be fed to a model. Returned when `query_images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
OwlViTProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
**self.prepare_and_validate_optional_call_args(*args),
)
query_images = output_kwargs["images_kwargs"].pop("query_images", None)
return_tensors = output_kwargs["common_kwargs"]["return_tensors"]
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none."
)
# check if images and text inputs are reversed for BC
images, text = _validate_images_text_input_order(images, text)
data = {}
if text is not None:
if isinstance(text, str) or (isinstance(text, List) and not isinstance(text[0], List)):
encodings = [self.tokenizer(text, **output_kwargs["text_kwargs"])]
elif isinstance(text, List) and isinstance(text[0], List):
encodings = []
# Maximum number of queries across batch
max_num_queries = max([len(text_single) for text_single in text])
# Pad all batch samples to max number of text queries
for text_single in text:
if len(text_single) != max_num_queries:
text_single = text_single + [" "] * (max_num_queries - len(text_single))
encoding = self.tokenizer(text_single, **output_kwargs["text_kwargs"])
encodings.append(encoding)
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings")
if return_tensors == "np":
input_ids = np.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = np.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
input_ids = jnp.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = jnp.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
input_ids = torch.cat([encoding["input_ids"] for encoding in encodings], dim=0)
attention_mask = torch.cat([encoding["attention_mask"] for encoding in encodings], dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
input_ids = tf.stack([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = tf.stack([encoding["attention_mask"] for encoding in encodings], axis=0)
else:
raise ValueError("Target return tensor type could not be returned")
data["input_ids"] = input_ids
data["attention_mask"] = attention_mask
if query_images is not None:
query_pixel_values = self.image_processor(query_images, **output_kwargs["images_kwargs"]).pixel_values
# Query images always override the text prompt
data = {"query_pixel_values": query_pixel_values}
if images is not None:
image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
data["pixel_values"] = image_features.pixel_values
return BatchFeature(data=data, tensor_type=return_tensors)
def post_process(self, *args, **kwargs):
"""
This method forwards all its arguments to [`OwlViTImageProcessor.post_process`]. Please refer to the docstring
of this method for more information.
"""
return self.image_processor.post_process(*args, **kwargs)
def post_process_object_detection(self, *args, **kwargs):
"""
This method forwards all its arguments to [`OwlViTImageProcessor.post_process_object_detection`]. Please refer
to the docstring of this method for more information.
"""
warnings.warn(
"`post_process_object_detection` method is deprecated for OwlVitProcessor and will be removed in v5. "
"Use `post_process_grounded_object_detection` instead.",
FutureWarning,
)
return self.image_processor.post_process_object_detection(*args, **kwargs)
def post_process_grounded_object_detection(
self,
outputs: "OwlViTObjectDetectionOutput",
threshold: float = 0.1,
target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
text_labels: Optional[List[List[str]]] = None,
):
"""
Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format.
Args:
outputs ([`OwlViTObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.1):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
text_labels (`List[List[str]]`, *optional*):
List of lists of text labels for each image in the batch. If unset, "text_labels" in output will be
set to `None`.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the following keys:
- "scores": The confidence scores for each predicted box on the image.
- "labels": Indexes of the classes predicted by the model on the image.
- "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format.
- "text_labels": The text labels for each predicted bounding box on the image.
"""
output = self.image_processor.post_process_object_detection(
outputs=outputs, threshold=threshold, target_sizes=target_sizes
)
if text_labels is not None and len(text_labels) != len(output):
raise ValueError("Make sure that you pass in as many lists of text labels as images")
# adding text labels to the output
if text_labels is not None:
for image_output, image_text_labels in zip(output, text_labels):
object_text_labels = [image_text_labels[i] for i in image_output["labels"]]
image_output["text_labels"] = object_text_labels
else:
for image_output in output:
image_output["text_labels"] = None
return output
def post_process_image_guided_detection(
self,
outputs: "OwlViTImageGuidedObjectDetectionOutput",
threshold: float = 0.0,
nms_threshold: float = 0.3,
target_sizes: Optional[Union[TensorType, List[Tuple]]] = None,
):
"""
Converts the output of [`OwlViTForObjectDetection.image_guided_detection`] into the format expected by the COCO
api.
Args:
outputs ([`OwlViTImageGuidedObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.0):
Minimum confidence threshold to use to filter out predicted boxes.
nms_threshold (`float`, *optional*, defaults to 0.3):
IoU threshold for non-maximum suppression of overlapping boxes.
target_sizes (`torch.Tensor`, *optional*):
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to
None, predictions will not be unnormalized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the following keys:
- "scores": The confidence scores for each predicted box on the image.
- "boxes": Image bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format.
- "labels": Set to `None`.
"""
return self.image_processor.post_process_image_guided_detection(
outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes
)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
__all__ = ["OwlViTProcessor"]
```
|
=================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.01 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\paligemma\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_paligemma import *
from .modeling_paligemma import *
from .processing_paligemma import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
================================================================================================================================================
SOURCE CODE FILE: configuration_paligemma.py
LINES: 1
SIZE: 5.92 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\paligemma\configuration_paligemma.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PaliGemmamodel configuration"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING, AutoConfig
logger = logging.get_logger(__name__)
class PaliGemmaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PaliGemmaForConditionalGeneration`]. It is used to instantiate an
PaliGemmamodel according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the PaliGemma-2B.
e.g. [paligemma-hf/paligemma-2b](https://huggingface.co/paligemma-hf/paligemma-2b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`PaliGemmaVisionConfig`, *optional*):
Custom vision config or dict
text_config (`Union[AutoConfig, dict]`, *optional*):
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
image_token_index (`int`, *optional*, defaults to 256000):
The image token index to encode the image prompt.
vocab_size (`int`, *optional*, defaults to 257152):
Vocabulary size of the PaliGemmamodel. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~PaliGemmaForConditionalGeneration`]
projection_dim (`int`, *optional*, defaults to 2048):
Dimension of the multimodal projection space.
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden layer of the Language model.
Example:
```python
>>> from transformers import PaliGemmaForConditionalGeneration, PaliGemmaConfig, SiglipVisionConfig, GemmaConfig
>>> # Initializing a Siglip-like vision config
>>> vision_config = SiglipVisionConfig()
>>> # Initializing a PaliGemma config
>>> text_config = GemmaConfig()
>>> # Initializing a PaliGemma paligemma-3b-224 style configuration
>>> configuration = PaliGemmaConfig(vision_config, text_config)
>>> # Initializing a model from the paligemma-3b-224 style configuration
>>> model = PaliGemmaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "paligemma"
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig}
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
image_token_index=256000,
vocab_size=257152,
projection_dim=2048,
hidden_size=2048,
**kwargs,
):
self._ignore_index = ignore_index
self.image_token_index = image_token_index
self._vocab_size = vocab_size
self.projection_dim = projection_dim
self.hidden_size = hidden_size
self.vision_config = vision_config
self.is_encoder_decoder = False
if isinstance(self.vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
)
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
self.vision_config = CONFIG_MAPPING["siglip_vision_model"](
intermediate_size=4096,
hidden_size=1152,
patch_size=14,
image_size=224,
num_hidden_layers=27,
num_attention_heads=16,
vocab_size=257152,
vision_use_head=False,
)
self.text_config = text_config
if isinstance(self.text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma"
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
self.text_config = CONFIG_MAPPING["gemma"](
hidden_size=2048,
num_hidden_layers=18,
intermediate_size=16384,
num_attention_heads=8,
num_key_value_heads=1,
is_encoder_decoder=False,
vocab_size=vocab_size,
)
self.text_config.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2
self.vision_config.projection_dim = projection_dim
super().__init__(**kwargs)
@property
def ignore_index(self):
warnings.warn(
"The `ignore_index` attribute is deprecated and will be removed in v4.47.",
FutureWarning,
)
return self._ignore_index
@ignore_index.setter
def ignore_index(self, value):
self._ignore_index = value
def to_dict(self):
output = super().to_dict()
output.pop("_ignore_index", None)
return output
__all__ = ["PaliGemmaConfig"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: modeling_paligemma.py
LINES: 2
SIZE: 31.55 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\paligemma\modeling_paligemma.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch PaliGemmamodel."""
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...cache_utils import Cache, HybridCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_outputs import CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ..auto import AutoModel, AutoModelForCausalLM
from .configuration_paligemma import PaliGemmaConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "PaliGemmaConfig"
# Adapted from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
# But Paligemma has no causal mask on prefix
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
min_dtype: float,
cache_position: torch.Tensor,
batch_size: int,
is_training: bool = False,
token_type_ids: Optional[torch.Tensor] = None,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
min_dtype (`float`):
The minimum value representable with the dtype `dtype`.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
is_training (`bool`):
Whether the model is in training mode or in inference. The condition is checked by presence/absence of `token_type_ids/labels`
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
if sequence_length != 1:
if is_training:
causal_mask = torch.triu(causal_mask, diagonal=1)
else:
causal_mask[:, :sequence_length] = 0.0
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
# we are training thus we need to create a full mask on the image + prefix but causal on suffix
if is_training:
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0
)
return causal_mask
@dataclass
class PaliGemmaCausalLMOutputWithPast(ModelOutput):
"""
Base class for PaliGemmacausal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
class PaliGemmaMultiModalProjector(nn.Module):
def __init__(self, config: PaliGemmaConfig):
super().__init__()
self.linear = nn.Linear(config.vision_config.hidden_size, config.vision_config.projection_dim, bias=True)
def forward(self, image_features):
hidden_states = self.linear(image_features)
return hidden_states
PALIGEMMA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PaliGemmaConfig`] or [`PaliGemmaVisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
PALIGEMMA_START_DOCSTRING,
)
class PaliGemmaPreTrainedModel(PreTrainedModel):
config_class = PaliGemmaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["PaliGemmaMultiModalProjector"]
_skip_keys_device_placement = "past_key_values"
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
# important: this ported version of PaliGemmaisn't meant for training from scratch - only
# inference and fine-tuning
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
PALIGEMMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`SiglipImageProcessor.__call__`] for details ([]`PaliGemmaProcessor`] uses
[`SiglipImageProcessor`] for processing images).
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"""The PALIGEMMA model which consists of a vision backbone and a language model.""",
PALIGEMMA_START_DOCSTRING,
)
class PaliGemmaForConditionalGeneration(PaliGemmaPreTrainedModel, GenerationMixin):
def __init__(self, config: PaliGemmaConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config=config.vision_config)
self.multi_modal_projector = PaliGemmaMultiModalProjector(config)
self.vocab_size = config.text_config.vocab_size
language_model = AutoModelForCausalLM.from_config(config=config.text_config)
if language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
self.language_model = language_model
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self.post_init()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings with Llava->PaliGemma
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings with Llava->PaliGemma
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings with Llava->PaliGemma
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings with Llava->PaliGemma
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder with Llava->PaliGemma
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder with Llava->PaliGemma
def get_decoder(self):
return self.language_model.get_decoder()
def _update_causal_mask(
self,
attention_mask,
token_type_ids=None,
past_key_values=None,
cache_position=None,
input_tensor=None,
is_training: Optional[bool] = None,
):
if self.config.text_config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
is_training = is_training if is_training is not None else self.training
using_static_cache = isinstance(past_key_values, StaticCache)
min_dtype = torch.finfo(self.dtype).min
if input_tensor is None:
input_tensor = attention_mask
inputs_lead_dim, sequence_length = input_tensor.shape[:2]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
elif isinstance(past_key_values, HybridCache):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else cache_position[0] + sequence_length + 1
)
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
return attention_mask
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device
)
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
if sequence_length != 1:
if is_training:
causal_mask = torch.triu(causal_mask, diagonal=1)
else:
causal_mask[:, :sequence_length] = 0.0
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
# First unmask prefix tokens during training
if is_training:
if token_type_ids is None:
raise ValueError("Token type ids must be provided during training")
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
token_type_ids[:, None, None, :].to(causal_mask.device) == 0, 0
)
# Then apply padding mask (will mask pad tokens)
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
def get_image_features(self, pixel_values: torch.FloatTensor):
"""
Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
The tensors corresponding to the input images.
Returns:
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
"""
image_outputs = self.vision_tower(pixel_values)
selected_image_feature = image_outputs.last_hidden_state
image_features = self.multi_modal_projector(selected_image_feature)
image_features = image_features / (self.config.text_config.hidden_size**0.5)
return image_features
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(PALIGEMMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PaliGemmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**lm_kwargs,
) -> Union[Tuple, PaliGemmaCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
>>> model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma2-3b-mix-224")
>>> processor = AutoProcessor.from_pretrained("google/paligemma2-3b-mix-224")
>>> prompt = "Where is the cat standing?"
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs,)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Where is the cat standing?\nsnow"
```"""
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
is_training = token_type_ids is not None and labels is not None
# Replace image id woth PAD if the image token if OOV, to avoid index-errors
if input_ids is not None and self.config.image_token_index >= self.vocab_size:
special_image_mask = input_ids == self.config.image_token_index
llm_input_ids = input_ids.clone()
llm_input_ids[special_image_mask] = 0
else:
llm_input_ids = input_ids
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(llm_input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0) + 1 # Paligemma positions are 1-indexed
# Merge text and images
if pixel_values is not None:
image_features = self.get_image_features(pixel_values)
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device)
)
else:
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
raise ValueError(
f"Number of images does not match number of special image tokens in the input text. "
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
"tokens from image embeddings."
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
# mask out pad-token-ids in labels for BC
if labels is not None and self.pad_token_id in labels:
logger.warning_once(
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. "
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
)
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
causal_mask = self._update_causal_mask(
attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training
)
outputs: CausalLMOutputWithPast = self.language_model(
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**lm_kwargs,
)
logits = outputs[0]
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
shift_logits = logits[..., :-1, :]
shift_labels = labels[..., 1:]
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
else:
shift_logits = shift_logits.contiguous()
shift_labels = shift_labels.contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
flat_labels = shift_labels.view(-1).to(shift_logits.device)
loss = loss_fct(flat_logits, flat_labels)
output = PaliGemmaCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
)
return output if return_dict else output.to_tuple()
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
pixel_values=None,
attention_mask=None,
token_type_ids=None,
use_cache=True,
logits_to_keep=None,
labels=None,
**kwargs,
):
# Overwritten -- custom `position_ids` and `pixel_values` handling
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
cache_position=cache_position,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
token_type_ids=token_type_ids,
**kwargs,
)
# position_ids in Paligemma are 1-indexed
if model_inputs.get("position_ids") is not None:
model_inputs["position_ids"] += 1
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
is_training = token_type_ids is not None and labels is not None
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
input_tensor = inputs_embeds if inputs_embeds is not None else input_ids
causal_mask = self._update_causal_mask(
attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training
)
model_inputs["attention_mask"] = causal_mask
return model_inputs
__all__ = ["PaliGemmaForConditionalGeneration", "PaliGemmaPreTrainedModel"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: processing_paligemma.py
LINES: 3
SIZE: 15.07 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\paligemma\processing_paligemma.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for PaliGemma.
"""
from typing import List, Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput, is_valid_image, make_flat_list_of_images
from ...processing_utils import (
ImagesKwargs,
ProcessingKwargs,
ProcessorMixin,
TextKwargs,
Unpack,
_validate_images_text_input_order,
)
from ...tokenization_utils_base import (
AddedToken,
PreTokenizedInput,
TextInput,
)
from ...utils import logging
logger = logging.get_logger(__name__)
IMAGE_TOKEN = "<image>"
EXTRA_TOKENS = [f"<loc{i:0>4}>" for i in range(1024)] + [f"<seg{i:0>3}>" for i in range(128)]
class PaliGemmaTextKwargs(TextKwargs):
suffix: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]]
class PaliGemmaImagesKwargs(ImagesKwargs):
do_convert_rgb: Optional[bool]
class PaliGemmaProcessorKwargs(ProcessingKwargs, total=False):
text_kwargs: PaliGemmaTextKwargs
images_kwargs: PaliGemmaImagesKwargs
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {
"data_format": "channels_first",
},
}
# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
return isinstance(val, str) and val.startswith("http")
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
return is_url(elem) or is_valid_image(elem)
def _is_str_or_image(elem):
return isinstance(elem, (str)) or is_image_or_image_url(elem)
def build_string_from_input(prompt, bos_token, image_seq_len, image_token, num_images):
"""
Builds a string from the input prompt and image tokens.
For example, for the call:
build_string_from_input(
prompt="Prefix str"
bos_token="<s>",
image_seq_len=3,
image_token="<im>",
)
The output will be:
"<im><im><im><s>Initial str"
Args:
prompt (`List[Union[str, ImageInput]]`): The input prompt.
bos_token (`str`): The beginning of sentence token.
image_seq_len (`int`): The length of the image sequence.
image_token (`str`): The image token.
num_images (`int`): Number of images in the prompt.
"""
return f"{image_token * image_seq_len * num_images}{bos_token}{prompt}\n"
class PaliGemmaProcessor(ProcessorMixin):
r"""
Constructs a PaliGemma processor which wraps a PaliGemma image processor and a PaliGemma tokenizer into a single processor.
[`PaliGemmaProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`GemmaTokenizerFast`]. See the
[`~PaliGemmaProcessor.__call__`] and [`~PaliGemmaProcessor.decode`] for more information.
Args:
image_processor ([`SiglipImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`GemmaTokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = ("SiglipImageProcessor", "SiglipImageProcessorFast")
tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast")
def __init__(
self,
image_processor=None,
tokenizer=None,
chat_template=None,
**kwargs,
):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
if not hasattr(image_processor, "image_seq_length"):
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
self.image_seq_length = image_processor.image_seq_length
if not hasattr(tokenizer, "image_token"):
image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True)
tokens_to_add = {"additional_special_tokens": [image_token]}
tokenizer.add_special_tokens(tokens_to_add)
self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
else:
self.image_token_id = tokenizer.image_token_id
tokenizer.add_tokens(EXTRA_TOKENS)
tokenizer.add_bos_token = False
tokenizer.add_eos_token = False
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[PaliGemmaProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to GemmaTokenizerFast's [`~GemmaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
The usage for PaliGemma fine-tuning preparation is slightly different than usual. suffix passed are suffixes to
the prompt in `text`, and will be placed after the prompt. This is because attention is handled differently for
the prefix and the suffix. For instance,
```python
image = PIL_cow_image
prompt = "answer en Where is the cow standing?"
suffix = "on the beach"
inputs = processor(text=prompt, images=image, suffix=suffix)
```
Here `inputs` will contain the `input_ids` and `token_type_ids` that follow
```python
inputs["input_ids"][:, 256:]
# tensor([[ 2, 6006, 603, 573, 13910, 9980, 235336, 108, 477, 573, 8318]])
inputs["token_type_ids"][:, 256:]
tensor([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]])
```
Meaning the last three tokens are of "label" ("suffix") type while the other ones are of "prefix" type.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
suffix (`str`, `List[str]`, `List[List[str]]`):
The suffixes or batch of suffixes to be encoded. Only necessary for finetuning. See https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md
for more information. If your prompt is "<image> What is on the image", the suffix corresponds to the expected prediction "a cow sitting on a bench".
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
is provided, the `input_ids` will also contain the suffix input ids.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **labels** -- Labels compatible with training if `suffix` is not None
"""
# check if images and text inputs are reversed for BC
images, text = _validate_images_text_input_order(images, text)
output_kwargs = self._merge_kwargs(
PaliGemmaProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
suffix = output_kwargs["text_kwargs"].pop("suffix", None)
return_token_type_ids = True if suffix is not None else False
if images is None:
raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.")
if text is None:
logger.warning_once(
"You are using PaliGemma without a text prefix. It will perform as a picture-captioning model."
)
text = ""
if _is_str_or_image(text):
text = [text]
elif isinstance(text, list) and _is_str_or_image(text[0]):
pass
if text is not None and images is not None:
if not any(IMAGE_TOKEN in sample for sample in text):
logger.warning(
"You are passing both `text` and `images` to `PaliGemmaProcessor`. The processor expects special "
"image tokens in the text, as many tokens as there are images per each text. It is recommended to "
"add `<image>` tokens in the very beginning of your text. For this call, we will infer how many images "
"each text has and add special tokens."
)
if isinstance(text, List) and isinstance(images, List):
if len(images) != len(text):
raise ValueError(
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image or list of images."
)
# make a nested list of lists to be able to iterate over the images and text below
if is_valid_image(images):
images = [[images]]
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
images = [[image] for image in images]
elif not (
isinstance(images, (list, tuple))
and isinstance(images[0], (list, tuple))
and is_valid_image(images[0][0])
):
raise ValueError("images must be an image, list of images or list of list of images")
input_strings = [
build_string_from_input(
prompt=prompt,
bos_token=self.tokenizer.bos_token,
image_seq_len=self.image_seq_length,
image_token=IMAGE_TOKEN,
num_images=len(image_list) if isinstance(image_list, list) else 1,
)
for prompt, image_list in zip(text, images)
]
images = make_flat_list_of_images(images)
else:
expanded_samples = []
for sample in text:
expanded_sample = sample.replace(IMAGE_TOKEN, IMAGE_TOKEN * self.image_seq_length)
bos_rfind_index = expanded_sample.rfind(IMAGE_TOKEN)
bos_index = bos_rfind_index + len(IMAGE_TOKEN) if bos_rfind_index != -1 else 0
expanded_sample = (
expanded_sample[:bos_index] + self.tokenizer.bos_token + expanded_sample[bos_index:]
)
expanded_samples.append(expanded_sample)
input_strings = [f"{sample}\n" for sample in expanded_samples]
if suffix is not None and _is_str_or_image(suffix):
suffix = [suffix]
if suffix is not None:
suffix = [sfx + self.tokenizer.eos_token for sfx in suffix]
pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"]
# max_length has to account for the image tokens
if output_kwargs["text_kwargs"].get("max_length", None) is not None:
output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length
inputs = self.tokenizer(
input_strings,
text_pair=suffix,
return_token_type_ids=return_token_type_ids,
**output_kwargs["text_kwargs"],
)
return_data = {**inputs, "pixel_values": pixel_values}
if return_token_type_ids:
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
return_data.update({"labels": labels})
return BatchFeature(data=return_data)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->PaliGemma
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["PaliGemmaProcessor"]
```
|
====================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\patchtsmixer\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_patchtsmixer import *
from .modeling_patchtsmixer import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================================
SOURCE CODE FILE: configuration_patchtsmixer.py
LINES: 1
SIZE: 12.27 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\patchtsmixer\configuration_patchtsmixer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PatchTSMixer model configuration"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class PatchTSMixerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PatchTSMixerModel`]. It is used to instantiate a
PatchTSMixer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the PatchTSMixer
[ibm/patchtsmixer-etth1-pretrain](https://huggingface.co/ibm/patchtsmixer-etth1-pretrain) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
context_length (`int`, *optional*, defaults to 32):
The context/history length for the input sequence.
patch_length (`int`, *optional*, defaults to 8):
The patch length for the input sequence.
num_input_channels (`int`, *optional*, defaults to 1):
Number of input variates. For Univariate, set it to 1.
patch_stride (`int`, *optional*, defaults to 8):
Determines the overlap between two consecutive patches. Set it to patch_length (or greater), if we want
non-overlapping patches.
num_parallel_samples (`int`, *optional*, defaults to 100):
The number of samples to generate in parallel for probabilistic forecast.
d_model (`int`, *optional*, defaults to 8):
Hidden dimension of the model. Recommended to set it as a multiple of patch_length (i.e. 2-5X of
patch_length). Larger value indicates more complex model.
expansion_factor (`int`, *optional*, defaults to 2):
Expansion factor to use inside MLP. Recommended range is 2-5. Larger value indicates more complex model.
num_layers (`int`, *optional*, defaults to 3):
Number of layers to use. Recommended range is 3-15. Larger value indicates more complex model.
dropout (`float`, *optional*, defaults to 0.2):
The dropout probability the `PatchTSMixer` backbone. Recommended range is 0.2-0.7
mode (`str`, *optional*, defaults to `"common_channel"`):
Mixer Mode. Determines how to process the channels. Allowed values: "common_channel", "mix_channel". In
"common_channel" mode, we follow Channel-independent modelling with no explicit channel-mixing. Channel
mixing happens in an implicit manner via shared weights across channels. (preferred first approach) In
"mix_channel" mode, we follow explicit channel-mixing in addition to patch and feature mixer. (preferred
approach when channel correlations are very important to model)
gated_attn (`bool`, *optional*, defaults to `True`):
Enable Gated Attention.
norm_mlp (`str`, *optional*, defaults to `"LayerNorm"`):
Normalization layer (BatchNorm or LayerNorm).
self_attn (`bool`, *optional*, defaults to `False`):
Enable Tiny self attention across patches. This can be enabled when the output of Vanilla PatchTSMixer with
gated attention is not satisfactory. Enabling this leads to explicit pair-wise attention and modelling
across patches.
self_attn_heads (`int`, *optional*, defaults to 1):
Number of self-attention heads. Works only when `self_attn` is set to `True`.
use_positional_encoding (`bool`, *optional*, defaults to `False`):
Enable the use of positional embedding for the tiny self-attention layers. Works only when `self_attn` is
set to `True`.
positional_encoding_type (`str`, *optional*, defaults to `"sincos"`):
Positional encodings. Options `"random"` and `"sincos"` are supported. Works only when
`use_positional_encoding` is set to `True`
scaling (`string` or `bool`, *optional*, defaults to `"std"`):
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
scaler is set to "mean".
loss (`string`, *optional*, defaults to `"mse"`):
The loss function for the model corresponding to the `distribution_output` head. For parametric
distributions it is the negative log likelihood ("nll") and for point estimates it is the mean squared
error "mse".
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal weight initialization distribution.
post_init (`bool`, *optional*, defaults to `False`):
Whether to use custom weight initialization from `transformers` library, or the default initialization in
`PyTorch`. Setting it to `False` performs `PyTorch` weight initialization.
norm_eps (`float`, *optional*, defaults to 1e-05):
A value added to the denominator for numerical stability of normalization.
mask_type (`str`, *optional*, defaults to `"random"`):
Type of masking to use for Masked Pretraining mode. Allowed values are "random", "forecast". In Random
masking, points are masked randomly. In Forecast masking, points are masked towards the end.
random_mask_ratio (`float`, *optional*, defaults to 0.5):
Masking ratio to use when `mask_type` is `random`. Higher value indicates more masking.
num_forecast_mask_patches (`int` or `list`, *optional*, defaults to `[2]`):
Number of patches to be masked at the end of each batch sample. If it is an integer, all the samples in the
batch will have the same number of masked patches. If it is a list, samples in the batch will be randomly
masked by numbers defined in the list. This argument is only used for forecast pretraining.
mask_value (`float`, *optional*, defaults to `0.0`):
Mask value to use.
masked_loss (`bool`, *optional*, defaults to `True`):
Whether to compute pretraining loss only at the masked portions, or on the entire output.
channel_consistent_masking (`bool`, *optional*, defaults to `True`):
When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary
across channels.
unmasked_channel_indices (`list`, *optional*):
Channels that are not masked during pretraining.
head_dropout (`float`, *optional*, defaults to 0.2):
The dropout probability the `PatchTSMixer` head.
distribution_output (`string`, *optional*, defaults to `"student_t"`):
The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or
"negative_binomial".
prediction_length (`int`, *optional*, defaults to 16):
Number of time steps to forecast for a forecasting task. Also known as the Forecast Horizon.
prediction_channel_indices (`list`, *optional*):
List of channel indices to forecast. If None, forecast all channels. Target data is expected to have all
channels and we explicitly filter the channels in prediction and target before loss computation.
num_targets (`int`, *optional*, defaults to 3):
Number of targets (dimensionality of the regressed variable) for a regression task.
output_range (`list`, *optional*):
Output range to restrict for the regression task. Defaults to None.
head_aggregation (`str`, *optional*, defaults to `"max_pool"`):
Aggregation mode to enable for classification or regression task. Allowed values are `None`, "use_last",
"max_pool", "avg_pool".
Example:
```python
>>> from transformers import PatchTSMixerConfig, PatchTSMixerModel
>>> # Initializing a default PatchTSMixer configuration
>>> configuration = PatchTSMixerConfig()
>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = PatchTSMixerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "patchtsmixer"
attribute_map = {
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
# Time series specific configuration
context_length: int = 32,
patch_length: int = 8,
num_input_channels: int = 1,
patch_stride: int = 8,
num_parallel_samples: int = 100,
# General model configuration
d_model: int = 8,
expansion_factor: int = 2,
num_layers: int = 3,
dropout: float = 0.2,
mode: str = "common_channel",
gated_attn: bool = True,
norm_mlp: str = "LayerNorm",
self_attn: bool = False,
self_attn_heads: int = 1,
use_positional_encoding: bool = False,
positional_encoding_type: str = "sincos",
scaling: Optional[Union[str, bool]] = "std",
loss: str = "mse",
init_std: float = 0.02,
post_init: bool = False,
norm_eps: float = 1e-5,
# Pretrain model configuration
mask_type: str = "random",
random_mask_ratio: float = 0.5,
num_forecast_mask_patches: Optional[Union[List[int], int]] = [2],
mask_value: int = 0,
masked_loss: bool = True,
channel_consistent_masking: bool = True,
unmasked_channel_indices: Optional[List[int]] = None,
# General head configuration
head_dropout: float = 0.2,
distribution_output: str = "student_t",
# Prediction head configuration
prediction_length: int = 16,
prediction_channel_indices: list = None,
# Classification/Regression configuration
num_targets: int = 3,
output_range: list = None,
head_aggregation: str = "max_pool",
**kwargs,
):
self.num_input_channels = num_input_channels
self.context_length = context_length
self.patch_length = patch_length
self.patch_stride = patch_stride
self.d_model = d_model
self.expansion_factor = expansion_factor
self.num_layers = num_layers
self.dropout = dropout
self.mode = mode
self.gated_attn = gated_attn
self.norm_mlp = norm_mlp
self.scaling = scaling
self.head_dropout = head_dropout
self.num_patches = (max(context_length, patch_length) - patch_length) // patch_stride + 1
self.mask_type = mask_type
self.random_mask_ratio = random_mask_ratio
self.num_forecast_mask_patches = num_forecast_mask_patches
self.mask_value = mask_value
self.channel_consistent_masking = channel_consistent_masking
self.masked_loss = masked_loss
self.patch_last = True
self.use_positional_encoding = use_positional_encoding
self.positional_encoding_type = positional_encoding_type
self.prediction_length = prediction_length
self.prediction_channel_indices = prediction_channel_indices
self.num_targets = num_targets
self.output_range = output_range
self.head_aggregation = head_aggregation
self.self_attn = self_attn
self.self_attn_heads = self_attn_heads
self.init_std = init_std
self.post_init = post_init
self.distribution_output = distribution_output
self.loss = loss
self.num_parallel_samples = num_parallel_samples
self.unmasked_channel_indices = unmasked_channel_indices
self.norm_eps = norm_eps
super().__init__(**kwargs)
__all__ = ["PatchTSMixerConfig"]
```
|
=================================================================================================================================================
SOURCE CODE FILE: modeling_patchtsmixer.py
LINES: 1
SIZE: 86.03 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\patchtsmixer\modeling_patchtsmixer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 IBM and HuggingFace Inc. team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch PatchTSMixer model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput
from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_patchtsmixer import PatchTSMixerConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "PatchTSMixerConfig"
PATCHTSMIXER_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PatchTSMixerConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
mask_input (`bool`, *optional*, defaults to `False`):
If True, Masking will be enabled. False otherwise.
"""
PATCHTSMIXER_INPUTS_DOCSTRING = r"""
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`):
Context values of the time series. For a pretraining task, this denotes the input time series to predict
the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly,
for classification or regression tasks, it denotes the appropriate context values of the time series.
For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series, it is
greater than 1.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class PatchTSMixerGatedAttention(nn.Module):
"""
Module that applies gated attention to input data.
Args:
in_size (`int`): The input size.
out_size (`int`): The output size.
"""
def __init__(self, in_size: int, out_size: int):
super().__init__()
self.attn_layer = nn.Linear(in_size, out_size)
self.attn_softmax = nn.Softmax(dim=-1)
def forward(self, inputs):
attn_weight = self.attn_softmax(self.attn_layer(inputs))
inputs = inputs * attn_weight
return inputs
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTBatchNorm with PatchTST->PatchTSMixer
class PatchTSMixerBatchNorm(nn.Module):
"""
Compute batch normalization over the sequence length (time) dimension.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.batchnorm = nn.BatchNorm1d(config.d_model, eps=config.norm_eps)
def forward(self, inputs: torch.Tensor):
"""
Parameters:
inputs (`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`):
input for Batch norm calculation
Returns:
`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`
"""
output = inputs.transpose(1, 2) # output: (batch_size, d_model, sequence_length)
output = self.batchnorm(output)
return output.transpose(1, 2)
class PatchTSMixerPositionalEncoding(nn.Module):
"""
Class for positional encoding
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
# positional encoding: [num_patches x d_model]
if config.use_positional_encoding:
self.position_enc = self._init_pe(config)
else:
self.position_enc = nn.Parameter(torch.zeros(config.num_patches, config.d_model))
@staticmethod
def _init_pe(config: PatchTSMixerConfig) -> nn.Parameter:
# Positional encoding
if config.positional_encoding_type == "random":
position_enc = nn.Parameter(torch.randn(config.num_patches, config.d_model), requires_grad=True)
elif config.positional_encoding_type == "sincos":
position_enc = torch.zeros(config.num_patches, config.d_model)
position = torch.arange(0, config.num_patches).unsqueeze(1)
div_term = torch.exp(torch.arange(0, config.d_model, 2) * -(math.log(10000.0) / config.d_model))
position_enc[:, 0::2] = torch.sin(position * div_term)
position_enc[:, 1::2] = torch.cos(position * div_term)
position_enc = position_enc - position_enc.mean()
position_enc = position_enc / (position_enc.std() * 10)
position_enc = nn.Parameter(position_enc, requires_grad=False)
else:
raise ValueError(
f"{config.positional_encoding_type} is not a valid positional encoder. Available types are 'random' and 'sincos'."
)
return position_enc
def forward(self, patch_input: torch.Tensor):
# hidden_state: [bs x num_channels x num_patches x d_model]
hidden_state = patch_input + self.position_enc
return hidden_state
class PatchTSMixerNormLayer(nn.Module):
"""Normalization block
Args:
config (`PatchTSMixerConfig`):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm_mlp = config.norm_mlp
if "batch" in config.norm_mlp.lower():
self.norm = PatchTSMixerBatchNorm(config)
else:
self.norm = nn.LayerNorm(config.d_model, eps=config.norm_eps)
def forward(self, inputs: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
Input to the normalization layer.
Returns:
`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`
"""
if "batch" in self.norm_mlp.lower():
# reshape the data
inputs_reshaped = torch.reshape(
inputs,
(
inputs.shape[0] * inputs.shape[1],
inputs.shape[2],
inputs.shape[3],
),
) # inputs_reshaped: [batch_size*num_channels, num_patches, d_model]
# inputs_reshaped: [batch_size*num_channels, num_patches, d_model]
inputs_reshaped = self.norm(inputs_reshaped)
# put back data to the original shape
inputs = torch.reshape(inputs_reshaped, inputs.shape)
else:
inputs = self.norm(inputs)
return inputs
class PatchTSMixerMLP(nn.Module):
def __init__(self, in_features, out_features, config):
super().__init__()
num_hidden = in_features * config.expansion_factor
self.fc1 = nn.Linear(in_features, num_hidden)
self.dropout1 = nn.Dropout(config.dropout)
self.fc2 = nn.Linear(num_hidden, out_features)
self.dropout2 = nn.Dropout(config.dropout)
def forward(self, inputs: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
Input to the MLP layer.
Returns:
`torch.Tensor` of the same shape as `inputs`
"""
inputs = self.dropout1(nn.functional.gelu(self.fc1(inputs)))
inputs = self.fc2(inputs)
inputs = self.dropout2(inputs)
return inputs
class PatchTSMixerChannelFeatureMixerBlock(nn.Module):
"""This module mixes the features in the channel dimension.
Args:
config (`PatchTSMixerConfig`):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm = PatchTSMixerNormLayer(config)
self.gated_attn = config.gated_attn
self.mlp = PatchTSMixerMLP(
in_features=config.num_input_channels,
out_features=config.num_input_channels,
config=config,
)
if config.gated_attn:
self.gating_block = PatchTSMixerGatedAttention(
in_size=config.num_input_channels, out_size=config.num_input_channels
)
def forward(self, inputs: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `((batch_size, num_channels, num_patches, d_model))`):
input to the MLP layer
Returns:
`torch.Tensor` of the same shape as `inputs`
"""
residual = inputs
inputs = self.norm(inputs)
inputs = inputs.permute(0, 3, 2, 1)
if self.gated_attn:
inputs = self.gating_block(inputs)
inputs = self.mlp(inputs)
inputs = inputs.permute(0, 3, 2, 1)
out = inputs + residual
return out
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PatchTSMixer
class PatchTSMixerAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[PatchTSMixerConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class PatchMixerBlock(nn.Module):
"""This module mixes the patch dimension.
Args:
config (`PatchTSMixerConfig`):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm = PatchTSMixerNormLayer(config)
self.self_attn = config.self_attn
self.gated_attn = config.gated_attn
self.mlp = PatchTSMixerMLP(
in_features=config.num_patches,
out_features=config.num_patches,
config=config,
)
if config.gated_attn:
self.gating_block = PatchTSMixerGatedAttention(in_size=config.num_patches, out_size=config.num_patches)
if config.self_attn:
self.self_attn_layer = PatchTSMixerAttention(
embed_dim=config.d_model,
num_heads=config.self_attn_heads,
dropout=config.dropout,
)
self.norm_attn = PatchTSMixerNormLayer(config)
def forward(self, hidden_state):
"""
Args:
hidden_state (`torch.Tensor`): Input tensor.
Returns:
`torch.Tensor`: Transformed tensor.
"""
residual = hidden_state
hidden_state = self.norm(hidden_state)
if self.self_attn:
batch_size, n_vars, num_patches, d_model = hidden_state.shape
hidden_state_reshaped = hidden_state.reshape(batch_size * n_vars, num_patches, d_model)
x_attn, _, _ = self.self_attn_layer(hidden_state_reshaped, output_attentions=False)
x_attn = x_attn.reshape(batch_size, n_vars, num_patches, d_model)
# Transpose so that num_patches is the last dimension
hidden_state = hidden_state.transpose(2, 3)
hidden_state = self.mlp(hidden_state)
if self.gated_attn:
hidden_state = self.gating_block(hidden_state)
# Transpose back
hidden_state = hidden_state.transpose(2, 3)
if self.self_attn:
hidden_state = self.norm_attn(hidden_state + x_attn)
out = hidden_state + residual
return out
class FeatureMixerBlock(nn.Module):
"""This module mixes the hidden feature dimension.
Args:
config (`PatchTSMixerConfig`):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.norm = PatchTSMixerNormLayer(config)
self.gated_attn = config.gated_attn
self.mlp = PatchTSMixerMLP(
in_features=config.d_model,
out_features=config.d_model,
config=config,
)
if config.gated_attn:
self.gating_block = PatchTSMixerGatedAttention(in_size=config.d_model, out_size=config.d_model)
def forward(self, hidden: torch.Tensor):
"""
Args:
hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`):
Input tensor to the layer.
Returns:
`torch.Tensor`: Transformed tensor.
"""
residual = hidden
hidden = self.norm(hidden)
hidden = self.mlp(hidden)
if self.gated_attn:
hidden = self.gating_block(hidden)
out = hidden + residual
return out
class PatchTSMixerLayer(nn.Module):
"""
The `PatchTSMixer` layer that does all three kinds of mixing.
Args:
config (`PatchTSMixerConfig`):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.patch_mixer = PatchMixerBlock(config=config)
self.feature_mixer = FeatureMixerBlock(config=config)
self.mode = config.mode
if config.mode == "mix_channel":
self.channel_feature_mixer = PatchTSMixerChannelFeatureMixerBlock(config=config)
def forward(self, hidden: torch.Tensor):
"""
Args:
hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`):
Input tensor to the layer.
Returns:
`torch.Tensor`: Transformed tensor.
"""
if self.mode == "mix_channel":
hidden = self.channel_feature_mixer(hidden)
hidden = self.patch_mixer(hidden)
hidden = self.feature_mixer(hidden) # hidden: (batch_size x num_patches x d_model)
return hidden
class PatchTSMixerBlock(nn.Module):
"""The main computing framework of the `PatchTSMixer` model.
Args:
config (`PatchTSMixerConfig`):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
num_layers = config.num_layers
self.mixers = nn.ModuleList([PatchTSMixerLayer(config=config) for _ in range(num_layers)])
def forward(self, hidden_state, output_hidden_states: bool = False):
"""
Args:
hidden_state (`torch.Tensor`): The input tensor.
output_hidden_states (`bool`, *optional*, defaults to False.):
Whether to output the hidden states as well.
Returns:
`torch.Tensor`: The embedding. `list`: List of all hidden states if `output_hidden_states` is set to
`True`.
"""
all_hidden_states = []
embedding = hidden_state
for mod in self.mixers:
embedding = mod(embedding)
if output_hidden_states:
all_hidden_states.append(embedding)
if output_hidden_states:
return embedding, all_hidden_states
else:
return embedding, None
class PatchTSMixerForPredictionHead(nn.Module):
"""Prediction Head for Forecasting
Args:
config (`PatchTSMixerConfig`):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig, distribution_output=None):
super().__init__()
self.prediction_channel_indices = config.prediction_channel_indices
if self.prediction_channel_indices is not None:
self.prediction_channel_indices.sort()
self.dropout_layer = nn.Dropout(config.head_dropout)
if distribution_output is None:
self.base_forecast_block = nn.Linear((config.num_patches * config.d_model), config.prediction_length)
else:
self.base_forecast_block = distribution_output.get_parameter_projection(
config.num_patches * config.d_model
)
self.flatten = nn.Flatten(start_dim=-2)
def forward(self, hidden_features):
"""
Args:
hidden_features (`torch.Tensor` of shape `(batch_size, num_patch, d_model)` in `flatten` mode
or `(batch_size, n_vars, num_patch, d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
features.
Returns:
`torch.Tensor` of shape `(batch_size, prediction_length, nvars)`.
"""
hidden_features = self.flatten(hidden_features) # [batch_size x n_vars x num_patch * d_model]
hidden_features = self.dropout_layer(hidden_features) # [batch_size x n_vars x num_patch * d_model]
forecast = self.base_forecast_block(hidden_features) # [batch_size x n_vars x prediction_length]
if isinstance(forecast, tuple):
forecast = tuple(z.transpose(-1, -2) for z in forecast)
else:
forecast = forecast.transpose(-1, -2) # [batch_size x prediction_length x n_vars]
if self.prediction_channel_indices is not None:
if isinstance(forecast, tuple):
forecast = tuple(z[..., self.prediction_channel_indices] for z in forecast)
else:
forecast = forecast[..., self.prediction_channel_indices] # [batch_size x prediction_length x n_vars]
return forecast
class PatchTSMixerLinearHead(nn.Module):
"""Linear head for Classification and Regression.
Args:
config (`PatchTSMixerConfig`):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig, distribution_output=None):
super().__init__()
self.head_aggregation = config.head_aggregation
self.output_range = config.output_range
if config.head_aggregation is None:
mul_factor = config.num_patches
else:
mul_factor = 1
self.distribution_output = distribution_output
if distribution_output is None:
self.projection = nn.Linear(
config.d_model * config.num_input_channels * mul_factor,
config.num_targets,
)
else:
self.projection = distribution_output.get_parameter_projection(
config.d_model * config.num_input_channels * mul_factor
)
if config.head_aggregation is None:
self.flatten = nn.Flatten(start_dim=-3)
else:
self.flatten = nn.Flatten(start_dim=-2)
self.dropout = nn.Dropout(config.head_dropout)
def forward(self, hidden_features):
"""
Args:
hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode
or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
features.
Returns:
`torch.Tensor` of shape `(batch_size x num_targets)`.
"""
# batch_size x d_model x num_patch or batch_size x n_vars x d_model x num_patch
hidden_features = hidden_features.transpose(-1, -2)
if self.head_aggregation == "use_last":
# batch_size x d_model (flatten) or # batch_size x n_vars x d_model (common_channel)
hidden_features = hidden_features[..., -1]
elif self.head_aggregation == "max_pool":
# batch_size x n_vars x d_model or batch_size x d_model
hidden_features = hidden_features.max(dim=-1).values
elif self.head_aggregation == "avg_pool":
# batch_size x n_vars x d_model or batch_size x d_model
hidden_features = hidden_features.mean(dim=-1)
if self.flatten:
hidden_features = self.flatten(hidden_features)
hidden_features = self.dropout(hidden_features)
hidden_features = self.projection(hidden_features) # batch_size x num_targets
if (self.distribution_output is None) and (self.output_range is not None):
hidden_features = (
torch.sigmoid(hidden_features) * (self.output_range[1] - self.output_range[0]) + self.output_range[0]
)
return hidden_features
class PatchTSMixerPreTrainedModel(PreTrainedModel):
# Weight initialization
config_class = PatchTSMixerConfig
base_model_prefix = "model"
main_input_name = "past_values"
supports_gradient_checkpointing = False
def _init_weights(self, module):
"""Initialize weights"""
if isinstance(module, PatchTSMixerPositionalEncoding):
# initialize positional encoding
if self.config.positional_encoding_type == "random":
nn.init.normal_(module.position_enc, mean=0.0, std=0.1)
elif isinstance(module, (nn.LayerNorm, nn.BatchNorm1d)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, PatchTSMixerBatchNorm):
module.batchnorm.bias.data.zero_()
module.batchnorm.weight.data.fill_(1.0)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
if module.bias is not None:
module.bias.data.zero_()
class PatchTSMixerPretrainHead(nn.Module):
"""Pretraining head.
Args:
config (`PatchTSMixerConfig`):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dropout_layer = nn.Dropout(config.head_dropout)
self.base_pt_block = nn.Linear(config.d_model, config.patch_length)
def forward(self, hidden_features):
"""
Args:
hidden_features (`torch.Tensor` of shape `(batch_size x num_patch x d_model)` in `flatten` mode
or `(batch_size x n_vars x num_patch x d_model)` in `common_channel`/`mix_channel` mode.): Input hidden
features.
Returns:
`torch.Tensor` of shape `(batch_size x n_vars x num_patch x patch_length)`.
"""
hidden_features = self.dropout_layer(hidden_features)
forecast = self.base_pt_block(hidden_features) # [batch_size x n_vars x num_patch x patch_length]
return forecast
# Copied from transformers.models.patchtst.modeling_patchtst.random_masking
def random_masking(
inputs: torch.Tensor,
mask_ratio: float,
unmasked_channel_indices: list = None,
channel_consistent_masking: bool = False,
mask_value: int = 0,
):
"""random_masking: Mask the input considering the control variables.
Args:
inputs (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, num_features)`):
The input tensor to mask.
mask_ratio (`float`):
Masking ratio applied to mask the input data during random pretraining. It is the number between 0 and 1.
unmasked_channel_indices (list, *optional*):
Indices of channels that will not be masked.
channel_consistent_masking (bool, *optional*, defaults to `False`):
When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary
across channels.
mask_value (int, *optional*, defaults to 0):
Define the value of masked patches for pretraining.
Returns:
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as input Tensor and mask tensor of shape [bs x c x
n]
"""
if mask_ratio < 0 or mask_ratio >= 1:
raise ValueError(f"Mask ratio {mask_ratio} has to be between 0 and 1.")
batch_size, num_channels, sequence_length, num_features = inputs.shape
device = inputs.device
len_keep = int(sequence_length * (1 - mask_ratio))
if channel_consistent_masking:
noise = torch.rand(batch_size, 1, sequence_length, device=device) # noise in [0, 1], bs x 1 x L
noise = noise.repeat(1, num_channels, 1) # bs x num_channels x time
else:
# noise in [0, 1], bs x num_channels x L
noise = torch.rand(batch_size, num_channels, sequence_length, device=device)
# mask: [bs x num_channels x num_patch]
mask = torch.ones(batch_size, num_channels, sequence_length, device=device)
mask[:, :, :len_keep] = 0
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=-1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=-1) # ids_restore: [bs x num_channels x L]
mask = torch.gather(mask, dim=-1, index=ids_restore)
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patches x patch_length]
if unmasked_channel_indices is not None:
mask[:, unmasked_channel_indices, :, :] = 0
inputs_mask = inputs.masked_fill(mask.bool(), mask_value)
return inputs_mask, mask[..., 0]
# Copied from transformers.models.patchtst.modeling_patchtst.forecast_masking
def forecast_masking(
inputs: torch.Tensor,
num_forecast_mask_patches: Union[list, int],
unmasked_channel_indices: list = None,
mask_value: int = 0,
):
"""Forecast masking that masks the last K patches where K is from the num_forecast_mask_patches.
If num_forecast_mask_patches is a list, samples in the batch will be randomly masked by numbers defined in the list.
Parameters:
inputs (`torch.Tensor`):
Input of shape `(bs, num_channels, num_patch, patch_length)`
num_forecast_mask_patches (`list`):
Number of patches to be masked at the end of each batch sample. e.g. 4 or [3, 5].
unmasked_channel_indices (`list`, *optional*):
Indices of channels that are not masked.
mask_value (`int`, *optional*, defaults to 0):
Values in the masked patches will be filled by `mask_value`.
Returns:
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as inputs Tensor and Mask tensor of shape `(bs,
num_channels , num_patch)` or `(bs, tsg1, tsg2, num_channels, num_patch)`
"""
if isinstance(num_forecast_mask_patches, int):
num_forecast_mask_patches = [num_forecast_mask_patches]
forecast_mask_ratios = [1 for _ in num_forecast_mask_patches]
batch_size, num_channels, sequence_length, num_features = inputs.shape
mask = torch.zeros(batch_size, num_channels, sequence_length, device=inputs.device)
t_list = []
total_length = 0
total_ratio = sum(forecast_mask_ratios)
for patch_length, ratio in zip(num_forecast_mask_patches, forecast_mask_ratios):
if patch_length <= 0 or patch_length >= sequence_length:
raise ValueError(
f"num_forecast_mask_patches {patch_length} should be greater than 0 and less than total patches."
)
temp_len = int(batch_size * ratio / total_ratio)
t_list.append([patch_length, ratio, temp_len])
total_length += temp_len
t_list = sorted(t_list, key=lambda x: x[2])
if total_length < batch_size:
t_list[0][2] = t_list[0][2] + (batch_size - total_length)
elif total_length > batch_size:
t_list[-1][2] = t_list[-1][2] + (total_length - batch_size)
batch1 = 0
for patch_len, _, temp_len in t_list:
batch2 = batch1 + temp_len
mask[batch1:batch2, :, -patch_len:] = 1
batch1 = batch2
perm = torch.randperm(mask.shape[0])
mask = mask[perm]
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patch x patch_len]
if unmasked_channel_indices is not None:
mask[:, unmasked_channel_indices, :, :] = 0
inputs_mask = inputs.masked_fill(mask.bool(), mask_value)
return inputs_mask, mask[..., 0]
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTPatchify with PatchTST->PatchTSMixer
class PatchTSMixerPatchify(nn.Module):
"""
A class to patchify the time series sequence into different patches
Returns:
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.sequence_length = config.context_length
self.patch_length = config.patch_length
self.patch_stride = config.patch_stride
if self.sequence_length <= self.patch_length:
raise ValueError(
f"Sequence length ({self.sequence_length}) has to be greater than the patch length ({self.patch_length})"
)
# get the number of patches
self.num_patches = (max(self.sequence_length, self.patch_length) - self.patch_length) // self.patch_stride + 1
new_sequence_length = self.patch_length + self.patch_stride * (self.num_patches - 1)
self.sequence_start = self.sequence_length - new_sequence_length
def forward(self, past_values: torch.Tensor):
"""
Parameters:
past_values (`torch.Tensor` of shape `(batch_size, sequence_length, num_channels)`, *required*):
Input for patchification
Returns:
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`
"""
sequence_length = past_values.shape[-2]
if sequence_length != self.sequence_length:
raise ValueError(
f"Input sequence length ({sequence_length}) doesn't match model configuration ({self.sequence_length})."
)
# output: [bs x new_sequence_length x num_channels]
output = past_values[:, self.sequence_start :, :]
# output: [bs x num_patches x num_input_channels x patch_length]
output = output.unfold(dimension=-2, size=self.patch_length, step=self.patch_stride)
# output: [bs x num_input_channels x num_patches x patch_length]
output = output.transpose(-2, -3).contiguous()
return output
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMasking with PatchTST->PatchTSMixer
class PatchTSMixerMasking(nn.Module):
"""
Class to perform random or forecast masking.
Parameters:
config (`PatchTSMixerConfig`): model config
Returns:
x_mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`)
Masked patched input
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`)
Bool tensor indicating True on masked points
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.random_mask_ratio = config.random_mask_ratio
self.channel_consistent_masking = config.channel_consistent_masking
self.mask_type = config.mask_type
self.num_forecast_mask_patches = config.num_forecast_mask_patches
self.unmasked_channel_indices = config.unmasked_channel_indices
self.mask_value = config.mask_value
if self.unmasked_channel_indices is not None:
self.unmasked_channel_indices = sorted(self.unmasked_channel_indices)
def forward(self, patch_input: torch.Tensor):
"""
Parameters:
patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*):
Patch input
Return:
masked_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`)
Masked patched input
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`)
Bool tensor indicating True on masked points
"""
if self.mask_type == "random":
masked_input, mask = random_masking(
inputs=patch_input,
mask_ratio=self.random_mask_ratio,
unmasked_channel_indices=self.unmasked_channel_indices,
channel_consistent_masking=self.channel_consistent_masking,
mask_value=self.mask_value,
)
elif self.mask_type == "forecast":
masked_input, mask = forecast_masking(
inputs=patch_input,
num_forecast_mask_patches=self.num_forecast_mask_patches,
unmasked_channel_indices=self.unmasked_channel_indices,
mask_value=self.mask_value,
)
else:
raise ValueError(f"Invalid mask type {self.mask_type}.")
# mask: [bs x num_input_channels x num_patch]
mask = mask.bool()
return masked_input, mask
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTStdScaler with PatchTST->PatchTSMixer
class PatchTSMixerStdScaler(nn.Module):
"""
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
subtracting from the mean and dividing by the standard deviation.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
denominator = denominator.clamp_min(1.0)
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
scale = torch.sqrt(variance + self.minimum_scale)
return (data - loc) / scale, loc, scale
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTMeanScaler with PatchTST->PatchTSMixer
class PatchTSMixerMeanScaler(nn.Module):
"""
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
accordingly.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
num_observed = observed_indicator.sum(self.dim, keepdim=True)
scale = ts_sum / torch.clamp(num_observed, min=1)
# If `default_scale` is provided, we use it, otherwise we use the scale
# of the batch.
if self.default_scale is None:
batch_sum = ts_sum.sum(dim=0)
batch_observations = torch.clamp(num_observed.sum(0), min=1)
default_scale = torch.squeeze(batch_sum / batch_observations)
else:
default_scale = self.default_scale * torch.ones_like(scale)
# apply default scale where there are no observations
scale = torch.where(num_observed > 0, scale, default_scale)
# ensure the scale is at least `self.minimum_scale`
scale = torch.clamp(scale, min=self.minimum_scale)
scaled_data = data / scale
if not self.keepdim:
scale = scale.squeeze(dim=self.dim)
return scaled_data, torch.zeros_like(scale), scale
# Copied from transformers.models.patchtst.modeling_patchtst.PatchTSTNOPScaler with PatchTST->PatchTSMixer
class PatchTSMixerNOPScaler(nn.Module):
"""
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
def forward(
self, data: torch.Tensor, observed_indicator: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
return data, loc, scale
@dataclass
class PatchTSMixerEncoderOutput(ModelOutput):
"""
Base class for `PatchTSMixerEncoderOutput`, with potential hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`):
Hidden-state at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class PatchTSMixerEncoder(PatchTSMixerPreTrainedModel):
"""
Encoder for PatchTSMixer which inputs patched time-series and outputs patched embeddings.
Args:
config (`PatchTSMixerConfig`):
Configuration.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.use_return_dict = config.use_return_dict
self.patcher = nn.Linear(config.patch_length, config.d_model)
if config.use_positional_encoding:
self.positional_encoder = PatchTSMixerPositionalEncoding(config=config)
else:
self.positional_encoder = None
self.mlp_mixer_encoder = PatchTSMixerBlock(config=config)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@replace_return_docstrings(output_type=PatchTSMixerEncoderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PatchTSMixerEncoderOutput]:
r"""
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, seq_length, num_input_channels)`):
Context values of the time series. For a pretraining task, this denotes the input time series to
predict the masked portion. For a forecasting task, this denotes the history/past time series values.
Similarly, for classification or regression tasks, it denotes the appropriate context values of the
time series.
For univariate time series, `num_input_channels` dimension should be 1. For multivariate time series,
it is greater than 1.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
`torch.FloatTensor` of shape `(batch_size, n_vars, num_patches, d_model)`
"""
return_dict = return_dict if return_dict is not None else self.use_return_dict
# flatten [bs x num_patch x d_model]. common_channel/mix_channel: [bs x n_vars x num_patch x d_model]
patches = self.patcher(past_values)
# add positional encoder
if self.positional_encoder is not None:
patches = self.positional_encoder(patches)
last_hidden_state, hidden_states = self.mlp_mixer_encoder(patches, output_hidden_states=output_hidden_states)
if not return_dict:
return tuple(
v
for v in [
last_hidden_state,
hidden_states,
]
)
return PatchTSMixerEncoderOutput(last_hidden_state=last_hidden_state, hidden_states=hidden_states)
@dataclass
class PatchTSMixerModelOutput(ModelOutput):
"""
Base class for model's outputs, with potential hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, d_model)`):
Hidden-state at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer.
patch_input (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`):
Patched input data to the model.
mask: (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches)`,*optional*):
Bool Tensor indicating True in masked patches and False otherwise.
loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*):
Gives the mean of the context window per channel. Used for revin denorm outside the model, if revin
enabled.
scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`,*optional*):
Gives the std dev of the context window per channel. Used for revin denorm outside the model, if revin
enabled.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
patch_input: Optional[torch.FloatTensor] = None
mask: Optional[torch.FloatTensor] = None
loc: Optional[torch.FloatTensor] = None
scale: Optional[torch.FloatTensor] = None
@add_start_docstrings(
"The PatchTSMixer Model for time-series forecasting.",
PATCHTSMIXER_START_DOCSTRING,
)
class PatchTSMixerModel(PatchTSMixerPreTrainedModel):
def __init__(self, config: PatchTSMixerConfig, mask_input: bool = False):
super().__init__(config)
self.use_return_dict = config.use_return_dict
self.encoder = PatchTSMixerEncoder(config)
self.patching = PatchTSMixerPatchify(config)
if mask_input is True:
self.masking = PatchTSMixerMasking(config)
else:
self.masking = None
if config.scaling == "mean":
self.scaler = PatchTSMixerMeanScaler(config)
elif config.scaling == "std" or config.scaling is True:
self.scaler = PatchTSMixerStdScaler(config)
else:
self.scaler = PatchTSMixerNOPScaler(config)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> PatchTSMixerModelOutput:
r"""
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
Returns:
"""
return_dict = return_dict if return_dict is not None else self.use_return_dict
mask = None
if observed_mask is None:
observed_mask = torch.ones_like(past_values)
scaled_past_values, loc, scale = self.scaler(past_values, observed_mask)
patched_x = self.patching(scaled_past_values) # [batch_size x num_input_channels x num_patch x patch_length
enc_input = patched_x
if self.masking is not None:
enc_input, mask = self.masking(patched_x)
# enc_input: [batch_size x num_input_channels x num_patch x patch_length]
# mask: [batch_size x num_input_channels x num_patch]
encoder_output = self.encoder(
enc_input,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if isinstance(encoder_output, tuple):
encoder_output = PatchTSMixerEncoderOutput(*encoder_output)
if not return_dict:
return tuple(
v
for v in [
encoder_output.last_hidden_state,
encoder_output.hidden_states,
patched_x,
mask,
loc,
scale,
]
)
return PatchTSMixerModelOutput(
last_hidden_state=encoder_output.last_hidden_state,
hidden_states=encoder_output.hidden_states,
patch_input=patched_x,
mask=mask,
loc=loc,
scale=scale,
)
@dataclass
class PatchTSMixerForPreTrainingOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForPreTrainingOutput`].
Args:
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, patch_length)`):
Prediction output from the pretrain head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss
"""
loss: Optional[torch.FloatTensor] = None
prediction_outputs: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class PatchTSMixerForPretraining(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for mask pretraining.
Args:
config (`PatchTSMixerConfig`):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.model = PatchTSMixerModel(config, mask_input=True)
self.head = PatchTSMixerPretrainHead(config=config)
self.masked_loss = config.masked_loss
self.use_return_dict = config.use_return_dict
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForPreTrainingOutput:
r"""
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.use_return_dict
if self.masked_loss is True:
loss = torch.nn.MSELoss(reduction="none")
else:
loss = torch.nn.MSELoss(reduction="mean")
# past_values: tensor [batch_size x context_length x num_input_channels]
model_output = self.model(
past_values,
observed_mask=observed_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # x.last_hidden_state: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
x_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x nvars x num_patch x patch_length]
if return_loss is True:
loss_val = loss(x_hat, model_output.patch_input)
else:
loss_val = None
# calculate masked_loss
if self.masked_loss is True and loss_val is not None:
loss_val = (loss_val.mean(dim=-1) * model_output.mask).sum() / (model_output.mask.sum() + 1e-10)
if not return_dict:
return tuple(
v
for v in [
loss_val,
x_hat,
model_output.last_hidden_state,
model_output.hidden_states,
]
)
return PatchTSMixerForPreTrainingOutput(
loss=loss_val,
prediction_outputs=x_hat, # tensor [batch_size x nvars x num_patch x patch_length]
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
)
@dataclass
class PatchTSMixerForPredictionOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForPredictionOutput`].
Args:
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_input_channels)`):
Prediction output from the forecast head.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss.
loc (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`):
Input mean
scale (`torch.FloatTensor`, *optional* of shape `(batch_size, 1, num_input_channels)`):
Input std dev
"""
loss: Optional[torch.FloatTensor] = None
prediction_outputs: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
loc: Optional[torch.FloatTensor] = None
scale: Optional[torch.FloatTensor] = None
@dataclass
class SamplePatchTSMixerPredictionOutput(ModelOutput):
"""
Base class for time series model's predictions outputs that contains the sampled values from the chosen
distribution.
Args:
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, prediction_length, number_channels)`):
Sampled values from the chosen distribution.
"""
sequences: Optional[torch.FloatTensor] = None
@dataclass
class SamplePatchTSMixerRegressionOutput(ModelOutput):
"""
Base class for time series model's predictions outputs that contains the sampled values from the chosen
distribution.
Args:
sequences (`torch.FloatTensor` of shape `(batch_size, num_samples, num_targets)`
Sampled values from the chosen distribution.
"""
sequences: Optional[torch.FloatTensor] = None
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll
def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor:
"""
Computes the negative log likelihood loss from input distribution with respect to target.
"""
return -input.log_prob(target)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average
def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor:
"""
Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero,
meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`.
Args:
input_tensor (`torch.FloatTensor`):
Input tensor, of which the average must be computed.
weights (`torch.FloatTensor`, *optional*):
Weights tensor, of the same shape as `input_tensor`.
dim (`int`, *optional*):
The dim along which to average `input_tensor`.
Returns:
`torch.FloatTensor`: The tensor with values averaged along the specified `dim`.
"""
if weights is not None:
weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor))
sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0)
return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights
else:
return input_tensor.mean(dim=dim)
class PatchTSMixerForPrediction(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for forecasting application.
Args:
config (`PatchTSMixerConfig`):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.loss = config.loss
self.use_return_dict = config.use_return_dict
self.prediction_channel_indices = config.prediction_channel_indices
self.num_parallel_samples = config.num_parallel_samples
if config.loss == "mse":
self.distribution_output = None
else:
dim = config.prediction_length
distribution_output_map = {
"student_t": StudentTOutput,
"normal": NormalOutput,
"negative_binomial": NegativeBinomialOutput,
}
output_class = distribution_output_map.get(config.distribution_output, None)
if output_class is not None:
self.distribution_output = output_class(dim=dim)
else:
raise ValueError(f"Unknown distribution output {config.distribution_output}")
self.model = PatchTSMixerModel(config)
self.head = PatchTSMixerForPredictionHead(
config=config,
distribution_output=self.distribution_output,
)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerForPredictionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForPredictionOutput:
r"""
observed_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
future_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,:
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
values of the time series, that serve as labels for the model. The `future_values` is what the
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
required for a pretraining task.
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
pass the target data with all channels, as channel Filtering for both prediction and target will be
manually applied before the loss computation.
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
if self.loss == "mse":
loss = nn.MSELoss(reduction="mean")
elif self.loss == "nll":
loss = nll
else:
raise ValueError("Invalid loss function: Allowed values: mse and nll")
return_dict = return_dict if return_dict is not None else self.use_return_dict
# past_values: tensor [batch_size x context_length x num_input_channels]
model_output = self.model(
past_values,
observed_mask=observed_mask,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # model_output: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
# tensor [batch_size x prediction_length x num_input_channels]
y_hat = self.head(model_output.last_hidden_state)
loss_val = None
if self.prediction_channel_indices is not None:
if self.distribution_output:
distribution = self.distribution_output.distribution(
y_hat,
loc=model_output.loc[..., self.prediction_channel_indices],
scale=model_output.scale[..., self.prediction_channel_indices],
)
if future_values is not None and return_loss is True:
loss_val = loss(
distribution,
future_values[..., self.prediction_channel_indices],
)
# take average of the loss
loss_val = weighted_average(loss_val)
else:
y_hat = (
y_hat * model_output.scale[..., self.prediction_channel_indices]
+ model_output.loc[..., self.prediction_channel_indices]
)
if future_values is not None and return_loss is True:
loss_val = loss(y_hat, future_values[..., self.prediction_channel_indices])
else:
if self.distribution_output:
distribution = self.distribution_output.distribution(
y_hat, loc=model_output.loc, scale=model_output.scale
)
if future_values is not None and return_loss is True:
loss_val = loss(distribution, future_values)
loss_val = weighted_average(loss_val)
else:
y_hat = y_hat * model_output.scale + model_output.loc
if future_values is not None and return_loss is True:
loss_val = loss(y_hat, future_values)
if self.prediction_channel_indices is not None:
loc = model_output.loc[..., self.prediction_channel_indices]
scale = model_output.scale[..., self.prediction_channel_indices]
else:
loc = model_output.loc
scale = model_output.scale
if not return_dict:
return tuple(
v
for v in [
loss_val,
y_hat,
model_output.last_hidden_state,
model_output.hidden_states,
loc,
scale,
]
)
return PatchTSMixerForPredictionOutput(
loss=loss_val,
prediction_outputs=y_hat, # tensor [batch_size x prediction_length x num_input_channels]
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
loc=loc,
scale=scale,
)
def generate(
self,
past_values: torch.Tensor,
observed_mask: Optional[torch.Tensor] = None,
) -> SamplePatchTSMixerPredictionOutput:
"""
Generate sequences of sample predictions from a model with a probability distribution head.
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Past values of the time series that serves as context in order to predict the future.
observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
Return:
[`SamplePatchTSMixerPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size,
number of samples, prediction_length, num_input_channels)`.
"""
# get number of samples
num_parallel_samples = self.num_parallel_samples
# get model output
outputs = self(
past_values=past_values,
future_values=None,
observed_mask=observed_mask,
output_hidden_states=False,
)
# get distribution
distribution = self.distribution_output.distribution(
outputs.prediction_outputs, loc=outputs.loc, scale=outputs.scale
)
# get samples: list of [batch_size x prediction_length x num_channels]
samples = [distribution.sample() for _ in range(num_parallel_samples)]
# stack tensors
samples = torch.stack(samples, dim=1) # [batch_size x num_samples x prediction_length x num_channels]
return SamplePatchTSMixerPredictionOutput(sequences=samples)
@dataclass
class PatchTSMixerForTimeSeriesClassificationOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForTimeSeriesClassificationOutput`].
Args:
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
Prediction output from the classfication head.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss.
"""
loss: Optional[torch.FloatTensor] = None
prediction_outputs: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class PatchTSMixerForTimeSeriesClassification(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for classification application.
Args:
config (`PatchTSMixerConfig`):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.model = PatchTSMixerModel(config)
self.head = PatchTSMixerLinearHead(
config=config,
)
self.use_return_dict = config.use_return_dict
if config.scaling in ["std", "mean", True]:
self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches)
else:
self.inject_scale = None
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=PatchTSMixerForTimeSeriesClassificationOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
past_values: torch.Tensor,
target_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForTimeSeriesClassificationOutput:
r"""
target_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
values of the time series, that serve as labels for the model. The `target_values` is what the
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
required for a pretraining task.
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
pass the target data with all channels, as channel Filtering for both prediction and target will be
manually applied before the loss computation.
For a classification task, it has a shape of `(batch_size,)`.
For a regression task, it has a shape of `(batch_size, num_targets)`.
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
loss = torch.nn.CrossEntropyLoss()
return_dict = return_dict if return_dict is not None else self.use_return_dict
model_output = self.model(
past_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # x: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
if self.inject_scale is not None:
model_output.last_hidden_state = self.inject_scale(
model_output.last_hidden_state,
loc=model_output.loc,
scale=model_output.scale,
) # x: [batch_size x nvars x num_patch x d_model]
y_hat = self.head(model_output.last_hidden_state) # tensor [batch_size x n_labels]
if target_values is not None and return_loss is True:
loss_val = loss(y_hat, target_values)
else:
loss_val = None
if not return_dict:
return tuple(
v
for v in [
loss_val,
y_hat,
model_output.last_hidden_state,
model_output.hidden_states,
]
)
return PatchTSMixerForTimeSeriesClassificationOutput(
loss=loss_val,
prediction_outputs=y_hat, # tensor [batch_size x n_labels]
last_hidden_state=model_output.last_hidden_state, # x: [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
)
@dataclass
class PatchTSMixerForRegressionOutput(ModelOutput):
"""
Output type of [`PatchTSMixerForRegressionOutput`].
Args:
regression_outputs (`torch.FloatTensor` of shape `(batch_size, num_targets)`):
Prediction output from the regression head.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_input_channels, num_patches, d_model)`):
Backbone embeddings before passing through the head.
hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
loss (*optional*, returned when `y` is provided, `torch.FloatTensor` of shape `()`):
Total loss.
"""
loss: Optional[torch.FloatTensor] = None
regression_outputs: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class InjectScalerStatistics4D(nn.Module):
def __init__(self, d_model: int, num_patches: int, expansion: int = 2):
super().__init__()
self.inverse_trans_expansion = nn.Linear(d_model + 2, expansion * d_model)
self.inverse_trans_compression = nn.Linear(expansion * d_model, d_model)
self.map_scale_expansion = nn.Linear(2, 2 * expansion)
self.map_scale_compression = nn.Linear(2 * expansion, 2)
self.num_patches = num_patches
def forward(self, inputs: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor):
"""
Args:
inputs (`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)`)
loc (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`)
scale (`torch.Tensor` of shape `(batch_size, 1, num_input_channels)`)
Returns:
`torch.Tensor` of shape `(batch_size, num_input_channels, num_patch, d_model)`
"""
mean = loc.transpose(-1, -2) # [batch_size x n_channels x 1 ]
mean = mean.unsqueeze(-2) # [batch_size x n_channels x 1 x 1]
mean = mean.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1]
stdev = scale.transpose(-1, -2) # [batch_size x n_channels x 1 ]
stdev = stdev.unsqueeze(-2) # [batch_size x n_channels x 1 x 1]
stdev = stdev.repeat(1, 1, self.num_patches, 1) # [batch_size x n_channels x num_patch x 1]
concat_stats = torch.cat([mean, stdev], dim=-1) # [batch_size x n_channels x num_patch x 2]
concat_stats = self.map_scale_expansion(concat_stats) # [batch_size x n_channels x num_patch x (2*expansion)]
concat_stats = self.map_scale_compression(concat_stats) # [batch_size x n_channels x num_patch x 2]
inputs = torch.cat([inputs, concat_stats], dim=-1) # [batch_size x channels x num_patch x d_model+2]
inputs = self.inverse_trans_expansion(inputs) # [batch_size x channels x num_patch x (expansion*d_model)]
inputs = self.inverse_trans_compression(inputs) # [batch_size x channels x num_patch x d_model]
return inputs
class PatchTSMixerForRegression(PatchTSMixerPreTrainedModel):
r"""
`PatchTSMixer` for regression application.
Args:
config (`PatchTSMixerConfig`):
Configuration.
Returns:
`None`.
"""
def __init__(self, config: PatchTSMixerConfig):
super().__init__(config)
self.model = PatchTSMixerModel(config)
self.loss = config.loss
self.distribution_output = config.distribution_output
self.use_return_dict = config.use_return_dict
self.num_parallel_samples = config.num_parallel_samples
if config.loss == "mse":
self.distribution_output = None
else:
distribution_output_map = {
"student_t": StudentTOutput,
"normal": NormalOutput,
"negative_binomial": NegativeBinomialOutput,
}
output_class = distribution_output_map.get(config.distribution_output)
if output_class is not None:
self.distribution_output = output_class(dim=config.num_targets)
else:
raise ValueError(f"Unknown distribution output {config.distribution_output}")
if config.scaling in ["std", "mean", True]:
self.inject_scale = InjectScalerStatistics4D(d_model=config.d_model, num_patches=config.num_patches)
else:
self.inject_scale = None
self.head = PatchTSMixerLinearHead(
config=config,
distribution_output=self.distribution_output,
)
# Initialize weights and apply final processing
if config.post_init:
self.post_init()
@add_start_docstrings_to_model_forward(PATCHTSMIXER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=PatchTSMixerForRegressionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
past_values: torch.Tensor,
target_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = False,
return_loss: bool = True,
return_dict: Optional[bool] = None,
) -> PatchTSMixerForRegressionOutput:
r"""
target_values (`torch.FloatTensor` of shape `(batch_size, target_len, num_input_channels)` for forecasting,
`(batch_size, num_targets)` for regression, or `(batch_size,)` for classification, *optional*): Target
values of the time series, that serve as labels for the model. The `target_values` is what the
Transformer needs during training to learn to output, given the `past_values`. Note that, this is NOT
required for a pretraining task.
For a forecasting task, the shape is be `(batch_size, target_len, num_input_channels)`. Even if we want
to forecast only specific channels by setting the indices in `prediction_channel_indices` parameter,
pass the target data with all channels, as channel Filtering for both prediction and target will be
manually applied before the loss computation.
For a classification task, it has a shape of `(batch_size,)`.
For a regression task, it has a shape of `(batch_size, num_targets)`.
return_loss (`bool`, *optional*):
Whether to return the loss in the `forward` call.
Returns:
"""
if self.loss == "mse":
loss = nn.MSELoss(reduction="mean")
elif self.loss == "nll":
loss = nll
else:
raise ValueError("Invalid loss function: Allowed values: mse and nll")
return_dict = return_dict if return_dict is not None else self.use_return_dict
model_output = self.model(
past_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
) # model_output: [batch_size x nvars x num_patch x d_model]
if isinstance(model_output, tuple):
model_output = PatchTSMixerModelOutput(*model_output)
if self.inject_scale is not None:
model_output.last_hidden_state = self.inject_scale(
model_output.last_hidden_state,
loc=model_output.loc,
scale=model_output.scale,
) # x: [batch_size x nvars x num_patch x d_model]
y_hat = self.head(model_output.last_hidden_state) # [batch_size x num_targets]
if target_values is not None and return_loss is True:
if self.distribution_output:
if self.distribution_output == "negative_binomial" and torch.any(target_values < 0):
raise Exception("target_values cannot be negative for negative_binomial distribution.")
distribution = self.distribution_output.distribution(y_hat)
# y_hat should be a 2-tuple, each with dimension [bs, num_targets]
y_hat = tuple([item.view(-1, self.config.num_targets) for item in y_hat])
loss_val = loss(distribution, target_values)
# take average of the loss
loss_val = weighted_average(loss_val)
else:
loss_val = loss(y_hat, target_values)
else:
loss_val = None
if not return_dict:
return tuple(
v
for v in [
loss_val,
y_hat,
model_output.last_hidden_state,
model_output.hidden_states,
]
)
return PatchTSMixerForRegressionOutput(
loss=loss_val,
regression_outputs=y_hat, # tensor [batch_size x num_targets]
last_hidden_state=model_output.last_hidden_state, # [batch_size x nvars x num_patch x d_model]
hidden_states=model_output.hidden_states,
)
def generate(
self,
past_values: torch.Tensor,
) -> SamplePatchTSMixerRegressionOutput:
"""
Generate sequences of sample predictions from a model with a probability distribution head.
Args:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Past values of the time series that serves as context in order to predict the target values.
Return:
[`SamplePatchTSMixerRegressionOutput`] where the outputs `sequences` tensor will have shape `(batch_size,
number of samples, num_targets)`.
"""
# get number of samples
num_parallel_samples = self.num_parallel_samples
# get model output
outputs = self(
past_values=past_values,
target_values=None,
output_hidden_states=False,
)
# get distribution
distribution = self.distribution_output.distribution(outputs.regression_outputs)
# get samples
samples = [
distribution.sample() for _ in range(num_parallel_samples)
] # samples: list of [batch_size x num_targets]
# stack tensors
# [batch_size x num_samples x num_targets]
samples = torch.stack(samples, dim=1).view(-1, num_parallel_samples, self.config.num_targets)
return SamplePatchTSMixerRegressionOutput(sequences=samples)
__all__ = [
"PatchTSMixerPreTrainedModel",
"PatchTSMixerModel",
"PatchTSMixerForPretraining",
"PatchTSMixerForPrediction",
"PatchTSMixerForTimeSeriesClassification",
"PatchTSMixerForRegression",
]
```
|
================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\patchtst\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_patchtst import *
from .modeling_patchtst import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==============================================================================================================================================
SOURCE CODE FILE: configuration_patchtst.py
LINES: 1
SIZE: 12.03 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\patchtst\configuration_patchtst.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PatchTST model configuration"""
from typing import List, Optional, Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class PatchTSTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`PatchTSTModel`]. It is used to instantiate an
PatchTST model according to the specified arguments, defining the model architecture.
[ibm/patchtst](https://huggingface.co/ibm/patchtst) architecture.
Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_input_channels (`int`, *optional*, defaults to 1):
The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
multivariate targets.
context_length (`int`, *optional*, defaults to 32):
The context length of the input sequence.
distribution_output (`str`, *optional*, defaults to `"student_t"`):
The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or
"negative_binomial".
loss (`str`, *optional*, defaults to `"mse"`):
The loss function for the model corresponding to the `distribution_output` head. For parametric
distributions it is the negative log likelihood ("nll") and for point estimates it is the mean squared
error "mse".
patch_length (`int`, *optional*, defaults to 1):
Define the patch length of the patchification process.
patch_stride (`int`, *optional*, defaults to 1):
Define the stride of the patchification process.
num_hidden_layers (`int`, *optional*, defaults to 3):
Number of hidden layers.
d_model (`int`, *optional*, defaults to 128):
Dimensionality of the transformer layers.
num_attention_heads (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
share_embedding (`bool`, *optional*, defaults to `True`):
Sharing the input embedding across all channels.
channel_attention (`bool`, *optional*, defaults to `False`):
Activate channel attention block in the Transformer to allow channels to attend each other.
ffn_dim (`int`, *optional*, defaults to 512):
Dimension of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
norm_type (`str` , *optional*, defaults to `"batchnorm"`):
Normalization at each Transformer layer. Can be `"batchnorm"` or `"layernorm"`.
norm_eps (`float`, *optional*, defaults to 1e-05):
A value added to the denominator for numerical stability of normalization.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for the attention probabilities.
positional_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability in the positional embedding layer.
path_dropout (`float`, *optional*, defaults to 0.0):
The dropout path in the residual block.
ff_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability used between the two layers of the feed-forward networks.
bias (`bool`, *optional*, defaults to `True`):
Whether to add bias in the feed-forward networks.
activation_function (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (string) in the Transformer.`"gelu"` and `"relu"` are supported.
pre_norm (`bool`, *optional*, defaults to `True`):
Normalization is applied before self-attention if pre_norm is set to `True`. Otherwise, normalization is
applied after residual block.
positional_encoding_type (`str`, *optional*, defaults to `"sincos"`):
Positional encodings. Options `"random"` and `"sincos"` are supported.
use_cls_token (`bool`, *optional*, defaults to `False`):
Whether cls token is used.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal weight initialization distribution.
share_projection (`bool`, *optional*, defaults to `True`):
Sharing the projection layer across different channels in the forecast head.
scaling (`Union`, *optional*, defaults to `"std"`):
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
scaler is set to "mean".
do_mask_input (`bool`, *optional*):
Apply masking during the pretraining.
mask_type (`str`, *optional*, defaults to `"random"`):
Masking type. Only `"random"` and `"forecast"` are currently supported.
random_mask_ratio (`float`, *optional*, defaults to 0.5):
Masking ratio applied to mask the input data during random pretraining.
num_forecast_mask_patches (`int` or `list`, *optional*, defaults to `[2]`):
Number of patches to be masked at the end of each batch sample. If it is an integer,
all the samples in the batch will have the same number of masked patches. If it is a list,
samples in the batch will be randomly masked by numbers defined in the list. This argument is only used
for forecast pretraining.
channel_consistent_masking (`bool`, *optional*, defaults to `False`):
If channel consistent masking is True, all the channels will have the same masking pattern.
unmasked_channel_indices (`list`, *optional*):
Indices of channels that are not masked during pretraining. Values in the list are number between 1 and
`num_input_channels`
mask_value (`int`, *optional*, defaults to 0):
Values in the masked patches will be filled by `mask_value`.
pooling_type (`str`, *optional*, defaults to `"mean"`):
Pooling of the embedding. `"mean"`, `"max"` and `None` are supported.
head_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for head.
prediction_length (`int`, *optional*, defaults to 24):
The prediction horizon that the model will output.
num_targets (`int`, *optional*, defaults to 1):
Number of targets for regression and classification tasks. For classification, it is the number of
classes.
output_range (`list`, *optional*):
Output range for regression task. The range of output values can be set to enforce the model to produce
values within a range.
num_parallel_samples (`int`, *optional*, defaults to 100):
The number of samples is generated in parallel for probabilistic prediction.
```python
>>> from transformers import PatchTSTConfig, PatchTSTModel
>>> # Initializing an PatchTST configuration with 12 time steps for prediction
>>> configuration = PatchTSTConfig(prediction_length=12)
>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = PatchTSTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "patchtst"
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "num_attention_heads",
"num_hidden_layers": "num_hidden_layers",
}
def __init__(
self,
# time series specific configuration
num_input_channels: int = 1,
context_length: int = 32,
distribution_output: str = "student_t",
loss: str = "mse",
# PatchTST arguments
patch_length: int = 1,
patch_stride: int = 1,
# Transformer architecture configuration
num_hidden_layers: int = 3,
d_model: int = 128,
num_attention_heads: int = 4,
share_embedding: bool = True,
channel_attention: bool = False,
ffn_dim: int = 512,
norm_type: str = "batchnorm",
norm_eps: float = 1e-05,
attention_dropout: float = 0.0,
positional_dropout: float = 0.0,
path_dropout: float = 0.0,
ff_dropout: float = 0.0,
bias: bool = True,
activation_function: str = "gelu",
pre_norm: bool = True,
positional_encoding_type: str = "sincos",
use_cls_token: bool = False,
init_std: float = 0.02,
share_projection: bool = True,
scaling: Optional[Union[str, bool]] = "std",
# mask pretraining
do_mask_input: Optional[bool] = None,
mask_type: str = "random",
random_mask_ratio: float = 0.5,
num_forecast_mask_patches: Optional[Union[List[int], int]] = [2],
channel_consistent_masking: Optional[bool] = False,
unmasked_channel_indices: Optional[List[int]] = None,
mask_value: int = 0,
# head
pooling_type: str = "mean",
head_dropout: float = 0.0,
prediction_length: int = 24,
num_targets: int = 1,
output_range: Optional[List] = None,
# distribution head
num_parallel_samples: int = 100,
**kwargs,
):
# time series specific configuration
self.context_length = context_length
self.num_input_channels = num_input_channels # n_vars
self.loss = loss
self.distribution_output = distribution_output
self.num_parallel_samples = num_parallel_samples
# Transformer architecture configuration
self.d_model = d_model
self.num_attention_heads = num_attention_heads
self.ffn_dim = ffn_dim
self.num_hidden_layers = num_hidden_layers
self.attention_dropout = attention_dropout
self.share_embedding = share_embedding
self.channel_attention = channel_attention
self.norm_type = norm_type
self.norm_eps = norm_eps
self.positional_dropout = positional_dropout
self.path_dropout = path_dropout
self.ff_dropout = ff_dropout
self.bias = bias
self.activation_function = activation_function
self.pre_norm = pre_norm
self.positional_encoding_type = positional_encoding_type
self.use_cls_token = use_cls_token
self.init_std = init_std
self.scaling = scaling
# PatchTST parameters
self.patch_length = patch_length
self.patch_stride = patch_stride
# Mask pretraining
self.do_mask_input = do_mask_input
self.mask_type = mask_type
self.random_mask_ratio = random_mask_ratio # for random masking
self.num_forecast_mask_patches = num_forecast_mask_patches # for forecast masking
self.channel_consistent_masking = channel_consistent_masking
self.unmasked_channel_indices = unmasked_channel_indices
self.mask_value = mask_value
# general head params
self.pooling_type = pooling_type
self.head_dropout = head_dropout
# For prediction head
self.share_projection = share_projection
self.prediction_length = prediction_length
# For prediction and regression head
self.num_parallel_samples = num_parallel_samples
# Regression
self.num_targets = num_targets
self.output_range = output_range
super().__init__(**kwargs)
__all__ = ["PatchTSTConfig"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: modeling_patchtst.py
LINES: 1
SIZE: 89.91 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\patchtst\modeling_patchtst.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 IBM & Hugging Face. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch PatchTST model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from torch import nn
from ...activations import ACT2CLS
from ...modeling_outputs import BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
from ...utils import ModelOutput, add_start_docstrings, logging
from .configuration_patchtst import PatchTSTConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "PatchTSTConfig"
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PatchTST
class PatchTSTAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[PatchTSTConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class PatchTSTBatchNorm(nn.Module):
"""
Compute batch normalization over the sequence length (time) dimension.
"""
def __init__(self, config: PatchTSTConfig):
super().__init__()
self.batchnorm = nn.BatchNorm1d(config.d_model, eps=config.norm_eps)
def forward(self, inputs: torch.Tensor):
"""
Parameters:
inputs (`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`):
input for Batch norm calculation
Returns:
`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`
"""
output = inputs.transpose(1, 2) # output: (batch_size, d_model, sequence_length)
output = self.batchnorm(output)
return output.transpose(1, 2)
def random_masking(
inputs: torch.Tensor,
mask_ratio: float,
unmasked_channel_indices: list = None,
channel_consistent_masking: bool = False,
mask_value: int = 0,
):
"""random_masking: Mask the input considering the control variables.
Args:
inputs (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, num_features)`):
The input tensor to mask.
mask_ratio (`float`):
Masking ratio applied to mask the input data during random pretraining. It is the number between 0 and 1.
unmasked_channel_indices (list, *optional*):
Indices of channels that will not be masked.
channel_consistent_masking (bool, *optional*, defaults to `False`):
When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary
across channels.
mask_value (int, *optional*, defaults to 0):
Define the value of masked patches for pretraining.
Returns:
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as input Tensor and mask tensor of shape [bs x c x
n]
"""
if mask_ratio < 0 or mask_ratio >= 1:
raise ValueError(f"Mask ratio {mask_ratio} has to be between 0 and 1.")
batch_size, num_channels, sequence_length, num_features = inputs.shape
device = inputs.device
len_keep = int(sequence_length * (1 - mask_ratio))
if channel_consistent_masking:
noise = torch.rand(batch_size, 1, sequence_length, device=device) # noise in [0, 1], bs x 1 x L
noise = noise.repeat(1, num_channels, 1) # bs x num_channels x time
else:
# noise in [0, 1], bs x num_channels x L
noise = torch.rand(batch_size, num_channels, sequence_length, device=device)
# mask: [bs x num_channels x num_patch]
mask = torch.ones(batch_size, num_channels, sequence_length, device=device)
mask[:, :, :len_keep] = 0
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=-1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=-1) # ids_restore: [bs x num_channels x L]
mask = torch.gather(mask, dim=-1, index=ids_restore)
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patches x patch_length]
if unmasked_channel_indices is not None:
mask[:, unmasked_channel_indices, :, :] = 0
inputs_mask = inputs.masked_fill(mask.bool(), mask_value)
return inputs_mask, mask[..., 0]
def forecast_masking(
inputs: torch.Tensor,
num_forecast_mask_patches: Union[list, int],
unmasked_channel_indices: list = None,
mask_value: int = 0,
):
"""Forecast masking that masks the last K patches where K is from the num_forecast_mask_patches.
If num_forecast_mask_patches is a list, samples in the batch will be randomly masked by numbers defined in the list.
Parameters:
inputs (`torch.Tensor`):
Input of shape `(bs, num_channels, num_patch, patch_length)`
num_forecast_mask_patches (`list`):
Number of patches to be masked at the end of each batch sample. e.g. 4 or [3, 5].
unmasked_channel_indices (`list`, *optional*):
Indices of channels that are not masked.
mask_value (`int`, *optional*, defaults to 0):
Values in the masked patches will be filled by `mask_value`.
Returns:
`tuple(torch.Tensor)`: inputs_mask, masked input, same shape as inputs Tensor and Mask tensor of shape `(bs,
num_channels , num_patch)` or `(bs, tsg1, tsg2, num_channels, num_patch)`
"""
if isinstance(num_forecast_mask_patches, int):
num_forecast_mask_patches = [num_forecast_mask_patches]
forecast_mask_ratios = [1 for _ in num_forecast_mask_patches]
batch_size, num_channels, sequence_length, num_features = inputs.shape
mask = torch.zeros(batch_size, num_channels, sequence_length, device=inputs.device)
t_list = []
total_length = 0
total_ratio = sum(forecast_mask_ratios)
for patch_length, ratio in zip(num_forecast_mask_patches, forecast_mask_ratios):
if patch_length <= 0 or patch_length >= sequence_length:
raise ValueError(
f"num_forecast_mask_patches {patch_length} should be greater than 0 and less than total patches."
)
temp_len = int(batch_size * ratio / total_ratio)
t_list.append([patch_length, ratio, temp_len])
total_length += temp_len
t_list = sorted(t_list, key=lambda x: x[2])
if total_length < batch_size:
t_list[0][2] = t_list[0][2] + (batch_size - total_length)
elif total_length > batch_size:
t_list[-1][2] = t_list[-1][2] + (total_length - batch_size)
batch1 = 0
for patch_len, _, temp_len in t_list:
batch2 = batch1 + temp_len
mask[batch1:batch2, :, -patch_len:] = 1
batch1 = batch2
perm = torch.randperm(mask.shape[0])
mask = mask[perm]
mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patch x patch_len]
if unmasked_channel_indices is not None:
mask[:, unmasked_channel_indices, :, :] = 0
inputs_mask = inputs.masked_fill(mask.bool(), mask_value)
return inputs_mask, mask[..., 0]
class PatchTSTPatchify(nn.Module):
"""
A class to patchify the time series sequence into different patches
Returns:
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`
"""
def __init__(self, config: PatchTSTConfig):
super().__init__()
self.sequence_length = config.context_length
self.patch_length = config.patch_length
self.patch_stride = config.patch_stride
if self.sequence_length <= self.patch_length:
raise ValueError(
f"Sequence length ({self.sequence_length}) has to be greater than the patch length ({self.patch_length})"
)
# get the number of patches
self.num_patches = (max(self.sequence_length, self.patch_length) - self.patch_length) // self.patch_stride + 1
new_sequence_length = self.patch_length + self.patch_stride * (self.num_patches - 1)
self.sequence_start = self.sequence_length - new_sequence_length
def forward(self, past_values: torch.Tensor):
"""
Parameters:
past_values (`torch.Tensor` of shape `(batch_size, sequence_length, num_channels)`, *required*):
Input for patchification
Returns:
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`
"""
sequence_length = past_values.shape[-2]
if sequence_length != self.sequence_length:
raise ValueError(
f"Input sequence length ({sequence_length}) doesn't match model configuration ({self.sequence_length})."
)
# output: [bs x new_sequence_length x num_channels]
output = past_values[:, self.sequence_start :, :]
# output: [bs x num_patches x num_input_channels x patch_length]
output = output.unfold(dimension=-2, size=self.patch_length, step=self.patch_stride)
# output: [bs x num_input_channels x num_patches x patch_length]
output = output.transpose(-2, -3).contiguous()
return output
class PatchTSTMasking(nn.Module):
"""
Class to perform random or forecast masking.
Parameters:
config (`PatchTSTConfig`): model config
Returns:
x_mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`)
Masked patched input
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`)
Bool tensor indicating True on masked points
"""
def __init__(self, config: PatchTSTConfig):
super().__init__()
self.random_mask_ratio = config.random_mask_ratio
self.channel_consistent_masking = config.channel_consistent_masking
self.mask_type = config.mask_type
self.num_forecast_mask_patches = config.num_forecast_mask_patches
self.unmasked_channel_indices = config.unmasked_channel_indices
self.mask_value = config.mask_value
if self.unmasked_channel_indices is not None:
self.unmasked_channel_indices = sorted(self.unmasked_channel_indices)
def forward(self, patch_input: torch.Tensor):
"""
Parameters:
patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*):
Patch input
Return:
masked_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`)
Masked patched input
mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`)
Bool tensor indicating True on masked points
"""
if self.mask_type == "random":
masked_input, mask = random_masking(
inputs=patch_input,
mask_ratio=self.random_mask_ratio,
unmasked_channel_indices=self.unmasked_channel_indices,
channel_consistent_masking=self.channel_consistent_masking,
mask_value=self.mask_value,
)
elif self.mask_type == "forecast":
masked_input, mask = forecast_masking(
inputs=patch_input,
num_forecast_mask_patches=self.num_forecast_mask_patches,
unmasked_channel_indices=self.unmasked_channel_indices,
mask_value=self.mask_value,
)
else:
raise ValueError(f"Invalid mask type {self.mask_type}.")
# mask: [bs x num_input_channels x num_patch]
mask = mask.bool()
return masked_input, mask
class PatchTSTEncoderLayer(nn.Module):
"""
PatchTST encoder layer
"""
def __init__(self, config: PatchTSTConfig):
super().__init__()
self.channel_attention = config.channel_attention
# Multi-Head attention
self.self_attn = PatchTSTAttention(
embed_dim=config.d_model,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
)
# Add & Norm of the sublayer 1
self.dropout_path1 = nn.Dropout(config.path_dropout) if config.path_dropout > 0 else nn.Identity()
if config.norm_type == "batchnorm":
self.norm_sublayer1 = PatchTSTBatchNorm(config)
elif config.norm_type == "layernorm":
self.norm_sublayer1 = nn.LayerNorm(config.d_model, eps=config.norm_eps)
else:
raise ValueError(f"{config.norm_type} is not a supported norm layer type.")
# Add & Norm of the sublayer 2
if self.channel_attention:
self.dropout_path2 = nn.Dropout(config.path_dropout) if config.path_dropout > 0 else nn.Identity()
if config.norm_type == "batchnorm":
self.norm_sublayer2 = PatchTSTBatchNorm(config)
elif config.norm_type == "layernorm":
self.norm_sublayer2 = nn.LayerNorm(config.d_model, eps=config.norm_eps)
else:
raise ValueError(f"{config.norm_type} is not a supported norm layer type.")
# Position-wise Feed-Forward
self.ff = nn.Sequential(
nn.Linear(config.d_model, config.ffn_dim, bias=config.bias),
ACT2CLS[config.activation_function](),
nn.Dropout(config.ff_dropout) if config.ff_dropout > 0 else nn.Identity(),
nn.Linear(config.ffn_dim, config.d_model, bias=config.bias),
)
# Add & Norm of sublayer 3
self.dropout_path3 = nn.Dropout(config.path_dropout) if config.path_dropout > 0 else nn.Identity()
if config.norm_type == "batchnorm":
self.norm_sublayer3 = PatchTSTBatchNorm(config)
elif config.norm_type == "layernorm":
self.norm_sublayer3 = nn.LayerNorm(config.d_model, eps=config.norm_eps)
else:
raise ValueError(f"{config.norm_type} is not a supported norm layer type.")
self.pre_norm = config.pre_norm
def forward(self, hidden_state: torch.Tensor, output_attentions: Optional[bool] = None):
"""
Parameters:
hidden_state (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, d_model)`, *required*):
Past values of the time series
output_attentions (`bool`, *optional*):
Whether or not to return the output attention of all layers
Return:
`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, d_model)`
"""
batch_size, num_input_channels, sequence_length, d_model = hidden_state.shape
# First sublayer: attention across time
# hidden_states: [(bs*num_channels) x sequence_length x d_model]
hidden_state = hidden_state.view(batch_size * num_input_channels, sequence_length, d_model)
if self.pre_norm:
## Norm and Multi-Head attention and Add residual connection
attn_output, attn_weights, _ = self.self_attn(
hidden_states=self.norm_sublayer1(hidden_state), output_attentions=output_attentions
)
# Add: residual connection with residual dropout
hidden_state = hidden_state + self.dropout_path1(attn_output)
else:
## Multi-Head attention and Add residual connection and Norm - Standard Transformer from BERT
attn_output, attn_weights, _ = self.self_attn(
hidden_states=hidden_state, output_attentions=output_attentions
)
# hidden_states: [(bs*num_channels) x sequence_length x d_model]
hidden_state = self.norm_sublayer1(hidden_state + self.dropout_path1(attn_output))
# hidden_state: [bs x num_channels x sequence_length x d_model]
hidden_state = hidden_state.reshape(batch_size, num_input_channels, sequence_length, d_model)
# second sublayer: attention across variable at any given time
if self.channel_attention:
# hidden_state: [bs x sequence_length x num_channels x d_model]
hidden_state = hidden_state.transpose(2, 1).contiguous()
# hidden_state: [(bs*sequence_length) x num_channels x d_model]
hidden_state = hidden_state.view(batch_size * sequence_length, num_input_channels, d_model)
if self.pre_norm:
## Norm and Multi-Head attention and Add residual connection
attn_output, channel_attn_weights, _ = self.self_attn(
hidden_states=self.norm_sublayer2(hidden_state), output_attentions=output_attentions
)
# Add: residual connection with residual dropout
hidden_state = hidden_state + self.dropout_path2(attn_output)
else:
## Multi-Head attention and Add residual connection and Norm
attn_output, channel_attn_weights, _ = self.self_attn(
hidden_states=hidden_state, output_attentions=output_attentions
)
# hidden_states: [(bs*sequence_length) x num_channels x d_model]
hidden_state = self.norm_sublayer2(hidden_state + self.dropout_path2(attn_output))
# Reshape hidden state
# hidden_state: [bs x sequence_length x num_channels x d_model]
hidden_state = hidden_state.reshape(batch_size, sequence_length, num_input_channels, d_model)
# hidden_state: [bs x num_channels x sequence_length x d_model]
hidden_state = hidden_state.transpose(1, 2).contiguous()
# Third sublayer: mixing across hidden
# hidden_state: [(batch_size*num_channels) x sequence_length x d_model]
hidden_state = hidden_state.view(batch_size * num_input_channels, sequence_length, d_model)
if self.pre_norm:
## Norm and Position-wise Feed-Forward and Add residual connection
# Add: residual connection with residual dropout
hidden_state = hidden_state + self.dropout_path3(self.ff(self.norm_sublayer3(hidden_state)))
else:
## Position-wise Feed-Forward and Add residual connection and Norm
# Add: residual connection with residual dropout
hidden_state = self.norm_sublayer3(hidden_state + self.dropout_path3(self.ff(hidden_state)))
# [bs x num_channels x sequence_length x d_model]
hidden_state = hidden_state.reshape(batch_size, num_input_channels, sequence_length, d_model)
outputs = (hidden_state,)
if output_attentions:
outputs += (attn_weights, channel_attn_weights) if self.channel_attention else (attn_weights,)
return outputs
class PatchTSTPreTrainedModel(PreTrainedModel):
config_class = PatchTSTConfig
base_model_prefix = "model"
main_input_name = "past_values"
supports_gradient_checkpointing = False
def _init_weights(self, module):
"""
Initialize weights
"""
if isinstance(module, PatchTSTPositionalEncoding):
# initialize cls_token
if self.config.use_cls_token:
nn.init.normal_(module.cls_token, std=0.02)
# initialize positional encoding
if self.config.positional_encoding_type == "random":
nn.init.normal_(module.position_enc, mean=0.0, std=0.1)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, PatchTSTBatchNorm):
module.batchnorm.bias.data.zero_()
module.batchnorm.weight.data.fill_(1.0)
elif isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
if module.bias is not None:
module.bias.data.zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (PatchTSTEncoder)):
module.gradient_checkpointing = value
class PatchTSTEmbedding(nn.Module):
def __init__(self, config: PatchTSTConfig):
super().__init__()
self.num_input_channels = config.num_input_channels
self.share_embedding = config.share_embedding
# Input encoding: projection of feature vectors onto a d-dim vector space
if self.share_embedding:
self.input_embedding = nn.Linear(config.patch_length, config.d_model)
else:
self.input_embedding = nn.ModuleList()
for _ in range(config.num_input_channels):
self.input_embedding.append(nn.Linear(config.patch_length, config.d_model))
def forward(self, patch_input: torch.Tensor):
"""
Parameters:
patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*):
Patch input for embedding
return:
`torch.Tensor` of shape `(batch_size, num_channels, num_patches, d_model)`
"""
# Input encoding
num_input_channels = patch_input.shape[1]
if num_input_channels != self.num_input_channels:
raise ValueError(
f"The defined number of input channels ({self.num_input_channels}) in the config "
f"has to be the same as the number of channels in the batch input ({num_input_channels})"
)
if self.share_embedding:
embeddings = self.input_embedding(patch_input) # x: [bs x num_channels x num_patches x d_model]
else:
embeddings = [self.input_embedding[i](patch_input[:, i, :, :]) for i in range(num_input_channels)]
embeddings = torch.stack(embeddings, dim=1)
return embeddings
class PatchTSTPositionalEncoding(nn.Module):
"""
Class for positional encoding
"""
def __init__(self, config: PatchTSTConfig, num_patches: int):
super().__init__()
self.use_cls_token = config.use_cls_token
self.num_input_channels = config.num_input_channels
if config.use_cls_token:
# cls_token: [1 x num_input_channels x 1 x d_model]
self.cls_token = nn.Parameter(torch.zeros(1, 1, 1, config.d_model))
num_patches += 1
# postional encoding: [num_patches x d_model]
self.position_enc = self._init_pe(config, num_patches)
# Positional dropout
self.positional_dropout = (
nn.Dropout(config.positional_dropout) if config.positional_dropout > 0 else nn.Identity()
)
@staticmethod
def _init_pe(config: PatchTSTConfig, num_patches: int) -> nn.Parameter:
# Positional encoding
if config.positional_encoding_type == "random":
position_enc = nn.Parameter(torch.randn(num_patches, config.d_model), requires_grad=True)
elif config.positional_encoding_type == "sincos":
position_enc = torch.zeros(num_patches, config.d_model)
position = torch.arange(0, num_patches).unsqueeze(1)
div_term = torch.exp(torch.arange(0, config.d_model, 2) * -(math.log(10000.0) / config.d_model))
position_enc[:, 0::2] = torch.sin(position * div_term)
position_enc[:, 1::2] = torch.cos(position * div_term)
position_enc = position_enc - position_enc.mean()
position_enc = position_enc / (position_enc.std() * 10)
position_enc = nn.Parameter(position_enc, requires_grad=False)
else:
raise ValueError(
f"{config.positional_encoding_type} is not a valid positional encoder. Available types are 'random' and 'sincos'."
)
return position_enc
def forward(self, patch_input: torch.Tensor):
if self.use_cls_token:
# patch_input: [bs x num_channels x num_patches x d_model]
patch_input = self.positional_dropout(patch_input + self.position_enc[1:, :])
# append cls token where cls_token: [1 x num_channels x 1 x d_model]
cls_token = self.cls_token + self.position_enc[:1, :]
# get the same copy of cls_token for all the samples in batch: [bs x num_channels x 1 x d_model]
cls_tokens = cls_token.expand(patch_input.shape[0], self.num_input_channels, -1, -1)
# hidden_state: [bs x num_channels x (num_patches+1) x d_model]
hidden_state = torch.cat((cls_tokens, patch_input), dim=2)
else:
# hidden_state: [bs x num_channels x num_patches x d_model]
hidden_state = self.positional_dropout(patch_input + self.position_enc)
return hidden_state
class PatchTSTEncoder(PatchTSTPreTrainedModel):
"""
PatchTST Encoder
"""
def __init__(self, config: PatchTSTConfig, num_patches: int):
super().__init__(config)
self.gradient_checkpointing = False
# Input embedding: projection of feature vectors onto a d-dim vector space
self.embedder = PatchTSTEmbedding(config)
# Positional encoding
self.positional_encoder = PatchTSTPositionalEncoding(config, num_patches)
# Encoder
self.layers = nn.ModuleList([PatchTSTEncoderLayer(config) for i in range(config.num_hidden_layers)])
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
patch_input: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
) -> BaseModelOutput:
"""
Parameters:
patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*):
Past values of the time series
output_hidden_states (bool, optional): Indicates if hidden states should be outputted.
output_attentions (bool, optional): Indicates if attentions should be outputted.
return:
`BaseModelOutput`
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# Input embedding
patch_input = self.embedder(patch_input)
# Positional encoding
hidden_state = self.positional_encoder(patch_input)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_state,)
layer_outputs = encoder_layer(hidden_state=hidden_state, output_attentions=output_attentions)
# get hidden state. hidden_state shape is [bs x num_channels x num_patches x d_model]
# or [bs x num_channels x (num_patches+1) x d_model] if use cls_token
hidden_state = layer_outputs[0]
# append attention matrix at each layer
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# return past_values, hidden_states
return BaseModelOutput(last_hidden_state=hidden_state, hidden_states=encoder_states, attentions=all_attentions)
PATCHTST_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PatchTSTConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@dataclass
class PatchTSTModelOutput(ModelOutput):
"""
Base class for model's outputs, with potential hidden states.
Parameters:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, num_channels, height, width)`. Hidden-states of
the model at the output of each layer plus the optional initial embedding outputs.
mask: (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches)`, *optional*)
Bool masked tensor indicating which patches are masked
loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*)
Mean of the input data (batch_size, sequence_length, num_channels) over the sequence_length
scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*)
Std of the input data (batch_size, sequence_length, num_channels) over the sequence_length
patch_input (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`):
Patched input to the Transformer
"""
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
mask: Optional[torch.FloatTensor] = None
loc: Optional[torch.FloatTensor] = None
scale: Optional[torch.FloatTensor] = None
patch_input: Optional[torch.FloatTensor] = None
@dataclass
class PatchTSTForPretrainingOutput(ModelOutput):
"""
Output type of [`PatchTSTForPretraining`].
Parameters:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
MSE loss.
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction outputs of the time series modeling heads.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
prediction_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class PatchTSTForRegressionOutput(ModelOutput):
"""
Output type of [`PatchTSTForRegression`].
Parameters:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
MSE loss.
regression_outputs (`torch.FloatTensor` of shape `(batch_size, num_targets)`):
Regression outputs of the time series modeling heads.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
regression_outputs: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class PatchTSTForPredictionOutput(ModelOutput):
"""
Output type of [`PatchTSTForPrediction`].
Parameters:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
MSE loss.
prediction_outputs (`torch.FloatTensor` of shape `(batch_size, prediction_length, -1)`):
Prediction outputs of the time series modeling heads.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*)
Mean of the input data (batch_size, sequence_length, num_channels) over the sequence_length
scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*)
Std of the input data (batch_size, sequence_length, num_channels) over the sequence_length
"""
loss: Optional[torch.FloatTensor] = None
prediction_outputs: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
loc: Optional[torch.FloatTensor] = None
scale: Optional[torch.FloatTensor] = None
@dataclass
class PatchTSTForClassificationOutput(ModelOutput):
"""
Output type of [`PatchTSTForClassification`].
Parameters:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, num_targets)`):
Prediction scores of the PatchTST modeling head (scores before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
prediction_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class SamplePatchTSTOutput(ModelOutput):
"""
Base class for time series model's predictions outputs that contains the sampled values from the chosen
distribution.
Parameters:
sequences `(batch_size, num_samples, prediction_length, num_targets)`):
Sampled values from the chosen distribution.
"""
sequences: Optional[torch.FloatTensor] = None
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll
def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor:
"""
Computes the negative log likelihood loss from input distribution with respect to target.
"""
return -input.log_prob(target)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average
def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor:
"""
Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero,
meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`.
Args:
input_tensor (`torch.FloatTensor`):
Input tensor, of which the average must be computed.
weights (`torch.FloatTensor`, *optional*):
Weights tensor, of the same shape as `input_tensor`.
dim (`int`, *optional*):
The dim along which to average `input_tensor`.
Returns:
`torch.FloatTensor`: The tensor with values averaged along the specified `dim`.
"""
if weights is not None:
weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor))
sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0)
return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights
else:
return input_tensor.mean(dim=dim)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeriesTransformer->PatchTST,TimeSeries->PatchTST
class PatchTSTStdScaler(nn.Module):
"""
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
subtracting from the mean and dividing by the standard deviation.
"""
def __init__(self, config: PatchTSTConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
denominator = denominator.clamp_min(1.0)
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
scale = torch.sqrt(variance + self.minimum_scale)
return (data - loc) / scale, loc, scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeriesTransformer->PatchTST,TimeSeries->PatchTST
class PatchTSTMeanScaler(nn.Module):
"""
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
accordingly.
"""
def __init__(self, config: PatchTSTConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
num_observed = observed_indicator.sum(self.dim, keepdim=True)
scale = ts_sum / torch.clamp(num_observed, min=1)
# If `default_scale` is provided, we use it, otherwise we use the scale
# of the batch.
if self.default_scale is None:
batch_sum = ts_sum.sum(dim=0)
batch_observations = torch.clamp(num_observed.sum(0), min=1)
default_scale = torch.squeeze(batch_sum / batch_observations)
else:
default_scale = self.default_scale * torch.ones_like(scale)
# apply default scale where there are no observations
scale = torch.where(num_observed > 0, scale, default_scale)
# ensure the scale is at least `self.minimum_scale`
scale = torch.clamp(scale, min=self.minimum_scale)
scaled_data = data / scale
if not self.keepdim:
scale = scale.squeeze(dim=self.dim)
return scaled_data, torch.zeros_like(scale), scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeriesTransformer->PatchTST,TimeSeries->PatchTST
class PatchTSTNOPScaler(nn.Module):
"""
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
"""
def __init__(self, config: PatchTSTConfig):
super().__init__()
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
def forward(
self, data: torch.Tensor, observed_indicator: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
return data, loc, scale
class PatchTSTScaler(nn.Module):
def __init__(self, config: PatchTSTConfig):
super().__init__()
if config.scaling == "mean" or config.scaling is True:
self.scaler = PatchTSTMeanScaler(config)
elif config.scaling == "std":
self.scaler = PatchTSTStdScaler(config)
else:
self.scaler = PatchTSTNOPScaler(config)
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Input for scaler calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, um_input_channels)`)
"""
data, loc, scale = self.scaler(data, observed_indicator)
return data, loc, scale
@add_start_docstrings(
"The bare PatchTST Model outputting raw hidden-states without any specific head.",
PATCHTST_START_DOCSTRING,
)
class PatchTSTModel(PatchTSTPreTrainedModel):
def __init__(self, config: PatchTSTConfig):
super().__init__(config)
self.scaler = PatchTSTScaler(config)
self.patchifier = PatchTSTPatchify(config)
self.do_mask_input = config.do_mask_input
# get num_patches information from PatchTSTPatchify
num_patches = self.patchifier.num_patches
if self.do_mask_input:
self.masking = PatchTSTMasking(config)
else:
self.masking = nn.Identity()
self.encoder = PatchTSTEncoder(config, num_patches=num_patches)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
past_values: torch.Tensor,
past_observed_mask: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PatchTSTModelOutput]:
r"""
Parameters:
past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*):
Input sequence to the model
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
future_values (`torch.BoolTensor` of shape `(batch_size, prediction_length, num_input_channels)`, *optional*):
Future target values associated with the `past_values`
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers
output_attentions (`bool`, *optional*):
Whether or not to return the output attention of all layers
return_dict (`bool`, *optional*):
Whether or not to return a `ModelOutput` instead of a plain tuple.
Returns:
`PatchTSTModelOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False)
Examples:
```python
>>> from huggingface_hub import hf_hub_download
>>> import torch
>>> from transformers import PatchTSTModel
>>> file = hf_hub_download(
... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset"
... )
>>> batch = torch.load(file)
>>> model = PatchTSTModel.from_pretrained("namctin/patchtst_etth1_pretrain")
>>> # during training, one provides both past and future values
>>> outputs = model(
... past_values=batch["past_values"],
... future_values=batch["future_values"],
... )
>>> last_hidden_state = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if past_observed_mask is None:
past_observed_mask = torch.ones_like(past_values)
# x: tensor [bs x sequence_length x num_input_channels]
scaled_past_values, loc, scale = self.scaler(past_values, past_observed_mask)
# patched_values: [bs x num_input_channels x num_patches x patch_length] for pretrain
patched_values = self.patchifier(scaled_past_values)
if self.do_mask_input:
masked_values, mask = self.masking(patched_values)
else:
masked_values, mask = self.masking(patched_values), None
encoder_output = self.encoder(
patch_input=masked_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions
)
if not return_dict:
outputs = (encoder_output.last_hidden_state, encoder_output.hidden_states, encoder_output.attentions)
outputs = outputs + (mask, loc, scale, patched_values)
return tuple(v for v in outputs if v is not None)
return PatchTSTModelOutput(
last_hidden_state=encoder_output.last_hidden_state,
hidden_states=encoder_output.hidden_states,
attentions=encoder_output.attentions,
mask=mask,
loc=loc,
scale=scale,
patch_input=patched_values,
)
class PatchTSTMaskPretrainHead(nn.Module):
"""
Pretraining head for mask modelling
"""
def __init__(self, config: PatchTSTConfig):
super().__init__()
self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity()
self.linear = nn.Linear(config.d_model, config.patch_length)
self.use_cls_token = config.use_cls_token
def forward(self, embedding: torch.Tensor) -> torch.Tensor:
"""
Parameters:
embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or
`(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*):
Embedding from the model
Returns:
`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or
`(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True
"""
embedding = self.linear(self.dropout(embedding)) # [bs x num_channels x num_patches x patch_length]
if self.use_cls_token:
embedding = embedding[:, :, 1:, :] # remove the first cls token
return embedding
@add_start_docstrings(
"The PatchTST for pretrain model.",
PATCHTST_START_DOCSTRING,
)
class PatchTSTForPretraining(PatchTSTPreTrainedModel):
def __init__(self, config: PatchTSTConfig):
super().__init__(config)
config.do_mask_input = True
self.model = PatchTSTModel(config=config)
self.head = PatchTSTMaskPretrainHead(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
past_values: torch.Tensor,
past_observed_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PatchTSTForPretrainingOutput]:
r"""
Parameters:
past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*):
Input sequence to the model
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers
output_attentions (`bool`, *optional*):
Whether or not to return the output attention of all layers
return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple.
Returns:
`PatchTSTForPretrainingOutput` or tuple of `torch.Tensor` (if `return_dict`=False or
`config.return_dict`=False)
Examples:
```python
>>> from huggingface_hub import hf_hub_download
>>> import torch
>>> from transformers import PatchTSTConfig, PatchTSTForPretraining
>>> file = hf_hub_download(
... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset"
... )
>>> batch = torch.load(file)
>>> # Config for random mask pretraining
>>> config = PatchTSTConfig(
... num_input_channels=7,
... context_length=512,
... patch_length=12,
... stride=12,
... mask_type='random',
... random_mask_ratio=0.4,
... use_cls_token=True,
... )
>>> # Config for forecast mask pretraining
>>> config = PatchTSTConfig(
... num_input_channels=7,
... context_length=512,
... patch_length=12,
... stride=12,
... mask_type='forecast',
... num_forecast_mask_patches=5,
... use_cls_token=True,
... )
>>> model = PatchTSTForPretraining(config)
>>> # during training, one provides both past and future values
>>> outputs = model(past_values=batch["past_values"])
>>> loss = outputs.loss
>>> loss.backward()
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# past_values: [bs x num_channels x num_patches x d_model] or
# [bs x num_channels x (num_patches+1) x d_model] if use cls_token
model_output = self.model(
past_values=past_values,
past_observed_mask=past_observed_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=True,
)
# last_hidden_state: [bs x num_channels x num_patches x patch_length] or
# [bs x num_channels x (num_patches+1) x patch_length] if use cls_token
x_hat = self.head(model_output.last_hidden_state)
# calculate masked_loss
loss = nn.MSELoss(reduction="none")
loss_val = loss(x_hat, model_output.patch_input)
masked_loss = (loss_val.mean(dim=-1) * model_output.mask).sum() / (model_output.mask.sum() + 1e-10)
encoder_states = model_output.hidden_states
if not return_dict:
outputs = (x_hat,) + model_output[1:-4]
outputs = (masked_loss,) + outputs if masked_loss is not None else outputs
return outputs
return PatchTSTForPretrainingOutput(
loss=masked_loss, prediction_output=x_hat, hidden_states=encoder_states, attentions=model_output.attentions
)
class PatchTSTClassificationHead(nn.Module):
def __init__(self, config: PatchTSTConfig):
super().__init__()
self.use_cls_token = config.use_cls_token
self.pooling_type = config.pooling_type
self.flatten = nn.Flatten(start_dim=1)
self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity()
self.linear = nn.Linear(config.num_input_channels * config.d_model, config.num_targets)
def forward(self, embedding: torch.Tensor):
"""
Parameters:
embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or
`(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*):
Embedding from the model
Returns:
`torch.Tensor` of shape `(bs, num_targets)`
"""
if self.use_cls_token:
# use the first output token, pooled_embedding: bs x num_channels x d_model
pooled_embedding = embedding[:, :, 0, :]
elif self.pooling_type == "mean":
# pooled_embedding: [bs x num_channels x d_model]
pooled_embedding = embedding.mean(dim=2)
elif self.pooling_type == "max":
# pooled_embedding: [bs x num_channels x d_model]
pooled_embedding = embedding.max(dim=2).values
else:
raise ValueError(f"pooling operator {self.pooling_type} is not implemented yet")
# pooled_embedding: bs x num_channels * d_model
pooled_embedding = self.flatten(pooled_embedding)
# output: bs x n_classes
output = self.linear(self.dropout(pooled_embedding))
return output
@add_start_docstrings(
"The PatchTST for classification model.",
PATCHTST_START_DOCSTRING,
)
class PatchTSTForClassification(PatchTSTPreTrainedModel):
def __init__(self, config: PatchTSTConfig):
super().__init__(config)
# Turn off masking
if config.do_mask_input:
logger.warning("Setting `do_mask_input` parameter to False.")
config.do_mask_input = False
self.model = PatchTSTModel(config)
self.head = PatchTSTClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
past_values: torch.Tensor,
target_values: Optional[torch.Tensor] = None,
past_observed_mask: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, PatchTSTForClassificationOutput]:
r"""
Parameters:
past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*):
Input sequence to the model
target_values (`torch.Tensor`, *optional*):
Labels associates with the `past_values`
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers
output_attentions (`bool`, *optional*):
Whether or not to return the output attention of all layers
return_dict (`bool`, *optional*):
Whether or not to return a `ModelOutput` instead of a plain tuple.
Returns:
`PatchTSTForClassificationOutput` or tuple of `torch.Tensor` (if `return_dict`=False or
`config.return_dict`=False)
Examples:
```python
>>> from transformers import PatchTSTConfig, PatchTSTForClassification
>>> # classification task with two input channel2 and 3 classes
>>> config = PatchTSTConfig(
... num_input_channels=2,
... num_targets=3,
... context_length=512,
... patch_length=12,
... stride=12,
... use_cls_token=True,
... )
>>> model = PatchTSTForClassification(config=config)
>>> # during inference, one only provides past values
>>> past_values = torch.randn(20, 512, 2)
>>> outputs = model(past_values=past_values)
>>> labels = outputs.prediction_logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
model_output = self.model(
past_values=past_values,
past_observed_mask=past_observed_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=True,
)
y_hat = self.head(model_output.last_hidden_state)
loss_val = None
if target_values is not None:
loss = nn.CrossEntropyLoss()
loss_val = loss(y_hat, target_values)
if not return_dict:
outputs = (y_hat,) + model_output[1:-3]
outputs = (loss_val,) + outputs if loss_val is not None else outputs
return outputs
return PatchTSTForClassificationOutput(
loss=loss_val,
prediction_logits=y_hat,
hidden_states=model_output.hidden_states,
attentions=model_output.attentions,
)
@add_start_docstrings(
"The PatchTST for regression Model.",
PATCHTST_START_DOCSTRING,
)
class PatchTSTPredictionHead(nn.Module):
def __init__(self, config: PatchTSTConfig, num_patches, distribution_output=None):
super().__init__()
self.share_projection = config.share_projection
self.num_input_channels = config.num_input_channels
self.use_cls_token = config.use_cls_token
self.pooling_type = config.pooling_type
if self.pooling_type or self.use_cls_token:
head_dim = config.d_model
else:
head_dim = config.d_model * num_patches
if not self.share_projection:
# if each channel has its own head
self.projections = nn.ModuleList()
self.dropouts = nn.ModuleList()
self.flattens = nn.ModuleList()
for i in range(self.num_input_channels):
self.flattens.append(nn.Flatten(start_dim=2))
if distribution_output is None:
# use linear head
self.projections.append(nn.Linear(head_dim, config.prediction_length))
else:
# use distribution head
self.projections.append(distribution_output.get_parameter_projection(head_dim))
self.dropouts.append(nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity())
else:
# all the channels share the same head
self.flatten = nn.Flatten(start_dim=2)
if distribution_output is None:
# use linear head
self.projection = nn.Linear(head_dim, config.prediction_length)
else:
# use distribution head
self.projection = distribution_output.get_parameter_projection(head_dim)
self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity()
def forward(self, embedding: torch.Tensor):
"""
Parameters:
embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or
`(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*):
Embedding from the model
Returns:
`torch.Tensor` of shape `(bs, forecast_len, num_channels)`
"""
if self.use_cls_token:
# pooled_embedding: [bs x num_channels x d_model]
pooled_embedding = embedding[:, :, 0, :]
else:
if self.pooling_type == "mean":
# pooled_embedding: [bs x num_channels x d_model]
pooled_embedding = embedding.mean(dim=2)
elif self.pooling_type == "max":
# pooled_embedding: [bs x num_channels x d_model]
pooled_embedding = embedding.max(dim=2).values
else:
# pooled_embedding: [bs x num_channels x num_patches x d_model]
pooled_embedding = embedding
if not self.share_projection:
output = []
for i in range(self.num_input_channels):
# pooled_embedding: [bs x (d_model * num_patches)] or [bs x d_model)]
pooled_embedding = self.flattens[i](pooled_embedding[:, i, :])
pooled_embedding = self.dropouts[i](pooled_embedding)
# pooled_embedding: [bs x forecast_len]
# or tuple ([bs x forecast_len], [bs x forecast_len]) if using distribution head
pooled_embedding = self.projections[i](pooled_embedding)
output.append(pooled_embedding)
# output: [bs x num_channels x forecast_len]
output = torch.stack(output, dim=1)
else:
# pooled_embedding: [bs x num_channels x (d_model * num_patches)] or [bs x num_channels x d_model)]
pooled_embedding = self.flatten(pooled_embedding)
pooled_embedding = self.dropout(pooled_embedding)
# output: [bs x num_channels x forecast_len] or
# tuple ([bs x num_channels x forecast_len], [bs x num_channels x forecast_len]) if using distribution head
output = self.projection(pooled_embedding)
if isinstance(output, tuple):
# output: ([bs x forecast_len x num_channels], [bs x forecast_len x num_channels])
output = tuple(z.transpose(2, 1) for z in output)
else:
output = output.transpose(2, 1) # [bs x forecast_len x num_channels]
return output
@add_start_docstrings(
"The PatchTST for prediction model.",
PATCHTST_START_DOCSTRING,
)
class PatchTSTForPrediction(PatchTSTPreTrainedModel):
def __init__(self, config: PatchTSTConfig):
super().__init__(config)
# Turn off masking
if config.do_mask_input:
logger.warning("Setting `do_mask_input` parameter to False.")
config.do_mask_input = False
self.model = PatchTSTModel(config)
if config.loss == "mse":
self.distribution_output = None
else:
if config.distribution_output == "student_t":
self.distribution_output = StudentTOutput(dim=config.prediction_length)
elif config.distribution_output == "normal":
self.distribution_output = NormalOutput(dim=config.prediction_length)
elif config.distribution_output == "negative_binomial":
self.distribution_output = NegativeBinomialOutput(dim=config.prediction_length)
else:
raise ValueError(f"Unknown distribution output {config.distribution_output}")
self.head = PatchTSTPredictionHead(
config, self.model.patchifier.num_patches, distribution_output=self.distribution_output
)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
past_values: torch.Tensor,
past_observed_mask: Optional[torch.Tensor] = None,
future_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PatchTSTForPredictionOutput]:
r"""
Parameters:
past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*):
Input sequence to the model
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
future_values (`torch.Tensor` of shape `(bs, forecast_len, num_input_channels)`, *optional*):
Future target values associated with the `past_values`
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers
output_attentions (`bool`, *optional*):
Whether or not to return the output attention of all layers
return_dict (`bool`, *optional*):
Whether or not to return a `ModelOutput` instead of a plain tuple.
Returns:
`PatchTSTForPredictionOutput` or tuple of `torch.Tensor` (if `return_dict`=False or
`config.return_dict`=False)
Examples:
```python
>>> from huggingface_hub import hf_hub_download
>>> import torch
>>> from transformers import PatchTSTConfig, PatchTSTForPrediction
>>> file = hf_hub_download(
... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset"
... )
>>> batch = torch.load(file)
>>> # Prediction task with 7 input channels and prediction length is 96
>>> model = PatchTSTForPrediction.from_pretrained("namctin/patchtst_etth1_forecast")
>>> # during training, one provides both past and future values
>>> outputs = model(
... past_values=batch["past_values"],
... future_values=batch["future_values"],
... )
>>> loss = outputs.loss
>>> loss.backward()
>>> # during inference, one only provides past values, the model outputs future values
>>> outputs = model(past_values=batch["past_values"])
>>> prediction_outputs = outputs.prediction_outputs
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# get model output
model_output = self.model(
past_values=past_values,
past_observed_mask=past_observed_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=True,
)
# get output head
y_hat = self.head(model_output.last_hidden_state)
loss_val = None
if self.distribution_output:
y_hat_out = y_hat
else:
y_hat_out = y_hat * model_output.scale + model_output.loc
if future_values is not None:
if self.distribution_output:
distribution = self.distribution_output.distribution(
y_hat, loc=model_output.loc, scale=model_output.scale
)
loss_val = nll(distribution, future_values)
# take average of the loss
loss_val = weighted_average(loss_val)
else:
loss = nn.MSELoss(reduction="mean")
loss_val = loss(y_hat_out, future_values)
loc = model_output.loc
scale = model_output.scale
if not return_dict:
outputs = (y_hat_out,) + model_output[1:-1]
outputs = (loss_val,) + outputs if loss_val is not None else outputs
return outputs
return PatchTSTForPredictionOutput(
loss=loss_val,
prediction_outputs=y_hat_out,
hidden_states=model_output.hidden_states,
attentions=model_output.attentions,
loc=loc,
scale=scale,
)
def generate(
self,
past_values: torch.Tensor,
past_observed_mask: Optional[torch.Tensor] = None,
) -> SamplePatchTSTOutput:
"""
Generate sequences of sample predictions from a model with a probability distribution head.
Parameters:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Past values of the time series that serves as context in order to predict the future.
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
Return:
[`SamplePatchTSTOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of
samples, prediction_length, 1)` or `(batch_size, number of samples, prediction_length, num_input_channels)`
for multivariate predictions.
"""
# get number of samples
num_parallel_samples = self.config.num_parallel_samples
# get model output
outputs = self(
past_values=past_values,
future_values=None,
past_observed_mask=past_observed_mask,
output_hidden_states=False,
)
if self.distribution_output:
# get distribution
distribution = self.distribution_output.distribution(
outputs.prediction_outputs, loc=outputs.loc, scale=outputs.scale
)
# get samples: list of [bs x forecast_len x num_channels]
samples = [distribution.sample() for _ in range(num_parallel_samples)]
# samples: [bs x num_samples x forecast_len x num_channels]
samples = torch.stack(samples, dim=1)
else:
samples = outputs.prediction_outputs.unsqueeze(1)
return SamplePatchTSTOutput(sequences=samples)
class PatchTSTRegressionHead(nn.Module):
"""
Regression head
"""
def __init__(self, config: PatchTSTConfig, distribution_output=None):
super().__init__()
self.y_range = config.output_range
self.use_cls_token = config.use_cls_token
self.pooling_type = config.pooling_type
self.distribution_output = distribution_output
head_dim = config.num_input_channels * config.d_model
self.flatten = nn.Flatten(start_dim=1)
self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity()
if distribution_output is None:
self.projection = nn.Linear(head_dim, config.num_targets)
else:
self.projection = distribution_output.get_parameter_projection(head_dim)
def forward(self, embedding: torch.Tensor):
"""
Parameters:
embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or
`(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*):
Embedding from the model
Returns:
`torch.Tensor` of shape `(bs, output_dim)`
"""
if self.use_cls_token:
# use the first output token, pooled_embedding: [bs x num_channels x d_model]
pooled_embedding = embedding[:, :, 0, :]
elif self.pooling_type == "mean":
# pooled_embedding: [bs x num_channels x d_model]
pooled_embedding = embedding.mean(dim=2)
elif self.pooling_type == "max":
# pooled_embedding: [bs x num_channels x d_model]
pooled_embedding = embedding.max(dim=2).values
else:
raise ValueError(f"pooling operator {self.pooling_type} is not implemented yet")
# flatten the input
# pooled_embedding: bs x (num_channels * d_model)
pooled_embedding = self.dropout(self.flatten(pooled_embedding))
# projection
# output: bs x output_dim or a tuple of this shape for distribution head
output = self.projection(pooled_embedding)
# apply sigmoid to bound the output if required
if (self.distribution_output is None) & (self.y_range is not None): # linear head
output = torch.sigmoid(output) * (self.y_range[1] - self.y_range[0]) + self.y_range[0]
return output
@add_start_docstrings(
"The PatchTST for regression model.",
PATCHTST_START_DOCSTRING,
)
class PatchTSTForRegression(PatchTSTPreTrainedModel):
def __init__(self, config: PatchTSTConfig):
super().__init__(config)
# Turn off masking
if config.do_mask_input:
logger.warning("Setting `do_mask_input` parameter to False.")
config.do_mask_input = False
self.model = PatchTSTModel(config)
if config.loss == "mse":
self.distribution_output = None
else:
if config.distribution_output == "student_t":
self.distribution_output = StudentTOutput(dim=config.num_targets)
elif config.distribution_output == "normal":
self.distribution_output = NormalOutput(dim=config.num_targets)
elif config.distribution_output == "negative_binomial":
self.distribution_output = NegativeBinomialOutput(dim=config.num_targets)
else:
raise ValueError(f"Unknown distribution output {config.distribution_output}")
self.head = PatchTSTRegressionHead(config, self.distribution_output)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
past_values: torch.Tensor,
target_values: Optional[torch.Tensor] = None,
past_observed_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, PatchTSTForRegressionOutput]:
r"""
Parameters:
past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*):
Input sequence to the model
target_values (`torch.Tensor` of shape `(bs, num_input_channels)`):
Target values associates with the `past_values`
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers
output_attentions (`bool`, *optional*):
Whether or not to return the output attention of all layers
return_dict (`bool`, *optional*):
Whether or not to return a `ModelOutput` instead of a plain tuple.
Returns:
`PatchTSTForRegressionOutput` or tuple of `torch.Tensor` (if `return_dict`=False or
`config.return_dict`=False)
Examples:
```python
>>> from transformers import PatchTSTConfig, PatchTSTForRegression
>>> # Regression task with 6 input channels and regress 2 targets
>>> model = PatchTSTForRegression.from_pretrained("namctin/patchtst_etth1_regression")
>>> # during inference, one only provides past values, the model outputs future values
>>> past_values = torch.randn(20, 512, 6)
>>> outputs = model(past_values=past_values)
>>> regression_outputs = outputs.regression_outputs
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
model_output = self.model(
past_values=past_values,
past_observed_mask=past_observed_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=True,
)
# get output head. y_hat is of shape [bs x num_targets] or tuple of this shape
y_hat = self.head(model_output.last_hidden_state)
loss = None
if target_values is not None:
if self.distribution_output:
distribution = self.distribution_output.distribution(y_hat)
# y_hat should be a 2-tuple, each with dimension [bs, num_targets]
y_hat = tuple([item.view(-1, self.config.num_targets) for item in y_hat])
loss = nll(distribution, target_values)
# take average of the loss
loss = weighted_average(loss)
else:
loss = nn.MSELoss(reduction="mean")
loss = loss(y_hat, target_values)
if not return_dict:
# hidden_states, attentions, mask
outputs = (y_hat,) + model_output[1:-3]
outputs = (loss,) + outputs if loss is not None else outputs
return outputs
return PatchTSTForRegressionOutput(
loss=loss,
regression_outputs=y_hat,
hidden_states=model_output.hidden_states,
attentions=model_output.attentions,
)
def generate(
self,
past_values: torch.Tensor,
past_observed_mask: Optional[torch.Tensor] = None,
) -> SamplePatchTSTOutput:
"""
Generate sequences of sample predictions from a model with a probability distribution head.
Parameters:
past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Past values of the time series that serves as context in order to predict the future.
past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*):
Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
in `[0, 1]`:
- 1 for values that are **observed**,
- 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
Return:
[`SamplePatchTSTOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of
samples, num_targets)`.
"""
# get number of samples
num_parallel_samples = self.config.num_parallel_samples
# get model output
outputs = self(
past_values=past_values,
target_values=None,
past_observed_mask=past_observed_mask,
output_hidden_states=False,
)
# get distribution
distribution = self.distribution_output.distribution(outputs.regression_outputs)
# get samples: list of [bs x num_targets]
samples = [distribution.sample() for _ in range(num_parallel_samples)]
# samples: [bs x num_samples x num_targets]
samples = torch.stack(samples, dim=1).view(-1, num_parallel_samples, self.config.num_targets)
return SamplePatchTSTOutput(sequences=samples)
__all__ = [
"PatchTSTModel",
"PatchTSTPreTrainedModel",
"PatchTSTForPrediction",
"PatchTSTForPretraining",
"PatchTSTForRegression",
"PatchTSTForClassification",
]
```
|
===============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.13 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pegasus\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_pegasus import *
from .modeling_flax_pegasus import *
from .modeling_pegasus import *
from .modeling_tf_pegasus import *
from .tokenization_pegasus import *
from .tokenization_pegasus_fast import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
============================================================================================================================================
SOURCE CODE FILE: configuration_pegasus.py
LINES: 1
SIZE: 7.33 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pegasus\configuration_pegasus.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PEGASUS model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class PegasusConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PegasusModel`]. It is used to instantiate an
PEGASUS model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the PEGASUS
[google/pegasus-large](https://huggingface.co/google/pegasus-large) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the PEGASUS model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`PegasusModel`] or [`TFPegasusModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (`int`, *optional*, defaults to 1):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
Example:
```python
>>> from transformers import PegasusConfig, PegasusModel
>>> # Initializing a PEGASUS google/pegasus-large style configuration
>>> configuration = PegasusConfig()
>>> # Initializing a model (with random weights) from the google/pegasus-large style configuration
>>> model = PegasusModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "pegasus"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=50265,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=0,
scale_embedding=False,
pad_token_id=0,
eos_token_id=1,
forced_eos_token_id=1,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads
@property
def hidden_size(self) -> int:
return self.d_model
__all__ = ["PegasusConfig"]
```
|
============================================================================================================================================
SOURCE CODE FILE: modeling_flax_pegasus.py
LINES: 1
SIZE: 64.53 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pegasus\modeling_flax_pegasus.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax PEGASUS model."""
import math
import random
from functools import partial
from typing import Callable, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from jax.random import PRNGKey
from ...modeling_flax_outputs import (
FlaxBaseModelOutput,
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxSeq2SeqLMOutput,
FlaxSeq2SeqModelOutput,
)
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
add_start_docstrings_to_model_forward,
append_call_sample_docstring,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import add_start_docstrings, logging, replace_return_docstrings
from .configuration_pegasus import PegasusConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/pegasus-large"
_CONFIG_FOR_DOC = "PegasusConfig"
PEGASUS_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`PegasusConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
PEGASUS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
PEGASUS_ENCODE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
PEGASUS_DECODE_INPUTS_DOCSTRING = r"""
Args:
decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
encoder_outputs (`tuple(tuple(jnp.ndarray)`):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = jnp.zeros_like(input_ids)
shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
return shifted_input_ids
# Copied from transformers.models.marian.modeling_flax_marian.create_sinusoidal_positions
def create_sinusoidal_positions(n_pos, dim):
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
sentinel = dim // 2 + dim % 2
out = np.zeros_like(position_enc)
out[:, 0:sentinel] = np.sin(position_enc[:, 0::2])
out[:, sentinel:] = np.cos(position_enc[:, 1::2])
return jnp.array(out)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Pegasus
class FlaxPegasusAttention(nn.Module):
config: PegasusConfig
embed_dim: int
num_heads: int
dropout: float = 0.0
causal: bool = False
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slightly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.k_proj(key_value_states)
value_states = self.v_proj(key_value_states)
else:
# self_attention
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Pegasus
class FlaxPegasusEncoderLayer(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxPegasusAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.encoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.fc1 = nn.Dense(
self.config.encoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Pegasus
class FlaxPegasusEncoderLayerCollection(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxPegasusEncoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.encoder_layers)
]
self.layerdrop = self.config.encoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions,
deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
# Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Pegasus
class FlaxPegasusDecoderLayer(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxPegasusAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.encoder_attn = FlaxPegasusAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.decoder_ffn_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
hidden_states: jnp.ndarray,
attention_mask: jnp.ndarray,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = True,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Pegasus
class FlaxPegasusDecoderLayerCollection(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layers = [
FlaxPegasusDecoderLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.decoder_layers)
]
self.layerdrop = self.config.decoder_layerdrop
def __call__(
self,
hidden_states,
attention_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if not deterministic and (dropout_probability < self.layerdrop):
layer_outputs = (None, None, None)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class FlaxPegasusEncoder(nn.Module):
config: PegasusConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_source_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim)
self.layers = FlaxPegasusEncoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
embed_pos = jnp.take(self.embed_positions, position_ids, axis=0)
# explicitly cast the positions here, since self.embed_positions are not registered as parameters
embed_pos = embed_pos.astype(inputs_embeds.dtype)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
last_hidden_state = self.layer_norm(last_hidden_state)
# update the last element in `hidden_states` after applying `layernorm` above
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_state,)
if not return_dict:
outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=last_hidden_state,
hidden_states=hidden_states,
attentions=outputs.attentions,
)
class FlaxPegasusDecoder(nn.Module):
config: PegasusConfig
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim)
self.layers = FlaxPegasusDecoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
input_shape = input_ids.shape
input_ids = input_ids.reshape(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
# embed positions
positions = jnp.take(self.embed_positions, position_ids, axis=0)
# explicitly cast the positions here, since self.embed_positions are not registered as parameters
positions = positions.astype(inputs_embeds.dtype)
hidden_states = inputs_embeds + positions
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = outputs[0]
last_hidden_state = self.layer_norm(last_hidden_state)
# update the last element in `hidden_states` after applying `layernorm` above
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_state,)
if not return_dict:
outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=last_hidden_state,
hidden_states=hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->Pegasus
class FlaxPegasusModule(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
dtype=self.dtype,
)
self.encoder = FlaxPegasusEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
self.decoder = FlaxPegasusDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class FlaxPegasusPreTrainedModel(FlaxPreTrainedModel):
config_class = PegasusConfig
base_model_prefix: str = "model"
module_class: nn.Module = None
def __init__(
self,
config: PegasusConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
decoder_input_ids = input_ids
decoder_attention_mask = jnp.ones_like(input_ids)
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings(PEGASUS_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=PegasusConfig)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
@add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=PegasusConfig)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxPegasusAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
@add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if position_ids is None:
batch_size, sequence_length = input_ids.shape
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
# prepare decoder inputs
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
)
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
if decoder_position_ids is None:
batch_size, sequence_length = decoder_input_ids.shape
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
@add_start_docstrings(
"The bare Pegasus Model transformer outputting raw hidden-states without any specific head on top.",
PEGASUS_START_DOCSTRING,
)
class FlaxPegasusModel(FlaxPegasusPreTrainedModel):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
module_class = FlaxPegasusModule
append_call_sample_docstring(FlaxPegasusModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->Pegasus
class FlaxPegasusForConditionalGenerationModule(nn.Module):
config: PegasusConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.model = FlaxPegasusModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.model.shared.num_embeddings,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
def _get_encoder_module(self):
return self.model.encoder
def _get_decoder_module(self):
return self.model.decoder
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return output
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"The PEGASUS Model with a language modeling head. Can be used for summarization.", PEGASUS_START_DOCSTRING
)
class FlaxPegasusForConditionalGeneration(FlaxPegasusPreTrainedModel):
module_class = FlaxPegasusForConditionalGenerationModule
dtype: jnp.dtype = jnp.float32
@add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=PegasusConfig)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
deterministic: bool = True,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxPegasusAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
decoder_module = module._get_decoder_module()
outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = module.model.variables["params"]["shared"]["embedding"]
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
lm_logits = module.lm_head(hidden_states)
lm_logits += module.final_logits_bias.astype(self.dtype)
return lm_logits, outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jax.Array] = None,
decoder_attention_mask: Optional[jax.Array] = None,
encoder_outputs=None,
**kwargs,
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if decoder_attention_mask is not None:
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
"decoder_position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
return model_kwargs
FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING = """
Returns:
Summarization example:
```pyton
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-large')
>>> tokenizer = AutoTokenizer.from_pretrained('google/pegasus-large')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='np')
>>> # Generate Summary
>>> summary_ids = model.generate(inputs['input_ids']).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
Mask filling example:
```python
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
>>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs)
>>> tokenizer.decode(predictions).split()
```
"""
overwrite_call_docstring(
FlaxPegasusForConditionalGeneration, PEGASUS_INPUTS_DOCSTRING + FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING
)
append_replace_return_docstrings(
FlaxPegasusForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
)
__all__ = ["FlaxPegasusForConditionalGeneration", "FlaxPegasusModel", "FlaxPegasusPreTrainedModel"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: modeling_pegasus.py
LINES: 1
SIZE: 76.39 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pegasus\modeling_pegasus.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch PEGASUS model."""
import copy
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_pegasus import PegasusConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/pegasus-large"
_CONFIG_FOR_DOC = "PegasusConfig"
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Pegasus
class PegasusSinusoidalPositionalEmbedding(nn.Embedding):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None:
super().__init__(num_positions, embedding_dim)
def _init_weight(self):
"""
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
the 2nd half of the vector. [dim // 2:]
"""
n_pos, dim = self.weight.shape
position_enc = np.array(
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
)
out = torch.empty(n_pos, dim, dtype=self.weight.dtype, requires_grad=False)
sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
self.weight = nn.Parameter(out, requires_grad=False)
@torch.no_grad()
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor:
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Pegasus
class PegasusAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[PegasusConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
PEGASUS_ATTENTION_CLASSES = {"eager": PegasusAttention}
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Pegasus, MBART->PEGASUS
class PegasusEncoderLayer(nn.Module):
def __init__(self, config: PegasusConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = PEGASUS_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16:
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Pegasus, MBART->PEGASUS
class PegasusDecoderLayer(nn.Module):
def __init__(self, config: PegasusConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = PEGASUS_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = PEGASUS_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class PegasusPreTrainedModel(PreTrainedModel):
config_class = PegasusConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, PegasusSinusoidalPositionalEmbedding):
module._init_weight()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
PEGASUS_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PegasusConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PEGASUS_GENERATION_EXAMPLE = r"""
Summarization example:
```python
>>> from transformers import AutoTokenizer, PegasusForConditionalGeneration
>>> model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")
>>> ARTICLE_TO_SUMMARIZE = (
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"])
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"California's largest electricity provider has turned off power to hundreds of thousands of customers."
```
"""
PEGASUS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Pegasus uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class PegasusEncoder(PegasusPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`PegasusEncoderLayer`].
Args:
config: PegasusConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: PegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = PegasusSinusoidalPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
self.padding_idx,
)
self.layers = nn.ModuleList([PegasusEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
self.config.max_position_embeddings = new_num_position_embeddings
self.embed_positions = PegasusSinusoidalPositionalEmbedding(
self.config.max_position_embeddings,
self.config.d_model,
self.padding_idx,
)
self.embed_positions._init_weight()
self.embed_positions.to(self.device)
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings matrix
"""
return self.embed_positions
def forward(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class PegasusDecoder(PegasusPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PegasusDecoderLayer`]
Args:
config: PegasusConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: PegasusConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = PegasusSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
)
self.layers = nn.ModuleList([PegasusDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
self.config.max_position_embeddings = new_num_position_embeddings
self.embed_positions = PegasusSinusoidalPositionalEmbedding(
self.config.max_position_embeddings,
self.config.d_model,
self.padding_idx,
)
self.embed_positions._init_weight()
self.embed_positions.to(self.device)
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings matrix
"""
return self.embed_positions
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare PEGASUS Model outputting raw hidden-states without any specific head on top.",
PEGASUS_START_DOCSTRING,
)
class PegasusModel(PegasusPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: PegasusConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = PegasusEncoder(config, self.shared)
self.decoder = PegasusDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
self.config.max_position_embeddings = new_num_position_embeddings
self.encoder.resize_position_embeddings(new_num_position_embeddings)
self.decoder.resize_position_embeddings(new_num_position_embeddings)
def get_position_embeddings(self) -> Tuple[nn.Embedding]:
"""
Returns the position embeddings matrix
"""
return (self.encoder.get_position_embeddings(), self.decoder.get_position_embeddings())
@add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, PegasusModel
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> model = PegasusModel.from_pretrained("google/pegasus-large")
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
>>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt")
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 4, 1024]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The PEGASUS Model with a language modeling head. Can be used for summarization.", PEGASUS_START_DOCSTRING
)
class PegasusForConditionalGeneration(PegasusPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: PegasusConfig):
super().__init__(config)
self.model = PegasusModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(
self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None, mean_resizing: bool = True
) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
self.config.max_position_embeddings = new_num_position_embeddings
self.model.encoder.resize_position_embeddings(new_num_position_embeddings)
self.model.decoder.resize_position_embeddings(new_num_position_embeddings)
def get_position_embeddings(self) -> Tuple[nn.Embedding]:
"""
Returns the position embeddings matrix
"""
return (self.model.encoder.get_position_embeddings(), self.model.decoder.get_position_embeddings())
@add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(PEGASUS_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Pegasus
class PegasusDecoderWrapper(PegasusPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = PegasusDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
class PegasusForCausalLM(PegasusPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = PegasusDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings matrix
"""
return self.model.decoder.get_position_embeddings()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
self.config.max_position_embeddings = new_num_position_embeddings
self.model.decoder.resize_position_embeddings(new_num_position_embeddings)
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM.forward with Bart->Pegasus, facebook/bart-base->google/pegasus-large
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, PegasusForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> model = PegasusForCausalLM.from_pretrained("google/pegasus-large", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = ["PegasusForCausalLM", "PegasusForConditionalGeneration", "PegasusModel", "PegasusPreTrainedModel"]
```
|
==========================================================================================================================================
SOURCE CODE FILE: modeling_tf_pegasus.py
LINES: 1
SIZE: 72.55 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pegasus\modeling_tf_pegasus.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021, Google Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 Pegasus model."""
from __future__ import annotations
import random
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPastAndCrossAttentions,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
# Public API
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_pegasus import PegasusConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/pegasus-large"
_CONFIG_FOR_DOC = "PegasusConfig"
LARGE_NEGATIVE = -1e8
# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
start_tokens = tf.fill(
(shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
)
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100,
tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
shifted_input_ids,
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz = input_ids_shape[0]
tgt_len = input_ids_shape[1]
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
# Copied from transformers.models.marian.modeling_tf_marian.TFMarianSinusoidalPositionalEmbedding with Marian->Pegasus
class TFPegasusSinusoidalPositionalEmbedding(keras.layers.Layer):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, **kwargs):
super().__init__(**kwargs)
if embedding_dim % 2 != 0:
raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported")
self.embedding_dim = embedding_dim
self.num_positions = num_positions
def build(self, input_shape: tf.TensorShape):
"""
Build shared token embedding layer Shared weights logic adapted from
https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
"""
weight = self._init_weight(self.num_positions, self.embedding_dim)
self.weight = self.add_weight(
name="embeddings",
shape=[self.num_positions, self.embedding_dim],
)
weight = tf.cast(weight, dtype=self.weight.dtype)
self.weight.assign(weight)
super().build(input_shape)
@staticmethod
def _init_weight(n_pos: int, dim: int):
"""
Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
the 2nd half of the vector. [dim // 2:]
"""
position_enc = np.array(
[[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
)
table = np.zeros_like(position_enc)
# index 0 is all zero
table[:, 0 : dim // 2] = np.sin(position_enc[:, 0::2])
table[:, dim // 2 :] = np.cos(position_enc[:, 1::2])
# convert to tensor
table = tf.convert_to_tensor(table)
tf.stop_gradient(table)
return table
def call(
self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None
):
"""Input is expected to be of size [bsz x seqlen]."""
if position_ids is None:
seq_len = input_shape[1]
position_ids = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range")
return tf.gather(self.weight, position_ids)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Pegasus
class TFPegasusAttention(keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor | None]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartEncoderLayer with MBart->Pegasus
class TFPegasusEncoderLayer(keras.layers.Layer):
def __init__(self, config: PegasusConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFPegasusAttention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
)
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.dropout = keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
layer_head_mask: tf.Tensor,
training: Optional[bool] = False,
):
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, self_attn_weights, _ = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
)
tf.debugging.assert_equal(
shape_list(hidden_states),
shape_list(residual),
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return hidden_states, self_attn_weights
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.encoder_ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
# Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer with MBart->Pegasus
class TFPegasusDecoderLayer(keras.layers.Layer):
def __init__(self, config: PegasusConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFPegasusAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.encoder_attn = TFPegasusAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
name="encoder_attn",
is_decoder=True,
)
self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
encoder_hidden_states: tf.Tensor | None = None,
encoder_attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
cross_attn_layer_head_mask: tf.Tensor | None = None,
past_key_value: Tuple[tf.Tensor] | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
*(decoder_attention_heads,)*
cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
*(decoder_attention_heads,)*
past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
return (
hidden_states,
self_attn_weights,
cross_attn_weights,
present_key_value,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "encoder_attn", None) is not None:
with tf.name_scope(self.encoder_attn.name):
self.encoder_attn.build(None)
if getattr(self, "encoder_attn_layer_norm", None) is not None:
with tf.name_scope(self.encoder_attn_layer_norm.name):
self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.decoder_ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
class TFPegasusPreTrainedModel(TFPreTrainedModel):
config_class = PegasusConfig
base_model_prefix = "model"
PEGASUS_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`PegasusConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
PEGASUS_GENERATION_EXAMPLE = r"""
Summarization example:
```python
>>> from transformers import AutoTokenizer, TFPegasusForConditionalGeneration
>>> model = TFPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")
>>> ARTICLE_TO_SUMMARIZE = (
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="tf")
>>> # Generate Summary
>>> summary_ids = model.generate(input_ids)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
```
"""
PEGASUS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Pegasus uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tf.FloatTensor`, *optional*):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`,
*optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions`
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the
value in the config will be used instead.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@keras_serializable
class TFPegasusEncoder(keras.layers.Layer):
config_class = PegasusConfig
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`TFPegasusEncoderLayer`].
Args:
config: PegasusConfig
"""
def __init__(self, config: PegasusConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.dropout = keras.layers.Dropout(config.dropout)
self.layerdrop = config.encoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.embed_tokens = embed_tokens
self.embed_positions = TFPegasusSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
name="embed_positions",
)
self.layers = [TFPegasusEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
@unpack_inputs
def call(
self,
input_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
):
"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
in the config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
will be used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.dropout(hidden_states, training=training)
# check attention mask and invert
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask)
else:
attention_mask = None
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
tf.debugging.assert_equal(
shape_list(head_mask)[0],
len(self.layers),
message=(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(head_mask)[0]}."
),
)
# encoder layers
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop): # skip the layer
continue
hidden_states, attn = encoder_layer(
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
)
if output_attentions:
all_attentions += (attn,)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.d_model])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFPegasusDecoder(keras.layers.Layer):
config_class = PegasusConfig
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFPegasusDecoderLayer`]
Args:
config: PegasusConfig
embed_tokens: output embedding
"""
def __init__(self, config: PegasusConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.padding_idx = config.pad_token_id
self.embed_tokens = embed_tokens
self.layerdrop = config.decoder_layerdrop
self.embed_positions = TFPegasusSinusoidalPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
name="embed_positions",
)
self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
self.layers = [TFPegasusDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")
self.dropout = keras.layers.Dropout(config.dropout)
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
@unpack_inputs
def call(
self,
input_ids: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
encoder_hidden_states: tf.Tensor | None = None,
encoder_attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
cross_attn_head_mask: tf.Tensor | None = None,
past_key_values: Tuple[Tuple[tf.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
):
r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range `[0, config.max_position_embeddings - 1]`.
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
in the config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail. This argument can be used only in eager mode, in graph mode the value in the config
will be used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
in eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
# embed positions
if position_ids is None:
positions = self.embed_positions(input_shape, past_key_values_length)
else:
positions = self.embed_positions(input_shape, position_ids=position_ids)
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
hidden_states = inputs_embeds
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
else:
combined_attention_mask = _expand_mask(
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
)
if attention_mask is not None:
combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
hidden_states = self.dropout(hidden_states + positions, training=training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
if attn_mask is not None:
tf.debugging.assert_equal(
shape_list(attn_mask)[0],
len(self.layers),
message=(
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(attn_mask)[0]}."
),
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=head_mask[idx] if head_mask is not None else None,
cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
past_key_value=past_key_value,
)
if use_cache:
present_key_values += (present_key_value,)
if output_attentions:
all_self_attns += (layer_self_attn,)
if encoder_hidden_states is not None:
all_cross_attns += (layer_cross_attn,)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
else:
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.d_model])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFPegasusMainLayer(keras.layers.Layer):
config_class = PegasusConfig
def __init__(self, config: PegasusConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.shared = keras.layers.Embedding(
input_dim=config.vocab_size,
output_dim=config.d_model,
embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std),
name="model.shared",
)
# Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
self.shared.load_weight_prefix = "model.shared"
self.encoder = TFPegasusEncoder(config, self.shared, name="encoder")
self.decoder = TFPegasusDecoder(config, self.shared, name="decoder")
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
@unpack_inputs
def call(
self,
input_ids: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
decoder_input_ids: tf.Tensor | None = None,
decoder_attention_mask: tf.Tensor | None = None,
decoder_position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
decoder_head_mask: tf.Tensor | None = None,
cross_attn_head_mask: tf.Tensor | None = None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values: Tuple[Tuple[tf.Tensor]] = None,
inputs_embeds: tf.Tensor | None = None,
decoder_inputs_embeds: tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
):
if decoder_input_ids is None and decoder_inputs_embeds is None:
use_cache = False
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
encoder_outputs = TFBaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
elif not return_dict and not isinstance(encoder_outputs, tuple):
encoder_outputs = encoder_outputs.to_tuple()
decoder_outputs = self.decoder(
decoder_input_ids,
attention_mask=decoder_attention_mask,
position_ids=decoder_position_ids,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return TFSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
# The shared/tied weights expect to be in the model base namespace
# Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
# the current one.
with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
self.shared.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
@add_start_docstrings(
"The bare PEGASUS Model outputting raw hidden-states without any specific head on top.",
PEGASUS_START_DOCSTRING,
)
class TFPegasusModel(TFPegasusPreTrainedModel):
def __init__(self, config: PegasusConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFPegasusMainLayer(config, name="model")
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
@unpack_inputs
@add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSeq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]:
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
# Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqModelOutput(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
class BiasLayer(keras.layers.Layer):
"""
Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis,
so all weights have to be registered in a layer.
"""
def __init__(self, shape, initializer, trainable, name, **kwargs):
super().__init__(name=name, **kwargs)
# Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
# "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
# https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
def call(self, x):
return x + self.bias
@add_start_docstrings(
"The PEGASUS Model with a language modeling head. Can be used for summarization.",
PEGASUS_START_DOCSTRING,
)
class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLanguageModelingLoss):
_keys_to_ignore_on_load_unexpected = [
r"model.encoder.embed_tokens.weight",
r"model.decoder.embed_tokens.weight",
]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TFPegasusMainLayer(config, name="model")
self.use_cache = config.use_cache
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
self.bias_layer = BiasLayer(
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
)
def get_decoder(self):
return self.model.decoder
def get_encoder(self):
return self.model.encoder
def get_output_embeddings(self):
return self.get_input_embeddings()
def set_output_embeddings(self, value):
self.set_input_embeddings(value)
def get_bias(self):
return {"final_logits_bias": self.bias_layer.bias}
def set_bias(self, value):
# Replaces the existing layers containing bias for correct (de)serialization.
vocab_size = value["final_logits_bias"].shape[-1]
self.bias_layer = BiasLayer(
name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
)
self.bias_layer.bias.assign(value["final_logits_bias"])
@unpack_inputs
@add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(PEGASUS_GENERATION_EXAMPLE)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
decoder_head_mask: np.ndarray | tf.Tensor | None = None,
cross_attn_head_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
if labels is not None:
labels = tf.where(
labels == self.config.pad_token_id,
tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
labels,
)
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
decoder_position_ids=decoder_position_ids,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
lm_logits = self.bias_layer(lm_logits)
masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return TFSeq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
cross_attentions=outputs.cross_attentions, # index 4 of d outputs
encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
return TFSeq2SeqLMOutput(
logits=output.logits,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
cross_attentions=cross_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_attention_mask is not None: # xla
decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
elif past_key_values is not None: # no xla + past_key_values
decoder_position_ids = past_key_values[0][0].shape[2]
else: # no xla + no past_key_values
decoder_position_ids = tf.range(decoder_input_ids.shape[1])
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"decoder_position_ids": decoder_position_ids,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
if getattr(self, "bias_layer", None) is not None:
with tf.name_scope(self.bias_layer.name):
self.bias_layer.build(None)
__all__ = ["TFPegasusForConditionalGeneration", "TFPegasusModel", "TFPegasusPreTrainedModel"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: tokenization_pegasus.py
LINES: 1
SIZE: 12.85 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pegasus\tokenization_pegasus.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 Google and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SPIECE_UNDERLINE = "β"
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
logger = logging.get_logger(__name__)
# TODO ArthurZ refactor this to only use the added_tokens_encoder
class PegasusTokenizer(PreTrainedTokenizer):
r"""
Construct a PEGASUS tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
mask_token (`str`, *optional*, defaults to `"<mask_2>"`):
The token used for masking single token values. This is the token used when training this model with masked
language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining.
It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
Summarization](https://arxiv.org/pdf/1912.08777.pdf).
mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`):
The token used for masking whole target sentences. This is the token used when training this model with gap
sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during
pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for
Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf).
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and
<unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS
tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66)
that uses the tokens 2 - 104 only for pretraining
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
pad_token="<pad>",
eos_token="</s>",
unk_token="<unk>",
mask_token="<mask_2>",
mask_token_sent="<mask_1>",
additional_special_tokens=None,
offset=103, # entries 2 - 104 are only used for pretraining
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
self.offset = offset
if additional_special_tokens is not None:
if not isinstance(additional_special_tokens, list):
raise TypeError(
f"additional_special_tokens should be of type {type(list)}, but is"
f" {type(additional_special_tokens)}"
)
additional_special_tokens_extended = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1)
]
if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended):
raise ValueError(
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}."
)
additional_special_tokens = additional_special_tokens_extended
else:
additional_special_tokens_extended = []
additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)]
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.mask_token_sent = mask_token_sent
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
_added_tokens_decoder = {
0: AddedToken(str(pad_token), special=True),
1: AddedToken(str(eos_token), special=True),
}
if self.mask_token_sent is not None:
_added_tokens_decoder[2] = AddedToken(mask_token_sent, special=True)
_added_tokens_decoder[3] = AddedToken(str(mask_token), special=True)
for i in range(2, self.offset):
_added_tokens_decoder[len(_added_tokens_decoder)] = AddedToken(f"<unk_{i}>", special=True)
# Force update as we want to make sure vocab is enforced (same as fast)
self._added_tokens_decoder = kwargs.pop("added_tokens_decoder", {})
self._added_tokens_decoder.update(_added_tokens_decoder)
super().__init__(
eos_token=eos_token,
unk_token=unk_token,
mask_token=mask_token,
pad_token=pad_token,
mask_token_sent=mask_token_sent,
offset=offset,
additional_special_tokens=additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
@property
def vocab_size(self) -> int:
return len(self.sp_model) + self.offset
def get_vocab(self) -> Dict[str, int]:
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token (str) to an id using the vocab."""
sp_id = self.sp_model.piece_to_id(token)
return sp_id + self.offset
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) to a token (str) using the vocab."""
if index < self.offset:
return self.sp_model.IdToPiece(index)
token = self.sp_model.IdToPiece(index - self.offset)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(current_sub_tokens) + token
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def num_special_tokens_to_add(self, pair=False):
"""Just EOS"""
return 1
def _special_token_mask(self, seq):
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""Get list where entries are [1] if a token is [eos] or [pad] else 0."""
if already_has_special_tokens:
return self._special_token_mask(token_ids_0)
elif token_ids_1 is None:
return self._special_token_mask(token_ids_0) + [1]
else:
return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating
and adding special tokens. A PEGASUS sequence has the following format, where `X` represents the sequence:
- single sequence: `X </s>`
- pair of sequences: `A B </s>` (not intended use)
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_0 + token_ids_1 + [self.eos_token_id]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["PegasusTokenizer"]
```
|
================================================================================================================================================
SOURCE CODE FILE: tokenization_pegasus_fast.py
LINES: 1
SIZE: 9.74 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pegasus\tokenization_pegasus_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 Google and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for model PEGASUS."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
PegasusTokenizer = None
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "β"
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
class PegasusTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" PEGASUS tokenizer (backed by HuggingFace's *tokenizers* library). Based on
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
mask_token (`str`, *optional*, defaults to `"<mask_2>"`):
The token used for masking single token values. This is the token used when training this model with masked
language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining.
It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
Summarization](https://arxiv.org/pdf/1912.08777.pdf).
mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`):
The token used for masking whole target sentences. This is the token used when training this model with gap
sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during
pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for
Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf).
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and
<unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS
tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66)
that uses the tokens 2 - 104 only for pretraining
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = PegasusTokenizer
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
pad_token="<pad>",
eos_token="</s>",
unk_token="<unk>",
mask_token="<mask_2>",
mask_token_sent="<mask_1>",
additional_special_tokens=None,
offset=103, # entries 2 - 104 are only used for pretraining
**kwargs,
):
self.offset = offset
if additional_special_tokens is not None:
if not isinstance(additional_special_tokens, list):
raise TypeError(
f"additional_special_tokens should be of type {type(list)}, but is"
f" {type(additional_special_tokens)}"
)
additional_special_tokens_extended = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1)
]
if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended):
raise ValueError(
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}."
)
additional_special_tokens = additional_special_tokens_extended
else:
additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)]
# pegasus was design to support changing the index of the first tokens. If one of the padding/eos/unk/mask token
# is different from default, we must rebuild the vocab
from_slow = kwargs.pop("from_slow", None)
from_slow = from_slow or str(pad_token) != "<pad>" or str(eos_token) != "</s>" or str(unk_token) != "<unk>"
kwargs.pop("added_tokens_decoder", {})
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
pad_token=pad_token,
eos_token=eos_token,
unk_token=unk_token,
mask_token=mask_token,
mask_token_sent=mask_token_sent,
offset=offset,
additional_special_tokens=additional_special_tokens,
from_slow=from_slow,
**kwargs,
)
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def _special_token_mask(self, seq):
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens) + 3)):
raise ValueError(
"There should be 3 special tokens: mask_token, pad_token, and eos_token +"
f" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}"
)
return [1 if x in all_special_ids else 0 for x in seq]
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""Get list where entries are [1] if a token is [eos] or [pad] else 0."""
if already_has_special_tokens:
return self._special_token_mask(token_ids_0)
elif token_ids_1 is None:
return self._special_token_mask(token_ids_0) + [1]
else:
return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""
Build model inputs from a sequence by adding eos to the end. no bos token is added to the front.
- single sequence: `X </s>`
- pair of sequences: `A B </s>` (not intended use)
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_0 + token_ids_1 + [self.eos_token_id]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
__all__ = ["PegasusTokenizerFast"]
```
|
=================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pegasus_x\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_pegasus_x import *
from .modeling_pegasus_x import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
================================================================================================================================================
SOURCE CODE FILE: configuration_pegasus_x.py
LINES: 1
SIZE: 7.93 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pegasus_x\configuration_pegasus_x.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022, Google and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PEGASUS-X model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class PegasusXConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PegasusXModel`]. It is used to instantiate a
PEGASUS-X model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the PEGASUS-X
[google/pegasus-x-large](https://huggingface.co/google/pegasus-x-large) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 96103):
Vocabulary size of the PEGASUS-X model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`PegasusXModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimension of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 16):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 16):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (`int`, *optional*, defaults to 1):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
num_global_tokens (`int`, *optional*, defaults to 128):
Number of global tokens to use for the encoder
block_size (`int`, *optional*, defaults to 512):
Block size for encoder local attention. Sequence length should be an exact multiple of block size.
block_size must be a multiple of 2 if stagger_local_block is True
stagger_local_block (`bool`, *optional*, defaults to `True`):
Whether to stagger every other local attention by half a block
Example:
```python
>>> from transformers import PegasusXConfig, PegasusXModel
>>> # Initializing a PEGASUS google/pegasus-x-large style configuration
>>> configuration = PegasusXConfig()
>>> # Initializing a model (with random weights) from the google/pegasus-x-large style configuration
>>> model = PegasusXModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "pegasus_x"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=96103,
max_position_embeddings=16384,
encoder_layers=16,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=16,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=0,
scale_embedding=True,
pad_token_id=0,
eos_token_id=1,
forced_eos_token_id=1,
num_global_tokens=32,
block_size=512,
stagger_local_blocks=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.num_global_tokens = num_global_tokens
self.block_size = block_size
self.stagger_local_blocks = stagger_local_blocks
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads
@property
def hidden_size(self) -> int:
return self.d_model
__all__ = ["PegasusXConfig"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: modeling_pegasus_x.py
LINES: 1
SIZE: 73.85 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pegasus_x\modeling_pegasus_x.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022, Google and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch PEGASUS-X model."""
import dataclasses
import math
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_pegasus_x import PegasusXConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/pegasus-x-base"
_CONFIG_FOR_DOC = "PegasusXConfig"
@dataclasses.dataclass
class DimensionInfo:
"""Wrapper for dimension info."""
batch_size: int # batch size
seq_len: int # token length
block_size: int # block size
num_heads: int # num heads
hidden_dim: int # hidden dim
dim_per_head: int # dim per head
num_blocks: int # num blocks
global_len: int # global length
padded_seq_len: int # padded token seq length
# Note: Compared to the original Flax implementation, we will pad the token representations to
# a multiple of block size at the start of the encoder layers, so T=P always.
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->PegasusX
class PegasusXScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
class PegasusXSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, embed_dim, max_scale: int = 10000.0):
super().__init__()
self.embed_dim = embed_dim
self.max_scale = max_scale
@torch.no_grad()
def forward(self, input_embeds: torch.Tensor, past_key_values_length: int = 0) -> torch.Tensor:
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
batch_size, seq_len = input_embeds.shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=input_embeds.device
)[:, None]
pe = torch.zeros((seq_len, self.embed_dim), device=input_embeds.device, dtype=input_embeds.dtype)
half_d_feature = self.embed_dim // 2
div_term = torch.exp(
torch.arange(half_d_feature, device=input_embeds.device, dtype=torch.int64).type_as(input_embeds)
* -(np.log(float(self.max_scale)) / (half_d_feature - 1))
)
pe[:, :half_d_feature] = torch.sin(positions * div_term)
pe[:, half_d_feature:] = torch.cos(positions * div_term)
return pe[None].expand(batch_size, -1, -1)
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PegasusX
class PegasusXAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[PegasusXConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class PegasusXGlobalLocalAttention(nn.Module):
"""Global + Local attention. For use with Encoder only."""
def __init__(
self,
embed_dim: int,
num_heads: int,
block_size: int,
dropout: float = 0.0,
is_decoder: bool = False,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.block_size = block_size
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
token_hidden_states: torch.Tensor,
global_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
dim = DimensionInfo(
batch_size=token_hidden_states.shape[0],
seq_len=token_hidden_states.shape[1],
block_size=self.block_size,
num_heads=self.num_heads,
hidden_dim=token_hidden_states.shape[2],
dim_per_head=self.head_dim,
num_blocks=token_hidden_states.shape[1] // self.block_size,
global_len=global_hidden_states.shape[1],
padded_seq_len=token_hidden_states.shape[1],
)
# [batch_size, num_heads, padded_seq_len, dim_per_head]
local_q = self._shape(
self.q_proj(token_hidden_states) * self.scaling,
seq_len=dim.padded_seq_len,
bsz=dim.batch_size,
)
local_k = self._shape(
self.k_proj(token_hidden_states),
seq_len=dim.padded_seq_len,
bsz=dim.batch_size,
)
local_v = self._shape(
self.v_proj(token_hidden_states),
seq_len=dim.padded_seq_len,
bsz=dim.batch_size,
)
# [batch_size, num_heads, global_len, dim_per_head]
global_q = self._shape(
self.q_proj(global_hidden_states) * self.scaling,
seq_len=dim.global_len,
bsz=dim.batch_size,
)
global_k = self._shape(
self.k_proj(global_hidden_states),
seq_len=dim.global_len,
bsz=dim.batch_size,
)
global_v = self._shape(
self.v_proj(global_hidden_states),
seq_len=dim.global_len,
bsz=dim.batch_size,
)
global_attn_output, global_attn_probs = self.compute_global_attention_representations(
global_q=global_q,
global_k=global_k,
global_v=global_v,
local_k=local_k,
local_v=local_v,
mask=attention_mask,
dim=dim,
)
local_attn_output, local_attn_probs = self.compute_local_attention_representations(
global_k=global_k,
global_v=global_v,
local_q=local_q,
local_k=local_k,
local_v=local_v,
mask=attention_mask,
dim=dim,
)
# [batch_size, global_len, hidden_dim]
global_attn_output = (
global_attn_output.transpose(1, 2).contiguous().view(dim.batch_size, dim.global_len, dim.hidden_dim)
)
# [batch_size, global_len, hidden_dim]
global_attn_output = self.out_proj(global_attn_output)
# [batch_size, num_heads, block_size, num_heads, dim_per_head]
local_attn_output = local_attn_output.permute(0, 2, 3, 1, 4).contiguous()
# [batch_size, padded_seq_len, hidden_dim]
local_attn_output = local_attn_output.view(dim.batch_size, dim.padded_seq_len, dim.hidden_dim)
# [batch_size, padded_seq_len, hidden_dim]
local_attn_output = self.out_proj(local_attn_output)
if output_attentions:
attn_probs = {"global": global_attn_probs, "local": local_attn_probs}
else:
attn_probs = None
return local_attn_output, global_attn_output, attn_probs
def compute_global_attention_representations(
self, global_q, global_k, global_v, local_k, local_v, mask, dim: DimensionInfo
):
"""Compute attention representations for global tokens.
Global tokens will attend to both global tokens as well as all input sequence tokens. Because the input
sequence tokens are arranged in blocks for local attention, we unblock them and compute attention.
Args:
global_q (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
query vectors from global tokens
global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
key vectors from global tokens
global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
value vectors from global tokens
local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
key vectors from local tokens
local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
value vectors from local tokens
mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask
dim (DimensionInfo): DimensionInfo wrapper for dimensions
Returns:
output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size
"""
# [batch_size, num_heads, global_len+padded_seq_len, dim_per_head]
global_and_local_k = torch.cat([global_k, local_k], dim=2)
# [batch_size, num_heads, global_len+padded_seq_len, dim_per_head]
global_and_local_v = torch.cat([global_v, local_v], dim=2)
# [batch_size, global_len+padded_seq_len]
extended_mask = nn.functional.pad(mask, pad=(dim.global_len, 0), value=0)
# [batch_size, num_heads, global_len, global_len+padded_seq_len]
attn_weights = torch.einsum("BHGF,BHXF->BHGX", global_q, global_and_local_k)
attn_weights = attn_weights + extended_mask[:, None, None, :]
attn_probs = nn.functional.softmax(attn_weights, dim=-1)
attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training)
# [batch_size, num_heads, global_len, F]
attn_output = torch.einsum("BHGX,BHXF->BHGF", attn_probs, global_and_local_v)
return attn_output, attn_probs
def compute_local_attention_representations(
self, global_k, global_v, local_q, local_k, local_v, mask, dim: DimensionInfo
):
"""Compute attention representations for local tokens.
Local tokens will attend to both global tokens as well as all other tokens within the same local block. Hence,
we need to tile and concatenate the global tokens to every local block
Args:
global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
key vectors from global tokens
global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
value vectors from global tokens
local_q (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
query vectors from local tokens
local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
key vectors from local tokens
local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
value vectors from local tokens
mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask
dim (DimensionInfo): DimensionInfo wrapper for dimensions
Returns:
output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size
"""
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
blocked_local_q = local_q.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head)
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
blocked_local_k = local_k.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head)
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
blocked_local_v = local_v.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head)
# [batch_size, num_blocks, global_len+block_size]
extended_mask = nn.functional.pad(
mask.view(dim.batch_size, dim.num_blocks, dim.block_size),
pad=(dim.global_len, 0),
value=0,
)
# [batch_size, num_heads, num_blocks, block_size, global_len]
blocked_local2global = torch.einsum("BHNKF,BHGF->BHNKG", blocked_local_q, global_k)
# [batch_size, num_heads, num_blocks, block_size, block_size]
blocked_local2local = torch.einsum("BHNKF,BHNXF->BHNKX", blocked_local_q, blocked_local_k)
# [batch_size, num_heads, num_blocks, block_size, global_len+block_size]
attn_weights = torch.cat([blocked_local2global, blocked_local2local], dim=-1)
attn_weights = attn_weights + extended_mask[:, None, :, None, :]
attn_probs = nn.functional.softmax(attn_weights, dim=-1)
attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training)
# [batch_size, num_heads, num_blocks, block_size, global_len]
local2global_attn_probs = attn_probs[:, :, :, :, : dim.global_len]
# [batch_size, num_heads, num_blocks, block_size, block_size]
local2local_attn_probs = attn_probs[:, :, :, :, dim.global_len :]
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
local2global_attn_output = torch.einsum("BHNKG,BHGF->BHNKF", local2global_attn_probs, global_v)
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
local2local_attn_output = torch.einsum("BHNKX,BHNXF->BHNKF", local2local_attn_probs, blocked_local_v)
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
attn_output = local2global_attn_output + local2local_attn_output
return attn_output, attn_probs
class PegasusXEncoderLayer(nn.Module):
def __init__(self, stagger_blocks_this_layer: bool, config: PegasusXConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = PegasusXGlobalLocalAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
block_size=config.block_size,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.global_self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
self.stagger_blocks_this_layer = stagger_blocks_this_layer
self.block_size = config.block_size
def forward(
self,
hidden_states: torch.Tensor,
global_hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
global_hidden_states (`torch.FloatTensor`): global token hidden states
*(seq_len, num_global_tokens, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
global_residual = global_hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
global_hidden_states = self.global_self_attn_layer_norm(global_hidden_states)
if self.stagger_blocks_this_layer:
# Pad the blocks to simulate staggering
hidden_states, attention_mask = self.pad_local_tokens(
hidden_states=hidden_states, attention_mask=attention_mask, block_size=self.block_size
)
hidden_states, global_hidden_states, attn_weights = self.self_attn(
token_hidden_states=hidden_states,
global_hidden_states=global_hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
if self.stagger_blocks_this_layer:
# Undo the padding
hidden_states = self.unpad_local_tokens(padded_hidden_states=hidden_states, block_size=self.block_size)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training)
global_hidden_states = global_residual + global_hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
global_residual = global_hidden_states
global_hidden_states = self.final_layer_norm(global_hidden_states)
global_hidden_states = self.activation_fn(self.fc1(global_hidden_states))
global_hidden_states = nn.functional.dropout(
global_hidden_states, p=self.activation_dropout, training=self.training
)
global_hidden_states = self.fc2(global_hidden_states)
global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training)
global_hidden_states = global_residual + global_hidden_states
outputs = (hidden_states, global_hidden_states)
if output_attentions:
outputs += (attn_weights,)
return outputs
@classmethod
def pad_local_tokens(cls, hidden_states, attention_mask, block_size):
# hidden_states: [batch_size, seq_len, hidden_dim]
pad_size = block_size // 2
mask_min_value = torch.finfo(hidden_states.dtype).min
padded_hidden_states = torch.nn.functional.pad(
hidden_states,
pad=(0, 0, pad_size, pad_size),
)
padded_mask = torch.nn.functional.pad(
attention_mask,
pad=(pad_size, pad_size),
value=mask_min_value,
)
return padded_hidden_states, padded_mask
@classmethod
def unpad_local_tokens(cls, padded_hidden_states, block_size):
# padded_hidden_states: [batch_size, padded seq_len, hidden_dim]
pad_size = block_size // 2
return padded_hidden_states[:, pad_size:-pad_size, :]
class PegasusXDecoderLayer(nn.Module):
def __init__(self, config: PegasusXConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = PegasusXAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=False,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = PegasusXAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=False,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache: Whether to us KV cache for decoding
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class PegasusXPreTrainedModel(PreTrainedModel):
config_class = PegasusXConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = [r"PegasusXEncoderLayer", r"PegasusXDecoderLayer"]
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
PEGASUS_X_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PegasusXConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PEGASUS_X_GENERATION_EXAMPLE = r"""
Summarization example:
```python
>>> from transformers import AutoTokenizer, PegasusXForConditionalGeneration
>>> model = PegasusXForConditionalGeneration.from_pretrained("google/pegasus-x-base")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-x-large")
>>> ARTICLE_TO_SUMMARIZE = (
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"])
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"California's largest electricity provider has turned off power to hundreds of thousands of customers."
```
"""
PEGASUS_X_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
PEGASUS-X uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class PegasusXEncoder(PegasusXPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`PegasusXEncoderLayer`].
Args:
config: PegasusXConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = PegasusXScaledWordEmbedding(
config.vocab_size, embed_dim, padding_idx, embed_scale=embed_scale
)
self.embed_global = nn.Embedding(config.num_global_tokens, embed_dim)
self.embed_positions = PegasusXSinusoidalPositionalEmbedding(embed_dim)
self.layers = nn.ModuleList(
[
PegasusXEncoderLayer(
stagger_blocks_this_layer=i % 2 == 1 and config.stagger_local_blocks, config=config
)
for i in range(config.encoder_layers)
]
)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
self.config.max_position_embeddings = new_num_position_embeddings
self.embed_positions = PegasusXSinusoidalPositionalEmbedding(self.config.d_model)
self.embed_positions.to(self.device)
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings matrix
"""
return self.embed_positions
def forward(
self,
input_ids=None,
attention_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(inputs_embeds)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
batch_size, seq_len, _ = hidden_states.shape
# Setup mask
if attention_mask is None:
attention_mask = torch.ones(*input_shape, dtype=inputs_embeds.dtype, device=inputs_embeds.device)
attention_mask = attention_mask.to(dtype=hidden_states.dtype)
mask_min_value = torch.finfo(hidden_states.dtype).min
inverted_mask = 1.0 - attention_mask
attention_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool),
mask_min_value,
)
# padding to block_size
if seq_len % self.config.block_size != 0:
pad_len = self.config.block_size - seq_len % self.config.block_size
hidden_states = nn.functional.pad(hidden_states, pad=(0, 0, 0, pad_len), value=0)
attention_mask = nn.functional.pad(attention_mask, pad=(0, pad_len), value=mask_min_value)
# Global tokens
global_hidden_states = self.embed_global(
torch.arange(self.config.num_global_tokens, device=hidden_states.device)[None].expand(batch_size, -1)
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
global_hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
global_hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
global_hidden_states = layer_outputs[1]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[2],)
# Undo padding-to-block-size
hidden_states = hidden_states[:, :seq_len]
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + ((hidden_states, global_hidden_states),)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class PegasusXDecoder(PegasusXPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PegasusDecoderLayer`]
Args:
config: PegasusXConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
padding_idx = config.pad_token_id
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = PegasusXScaledWordEmbedding(
config.vocab_size, config.d_model, padding_idx=padding_idx, embed_scale=embed_scale
)
self.embed_positions = PegasusXSinusoidalPositionalEmbedding(config.d_model)
self.layers = nn.ModuleList([PegasusXDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(inputs_embeds, past_key_values_length)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare PEGASUS-X Model outputting raw hidden-states without any specific head on top.",
PEGASUS_X_START_DOCSTRING,
)
class PegasusXModel(PegasusXPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: PegasusXConfig):
super().__init__(config)
vocab_size = config.vocab_size
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
padding_idx = config.pad_token_id
self.shared = PegasusXScaledWordEmbedding(
vocab_size, config.d_model, padding_idx=padding_idx, embed_scale=embed_scale
)
self.encoder = PegasusXEncoder(config, self.shared)
self.decoder = PegasusXDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
self.config.max_position_embeddings = new_num_position_embeddings
self.encoder.resize_position_embeddings(new_num_position_embeddings)
self.decoder.resize_position_embeddings(new_num_position_embeddings)
def get_position_embeddings(self) -> Tuple[nn.Embedding]:
"""
Returns the position embeddings matrix
"""
return (self.encoder.get_position_embeddings(), self.decoder.get_position_embeddings())
@add_start_docstrings_to_model_forward(PEGASUS_X_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, PegasusModel
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-x-large")
>>> model = PegasusModel.from_pretrained("google/pegasus-x-large")
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
>>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt")
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 4, 1024]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings("The PEGASUS-X for conditional generation (e.g. summarization).", PEGASUS_X_START_DOCSTRING)
class PegasusXForConditionalGeneration(PegasusXPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: PegasusXConfig):
super().__init__(config)
self.model = PegasusXModel(config)
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
self.config.max_position_embeddings = new_num_position_embeddings
self.model.encoder.resize_position_embeddings(new_num_position_embeddings)
self.model.decoder.resize_position_embeddings(new_num_position_embeddings)
def get_position_embeddings(self) -> Tuple[nn.Embedding]:
"""
Returns the position embeddings matrix
"""
return (self.model.encoder.get_position_embeddings(), self.model.decoder.get_position_embeddings())
@add_start_docstrings_to_model_forward(PEGASUS_X_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(PEGASUS_X_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->PegasusX
class PegasusXDecoderWrapper(PegasusXPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = PegasusXDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
__all__ = ["PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel"]
```
|
=================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.11 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\perceiver\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_perceiver import *
from .feature_extraction_perceiver import *
from .image_processing_perceiver import *
from .modeling_perceiver import *
from .tokenization_perceiver import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
================================================================================================================================================
SOURCE CODE FILE: configuration_perceiver.py
LINES: 1
SIZE: 11.92 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\perceiver\configuration_perceiver.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright Deepmind and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Perceiver model configuration"""
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class PerceiverConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PerceiverModel`]. It is used to instantiate an
Perceiver model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Perceiver
[deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_latents (`int`, *optional*, defaults to 256):
The number of latents.
d_latents (`int`, *optional*, defaults to 1280):
Dimension of the latent embeddings.
d_model (`int`, *optional*, defaults to 768):
Dimension of the inputs. Should only be provided in case [*PerceiverTextPreprocessor*] is used or no
preprocessor is provided.
num_blocks (`int`, *optional*, defaults to 1):
Number of blocks in the Transformer encoder.
num_self_attends_per_block (`int`, *optional*, defaults to 26):
The number of self-attention layers per block.
num_self_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each self-attention layer in the Transformer encoder.
num_cross_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each cross-attention layer in the Transformer encoder.
qk_channels (`int`, *optional*):
Dimension to project the queries + keys before applying attention in the cross-attention and self-attention
layers of the encoder. Will default to preserving the dimension of the queries if not specified.
v_channels (`int`, *optional*):
Dimension to project the values before applying attention in the cross-attention and self-attention layers
of the encoder. Will default to preserving the dimension of the queries if not specified.
cross_attention_shape_for_attention (`str`, *optional*, defaults to `"kv"`):
Dimension to use when downsampling the queries and keys in the cross-attention layer of the encoder.
self_attention_widening_factor (`int`, *optional*, defaults to 1):
Dimension of the feed-forward layer in the cross-attention layer of the Transformer encoder.
cross_attention_widening_factor (`int`, *optional*, defaults to 1):
Dimension of the feed-forward layer in the self-attention layers of the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_query_residual (`float`, *optional*, defaults to `True`):
Whether to add a query residual in the cross-attention layer of the encoder.
vocab_size (`int`, *optional*, defaults to 262):
Vocabulary size for the masked language modeling model.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that the masked language modeling model might ever be used with. Typically set
this to something large just in case (e.g., 512 or 1024 or 2048).
image_size (`int`, *optional*, defaults to 56):
Size of the images after preprocessing, for [`PerceiverForImageClassificationLearned`].
train_size (`List[int]`, *optional*, defaults to `[368, 496]`):
Training size of the images for the optical flow model.
num_frames (`int`, *optional*, defaults to 16):
Number of video frames used for the multimodal autoencoding model.
audio_samples_per_frame (`int`, *optional*, defaults to 1920):
Number of audio samples per frame for the multimodal autoencoding model.
samples_per_patch (`int`, *optional*, defaults to 16):
Number of audio samples per patch when preprocessing the audio for the multimodal autoencoding model.
output_shape (`List[int]`, *optional*, defaults to `[1, 16, 224, 224]`):
Shape of the output (batch_size, num_frames, height, width) for the video decoder queries of the multimodal
autoencoding model. This excludes the channel dimension.
output_num_channels (`int`, *optional*, defaults to 512):
Number of output channels for each modalitiy decoder.
Example:
```python
>>> from transformers import PerceiverModel, PerceiverConfig
>>> # Initializing a Perceiver deepmind/language-perceiver style configuration
>>> configuration = PerceiverConfig()
>>> # Initializing a model from the deepmind/language-perceiver style configuration
>>> model = PerceiverModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "perceiver"
def __init__(
self,
num_latents=256,
d_latents=1280,
d_model=768,
num_blocks=1,
num_self_attends_per_block=26,
num_self_attention_heads=8,
num_cross_attention_heads=8,
qk_channels=None,
v_channels=None,
cross_attention_shape_for_attention="kv",
self_attention_widening_factor=1,
cross_attention_widening_factor=1,
hidden_act="gelu",
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_query_residual=True,
vocab_size=262,
max_position_embeddings=2048,
image_size=56,
train_size=[368, 496],
num_frames=16,
audio_samples_per_frame=1920,
samples_per_patch=16,
output_shape=[1, 16, 224, 224],
output_num_channels=512,
_label_trainable_num_channels=1024,
**kwargs,
):
super().__init__(**kwargs)
self.num_latents = num_latents
self.d_latents = d_latents
self.d_model = d_model
self.num_blocks = num_blocks
self.num_self_attends_per_block = num_self_attends_per_block
self.num_self_attention_heads = num_self_attention_heads
self.num_cross_attention_heads = num_cross_attention_heads
self.qk_channels = qk_channels
self.v_channels = v_channels
self.cross_attention_shape_for_attention = cross_attention_shape_for_attention
self.self_attention_widening_factor = self_attention_widening_factor
self.cross_attention_widening_factor = cross_attention_widening_factor
self.hidden_act = hidden_act
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_query_residual = use_query_residual
# masked language modeling attributes
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
# image classification attributes
self.image_size = image_size
# flow attributes
self.train_size = train_size
# multimodal autoencoding attributes
self.num_frames = num_frames
self.audio_samples_per_frame = audio_samples_per_frame
self.samples_per_patch = samples_per_patch
self.output_shape = output_shape
self.output_num_channels = output_num_channels
self._label_trainable_num_channels = _label_trainable_num_channels
class PerceiverOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("inputs", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
def generate_dummy_inputs(
self,
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
batch_size: int = -1,
seq_length: int = -1,
num_choices: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
num_channels: int = 3,
image_width: int = 40,
image_height: int = 40,
) -> Mapping[str, Any]:
# copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified
if isinstance(preprocessor, PreTrainedTokenizerBase):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = preprocessor.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join(["a"]) * seq_length] * batch_size
inputs = dict(preprocessor(dummy_input, return_tensors=framework))
inputs["inputs"] = inputs.pop("input_ids")
return inputs
elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
inputs = dict(preprocessor(images=dummy_input, return_tensors=framework))
inputs["inputs"] = inputs.pop("pixel_values")
return inputs
else:
raise ValueError(
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor."
)
__all__ = ["PerceiverConfig", "PerceiverOnnxConfig"]
```
|
=====================================================================================================================================================
SOURCE CODE FILE: feature_extraction_perceiver.py
LINES: 1
SIZE: 1.22 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\perceiver\feature_extraction_perceiver.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for Perceiver."""
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
logger = logging.get_logger(__name__)
class PerceiverFeatureExtractor(PerceiverImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use PerceiverImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
__all__ = ["PerceiverFeatureExtractor"]
```
|
===================================================================================================================================================
SOURCE CODE FILE: image_processing_perceiver.py
LINES: 1
SIZE: 17.08 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\perceiver\image_processing_perceiver.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Perceiver."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class PerceiverImageProcessor(BaseImageProcessor):
r"""
Constructs a Perceiver image processor.
Args:
do_center_crop (`bool`, `optional`, defaults to `True`):
Whether or not to center crop the image. If the input size if smaller than `crop_size` along any edge, the
image will be padded with zeros and then center cropped. Can be overridden by the `do_center_crop`
parameter in the `preprocess` method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`):
Desired output size when applying center-cropping. Can be overridden by the `crop_size` parameter in the
`preprocess` method.
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image to `(size["height"], size["width"])`. Can be overridden by the `do_resize`
parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by the `size` parameter in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter
in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter
in the `preprocess` method.
do_normalize:
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256}
crop_size = get_size_dict(crop_size, param_name="crop_size")
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def center_crop(
self,
image: np.ndarray,
crop_size: Dict[str, int],
size: Optional[int] = None,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Center crop an image to `(size["height"] / crop_size["height"] * min_dim, size["width"] / crop_size["width"] *
min_dim)`. Where `min_dim = min(size["height"], size["width"])`.
If the input size is smaller than `crop_size` along any edge, the image will be padded with zeros and then
center cropped.
Args:
image (`np.ndarray`):
Image to center crop.
crop_size (`Dict[str, int]`):
Desired output size after applying the center crop.
size (`Dict[str, int]`, *optional*):
Size of the image after resizing. If not provided, the self.size attribute will be used.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = self.size if size is None else size
size = get_size_dict(size)
crop_size = get_size_dict(crop_size, param_name="crop_size")
height, width = get_image_size(image, channel_dim=input_data_format)
min_dim = min(height, width)
cropped_height = (size["height"] / crop_size["height"]) * min_dim
cropped_width = (size["width"] / crop_size["width"]) * min_dim
return center_crop(
image,
size=(cropped_height, cropped_width),
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image to `crop_size`.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Desired output size after applying the center crop.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_center_crop:
images = [
self.center_crop(image, crop_size, size=size, input_data_format=input_data_format) for image in images
]
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["PerceiverImageProcessor"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: modeling_perceiver.py
LINES: 1
SIZE: 145.86 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\perceiver\modeling_perceiver.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 Deepmind and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Perceiver model."""
import abc
import math
from dataclasses import dataclass
from functools import reduce
from operator import __add__
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithCrossAttentions
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
torch_int,
)
from .configuration_perceiver import PerceiverConfig
ModalitySizeType = Mapping[str, int]
PreprocessorOutputType = Tuple[torch.Tensor, Optional[torch.Tensor], torch.Tensor]
PreprocessorType = Callable[..., PreprocessorOutputType]
PostprocessorType = Callable[..., Any]
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "deepmind/language-perceiver"
_CONFIG_FOR_DOC = "PerceiverConfig"
@dataclass
class PerceiverModelOutput(ModelOutput):
"""
Base class for Perceiver base model's outputs, with potential hidden states, attentions and cross-attentions.
Args:
logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
logits: Optional[torch.FloatTensor] = None
last_hidden_state: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class PerceiverDecoderOutput(ModelOutput):
"""
Base class for Perceiver decoder outputs, with potential cross-attentions.
Args:
logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`):
Output of the basic decoder.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
logits: Optional[torch.FloatTensor] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class PerceiverMaskedLMOutput(ModelOutput):
"""
Base class for Perceiver's masked language model outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_latents,
num_latents)`. Attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class PerceiverClassifierOutput(ModelOutput):
"""
Base class for Perceiver's outputs of sequence/image classification models, optical flow and multimodal
autoencoding.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class PerceiverEmbeddings(nn.Module):
"""Construct the latent embeddings."""
def __init__(self, config):
super().__init__()
self.latents = nn.Parameter(torch.randn(config.num_latents, config.d_latents))
def forward(self, batch_size: int):
return self.latents.expand(batch_size, -1, -1) # Thanks, Phil Wang
class PerceiverSelfAttention(nn.Module):
"""Multi-headed {cross, self}-attention. Can be used both in the encoder as well as in the decoder."""
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
):
super().__init__()
self.num_heads = num_heads
# Q and K must have the same number of channels.
# Default to preserving Q's input's shape.
if qk_channels is None:
qk_channels = q_dim
# V's num_channels determines the shape of the output of QKV-attention.
# Default to the same number of channels used in the key-query operation.
if v_channels is None:
v_channels = qk_channels
if qk_channels % num_heads != 0:
raise ValueError(f"qk_channels ({qk_channels}) must be divisible by num_heads ({num_heads}).")
if v_channels % num_heads != 0:
raise ValueError(f"v_channels ({v_channels}) must be divisible by num_heads ({num_heads}).")
self.qk_channels = qk_channels
self.v_channels = v_channels
self.qk_channels_per_head = self.qk_channels // num_heads
self.v_channels_per_head = self.v_channels // num_heads
# Layer normalization
self.layernorm1 = nn.LayerNorm(q_dim)
self.layernorm2 = nn.LayerNorm(kv_dim) if is_cross_attention else nn.Identity()
# Projection matrices
self.query = nn.Linear(q_dim, qk_channels)
self.key = nn.Linear(kv_dim, qk_channels)
self.value = nn.Linear(kv_dim, v_channels)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x, channels_per_head):
new_x_shape = x.size()[:-1] + (self.num_heads, channels_per_head)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
hidden_states = self.layernorm1(hidden_states)
inputs = self.layernorm2(inputs)
# Project queries, keys and values to a common feature dimension. If this is instantiated as a cross-attention module,
# the keys and values come from the inputs; the attention mask needs to be such that the inputs's non-relevant tokens are not attended to.
is_cross_attention = inputs is not None
queries = self.query(hidden_states)
if is_cross_attention:
keys = self.key(inputs)
values = self.value(inputs)
attention_mask = inputs_mask
else:
keys = self.key(hidden_states)
values = self.value(hidden_states)
# Reshape channels for multi-head attention.
# We reshape from (batch_size, time, channels) to (batch_size, num_heads, time, channels per head)
queries = self.transpose_for_scores(queries, self.qk_channels_per_head)
keys = self.transpose_for_scores(keys, self.qk_channels_per_head)
values = self.transpose_for_scores(values, self.v_channels_per_head)
# Take the dot product between the queries and keys to get the raw attention scores.
attention_scores = torch.matmul(queries, keys.transpose(-1, -2))
batch_size, num_heads, seq_len, q_head_dim = queries.shape
_, _, _, v_head_dim = values.shape
hiddens = self.num_heads * v_head_dim
attention_scores = attention_scores / math.sqrt(q_head_dim)
if attention_mask is not None:
# Apply the attention mask (precomputed for all layers in PerceiverModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, values)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (hiddens,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class PerceiverSelfOutput(nn.Module):
def __init__(self, config, input_channels, output_channels):
super().__init__()
self.dense = nn.Linear(input_channels, output_channels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
return hidden_states
class PerceiverAttention(nn.Module):
"""Attention module, including a dense block."""
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
use_query_residual=True,
):
super().__init__()
# MultiHead attention
if is_cross_attention and qk_channels is None:
if config.cross_attention_shape_for_attention == "q":
qk_channels = q_dim
elif config.cross_attention_shape_for_attention == "kv":
qk_channels = kv_dim
else:
raise ValueError(
f"Unknown value {config.cross_attention_shape_for_attention} for "
"cross_attention_shape_for_attention."
)
else:
if qk_channels is None:
qk_channels = q_dim
if v_channels is None:
v_channels = qk_channels
self.self = PerceiverSelfAttention(
config,
is_cross_attention=is_cross_attention,
qk_channels=qk_channels,
v_channels=v_channels,
num_heads=num_heads,
q_dim=q_dim,
kv_dim=kv_dim,
)
# dense block
output_channels = None
if is_cross_attention:
output_channels = q_dim
else:
if output_channels is None:
output_channels = v_channels
self.output = PerceiverSelfOutput(config, input_channels=self.self.v_channels, output_channels=output_channels)
self.use_query_residual = use_query_residual
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
inputs,
inputs_mask,
output_attentions,
)
# Output projection
attention_output = self.output(self_outputs[0])
# Optionally include a residual to the original queries.
# Consider omitting the residual if the semantics of query and output
# are different, e.g. if queries are positions and outputs are pixels.
if self.use_query_residual:
attention_output = attention_output + hidden_states
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class PerceiverMLP(nn.Module):
"""A Transformer-style dense module to follow attention."""
def __init__(self, config, input_size, widening_factor):
super().__init__()
self.dense1 = nn.Linear(input_size, widening_factor * input_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.dense2 = nn.Linear(widening_factor * input_size, input_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense1(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dense2(hidden_states)
return hidden_states
class PerceiverLayer(nn.Module):
def __init__(
self,
config,
is_cross_attention=False,
qk_channels=None,
v_channels=None,
num_heads=1,
q_dim=None,
kv_dim=None,
widening_factor=4,
use_query_residual=True,
):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = PerceiverAttention(
config,
is_cross_attention=is_cross_attention,
qk_channels=qk_channels,
v_channels=v_channels,
num_heads=num_heads,
q_dim=q_dim,
kv_dim=kv_dim,
use_query_residual=use_query_residual,
)
self.layernorm = nn.LayerNorm(q_dim)
self.mlp = PerceiverMLP(config, input_size=q_dim, widening_factor=widening_factor)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
inputs,
inputs_mask,
output_attentions,
)
attention_output = attention_outputs[0]
outputs = attention_outputs[1:] # add attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
layer_output = layer_output + attention_output # residual connection
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
layer_output = self.layernorm(attention_output)
layer_output = self.mlp(layer_output)
return layer_output
class PerceiverEncoder(nn.Module):
"""The Perceiver Encoder: a scalable, fully attentional encoder."""
def __init__(self, config, kv_dim=None):
super().__init__()
self.config = config
# Check that we can use multihead-attention with these shapes.
if config.d_latents % config.num_self_attention_heads != 0:
raise ValueError(
f"num_z_channels ({config.d_latents}) must be divisible by"
f" num_self_attend_heads ({config.num_self_attention_heads})."
)
if config.d_latents % config.num_cross_attention_heads != 0:
raise ValueError(
f"num_z_channels ({config.d_latents}) must be divisible by"
f" num_cross_attend_heads ({config.num_cross_attention_heads})."
)
# Construct the cross attention layer.
self.cross_attention = PerceiverLayer(
config,
is_cross_attention=True,
qk_channels=config.qk_channels,
v_channels=config.v_channels,
num_heads=config.num_cross_attention_heads,
q_dim=config.d_latents,
kv_dim=kv_dim,
widening_factor=config.cross_attention_widening_factor,
use_query_residual=config.use_query_residual,
)
# Construct a single block of self-attention layers.
# We get deeper architectures by applying this block more than once.
self_attention_layers = []
for _ in range(config.num_self_attends_per_block):
layer = PerceiverLayer(
config,
is_cross_attention=False,
qk_channels=config.qk_channels,
v_channels=config.v_channels,
num_heads=config.num_self_attention_heads,
q_dim=config.d_latents,
kv_dim=config.d_latents,
widening_factor=config.self_attention_widening_factor,
)
self_attention_layers.append(layer)
self.self_attends = nn.ModuleList(self_attention_layers)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs: Optional[torch.FloatTensor] = None,
inputs_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions else None
# Apply the cross-attention between the latents (hidden_states) and inputs:
layer_outputs = self.cross_attention(
hidden_states,
attention_mask=attention_mask,
head_mask=None,
inputs=inputs,
inputs_mask=inputs_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_cross_attentions = all_cross_attentions + (layer_outputs[1],)
# Apply the block of self-attention layers more than once:
for _ in range(self.config.num_blocks):
for i, layer_module in enumerate(self.self_attends):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states,
attention_mask=attention_mask,
head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class PerceiverPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PerceiverConfig
base_model_prefix = "perceiver"
main_input_name = "inputs"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif hasattr(module, "latents"):
module.latents.data.normal_(mean=0.0, std=self.config.initializer_range)
elif hasattr(module, "position_embeddings") and isinstance(module, PerceiverTrainablePositionEncoding):
module.position_embeddings.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.ParameterDict):
for modality in module.keys():
module[modality].data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
PERCEIVER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PERCEIVER_MODEL_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
decoder (*DecoderType*, *optional*):
Optional decoder to use to decode the latent representation of the encoder. Examples include
*transformers.models.perceiver.modeling_perceiver.PerceiverBasicDecoder*,
*transformers.models.perceiver.modeling_perceiver.PerceiverClassificationDecoder*,
*transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder*.
input_preprocessor (*PreprocessorType*, *optional*):
Optional input preprocessor to use. Examples include
*transformers.models.perceiver.modeling_perceiver.PerceiverImagePreprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverAudioPreprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverTextPreprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor*.
output_postprocessor (*PostprocessorType*, *optional*):
Optional output postprocessor to use. Examples include
*transformers.models.perceiver.modeling_perceiver.PerceiverImagePostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverAudioPostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverClassificationPostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverProjectionPostprocessor*,
*transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPostprocessor*.
Note that you can define your own decoders, preprocessors and/or postprocessors to fit your use-case.
"""
PERCEIVER_INPUTS_DOCSTRING = r"""
Args:
inputs (`torch.FloatTensor`):
Inputs to the perceiver. Can be anything: images, text, audio, video, etc.
attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The Perceiver: a scalable, fully attentional architecture.
<Tip>
Note that it's possible to fine-tune Perceiver on higher resolution images than the ones it has been trained on, by
setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
position embeddings to the higher resolution.
</Tip>
""",
PERCEIVER_MODEL_START_DOCSTRING,
)
class PerceiverModel(PerceiverPreTrainedModel):
def __init__(
self,
config,
decoder=None,
input_preprocessor: PreprocessorType = None,
output_postprocessor: PostprocessorType = None,
):
super().__init__(config)
self.config = config
self.input_preprocessor = input_preprocessor
self.output_postprocessor = output_postprocessor
self.embeddings = PerceiverEmbeddings(config)
self.encoder = PerceiverEncoder(
config, kv_dim=input_preprocessor.num_channels if input_preprocessor is not None else config.d_model
)
self.decoder = decoder
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.latents
def set_input_embeddings(self, value):
self.embeddings.latents = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@replace_return_docstrings(output_type=PerceiverModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PerceiverModelOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import PerceiverConfig, PerceiverTokenizer, PerceiverImageProcessor, PerceiverModel
>>> from transformers.models.perceiver.modeling_perceiver import (
... PerceiverTextPreprocessor,
... PerceiverImagePreprocessor,
... PerceiverClassificationDecoder,
... )
>>> import torch
>>> import requests
>>> from PIL import Image
>>> # EXAMPLE 1: using the Perceiver to classify texts
>>> # - we define a TextPreprocessor, which can be used to embed tokens
>>> # - we define a ClassificationDecoder, which can be used to decode the
>>> # final hidden states of the latents to classification logits
>>> # using trainable position embeddings
>>> config = PerceiverConfig()
>>> preprocessor = PerceiverTextPreprocessor(config)
>>> decoder = PerceiverClassificationDecoder(
... config,
... num_channels=config.d_latents,
... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1),
... use_query_residual=True,
... )
>>> model = PerceiverModel(config, input_preprocessor=preprocessor, decoder=decoder)
>>> # you can then do a forward pass as follows:
>>> tokenizer = PerceiverTokenizer()
>>> text = "hello world"
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
>>> with torch.no_grad():
... outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2]
>>> # to train, one can train the model using standard cross-entropy:
>>> criterion = torch.nn.CrossEntropyLoss()
>>> labels = torch.tensor([1])
>>> loss = criterion(logits, labels)
>>> # EXAMPLE 2: using the Perceiver to classify images
>>> # - we define an ImagePreprocessor, which can be used to embed images
>>> config = PerceiverConfig(image_size=224)
>>> preprocessor = PerceiverImagePreprocessor(
... config,
... prep_type="conv1x1",
... spatial_downsample=1,
... out_channels=256,
... position_encoding_type="trainable",
... concat_or_add_pos="concat",
... project_pos_dim=256,
... trainable_position_encoding_kwargs=dict(
... num_channels=256,
... index_dims=config.image_size**2,
... ),
... )
>>> model = PerceiverModel(
... config,
... input_preprocessor=preprocessor,
... decoder=PerceiverClassificationDecoder(
... config,
... num_channels=config.d_latents,
... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1),
... use_query_residual=True,
... ),
... )
>>> # you can then do a forward pass as follows:
>>> image_processor = PerceiverImageProcessor()
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(image, return_tensors="pt").pixel_values
>>> with torch.no_grad():
... outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2]
>>> # to train, one can train the model using standard cross-entropy:
>>> criterion = torch.nn.CrossEntropyLoss()
>>> labels = torch.tensor([1])
>>> loss = criterion(logits, labels)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.input_preprocessor is not None:
inputs, modality_sizes, inputs_without_pos = self.input_preprocessor(
inputs, interpolate_pos_encoding=interpolate_pos_encoding
)
else:
modality_sizes = None
inputs_without_pos = None
if inputs.size()[-1] != self.config.d_model:
raise ValueError(
f"Last dimension of the inputs: {inputs.size()[-1]} doesn't correspond to config.d_model:"
f" {self.config.d_model}. Make sure to set config.d_model appropriately."
)
batch_size, seq_length, _ = inputs.size()
device = inputs.device
# If no attention mask is provided, make them all ones
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length), device=device)
# Make the attention mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
extended_attention_mask = self.invert_attention_mask(attention_mask)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_blocks x num_heads]
# and head_mask is converted to shape [num_blocks x batch x num_heads x N x N]
head_mask = self.get_head_mask(head_mask, self.config.num_blocks * self.config.num_self_attends_per_block)
embedding_output = self.embeddings(batch_size=batch_size)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=None,
head_mask=head_mask,
inputs=inputs,
inputs_mask=extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
logits = None
if self.decoder:
if subsampled_output_points is not None:
output_modality_sizes = {
"audio": subsampled_output_points["audio"].shape[0],
"image": subsampled_output_points["image"].shape[0],
"label": 1,
}
else:
output_modality_sizes = modality_sizes
decoder_query = self.decoder.decoder_query(
inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_output_points
)
decoder_outputs = self.decoder(
decoder_query,
z=sequence_output,
query_mask=extended_attention_mask,
output_attentions=output_attentions,
)
logits = decoder_outputs.logits
# add cross-attentions of decoder
if output_attentions and decoder_outputs.cross_attentions is not None:
if return_dict:
encoder_outputs.cross_attentions = (
encoder_outputs.cross_attentions + decoder_outputs.cross_attentions
)
else:
encoder_outputs = encoder_outputs + decoder_outputs.cross_attentions
if self.output_postprocessor:
logits = self.output_postprocessor(logits, modality_sizes=output_modality_sizes)
if not return_dict:
if logits is not None:
return (logits, sequence_output) + encoder_outputs[1:]
else:
return (sequence_output,) + encoder_outputs[1:]
return PerceiverModelOutput(
logits=logits,
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings("""Example use of Perceiver for masked language modeling.""", PERCEIVER_START_DOCSTRING)
class PerceiverForMaskedLM(PerceiverPreTrainedModel):
def __init__(self, config: PerceiverConfig):
super().__init__(config)
text_preprocessor = PerceiverTextPreprocessor(config)
trainable_position_encoding_kwargs_decoder = {
"num_channels": text_preprocessor.num_channels,
"index_dims": config.max_position_embeddings,
}
self.perceiver = PerceiverModel(
config,
input_preprocessor=text_preprocessor,
decoder=PerceiverBasicDecoder(
config,
output_num_channels=config.d_latents,
output_index_dims=config.max_position_embeddings, # we need to define the seq_len of the inputs beforehand
num_channels=text_preprocessor.num_channels,
qk_channels=8 * 32,
v_channels=text_preprocessor.num_channels,
num_heads=8,
use_query_residual=False,
final_project=False,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
),
)
self.embedding_decoder = PerceiverEmbeddingDecoder(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
input_ids: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverMaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, PerceiverForMaskedLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver")
>>> model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver")
>>> # training
>>> text = "This is an incomplete sentence where some words are missing."
>>> inputs = tokenizer(text, padding="max_length", return_tensors="pt")
>>> # mask " missing."
>>> inputs["input_ids"][0, 52:61] = tokenizer.mask_token_id
>>> labels = tokenizer(text, padding="max_length", return_tensors="pt").input_ids
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
19.87
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2048, 262]
>>> # inference
>>> text = "This is an incomplete sentence where some words are missing."
>>> encoding = tokenizer(text, padding="max_length", return_tensors="pt")
>>> # mask bytes corresponding to " missing.". Note that the model performs much better if the masked span starts with a space.
>>> encoding["input_ids"][0, 52:61] = tokenizer.mask_token_id
>>> # forward pass
>>> with torch.no_grad():
... outputs = model(**encoding)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2048, 262]
>>> masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist()
>>> tokenizer.decode(masked_tokens_predictions)
' missing.'
```"""
if inputs is not None and input_ids is not None:
raise ValueError("You cannot use both `inputs` and `input_ids`")
elif inputs is None and input_ids is not None:
inputs = input_ids
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.embedding_decoder(
outputs.logits if return_dict else outputs[0], embedding_layer=self.perceiver.input_preprocessor.embeddings
)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return PerceiverMaskedLMOutput(
loss=masked_lm_loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings("""Example use of Perceiver for text classification.""", PERCEIVER_START_DOCSTRING)
class PerceiverForSequenceClassification(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverTextPreprocessor(config),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
input_ids: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the classification/regression loss. Indices should be in `[0, ..., config.num_labels -
1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels >
1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, PerceiverForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver")
>>> model = PerceiverForSequenceClassification.from_pretrained("deepmind/language-perceiver")
>>> text = "hello world"
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 2]
```"""
if inputs is not None and input_ids is not None:
raise ValueError("You cannot use both `inputs` and `input_ids`")
elif inputs is None and input_ids is not None:
inputs = input_ids
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for image classification, for tasks such as ImageNet.
This model uses learned position embeddings. In other words, this model is not given any privileged information about
the structure of images. As shown in the paper, this model can achieve a top-1 accuracy of 72.7 on ImageNet.
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="conv1x1"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationLearned(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
trainable_position_encoding_kwargs_preprocessor = {"num_channels": 256, "index_dims": config.image_size**2}
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverImagePreprocessor(
config,
prep_type="conv1x1",
spatial_downsample=1,
out_channels=256,
position_encoding_type="trainable",
concat_or_add_pos="concat",
project_pos_dim=256,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_preprocessor,
),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, PerceiverForImageClassificationLearned
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-learned")
>>> model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned")
>>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 1000]
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: tabby, tabby cat
```"""
if inputs is not None and pixel_values is not None:
raise ValueError("You cannot use both `inputs` and `pixel_values`")
elif inputs is None and pixel_values is not None:
inputs = pixel_values
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for image classification, for tasks such as ImageNet.
This model uses fixed 2D Fourier position embeddings. As shown in the paper, this model can achieve a top-1 accuracy of
79.0 on ImageNet, and 84.5 when pre-trained on a large-scale dataset (i.e. JFT).
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="pixels"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationFourier(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
fourier_position_encoding_kwargs_preprocessor = {
"concat_pos": True,
"max_resolution": (224, 224),
"num_bands": 64,
"sine_only": False,
}
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverImagePreprocessor(
config,
prep_type="pixels",
spatial_downsample=1,
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, PerceiverForImageClassificationFourier
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-fourier")
>>> model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier")
>>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 1000]
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: tabby, tabby cat
```"""
if inputs is not None and pixel_values is not None:
raise ValueError("You cannot use both `inputs` and `pixel_values`")
elif inputs is None and pixel_values is not None:
inputs = pixel_values
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for image classification, for tasks such as ImageNet.
This model uses a 2D conv+maxpool preprocessing network. As shown in the paper, this model can achieve a top-1 accuracy
of 82.1 on ImageNet.
[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`]
(with `prep_type="conv"`) to preprocess the input images, and
[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of
[`PerceiverModel`] into classification logits.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForImageClassificationConvProcessing(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
fourier_position_encoding_kwargs_preprocessor = {
"concat_pos": True,
"max_resolution": (56, 56),
"num_bands": 64,
"sine_only": False,
}
trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1}
self.num_labels = config.num_labels
self.perceiver = PerceiverModel(
config,
input_preprocessor=PerceiverImagePreprocessor(
config,
prep_type="conv",
spatial_downsample=1,
position_encoding_type="fourier",
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
),
decoder=PerceiverClassificationDecoder(
config,
num_channels=config.d_latents,
trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder,
use_query_residual=True,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, PerceiverForImageClassificationConvProcessing
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-conv")
>>> model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
>>> inputs = image_processor(images=image, return_tensors="pt").pixel_values
>>> outputs = model(inputs=inputs)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 1000]
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: tabby, tabby cat
```"""
if inputs is not None and pixel_values is not None:
raise ValueError("You cannot use both `inputs` and `pixel_values`")
elif inputs is None and pixel_values is not None:
inputs = pixel_values
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for optical flow, for tasks such as Sintel and KITTI. [`PerceiverForOpticalFlow`] uses
[`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] (with *prep_type="patches"*) to preprocess the
input images, and [`~models.perceiver.modeling_perceiver.PerceiverOpticalFlowDecoder`] to decode the latent
representation of [`PerceiverModel`].
As input, one concatenates 2 subsequent frames along the channel dimension and extract a 3 x 3 patch around each pixel
(leading to 3 x 3 x 3 x 2 = 54 values for each pixel). Fixed Fourier position encodings are used to encode the position
of each pixel in the patch. Next, one applies the Perceiver encoder. To decode, one queries the latent representation
using the same encoding used for the input.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForOpticalFlow(PerceiverPreTrainedModel):
def __init__(self, config):
super().__init__(config)
fourier_position_encoding_kwargs_preprocessor = {
"num_bands": 64,
"max_resolution": config.train_size,
"sine_only": False,
"concat_pos": True,
}
fourier_position_encoding_kwargs_decoder = {
"concat_pos": True,
"max_resolution": config.train_size,
"num_bands": 64,
"sine_only": False,
}
image_preprocessor = PerceiverImagePreprocessor(
config,
prep_type="patches",
spatial_downsample=1,
conv_after_patching=True,
conv_after_patching_in_channels=54,
temporal_downsample=2,
position_encoding_type="fourier",
# position_encoding_kwargs
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor,
)
self.perceiver = PerceiverModel(
config,
input_preprocessor=image_preprocessor,
decoder=PerceiverOpticalFlowDecoder(
config,
num_channels=image_preprocessor.num_channels,
output_image_shape=config.train_size,
rescale_factor=100.0,
# decoder kwargs
use_query_residual=False,
output_num_channels=2,
# We query the decoder using the first frame features
# rather than a standard decoder position encoding.
position_encoding_type="fourier",
fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_decoder,
),
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the optical flow loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Returns:
Examples:
```python
>>> from transformers import PerceiverForOpticalFlow
>>> import torch
>>> model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver")
>>> # in the Perceiver IO paper, the authors extract a 3 x 3 patch around each pixel,
>>> # leading to 3 x 3 x 3 = 27 values for each pixel (as each pixel also has 3 color channels)
>>> # patches have shape (batch_size, num_frames, num_channels, height, width)
>>> # the authors train on resolutions of 368 x 496
>>> patches = torch.randn(1, 2, 27, 368, 496)
>>> outputs = model(inputs=patches)
>>> logits = outputs.logits
>>> list(logits.shape)
[1, 368, 496, 2]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
loss = None
if labels is not None:
raise NotImplementedError("Optical flow training is not yet supported")
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
Example use of Perceiver for multimodal (video) autoencoding, for tasks such as Kinetics-700.
[`PerceiverForMultimodalAutoencoding`] uses [`~models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor`] to
preprocess the 3 modalities: images, audio and class labels. This preprocessor uses modality-specific preprocessors to
preprocess every modality separately, after which they are concatenated. Trainable position embeddings are used to pad
each modality to the same number of channels to make concatenation along the time dimension possible. Next, one applies
the Perceiver encoder.
[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] is used to decode the latent representation of
[`PerceiverModel`]. This decoder uses each modality-specific decoder to construct queries. The decoder queries are
created based on the inputs after preprocessing. However, autoencoding an entire video in a single forward pass is
computationally infeasible, hence one only uses parts of the decoder queries to do cross-attention with the latent
representation. This is determined by the subsampled indices for each modality, which can be provided as additional
input to the forward pass of [`PerceiverForMultimodalAutoencoding`].
[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] also pads the decoder queries of the different
modalities to the same number of channels, in order to concatenate them along the time dimension. Next, cross-attention
is performed with the latent representation of [`PerceiverModel`].
Finally, [`~models.perceiver.modeling_perceiver.PerceiverMultiModalPostprocessor`] is used to turn this tensor into an
actual video. It first splits up the output into the different modalities, and then applies the respective
postprocessor for each modality.
Note that, by masking the classification label during evaluation (i.e. simply providing a tensor of zeros for the
"label" modality), this auto-encoding model becomes a Kinetics 700 video classifier.
""",
PERCEIVER_START_DOCSTRING,
)
class PerceiverForMultimodalAutoencoding(PerceiverPreTrainedModel):
def __init__(self, config: PerceiverConfig):
super().__init__(config)
n_audio_samples = config.num_frames * config.audio_samples_per_frame
input_preprocessor = PerceiverMultimodalPreprocessor(
min_padding_size=4,
modalities={
"audio": PerceiverAudioPreprocessor(
config,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 192,
"max_resolution": (n_audio_samples,),
"sine_only": False,
"concat_pos": True,
},
prep_type="patches",
samples_per_patch=config.samples_per_patch,
),
"image": PerceiverImagePreprocessor(
config,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 32,
"max_resolution": (config.num_frames, config.image_size, config.image_size),
"sine_only": False,
"concat_pos": True,
},
prep_type="patches",
spatial_downsample=4,
temporal_downsample=1,
),
"label": PerceiverOneHotPreprocessor(config),
},
mask_probs={"image": 0.0, "audio": 0.0, "label": 1.0},
)
image_decoder = PerceiverBasicVideoAutoencodingDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
output_shape=config.output_shape,
output_num_channels=config.output_num_channels,
use_query_residual=False,
position_encoding_only=True,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 32,
"max_resolution": (config.num_frames, config.image_size, config.image_size),
"sine_only": False,
"concat_pos": True,
},
)
decoder = PerceiverMultimodalDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
# Modality specific decoders are used ONLY to generate queries.
# All modalties are decoded together using a unified decoder.
modalities={
"audio": PerceiverBasicDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
output_index_dims=(n_audio_samples // config.samples_per_patch,),
output_num_channels=config.output_num_channels,
use_query_residual=False,
position_encoding_only=True,
position_encoding_type="fourier",
fourier_position_encoding_kwargs={
"num_bands": 192,
"max_resolution": (n_audio_samples,),
"sine_only": False,
"concat_pos": True,
},
),
"image": image_decoder,
"label": PerceiverClassificationDecoder(
config,
# Autoencoding, don't pass inputs to the queries.
concat_preprocessed_input=False,
use_query_residual=False,
position_encoding_only=True,
position_encoding_type="trainable",
trainable_position_encoding_kwargs={
"num_channels": config._label_trainable_num_channels,
"index_dims": 1,
},
),
},
num_outputs=None,
output_num_channels=config.output_num_channels,
use_query_residual=False,
)
output_postprocessor = PerceiverMultimodalPostprocessor(
modalities={
"audio": PerceiverAudioPostprocessor(config, in_channels=config.output_num_channels),
"image": PerceiverProjectionPostprocessor(in_channels=config.output_num_channels, out_channels=3),
"label": PerceiverClassificationPostprocessor(config, in_channels=config.output_num_channels),
}
)
self.perceiver = PerceiverModel(
config,
input_preprocessor=input_preprocessor,
decoder=decoder,
output_postprocessor=output_postprocessor,
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, PerceiverClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import PerceiverForMultimodalAutoencoding
>>> import torch
>>> import numpy as np
>>> # create multimodal inputs
>>> images = torch.randn((1, 16, 3, 224, 224))
>>> audio = torch.randn((1, 30720, 1))
>>> inputs = dict(image=images, audio=audio, label=torch.zeros((images.shape[0], 700)))
>>> model = PerceiverForMultimodalAutoencoding.from_pretrained("deepmind/multimodal-perceiver")
>>> # in the Perceiver IO paper, videos are auto-encoded in chunks
>>> # each chunk subsamples different index dimensions of the image and audio modality decoder queries
>>> nchunks = 128
>>> image_chunk_size = np.prod((16, 224, 224)) // nchunks
>>> audio_chunk_size = audio.shape[1] // model.config.samples_per_patch // nchunks
>>> # process the first chunk
>>> chunk_idx = 0
>>> subsampling = {
... "image": torch.arange(image_chunk_size * chunk_idx, image_chunk_size * (chunk_idx + 1)),
... "audio": torch.arange(audio_chunk_size * chunk_idx, audio_chunk_size * (chunk_idx + 1)),
... "label": None,
... }
>>> outputs = model(inputs=inputs, subsampled_output_points=subsampling)
>>> logits = outputs.logits
>>> list(logits["audio"].shape)
[1, 240]
>>> list(logits["image"].shape)
[1, 6272, 3]
>>> list(logits["label"].shape)
[1, 700]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
loss = None
if labels is not None:
raise NotImplementedError("Multimodal autoencoding training is not yet supported")
outputs = self.perceiver(
inputs=inputs,
attention_mask=attention_mask,
subsampled_output_points=subsampled_output_points,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits if return_dict else outputs[0]
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return PerceiverClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
# Below: position encodings
def build_position_encoding(
position_encoding_type,
out_channels=None,
project_pos_dim=-1,
trainable_position_encoding_kwargs=None,
fourier_position_encoding_kwargs=None,
):
"""
Builds the position encoding.
Args:
- out_channels: refers to the number of channels of the position encodings.
- project_pos_dim: if specified, will project the position encodings to this dimension.
"""
if position_encoding_type == "trainable":
if not trainable_position_encoding_kwargs:
raise ValueError("Make sure to pass trainable_position_encoding_kwargs")
output_pos_enc = PerceiverTrainablePositionEncoding(**trainable_position_encoding_kwargs)
elif position_encoding_type == "fourier":
# We don't use the index_dims argument, as this is only known during the forward pass
if not fourier_position_encoding_kwargs:
raise ValueError("Make sure to pass fourier_position_encoding_kwargs")
output_pos_enc = PerceiverFourierPositionEncoding(**fourier_position_encoding_kwargs)
else:
raise ValueError(f"Unknown position encoding type: {position_encoding_type}.")
# Optionally, project the position encoding to a target dimension:
positions_projection = nn.Linear(out_channels, project_pos_dim) if project_pos_dim > 0 else nn.Identity()
return output_pos_enc, positions_projection
# Below: Perceiver decoders
class PerceiverAbstractDecoder(nn.Module, metaclass=abc.ABCMeta):
"""Perceiver abstract decoder."""
@abc.abstractmethod
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
raise NotImplementedError
@property
@abc.abstractmethod
def num_query_channels(self):
raise NotImplementedError
@abc.abstractmethod
def forward(self, query, z, query_mask=None):
raise NotImplementedError
class PerceiverProjectionDecoder(PerceiverAbstractDecoder):
"""
Baseline projection decoder (no cross-attention).
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config):
super().__init__()
self.classifier = nn.Linear(config.d_latents, config.num_labels)
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
return None
def forward(
self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
# (batch_size, num_latents, d_latents) -> (batch_size, d_latents)
z = torch.mean(z, dim=1)
# (batch_size, d_latents) -> (batch_size, config.num_labels)
logits = self.classifier(z)
return logits
class PerceiverBasicDecoder(PerceiverAbstractDecoder):
"""
Cross-attention-based decoder. This class can be used to decode the final hidden states of the latents using a
cross-attention operation, in which the latents produce keys and values.
The shape of the output of this class depends on how one defines the output queries (also called decoder queries).
Args:
config ([*PerceiverConfig*]):
Model configuration.
output_num_channels (`int`, *optional*):
The number of channels in the output. Will only be used in case *final_project* is set to `True`.
position_encoding_type (`str`, *optional*, defaults to "trainable"):
The type of position encoding to use. Can be either "trainable", "fourier", or "none".
output_index_dims (`int`, *optional*):
The number of dimensions of the output queries. Ignored if 'position_encoding_type' == 'none'.
num_channels (`int`, *optional*, defaults to 128):
The number of channels of the decoder queries. Ignored if 'position_encoding_type' == 'none'.
qk_channels (`int`, *optional*):
The number of channels of the queries and keys in the cross-attention layer.
v_channels (`int`, *optional*):
The number of channels of the values in the cross-attention layer.
num_heads (`int`, *optional*, defaults to 1):
The number of attention heads in the cross-attention layer.
widening_factor (`int`, *optional*, defaults to 1):
The widening factor of the cross-attention layer.
use_query_residual (`bool`, *optional*, defaults to `False`):
Whether to use a residual connection between the query and the output of the cross-attention layer.
concat_preprocessed_input (`bool`, *optional*, defaults to `False`):
Whether to concatenate the preprocessed input to the query.
final_project (`bool`, *optional*, defaults to `True`):
Whether to project the output of the cross-attention layer to a target dimension.
position_encoding_only (`bool`, *optional*, defaults to `False`):
Whether to only use this class to define output queries.
"""
def __init__(
self,
config: PerceiverConfig,
output_num_channels: int,
position_encoding_type: Optional[str] = "trainable",
# The following 2 arguments are ignored if position_encoding_type == 'none':
output_index_dims: Optional[int] = None,
num_channels: Optional[int] = 128,
subsampled_index_dims: Optional[int] = None,
qk_channels: Optional[int] = None,
v_channels: Optional[int] = None,
num_heads: Optional[int] = 1,
widening_factor: Optional[int] = 1,
use_query_residual: Optional[bool] = False,
concat_preprocessed_input: Optional[bool] = False,
final_project: Optional[bool] = True,
position_encoding_only: Optional[bool] = False,
**position_encoding_kwargs,
) -> None:
super().__init__()
self.output_num_channels = output_num_channels
# If `none`, the decoder will not construct any position encodings.
# You should construct your own when querying the decoder.
self.output_position_encodings = None
self.position_encoding_type = position_encoding_type
self.position_encoding_kwargs = position_encoding_kwargs
if position_encoding_type != "none":
self.output_position_encodings, self.positions_projection = build_position_encoding(
position_encoding_type=position_encoding_type, **position_encoding_kwargs
)
self.output_index_dims = output_index_dims
self.num_channels = num_channels
if subsampled_index_dims is None:
subsampled_index_dims = output_index_dims
self.subsampled_index_dims = subsampled_index_dims
self.concat_preprocessed_input = concat_preprocessed_input
self.final_project = final_project
self.position_encoding_only = position_encoding_only
# for multimodal autoencoding, we don't need the decoder cross-attention and final layer
# so then we will set position_encoding_only to True
if not self.position_encoding_only:
self.decoding_cross_attention = PerceiverLayer(
config,
is_cross_attention=True,
qk_channels=qk_channels,
v_channels=v_channels,
num_heads=num_heads,
q_dim=num_channels,
kv_dim=config.d_latents,
widening_factor=widening_factor,
use_query_residual=use_query_residual,
)
self.final_layer = nn.Linear(num_channels, output_num_channels) if final_project else nn.Identity()
@property
def num_query_channels(self) -> int:
if self.position_encoding_type == "none": # Queries come from elsewhere
raise ValueError(
"You cannot calculate number of decoder query channels when position_encoding_type is set to none"
)
if self.position_encoding_only:
if "project_pos_dim" in self.position_encoding_kwargs:
return self.position_encoding_kwargs["project_pos_dim"]
return self.output_position_encodings.output_size()
if self.final_project:
return self.output_num_channels
return self.num_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
if self.position_encoding_type == "none": # Queries come from elsewhere
raise ValueError("You cannot construct decoder queries when position_encoding_type is set to none")
if subsampled_points is not None:
# subsampled_points are the indices if the inputs would be flattened
# however, the inputs aren't flattened, that's why we use unravel_index
# to get the indices for the unflattened array
# unravel_index returns a tuple (x_idx, y_idx, ...)
# stack to get the [n, d] tensor of coordinates
indices = [torch.from_numpy(x) for x in np.unravel_index(subsampled_points.cpu(), self.output_index_dims)]
pos = torch.stack(indices, dim=1)
batch_size = inputs.shape[0]
# Map these coordinates to [-1, 1]
pos = -1 + 2 * pos / torch.tensor(self.output_index_dims)[None, :]
pos = torch.broadcast_to(pos[None], [batch_size, pos.shape[0], pos.shape[1]])
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_emb = self.output_position_encodings(batch_size)
elif self.position_encoding_type == "fourier":
pos_emb = self.output_position_encodings(
self.output_index_dims, batch_size=batch_size, device=inputs.device, dtype=inputs.dtype, pos=pos
)
# Optionally project them to a target dimension.
pos_emb = self.positions_projection(pos_emb)
pos_emb = torch.reshape(pos_emb, [pos_emb.shape[0], -1, pos_emb.shape[-1]])
else:
batch_size = inputs.shape[0]
index_dims = inputs.shape[2:]
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_emb = self.output_position_encodings(batch_size)
elif self.position_encoding_type == "fourier":
pos_emb = self.output_position_encodings(
index_dims, batch_size, device=inputs.device, dtype=inputs.dtype
)
# Optionally project them to a target dimension.
pos_emb = self.positions_projection(pos_emb)
if self.concat_preprocessed_input:
if inputs_without_pos is None:
raise ValueError("Value is required for inputs_without_pos if concat_preprocessed_input is True")
pos_emb = torch.cat([inputs_without_pos, pos_emb], dim=-1)
return pos_emb
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> PerceiverDecoderOutput:
# Cross-attention decoding.
# key, value: B x N x K; query: B x M x K
# Attention maps -> B x N x M
# Output -> B x M x K
cross_attentions = () if output_attentions else None
layer_outputs = self.decoding_cross_attention(
query,
attention_mask=query_mask,
head_mask=None,
inputs=z,
inputs_mask=None,
output_attentions=output_attentions,
)
output = layer_outputs[0]
if output_attentions:
cross_attentions = cross_attentions + (layer_outputs[1],)
logits = self.final_layer(output)
return PerceiverDecoderOutput(logits=logits, cross_attentions=cross_attentions)
class PerceiverClassificationDecoder(PerceiverAbstractDecoder):
"""
Cross-attention based classification decoder. Light-weight wrapper of [`PerceiverBasicDecoder`] for logit output.
Will turn the output of the Perceiver encoder which is of shape (batch_size, num_latents, d_latents) to a tensor of
shape (batch_size, num_labels). The queries are of shape (batch_size, 1, num_labels).
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config, **decoder_kwargs):
super().__init__()
self.num_labels = config.num_labels
self.decoder = PerceiverBasicDecoder(
config,
output_num_channels=self.num_labels,
output_index_dims=1, # Predict a single logit array.
**decoder_kwargs,
)
@property
def num_query_channels(self) -> int:
return self.decoder.num_query_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
return self.decoder.decoder_query(
inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_points
)
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> PerceiverDecoderOutput:
decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)
# B x 1 x num_classes -> B x num_classes
logits = decoder_outputs.logits[:, 0, :]
return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)
class PerceiverOpticalFlowDecoder(PerceiverAbstractDecoder):
"""Cross-attention based optical flow decoder."""
def __init__(self, config, output_image_shape, output_num_channels=2, rescale_factor=100.0, **decoder_kwargs):
super().__init__()
self.output_image_shape = output_image_shape
self.output_num_channels = output_num_channels
self.rescale_factor = rescale_factor
self.decoder = PerceiverBasicDecoder(config, output_num_channels=output_num_channels, **decoder_kwargs)
@property
def num_query_channels(self) -> int:
return self.decoder.num_query_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
if subsampled_points is not None:
raise ValueError("FlowDecoder doesn't support subsampling yet.")
return inputs
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> PerceiverDecoderOutput:
decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)
preds = decoder_outputs.logits
# Output flow and rescale.
preds /= self.rescale_factor
preds = preds.reshape([preds.shape[0]] + list(self.output_image_shape) + [preds.shape[-1]])
return PerceiverDecoderOutput(logits=preds, cross_attentions=decoder_outputs.cross_attentions)
class PerceiverBasicVideoAutoencodingDecoder(PerceiverAbstractDecoder):
"""
Cross-attention based video-autoencoding decoder. Light-weight wrapper of [*PerceiverBasicDecoder*] with video
reshaping logic.
Args:
config ([*PerceiverConfig*]):
Model configuration.
output_shape (`List[int]`):
Shape of the output as (batch_size, num_frames, height, width), excluding the channel dimension.
position_encoding_type (`str`):
The type of position encoding to use. Can be either "trainable", "fourier", or "none".
"""
def __init__(
self, config: PerceiverConfig, output_shape: List[int], position_encoding_type: str, **decoder_kwargs
) -> None:
super().__init__()
if len(output_shape) != 4: # B, T, H, W
raise ValueError(f"Expected rank 4 output_shape, got {output_shape}.")
# Build the decoder components:
self.output_shape = output_shape
self.output_num_channels = decoder_kwargs["output_num_channels"]
self.decoder = PerceiverBasicDecoder(
config,
output_index_dims=self.output_shape[1:4], # T*H*W
position_encoding_type=position_encoding_type,
**decoder_kwargs,
)
@property
def num_query_channels(self) -> int:
return self.decoder.num_query_channels
def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None):
return self.decoder.decoder_query(
inputs,
modality_sizes=modality_sizes,
inputs_without_pos=inputs_without_pos,
subsampled_points=subsampled_points,
)
def forward(
self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None
) -> PerceiverDecoderOutput:
decoder_outputs = self.decoder(query, z)
logits = decoder_outputs.logits
logits = torch.reshape(logits, self.output_shape + [logits.shape[-1]])
return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions)
def restructure(modality_sizes: ModalitySizeType, inputs: torch.Tensor) -> Mapping[str, torch.Tensor]:
"""
Partitions a [B, N, C] tensor into tensors for each modality.
Args:
modality_sizes
dict specifying the size of the modality
inputs:
input tensor
Returns:
dict mapping name of modality to its associated tensor.
"""
outputs = {}
index = 0
# Apply a predictable ordering to the modalities
for modality in sorted(modality_sizes.keys()):
size = modality_sizes[modality]
inp = inputs[:, index : index + size]
index += size
outputs[modality] = inp
return outputs
class PerceiverMultimodalDecoder(PerceiverAbstractDecoder):
"""
Multimodal decoding by composing uni-modal decoders. The *modalities* argument of the constructor is a dictionary
mapping modality name to the decoder of that modality. That decoder will be used to construct queries for that
modality. Modality-specific queries are padded with trainable modality-specific parameters, after which they are
concatenated along the time dimension.
Next, there is a shared cross attention operation across all modalities.
Args:
config ([*PerceiverConfig*]):
Model configuration.
modalities (`Dict[str, PerceiverAbstractDecoder]`):
Dictionary mapping modality name to the decoder of that modality.
num_outputs (`int`):
The number of outputs of the decoder.
output_num_channels (`int`):
The number of channels in the output.
min_padding_size (`int`, *optional*, defaults to 2):
The minimum padding size for all modalities. The final output will have num_channels equal to the maximum
channels across all modalities plus min_padding_size.
subsampled_index_dims (`Dict[str, PerceiverAbstractDecoder]`, *optional*):
Dictionary mapping modality name to the subsampled index dimensions to use for the decoder query of that
modality.
"""
def __init__(
self,
config: PerceiverConfig,
modalities: Dict[str, PerceiverAbstractDecoder],
num_outputs: int,
output_num_channels: int,
min_padding_size: Optional[int] = 2,
subsampled_index_dims: Optional[Dict[str, PerceiverAbstractDecoder]] = None,
**decoder_kwargs,
) -> None:
super().__init__()
self.modalities = nn.ModuleDict(modalities)
self.subsampled_index_dims = subsampled_index_dims
self.min_padding_size = min_padding_size
self.output_num_channels = output_num_channels
self.num_outputs = num_outputs
self.decoder = PerceiverBasicDecoder(
config,
output_index_dims=(num_outputs,),
output_num_channels=output_num_channels,
position_encoding_type="none",
num_channels=self.num_query_channels,
**decoder_kwargs,
)
self.padding = nn.ParameterDict(
{
modality: nn.Parameter(torch.randn(1, self.num_query_channels - decoder.num_query_channels))
for modality, decoder in modalities.items()
}
)
@property
def num_query_channels(self) -> int:
max_channel_size = max(decoder.num_query_channels for _, decoder in self.modalities.items())
common_channel_size = max_channel_size + self.min_padding_size
return common_channel_size
def decoder_query(self, inputs, modality_sizes, inputs_without_pos=None, subsampled_points=None):
# Partition the flat inputs among the different modalities
inputs = restructure(modality_sizes, inputs)
# Obtain modality-specific decoders' queries
subsampled_points = subsampled_points or {}
decoder_queries = {}
for modality, decoder in self.modalities.items():
# Get input_without_pos for this modality if it exists.
input_without_pos = None
if inputs_without_pos is not None:
input_without_pos = inputs_without_pos.get(modality, None)
query = decoder.decoder_query(
inputs=inputs[modality],
modality_sizes=None,
inputs_without_pos=input_without_pos,
subsampled_points=subsampled_points.get(modality, None),
)
decoder_queries[modality] = query
# Pad all queries with trainable position encodings to make them have the same channels
def embed(modality, x):
x = torch.reshape(x, [x.shape[0], np.prod(x.shape[1:-1]), x.shape[-1]])
pos = self.padding[modality]
pos = torch.broadcast_to(pos, [x.shape[0], x.shape[1], self.num_query_channels - x.shape[2]])
return torch.cat([x, pos], dim=2)
# Apply a predictable ordering to the modalities
return torch.cat(
[embed(modality, decoder_queries[modality]) for modality in sorted(self.modalities.keys())], dim=1
)
def forward(
self,
query: torch.Tensor,
z: torch.FloatTensor,
query_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> torch.Tensor:
# B x 1 x num_classes -> B x num_classes
decoder_outputs = self.decoder(query, z, output_attentions=output_attentions)
return decoder_outputs
# Below: IO pre- and post-processor classes for Perceiver.
def space_to_depth(frames: torch.Tensor, temporal_block_size: int = 1, spatial_block_size: int = 1) -> torch.Tensor:
"""
Space to depth transform. Rearranges blocks of spatial data, into depth.
This function assumes the channels to be first, but will place the channels last after transformation.
Based on https://discuss.pytorch.org/t/is-there-any-layer-like-tensorflows-space-to-depth-function/3487/15.
"""
if len(frames.shape) == 4:
batch_size, num_channels, height, width = frames.shape
# split up dimensions (height by spatial_block_size, width by spatial_block_size)
frames = frames.view(
batch_size,
num_channels,
height // spatial_block_size,
spatial_block_size,
width // spatial_block_size,
spatial_block_size,
)
# move blocks to last dimension: (batch_size, H//bs, W//bs, bs, bs, C)
frames = frames.permute(0, 2, 4, 3, 5, 1).contiguous()
# concatenate blocks along channel dimension: (batch_size, H//bs, W//bs, bs*bs*C)
frames = frames.view(
batch_size,
height // spatial_block_size,
width // spatial_block_size,
(spatial_block_size**2) * num_channels,
)
return frames
elif len(frames.shape) == 5:
batch_size, time, num_channels, height, width = frames.shape
# split up dimensions (time by temporal_block_size, height by spatial_block_size, width by spatial_block_size)
frames = frames.view(
batch_size,
time // temporal_block_size,
temporal_block_size,
num_channels,
height // spatial_block_size,
spatial_block_size,
width // spatial_block_size,
spatial_block_size,
)
# move blocks to last dimension: (batch_size, T//ts, H//bs, W//bs, ts, bs, bs, C)
frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous()
# concatenate blocks along channel dimension: (batch_size, T//ts, H//bs, W//bs, ts*bs*bs*C)
frames = frames.view(
batch_size,
time // temporal_block_size,
height // spatial_block_size,
width // spatial_block_size,
temporal_block_size * (spatial_block_size**2) * num_channels,
)
return frames
else:
raise ValueError(
"Frames should be of rank 4 (batch, channels, height, width)"
" or rank 5 (batch, time, channels, height, width)"
)
class Conv2dSamePadding(nn.Conv2d):
"""
Conv2d layer with padding="same" support. Source:
https://gist.github.com/sumanmichael/4de9dee93f972d47c80c4ade8e149ea6
"""
def __init__(self, *args, **kwargs):
super(Conv2dSamePadding, self).__init__(*args, **kwargs)
self.zero_pad_2d = nn.ZeroPad2d(
reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in self.kernel_size[::-1]])
)
def forward(self, input):
return self._conv_forward(self.zero_pad_2d(input), self.weight, self.bias)
class Conv2DDownsample(nn.Module):
"""Downsamples 4x by applying a 2D convolution and doing max pooling."""
def __init__(
self,
num_layers: int = 1,
in_channels: int = 3,
out_channels: int = 64,
use_batchnorm: bool = True,
):
"""
Constructs a Conv2DDownsample model.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 64):
The number of conv output channels.
use_batchnorm (`bool`, *optional*, defaults to `True`):
Whether to use batchnorm.
"""
super().__init__()
self.conv = Conv2dSamePadding(
in_channels=in_channels, out_channels=out_channels, kernel_size=7, stride=2, bias=False
)
self.batchnorm = nn.BatchNorm2d(num_features=out_channels) if use_batchnorm else nn.Identity()
self.relu = nn.ReLU()
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
out = self.conv(inputs)
out = self.batchnorm(out)
out = self.relu(out)
out = self.max_pool(out)
return out
def generate_fourier_features(pos, num_bands, max_resolution=(224, 224), concat_pos=True, sine_only=False):
"""
Generate a Fourier frequency position encoding with linear spacing.
Args:
pos (`torch.LongTensor` of shape `(batch_size, sequence_length, dim)`):
The Tensor containing the position of n points in d dimensional space.
num_bands (`int`):
The number of frequency bands (K) to use.
max_resolution (`Tuple[int]`, *optional*, defaults to (224, 224)):
The maximum resolution (i.e. the number of pixels per dim). A tuple representing resolution for each dimension.
concat_pos (`bool`, *optional*, defaults to `True`):
Whether to concatenate the input position encoding to the Fourier features.
sine_only (`bool`, *optional*, defaults to `False`):
Whether to use a single phase (sin) or two (sin/cos) for each frequency band.
Returns:
`torch.FloatTensor` of shape `(batch_size, sequence_length, n_channels)`: The Fourier position embeddings. If
`concat_pos` is `True` and `sine_only` is `False`, output dimensions are ordered as: [dim_1, dim_2, ..., dim_d,
sin(pi*f_1*dim_1), ..., sin(pi*f_K*dim_1), ..., sin(pi*f_1*dim_d), ..., sin(pi*f_K*dim_d), cos(pi*f_1*dim_1),
..., cos(pi*f_K*dim_1), ..., cos(pi*f_1*dim_d), ..., cos(pi*f_K*dim_d)], where dim_i is pos[:, i] and f_k is the
kth frequency band.
"""
batch_size = pos.shape[0]
min_freq = 1.0
# Nyquist frequency at the target resolution:
freq_bands = torch.stack(
[torch.linspace(start=min_freq, end=res / 2, steps=num_bands) for res in max_resolution], dim=0
)
# Get frequency bands for each spatial dimension.
# Output is size [n, d * num_bands]
per_pos_features = pos[0, :, :][:, :, None] * freq_bands[None, :, :]
per_pos_features = torch.reshape(per_pos_features, [-1, np.prod(per_pos_features.shape[1:])])
if sine_only:
# Output is size [n, d * num_bands]
per_pos_features = torch.sin(np.pi * (per_pos_features))
else:
# Output is size [n, 2 * d * num_bands]
per_pos_features = torch.cat(
[torch.sin(np.pi * per_pos_features), torch.cos(np.pi * per_pos_features)], dim=-1
)
# Concatenate the raw input positions.
if concat_pos:
# Adds d bands to the encoding.
per_pos_features = torch.cat([pos, per_pos_features.expand(batch_size, -1, -1)], dim=-1)
return per_pos_features
def build_linear_positions(index_dims, output_range=(-1.0, 1.0)):
"""
Generate an array of position indices for an N-D input array.
Args:
index_dims (`List[int]`):
The shape of the index dimensions of the input array.
output_range (`Tuple[float]`, *optional*, defaults to `(-1.0, 1.0)`):
The min and max values taken by each input index dimension.
Returns:
`torch.FloatTensor` of shape `(index_dims[0], index_dims[1], .., index_dims[-1], N)`.
"""
def _linspace(n_xels_per_dim):
return torch.linspace(start=output_range[0], end=output_range[1], steps=n_xels_per_dim, dtype=torch.float32)
dim_ranges = [_linspace(n_xels_per_dim) for n_xels_per_dim in index_dims]
array_index_grid = meshgrid(*dim_ranges, indexing="ij")
return torch.stack(array_index_grid, dim=-1)
class PerceiverAbstractPositionEncoding(nn.Module, metaclass=abc.ABCMeta):
"""Perceiver abstract position encoding."""
@property
@abc.abstractmethod
def num_dimensions(self) -> int:
raise NotImplementedError
@abc.abstractmethod
def output_size(self, *args, **kwargs) -> int:
raise NotImplementedError
@abc.abstractmethod
def forward(self, batch_size, pos):
raise NotImplementedError
class PerceiverTrainablePositionEncoding(PerceiverAbstractPositionEncoding):
"""Trainable position encoding."""
def __init__(self, index_dims, num_channels=128):
super().__init__()
self._num_channels = num_channels
self._index_dims = index_dims
index_dim = np.prod(index_dims)
self.position_embeddings = nn.Parameter(torch.randn(index_dim, num_channels))
@property
def num_dimensions(self) -> int:
if isinstance(self._index_dims, int):
return 1
return len(self._index_dims)
def output_size(self, *args, **kwargs) -> int:
return self._num_channels
def interpolate_pos_encoding(self, position_embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
num_positions = position_embeddings.shape[0]
new_height = new_width = torch_int(num_positions**0.5)
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and height == new_height and width == new_width:
return position_embeddings
position_embeddings = position_embeddings.reshape(1, new_height, new_width, self._num_channels).permute(
0, 3, 1, 2
)
position_embeddings = nn.functional.interpolate(
position_embeddings,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
position_embeddings = position_embeddings.reshape(1, self._num_channels, -1).permute(0, 2, 1).squeeze(0)
return position_embeddings
def forward(
self, batch_size: int, interpolate_pos_encoding: bool = False, input_size: torch.Size = None
) -> torch.Tensor:
position_embeddings = self.position_embeddings
if interpolate_pos_encoding:
height, width = input_size
position_embeddings = self.interpolate_pos_encoding(position_embeddings, height, width)
if batch_size is not None:
position_embeddings = position_embeddings.expand(batch_size, -1, -1)
return position_embeddings
def _check_or_build_spatial_positions(pos, index_dims, batch_size):
"""
Checks or builds spatial position features (x, y, ...).
Args:
pos (`torch.FloatTensor`):
None, or an array of position features. If None, position features are built. Otherwise, their size is checked.
index_dims (`List[int]`):
An iterable giving the spatial/index size of the data to be featurized.
batch_size (`int`):
The batch size of the data to be featurized.
Returns:
`torch.FloatTensor` of shape `(batch_size, prod(index_dims))` an array of position features.
"""
if pos is None:
pos = build_linear_positions(index_dims)
# equivalent to `torch.broadcast_to(pos[None], (batch_size,) + pos.shape)`
# but `torch.broadcast_to` cannot be converted to ONNX
pos = pos[None].expand((batch_size,) + pos.shape)
pos = torch.reshape(pos, [batch_size, np.prod(index_dims), -1])
else:
# Just a warning label: you probably don't want your spatial features to
# have a different spatial layout than your pos coordinate system.
# But feel free to override if you think it'll work!
if pos.shape[-1] != len(index_dims):
raise ValueError("Spatial features have the wrong number of dimensions.")
return pos
class PerceiverFourierPositionEncoding(PerceiverAbstractPositionEncoding):
"""Fourier (Sinusoidal) position encoding."""
def __init__(self, num_bands, max_resolution, concat_pos=True, sine_only=False):
super().__init__()
self.num_bands = num_bands
self.max_resolution = max_resolution
self.concat_pos = concat_pos
self.sine_only = sine_only
@property
def num_dimensions(self) -> int:
return len(self.max_resolution)
def output_size(self):
"""Returns size of positional encodings last dimension."""
num_dims = len(self.max_resolution)
encoding_size = self.num_bands * num_dims
if not self.sine_only:
encoding_size *= 2
if self.concat_pos:
encoding_size += self.num_dimensions
return encoding_size
def forward(
self,
index_dims: List[int],
batch_size: int,
device: torch.device,
dtype: torch.dtype,
pos: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
pos = _check_or_build_spatial_positions(pos, index_dims, batch_size)
fourier_pos_enc = generate_fourier_features(
pos,
num_bands=self.num_bands,
max_resolution=self.max_resolution,
concat_pos=self.concat_pos,
sine_only=self.sine_only,
).to(device=device, dtype=dtype)
return fourier_pos_enc
class AbstractPreprocessor(nn.Module):
@property
def num_channels(self) -> int:
"""Returns size of preprocessor output."""
raise NotImplementedError()
class PerceiverTextPreprocessor(AbstractPreprocessor):
"""
Text preprocessing for Perceiver Encoder. Can be used to embed `inputs` and add positional encodings.
The dimensionality of the embeddings is determined by the `d_model` attribute of the configuration.
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config: PerceiverConfig) -> None:
super().__init__()
self.config = config
self.embeddings = nn.Embedding(num_embeddings=config.vocab_size, embedding_dim=config.d_model)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model)
@property
def num_channels(self) -> int:
return self.config.d_model
def forward(
self,
inputs: torch.LongTensor,
pos: Optional[torch.Tensor] = None,
network_input_is_1d: bool = True,
interpolate_pos_encoding: bool = False,
):
embeddings_without_pos = self.embeddings(inputs)
seq_length = inputs.shape[1]
position_ids = torch.arange(0, seq_length, device=inputs.device)
embeddings = embeddings_without_pos + self.position_embeddings(position_ids)
return embeddings, None, embeddings_without_pos
class PerceiverEmbeddingDecoder(nn.Module):
"""
Module to decode embeddings (for masked language modeling).
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config: PerceiverConfig) -> None:
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.bias = nn.Parameter(torch.zeros(self.vocab_size))
def forward(self, hidden_states: torch.Tensor, embedding_layer: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, d_model = hidden_states.shape
# Flatten batch dim
output = torch.matmul(hidden_states.reshape([-1, d_model]), embedding_layer.weight.transpose(0, 1))
output = output + self.bias
return output.reshape([batch_size, seq_len, self.vocab_size])
class PerceiverMultimodalPostprocessor(nn.Module):
"""
Multimodal postprocessing for Perceiver. Can be used to combine modality-specific postprocessors into a single
postprocessor.
Args:
modalities (`Mapping[str, PostprocessorType]`):
Dictionary mapping modality name to postprocessor class for that modality.
input_is_dict (`bool`, *optional*, defaults to `False`):
If True, input is assumed to be dictionary structured, and outputs keep the same dictionary shape. If
False, input is a tensor which is sliced up during postprocessing by *modality_sizes*.
"""
def __init__(self, modalities: Mapping[str, PostprocessorType], input_is_dict: bool = False):
super().__init__()
self.modalities = nn.ModuleDict(modalities)
self.input_is_dict = input_is_dict
def forward(
self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None
) -> Mapping[str, torch.Tensor]:
if not self.input_is_dict:
# Slice up modalities by their sizes.
if modality_sizes is None:
raise ValueError("Modality sizes should be specified if input is not a dictionary.")
inputs = restructure(modality_sizes=modality_sizes, inputs=inputs)
outputs = {
modality: postprocessor(inputs[modality], pos=pos, modality_sizes=None)
for modality, postprocessor in self.modalities.items()
}
return outputs
class PerceiverClassificationPostprocessor(nn.Module):
"""
Classification postprocessing for Perceiver. Can be used to convert the decoder output to classification logits.
Args:
config ([*PerceiverConfig*]):
Model configuration.
in_channels (`int`):
Number of channels in the input.
"""
def __init__(self, config: PerceiverConfig, in_channels: int) -> None:
super().__init__()
self.classifier = nn.Linear(in_channels, config.num_labels)
def forward(self, inputs, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
logits = self.classifier(inputs)
return logits[:, 0, :]
class PerceiverAudioPostprocessor(nn.Module):
"""
Audio postprocessing for Perceiver. Can be used to convert the decoder output to audio features.
Args:
config ([*PerceiverConfig*]):
Model configuration.
in_channels (`int`):
Number of channels in the input.
postproc_type (`str`, *optional*, defaults to `"patches"`):
Postprocessor type to use. Currently, only "patches" is supported.
"""
def __init__(self, config: PerceiverConfig, in_channels: int, postproc_type: str = "patches") -> None:
super().__init__()
if postproc_type not in ("patches",): # to be supported: 'conv', 'patches', 'pixels'
raise ValueError("Invalid postproc_type!")
# Architecture parameters:
self.classifier = nn.Linear(in_channels, config.samples_per_patch)
def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
logits = self.classifier(inputs)
return torch.reshape(logits, [inputs.shape[0], -1])
class PerceiverProjectionPostprocessor(nn.Module):
"""
Projection postprocessing for Perceiver. Can be used to project the channels of the decoder output to a lower
dimension.
Args:
in_channels (`int`):
Number of channels in the input.
out_channels (`int`):
Number of channels in the output.
"""
def __init__(self, in_channels: int, out_channels: int) -> None:
super().__init__()
self.classifier = nn.Linear(in_channels, out_channels)
def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor:
logits = self.classifier(inputs)
return logits
class PerceiverImagePreprocessor(AbstractPreprocessor):
"""
Image preprocessing for Perceiver Encoder.
Note: the *out_channels* argument refers to the output channels of a convolutional layer, if *prep_type* is set to
"conv1x1" or "conv". If one adds absolute position embeddings, one must make sure the *num_channels* of the
position encoding kwargs are set equal to the *out_channels*.
Args:
config ([*PerceiverConfig*]):
Model configuration.
prep_type (`str`, *optional*, defaults to `"conv"`):
Preprocessing type. Can be "conv1x1", "conv", "patches", "pixels".
spatial_downsample (`int`, *optional*, defaults to 4):
Spatial downsampling factor.
temporal_downsample (`int`, *optional*, defaults to 1):
Temporal downsampling factor (only relevant in case a time dimension is present).
position_encoding_type (`str`, *optional*, defaults to `"fourier"`):
Position encoding type. Can be "fourier" or "trainable".
in_channels (`int`, *optional*, defaults to 3):
Number of channels in the input.
out_channels (`int`, *optional*, defaults to 64):
Number of channels in the output.
conv_after_patching (`bool`, *optional*, defaults to `False`):
Whether to apply a convolutional layer after patching.
conv_after_patching_in_channels (`int`, *optional*, defaults to 54):
Number of channels in the input of the convolutional layer after patching.
conv2d_use_batchnorm (`bool`, *optional*, defaults to `True`):
Whether to use batch normalization in the convolutional layer.
concat_or_add_pos (`str`, *optional*, defaults to `"concat"`):
How to concatenate the position encoding to the input. Can be "concat" or "add".
project_pos_dim (`int`, *optional*, defaults to -1):
Dimension of the position encoding to project to. If -1, no projection is applied.
**position_encoding_kwargs (`Dict`, *optional*):
Keyword arguments for the position encoding.
"""
def __init__(
self,
config,
prep_type="conv",
spatial_downsample: int = 4,
temporal_downsample: int = 1,
position_encoding_type: str = "fourier",
in_channels: int = 3,
out_channels: int = 64,
conv_after_patching: bool = False,
conv_after_patching_in_channels: int = 54, # only relevant when conv_after_patching = True
conv2d_use_batchnorm: bool = True,
concat_or_add_pos: str = "concat",
project_pos_dim: int = -1,
**position_encoding_kwargs,
):
super().__init__()
self.config = config
if prep_type not in ("conv", "patches", "pixels", "conv1x1"):
raise ValueError(f"Prep_type {prep_type} is invalid")
if concat_or_add_pos not in ["concat", "add"]:
raise ValueError(f"Invalid value {concat_or_add_pos} for concat_or_add_pos.")
self.in_channels = in_channels
self.prep_type = prep_type
self.spatial_downsample = spatial_downsample
self.temporal_downsample = temporal_downsample
self.position_encoding_type = position_encoding_type
self.concat_or_add_pos = concat_or_add_pos
self.conv_after_patching = conv_after_patching
self.out_channels = out_channels
if self.prep_type == "conv":
# Downsampling with conv is currently restricted
convnet_num_layers = math.log(spatial_downsample, 4)
convnet_num_layers_is_int = convnet_num_layers == np.round(convnet_num_layers)
if not convnet_num_layers_is_int or temporal_downsample != 1:
raise ValueError(
"Only powers of 4 expected for spatial and 1 expected for temporal downsampling with conv."
)
self.convnet = Conv2DDownsample(
in_channels=in_channels,
num_layers=int(convnet_num_layers),
out_channels=out_channels,
use_batchnorm=conv2d_use_batchnorm,
)
elif self.prep_type == "conv1x1":
if temporal_downsample != 1:
raise ValueError("Conv1x1 does not downsample in time.")
self.convnet_1x1 = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(1, 1),
# spatial_downsample is unconstrained for 1x1 convolutions.
stride=(spatial_downsample, spatial_downsample),
)
# Position embeddings
self.project_pos_dim = project_pos_dim
self.position_embeddings, self.positions_projection = build_position_encoding(
position_encoding_type=position_encoding_type,
out_channels=out_channels,
project_pos_dim=project_pos_dim,
**position_encoding_kwargs,
)
# Optional convolutional layer after patches.
self.conv_after_patches = (
nn.Linear(conv_after_patching_in_channels, self.out_channels) if conv_after_patching else nn.Identity()
)
@property
def num_channels(self) -> int:
# Let's assume that the number of resolutions (in the context of image preprocessing)
# of the input data is 2 or 3 depending on whether we are processing image or video respectively.
# In this case, for convenience, we will declare is_temporal variable,
# which will show whether the data has a temporal dimension or not.
is_temporal = self.position_embeddings.num_dimensions > 2
# position embedding
if self.project_pos_dim > 0:
pos_dim = self.project_pos_dim
else:
pos_dim = self.position_embeddings.output_size()
if self.concat_or_add_pos == "add":
return pos_dim
# inputs
if self.conv_after_patching or self.prep_type in ("conv1x1", "conv"):
inp_dim = self.out_channels
elif self.prep_type == "pixels":
inp_dim = self.in_channels
if not is_temporal:
inp_dim = math.ceil(inp_dim / self.spatial_downsample)
elif self.prep_type == "patches":
if self.conv_after_patching:
inp_dim = self.out_channels
else:
inp_dim = self.in_channels * self.spatial_downsample**2
if is_temporal:
inp_dim *= self.temporal_downsample
return inp_dim + pos_dim
def _build_network_inputs(
self, inputs: torch.Tensor, network_input_is_1d: bool = True, interpolate_pos_encoding: bool = False
):
"""
Construct the final input, including position encoding.
This method expects the inputs to always have channels as last dimension.
"""
batch_size = inputs.shape[0]
input_size = inputs.shape[1:3]
index_dims = inputs.shape[1:-1]
indices = np.prod(index_dims)
# Flatten input features to a 1D index dimension if necessary.
if len(inputs.shape) > 3 and network_input_is_1d:
inputs = torch.reshape(inputs, [batch_size, indices, -1])
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_enc = self.position_embeddings(batch_size, interpolate_pos_encoding, input_size)
elif self.position_encoding_type == "fourier":
pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype)
# Optionally project them to a target dimension.
pos_enc = self.positions_projection(pos_enc)
if not network_input_is_1d:
# Reshape pos to match the input feature shape
# if the network takes non-1D inputs
sh = inputs.shape
pos_enc = torch.reshape(pos_enc, list(sh)[:-1] + [-1])
if self.concat_or_add_pos == "concat":
inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1)
elif self.concat_or_add_pos == "add":
inputs_with_pos = inputs + pos_enc
return inputs_with_pos, inputs
def forward(
self,
inputs: torch.Tensor,
pos: Optional[torch.Tensor] = None,
network_input_is_1d: bool = True,
interpolate_pos_encoding: bool = False,
):
if self.prep_type == "conv":
# Convnet image featurization.
# Downsamples spatially by a factor of 4
inputs = self.convnet(inputs)
elif self.prep_type == "conv1x1":
# map inputs to self.out_channels
inputs = self.convnet_1x1(inputs)
elif self.prep_type == "pixels":
# if requested, downsamples in the crudest way
if inputs.ndim == 4:
inputs = inputs[:: self.spatial_downsample, :: self.spatial_downsample]
elif inputs.ndim == 5:
inputs = inputs[
:, :: self.temporal_downsample, :, :: self.spatial_downsample, :: self.spatial_downsample
]
else:
raise ValueError("Unsupported data format for pixels.")
elif self.prep_type == "patches":
# Space2depth featurization.
# Video: B x T x C x H x W
inputs = space_to_depth(
inputs, temporal_block_size=self.temporal_downsample, spatial_block_size=self.spatial_downsample
)
if inputs.ndim == 5 and inputs.shape[1] == 1:
# for flow
inputs = inputs.squeeze(dim=1)
# Optionally apply conv layer.
inputs = self.conv_after_patches(inputs)
if self.prep_type != "patches":
# move channels to last dimension, as the _build_network_inputs method below expects this
if inputs.ndim == 4:
inputs = inputs.permute(0, 2, 3, 1)
elif inputs.ndim == 5:
inputs = inputs.permute(0, 1, 3, 4, 2)
else:
raise ValueError("Unsupported data format for conv1x1.")
inputs, inputs_without_pos = self._build_network_inputs(inputs, network_input_is_1d, interpolate_pos_encoding)
modality_sizes = None # Size for each modality, only needed for multimodal
return inputs, modality_sizes, inputs_without_pos
class PerceiverOneHotPreprocessor(AbstractPreprocessor):
"""
One-hot preprocessor for Perceiver Encoder. Can be used to add a dummy index dimension to the input.
Args:
config ([`PerceiverConfig`]):
Model configuration.
"""
def __init__(self, config: PerceiverConfig) -> None:
super().__init__()
self.config: PerceiverConfig = config
@property
def num_channels(self) -> int:
return self.config.num_labels
def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True):
# Add a dummy index dimension.
inputs = inputs[:, None, :]
# No position encodings, so the 1st (input) and 3rd (inputs_without_pos)
# outputs are identical.
return inputs, None, inputs
class PerceiverAudioPreprocessor(AbstractPreprocessor):
"""
Audio preprocessing for Perceiver Encoder.
Args:
config ([*PerceiverConfig*]):
Model configuration.
prep_type (`str`, *optional*, defaults to `"patches"`):
Preprocessor type to use. Only "patches" is supported.
samples_per_patch (`int`, *optional*, defaults to 96):
Number of samples per patch.
position_encoding_type (`str`, *optional*, defaults to `"fourier"`):
Type of position encoding to use. Can be "trainable" or "fourier".
concat_or_add_pos (`str`, *optional*, defaults to `"concat"`):
How to concatenate the position encoding to the input. Can be "concat" or "add".
out_channels (`int`, *optional*, defaults to 64):
Number of channels in the output.
project_pos_dim (`int`, *optional*, defaults to -1):
Dimension of the position encoding to project to. If -1, no projection is applied.
**position_encoding_kwargs (`Dict`, *optional*):
Keyword arguments for the position encoding.
"""
def __init__(
self,
config,
prep_type: str = "patches",
samples_per_patch: int = 96,
position_encoding_type: str = "fourier",
concat_or_add_pos: str = "concat",
out_channels=64,
project_pos_dim=-1,
**position_encoding_kwargs,
):
super().__init__()
self.config = config
if prep_type not in ("patches",):
raise ValueError(f"Prep_type {prep_type} is invalid, can only be 'patches'.")
if concat_or_add_pos not in ["concat", "add"]:
raise ValueError(f"Concat_or_pos {concat_or_add_pos} is invalid, can only be 'concat' or 'add'.")
self.samples_per_patch = samples_per_patch
self.position_encoding_type = position_encoding_type
self.concat_or_add_pos = concat_or_add_pos
self.project_pos_dim = project_pos_dim
# Position embeddings
self.position_embeddings, self.positions_projection = build_position_encoding(
position_encoding_type=position_encoding_type,
out_channels=out_channels,
project_pos_dim=project_pos_dim,
**position_encoding_kwargs,
)
@property
def num_channels(self) -> int:
# position embedding
if self.project_pos_dim > 0:
pos_dim = self.project_pos_dim
else:
pos_dim = self.position_embeddings.output_size()
if self.concat_or_add_pos == "add":
return pos_dim
return self.samples_per_patch + pos_dim
def _build_network_inputs(self, inputs):
"""Construct the final input, including position encoding."""
batch_size = inputs.shape[0]
index_dims = inputs.shape[1:-1]
# Construct the position encoding.
if self.position_encoding_type == "trainable":
pos_enc = self.position_embeddings(batch_size)
elif self.position_encoding_type == "fourier":
pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype)
# Optionally project them to a target dimension.
pos_enc = self.positions_projection(pos_enc)
if self.concat_or_add_pos == "concat":
inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1)
elif self.concat_or_add_pos == "add":
inputs_with_pos = inputs + pos_enc
return inputs_with_pos, inputs
def forward(
self,
inputs: torch.Tensor,
pos: Optional[torch.Tensor] = None,
network_input_is_1d: bool = True,
interpolate_pos_encoding: bool = False,
):
inputs = torch.reshape(inputs, [inputs.shape[0], -1, self.samples_per_patch])
inputs, inputs_without_pos = self._build_network_inputs(inputs)
modality_sizes = None # Size for each modality, only needed for multimodal
return inputs, modality_sizes, inputs_without_pos
class PerceiverMultimodalPreprocessor(AbstractPreprocessor):
"""
Multimodal preprocessing for Perceiver Encoder.
Inputs for each modality are preprocessed, then padded with trainable position embeddings to have the same number
of channels.
Args:
modalities (`Mapping[str, PreprocessorType]`):
Dict mapping modality name to preprocessor.
mask_probs (`Dict[str, float]`):
Dict mapping modality name to masking probability of that modality.
min_padding_size (`int`, *optional*, defaults to 2):
The minimum padding size for all modalities. The final output will have num_channels equal to the maximum
channels across all modalities plus min_padding_size.
"""
def __init__(
self,
modalities: Mapping[str, PreprocessorType],
mask_probs: Optional[Mapping[str, float]] = None,
min_padding_size: int = 2,
):
super().__init__()
self.modalities = nn.ModuleDict(modalities)
self.min_padding_size = min_padding_size
self.mask_probs = mask_probs if mask_probs is not None else {}
self.padding = nn.ParameterDict(
{
modality: nn.Parameter(torch.randn(1, self.num_channels - preprocessor.num_channels))
for modality, preprocessor in modalities.items()
}
)
self.mask = nn.ParameterDict(
{modality: nn.Parameter(torch.randn(1, self.num_channels)) for modality, _ in self.mask_probs.items()}
)
@property
def num_channels(self) -> int:
max_channel_size = max(processor.num_channels for _, processor in self.modalities.items())
common_channel_size = max_channel_size + self.min_padding_size
return common_channel_size
def forward(
self,
inputs: Mapping[str, torch.Tensor],
pos: Optional[torch.Tensor] = None,
network_input_is_1d: bool = True,
interpolate_pos_encoding: bool = False,
) -> PreprocessorOutputType:
padded = {}
modality_sizes = {}
inputs_without_pos = {}
for modality, preprocessor in self.modalities.items():
# preprocess each modality using the respective preprocessor.
output, _, inputs_without_pos[modality] = preprocessor(
inputs[modality], pos=pos, network_input_is_1d=network_input_is_1d
)
# pad to the same common_channel_size.
batch_size, num_samples, num_channels = output.shape
pos_enc = self.padding[modality].expand(batch_size, -1, -1)
padding = torch.broadcast_to(
pos_enc,
[batch_size, num_samples, self.num_channels - num_channels],
)
output_padded = torch.cat([output, padding], dim=2)
# mask if required
if modality in self.mask_probs:
mask_token = self.mask[modality].expand(batch_size, -1, -1)
mask_prob = self.mask_probs[modality]
mask = torch.bernoulli(torch.full([batch_size, num_samples], mask_prob))
mask = torch.unsqueeze(mask, dim=2).to(mask_token.device)
output_padded = (1 - mask) * output_padded + mask * mask_token
padded[modality] = output_padded
modality_sizes[modality] = output_padded.shape[1]
# Apply a predictable ordering to the modalities
padded_ls = [padded[k] for k in sorted(padded.keys())]
# Finally, concatenate along the time dimension
final_inputs = torch.cat(padded_ls, dim=1)
return final_inputs, modality_sizes, inputs_without_pos
__all__ = [
"PerceiverForImageClassificationConvProcessing",
"PerceiverForImageClassificationFourier",
"PerceiverForImageClassificationLearned",
"PerceiverForMaskedLM",
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"PerceiverForSequenceClassification",
"PerceiverLayer",
"PerceiverModel",
"PerceiverPreTrainedModel",
]
```
|
===============================================================================================================================================
SOURCE CODE FILE: tokenization_perceiver.py
LINES: 1
SIZE: 7.86 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\perceiver\tokenization_perceiver.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for Perceiver."""
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
class PerceiverTokenizer(PreTrainedTokenizer):
"""
Construct a Perceiver tokenizer. The Perceiver simply uses raw bytes utf-8 encoding.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
bos_token (`str`, *optional*, defaults to `"[BOS]"`):
The BOS token (reserved in the vocab, but not actually used).
eos_token (`str`, *optional*, defaults to `"[EOS]"`):
The end of sequence token (reserved in the vocab, but not actually used).
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The MASK token, useful for masked language modeling.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The CLS token (reserved in the vocab, but not actually used).
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from two sequences.
"""
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
pad_token="[PAD]",
bos_token="[BOS]",
eos_token="[EOS]",
mask_token="[MASK]",
cls_token="[CLS]",
sep_token="[SEP]",
model_max_length=2048,
**kwargs,
) -> None:
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
mask_token = AddedToken(mask_token, lstrip=False, rstrip=False) if isinstance(mask_token, str) else mask_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
self._utf_vocab_size = 2**8 # utf is 8 bits
# Since these tokens are not part of the vocabulary, we manually add them
self._added_tokens_decoder: Dict[str, int] = {
0: pad_token,
1: bos_token,
2: eos_token,
3: mask_token,
4: cls_token,
5: sep_token,
}
self._num_special_tokens = len(self._added_tokens_decoder)
super().__init__(
pad_token=pad_token,
bos_token=bos_token,
eos_token=eos_token,
mask_token=mask_token,
cls_token=cls_token,
sep_token=sep_token,
model_max_length=model_max_length,
**kwargs,
)
def get_vocab(self) -> Dict[str, int]:
vocab = {}
for i in range(self._utf_vocab_size):
token = chr(i)
vocab[token] = i + self._num_special_tokens
vocab.update(self.added_tokens_encoder)
return vocab
@property
def vocab_size(self):
return self._utf_vocab_size
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
# normal case: some special tokens
if token_ids_1 is None:
return [1] + [0] * len(token_ids_0) + [1]
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks. A sequence has the
following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
else:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 + [self.sep_token_id]
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
tokens = [chr(i) for i in text.encode("utf-8")]
return tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if len(token) != 1:
token_id = self.unk_token_id
else:
token_id = ord(token) + self._num_special_tokens
return token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = chr(index - self._num_special_tokens)
return token
# TODO @ArthurZ refactor this as well....
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
bstring = b""
for token in tokens:
if token in self.added_tokens_encoder:
tok_string = str(token).encode("utf-8")
else:
tok_string = bytes([ord(token)])
bstring += tok_string
string = bstring.decode("utf-8", errors="replace")
return string
# PerceiverTokenizer has no vocab file
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
return ()
__all__ = ["PerceiverTokenizer"]
```
|
=================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\persimmon\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_persimmon import *
from .modeling_persimmon import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
================================================================================================================================================
SOURCE CODE FILE: configuration_persimmon.py
LINES: 1
SIZE: 8.93 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\persimmon\configuration_persimmon.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Adept AI and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Persimmon model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class PersimmonConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PersimmonModel`]. It is used to instantiate an
Persimmon model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the
[adept/persimmon-8b-base](https://huggingface.co/adept/persimmon-8b-base).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 262144):
Vocabulary size of the Persimmon model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`PersimmonModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 16384):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 36):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 25000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
qk_layernorm (`bool`, *optional*, default to `True`):
Whether or not to normalize the Queries and Keys after projecting the hidden states
hidden_dropout (`float`, *optional*, default to 0.0):
The dropout ratio after applying the MLP to the hidden states.
attention_dropout (`float`, *optional*, default to 0.0):
The dropout ratio after computing the attention scores.
partial_rotary_factor (`float`, *optional*, default to 0.5):
Percentage of the query and keys which will have rotary embedding.
Example:
```python
>>> from transformers import PersimmonModel, PersimmonConfig
>>> # Initializing a Persimmon persimmon-7b style configuration
>>> configuration = PersimmonConfig()
```"""
model_type = "persimmon"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=262144,
hidden_size=4096,
intermediate_size=16384,
num_hidden_layers=36,
num_attention_heads=64,
hidden_act="relu2",
max_position_embeddings=16384,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=25000.0,
rope_scaling=None,
qk_layernorm=True,
hidden_dropout=0.0,
attention_dropout=0.0,
partial_rotary_factor=0.5,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.qk_layernorm = qk_layernorm
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.partial_rotary_factor = partial_rotary_factor
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["PersimmonConfig"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: modeling_persimmon.py
LINES: 7
SIZE: 48.92 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\persimmon\modeling_persimmon.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Persimmon model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_persimmon import PersimmonConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "adept/persimmon-8b-base"
_CONFIG_FOR_DOC = "PersimmonConfig"
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Persimmon
class PersimmonRotaryEmbedding(nn.Module):
def __init__(self, config: PersimmonConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Copied from transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXMLP with GPTNeoX->Persimmon
class PersimmonMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size)
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size)
self.act = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
hidden_states = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dense_4h_to_h(hidden_states)
return hidden_states
class PersimmonAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: PersimmonConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.rope_theta = config.rope_theta
self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor)
self.is_causal = True
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True)
self.qk_layernorm = config.qk_layernorm
if self.qk_layernorm:
self.q_layernorm = nn.LayerNorm(
config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
)
self.k_layernorm = nn.LayerNorm(
config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True
)
self.attention_dropout = nn.Dropout(config.attention_dropout)
self.rotary_emb = PersimmonRotaryEmbedding(config=self.config)
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory
storage as `fused_qkv`
Args:
fused_qkv (`torch.tensor`): [batch_size, seq_length, num_heads * 3 * head_dim]
Returns:
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
value: [batch_size, seq_length, num_heads, head_dim]
"""
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
# [batch_size, seq_length, 3 x hidden_size]
fused_qkv = self.query_key_value(hidden_states)
# 3 x [batch_size, seq_length, num_heads, head_dim]
(query_states, key_states, value_states) = self._split_heads(fused_qkv)
if self.qk_layernorm:
query_states = self.q_layernorm(query_states)
key_states = self.k_layernorm(key_states)
# [batch_size, num_heads, seq_length, head_dim] -> [batch_size, seq_length, num_heads, head_dim]
query_states = query_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
cos, sin = position_embeddings
# Partial rotary embedding
query_rot, query_pass = (
query_states[..., : self.rotary_ndims],
query_states[..., self.rotary_ndims :],
)
key_rot, key_pass = (
key_states[..., : self.rotary_ndims],
key_states[..., self.rotary_ndims :],
)
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
# [batch_size, seq_length, num_heads, head_dim]
query_states = torch.cat((query_rot, query_pass), dim=-1)
key_states = torch.cat((key_rot, key_pass), dim=-1)
if past_key_value is not None:
# Specific to RoPE models with partial rotation
cache_kwargs = {
"sin": sin,
"cos": cos,
"partial_rotation_size": self.rotary_ndims,
"cache_position": cache_position,
}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query_states.dtype)
attn_weights = self.attention_dropout(attn_weights)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.dense(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class PersimmonDecoderLayer(nn.Module):
def __init__(self, config: PersimmonConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = PersimmonAttention(config=config, layer_idx=layer_idx)
self.mlp = PersimmonMLP(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
`[0, config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + residual
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
PERSIMMON_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PersimmonConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Persimmon Model outputting raw hidden-states without any specific head on top.",
PERSIMMON_START_DOCSTRING,
)
class PersimmonPreTrainedModel(PreTrainedModel):
config_class = PersimmonConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["PersimmonDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
PERSIMMON_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Persimmon Model outputting raw hidden-states without any specific head on top.",
PERSIMMON_START_DOCSTRING,
)
class PersimmonModel(PersimmonPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PersimmonDecoderLayer`]
Args:
config: PersimmonConfig
"""
def __init__(self, config: PersimmonConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[PersimmonDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.rotary_emb = PersimmonRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PERSIMMON_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.final_layernorm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class PersimmonForCausalLM(PersimmonPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with LLAMA->PERSIMMON,Llama->Persimmon
def __init__(self, config):
super().__init__(config)
self.model = PersimmonModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
def get_input_embeddings(self):
return self.model.embed_tokens
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
def set_input_embeddings(self, value):
self.model.embed_tokens = value
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
def set_decoder(self, decoder):
self.model = decoder
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(PERSIMMON_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, PersimmonForCausalLM
>>> model = PersimmonForCausalLM.from_pretrained("adept/persimmon-8b-base")
>>> tokenizer = AutoTokenizer.from_pretrained("adept/persimmon-8b-base")
>>> prompt = "human: Hey, what should I eat for dinner?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'human: Hey, what should I eat for dinner?\n\ncat: π±\n\nhuman: π\n\n'
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
)
hidden_states = outputs.last_hidden_state
# No upscaling to float was ever done for Persimmon
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(
logits,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The Persimmon transformer with a sequence classification head on top (linear layer).
[`PersimmonForSequenceClassification`] uses the last token in order to do the classification, as other causal
models (e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
PERSIMMON_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->PERSIMMON,Llama->Persimmon
class PersimmonForSequenceClassification(PersimmonPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = PersimmonModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PERSIMMON_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Persimmon Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
PERSIMMON_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Persimmon, LLAMA->PERSIMMON
class PersimmonForTokenClassification(PersimmonPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = PersimmonModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PERSIMMON_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"PersimmonForCausalLM",
"PersimmonModel",
"PersimmonPreTrainedModel",
"PersimmonForSequenceClassification",
"PersimmonForTokenClassification",
]
```
|
============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi3\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_phi3 import *
from .modeling_phi3 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
======================================================================================================================================
SOURCE CODE FILE: configuration_phi3.py
LINES: 1
SIZE: 11.30 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi3\configuration_phi3.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Phi-3 model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class Phi3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32064):
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Phi3Model`].
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model was trained with. This is used to determine the size of the
original RoPE embeddings when using long scaling.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value used for the RMSNorm.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`dict`, *optional*):
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
divided by the number of attention heads divided by 2.
partial_rotary_factor (`float`, *optional*, defaults to 1.0):
Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 32000):
The id of the "end-of-sequence" token.
pad_token_id (`int`, *optional*, defaults to 32000):
The id of the padding token.
sliding_window (`int`, *optional*):
Sliding window attention window size. If `None`, no sliding window is applied.
Example:
```python
>>> from transformers import Phi3Model, Phi3Config
>>> # Initializing a Phi-3 style configuration
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
>>> # Initializing a model from the configuration
>>> model = Phi3Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "phi3"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.qkv_proj": "colwise_rep", # we need to replicate here due to the slicing of qkv
"layers.*.self_attn.o_proj": "rowwise_rep", # we need to replicate here due to the slicing of qkv
"layers.*.mlp.gate_up_proj": "colwise_rep", # we need to replicate here due to the `chunk` operation
"layers.*.mlp.down_proj": "rowwise_rep", # we need to replicate here due to the `chunk` operation
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=32064,
hidden_size=3072,
intermediate_size=8192,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
resid_pdrop=0.0,
embd_pdrop=0.0,
attention_dropout=0.0,
hidden_act="silu",
max_position_embeddings=4096,
original_max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=1.0,
bos_token_id=1,
eos_token_id=32000,
pad_token_id=32000,
sliding_window=None,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.original_max_position_embeddings = original_max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self._rope_scaling_adjustment()
self._rope_scaling_validation()
self.sliding_window = sliding_window
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def _rope_scaling_adjustment(self):
"""
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
"""
if self.rope_scaling is None:
return
rope_scaling_type = self.rope_scaling.get("type", None)
# For backward compatibility if previous version used "su" or "yarn"
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
self.rope_scaling["type"] = "longrope"
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
raise ValueError(
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
if not (
isinstance(rope_scaling_short_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
):
raise ValueError(
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
)
rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
if not len(rope_scaling_short_factor) == rotary_ndims // 2:
raise ValueError(
f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
)
if not (
isinstance(rope_scaling_long_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
):
raise ValueError(
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
)
if not len(rope_scaling_long_factor) == rotary_ndims // 2:
raise ValueError(
f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
)
__all__ = ["Phi3Config"]
```
|
=================================================================================================================================
SOURCE CODE FILE: modeling_phi3.py
LINES: 2
SIZE: 49.88 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi3\modeling_phi3.py
ENCODING: utf-8
```py
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# This file was automatically generated from src/transformers/models/phi3/modular_phi3.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_phi3.py file directly. One of our CI enforces this.
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Callable, Optional, Tuple, Union
import torch
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_phi3 import Phi3Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
_CONFIG_FOR_DOC = "Phi3Config"
class Phi3MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.activation_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
up_states = self.gate_up_proj(hidden_states)
gate, up_states = up_states.chunk(2, dim=-1)
up_states = up_states * self.activation_fn(gate)
return self.down_proj(up_states)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1)
k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1)
return q_embed, k_embed
class Phi3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.num_key_value_heads = config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
op_size = config.num_attention_heads * self.head_dim + 2 * (config.num_key_value_heads * self.head_dim)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.qkv_proj = nn.Linear(config.hidden_size, op_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
qkv = self.qkv_proj(hidden_states)
query_pos = self.config.num_attention_heads * self.head_dim
query_states = qkv[..., :query_pos]
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=getattr(self.config, "sliding_window", None),
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Phi3RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Phi3RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Phi3DecoderLayer(nn.Module):
def __init__(self, config: Phi3Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Phi3Attention(config=config, layer_idx=layer_idx)
self.mlp = Phi3MLP(config)
self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.config = config
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_value (`Cache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + self.resid_attn_dropout(hidden_states) # main diff with Llama
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.resid_mlp_dropout(hidden_states) # main diff with Llama
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
PHI3_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Phi3Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Phi3 Model outputting raw hidden-states without any specific head on top.",
PHI3_START_DOCSTRING,
)
class Phi3PreTrainedModel(PreTrainedModel):
config_class = Phi3Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Phi3DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
_version = "0.0.5"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class Phi3RotaryEmbedding(nn.Module):
def __init__(self, config: Phi3Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
PHI3_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Phi3 Model outputting raw hidden-states without any specific head on top.",
PHI3_START_DOCSTRING,
)
class Phi3Model(Phi3PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
Args:
config: Phi3Config
"""
def __init__(self, config: Phi3Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Phi3RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: Phi3Config,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`Phi3Config`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class Phi3ForCausalLM(Phi3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = Phi3Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
>>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
logits_to_keep=None,
**kwargs,
):
# Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
# process
# When the first time input length reached long and short factor switching point, enforce re-compute cache
# It will cause downside of slower at this single token position, however, better than current failure.
if (
past_key_values
and self.config.rope_scaling
and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
):
past_length = cache_position[0]
if past_length <= self.config.original_max_position_embeddings:
past_key_values = None
model_inputs = super().prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
**kwargs,
)
return model_inputs
@add_start_docstrings(
"""
The Phi3 Model transformer with a sequence classification head on top (linear layer).
[`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
PHI3_START_DOCSTRING,
)
class Phi3ForSequenceClassification(Phi3PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Phi3Model(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Phi3 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
PHI3_START_DOCSTRING,
)
class Phi3ForTokenClassification(Phi3PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Phi3Model(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"Phi3PreTrainedModel",
"Phi3Model",
"Phi3ForCausalLM",
"Phi3ForSequenceClassification",
"Phi3ForTokenClassification",
]
```
|
================================================================================================================================
SOURCE CODE FILE: modular_phi3.py
LINES: 1
SIZE: 12.81 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi3\modular_phi3.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Phi-3 model."""
from typing import Callable, Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import logging
from ..mistral.modeling_mistral import (
MistralDecoderLayer,
MistralForCausalLM,
MistralForSequenceClassification,
MistralForTokenClassification,
MistralPreTrainedModel,
eager_attention_forward,
rotate_half,
)
from .configuration_phi3 import Phi3Config
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
_CONFIG_FOR_DOC = "Phi3Config"
class Phi3MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.activation_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
up_states = self.gate_up_proj(hidden_states)
gate, up_states = up_states.chunk(2, dim=-1)
up_states = up_states * self.activation_fn(gate)
return self.down_proj(up_states)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1)
k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1)
return q_embed, k_embed
class Phi3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.num_key_value_heads = config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
op_size = config.num_attention_heads * self.head_dim + 2 * (config.num_key_value_heads * self.head_dim)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.qkv_proj = nn.Linear(config.hidden_size, op_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
qkv = self.qkv_proj(hidden_states)
query_pos = self.config.num_attention_heads * self.head_dim
query_states = qkv[..., :query_pos]
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=getattr(self.config, "sliding_window", None),
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Phi3DecoderLayer(MistralDecoderLayer):
def __init__(self, config: Phi3Config, layer_idx: int):
super().__init__(config, layer_idx)
self.config = config
self.self_attn = Phi3Attention(config=config, layer_idx=layer_idx)
self.mlp = Phi3MLP(config)
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_value (`Cache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + self.resid_attn_dropout(hidden_states) # main diff with Llama
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.resid_mlp_dropout(hidden_states) # main diff with Llama
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Phi3PreTrainedModel(MistralPreTrainedModel):
_version = "0.0.5"
class Phi3ForCausalLM(MistralForCausalLM, Phi3PreTrainedModel):
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
logits_to_keep=None,
**kwargs,
):
# Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
# process
# When the first time input length reached long and short factor switching point, enforce re-compute cache
# It will cause downside of slower at this single token position, however, better than current failure.
if (
past_key_values
and self.config.rope_scaling
and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
):
past_length = cache_position[0]
if past_length <= self.config.original_max_position_embeddings:
past_key_values = None
model_inputs = Phi3PreTrainedModel().prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
**kwargs,
)
return model_inputs
class Phi3ForSequenceClassification(MistralForSequenceClassification):
pass
class Phi3ForTokenClassification(MistralForTokenClassification):
pass
__all__ = [
"Phi3PreTrainedModel",
"Phi3Model", # noqa: F822
"Phi3ForCausalLM",
"Phi3ForSequenceClassification",
"Phi3ForTokenClassification",
]
```
|
=======================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.14 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi4_multimodal\__init__.py
ENCODING: utf-8
```py
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_phi4_multimodal import *
from .feature_extraction_phi4_multimodal import *
from .image_processing_phi4_multimodal_fast import *
from .modeling_phi4_multimodal import *
from .processing_phi4_multimodal import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
============================================================================================================================================================
SOURCE CODE FILE: configuration_phi4_multimodal.py
LINES: 1
SIZE: 23.79 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi4_multimodal\configuration_phi4_multimodal.py
ENCODING: utf-8
```py
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# This file was automatically generated from src/transformers/models/phi4_multimodal/modular_phi4_multimodal.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_phi4_multimodal.py file directly. One of our CI enforces this.
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from ...configuration_utils import PretrainedConfig
class Phi4MultimodalVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Phi4MultimodalVisionModel`]. It is used to instantiate a
Phi4Multimodal vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1152):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 4304):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 27):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 448):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
crop_size (`int`, *optional*, defaults to 448):
Crop size for the input images.
image_token_id (`int`, *optional*, defaults to 200010):
The image token id.
feature_layer (`int`, *optional*, defaults to -2):
The index of the layer of the encoder from which to extract image features.
Example:
```python
>>> from transformers import Phi4MultimodalVisionConfig
>>> # Initializing a Phi4MultimodalVisionConfig with microsoft/Phi-4-multimodal-instruct style configuration
>>> configuration = Phi4MultimodalVisionConfig()
```"""
model_type = "phi4_multimodal_vision"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=1152,
intermediate_size=4304,
num_hidden_layers=27,
num_attention_heads=16,
num_channels=3,
image_size=448,
patch_size=14,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
crop_size: int = 448,
image_token_id: int = 200010,
feature_layer: int = -2,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.crop_size = crop_size
self.image_token_id = image_token_id
self.feature_layer = feature_layer
class Phi4MultimodalAudioConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Phi4MultimodalAudioModel`]. It is used to instantiate a
Phi4Multimodal audio encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the audio encoder of
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers.
intermediate_size (`int`, *optional*, defaults to 1536):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_blocks (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
activation (`str`, *optional*, defaults to `"swish"`):
The non-linear activation function in the MLPs.
chunk_size (`int`, *optional*, defaults to -1):
The chunk size to create the masks.
left_chunk (`int`, *optional*, defaults to 18):
The left chunk to create the masks.
dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout ratio.
ext_pw_out_channel (`int`, *optional*, defaults to 1024):
Number of out channels in the point-wise conv modules.
depthwise_seperable_out_channel (`int`, *optional*, defaults to 1024):
Number of out channels in the depth-wise separable conv modules.
depthwise_multiplier (`int`, *optional*, defaults to 1):
Input size multiplier for the depth-wise separable conv modules.
kernel_size (`int`, *optional*, defaults to 3):
Kernel size for the depth-wise separable conv modules.
conv_activation (`str`, *optional*, defaults to `"swish"`):
The non-linear activation function in the conv modules.
input_size (`int`, *optional*, defaults to 80):
Input size for the audio model.
conv_glu_type (`str`, *optional*, defaults to `"swish"`):
The non-linear activation function in the point-wise conv modules.
time_reduction (`int`, *optional*, defaults to 8):
Time reduction (subsampling factor).
bias_max_distance (`int`, *optional*, defaults to 1000):
Max distance for the relative attention bias module.
bias_symmetric (`bool`, *optional*, defaults to `False`):
Whether the relative attention bias should be symmetric or not.
nemo_activation (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function in the nemo conv modules.
nemo_conv_channels (`int`, *optional*, defaults to 1024):
Number of channels in the nemo conv modules.
downsample_rate (`int`, *optional*, defaults to 1):
Downsample rate for the audio feature extractor.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
audio_token_id (`int`, *optional*, defaults to 200011):
The audio token id.
feature_layer (`int`, *optional*, defaults to -2):
The index of the layer of the encoder from which to extract audio features.
Example:
```python
>>> from transformers import Phi4MultimodalAudioConfig
>>> # Initializing a Phi4MultimodalAudioConfig with microsoft/Phi-4-multimodal-instruct style configuration
>>> configuration = Phi4MultimodalAudioConfig()
```"""
model_type = "phi4_multimodal_audio"
def __init__(
self,
hidden_size: int = 1024,
intermediate_size: int = 1536,
num_blocks: int = 24,
num_attention_heads: int = 16,
activation: str = "swish",
chunk_size: int = -1,
left_chunk: int = 18,
dropout_rate: float = 0.0,
ext_pw_out_channel: int = 1024,
depthwise_seperable_out_channel: int = 1024,
depthwise_multiplier: int = 1,
kernel_size: int = 3,
conv_activation: str = "swish",
input_size: int = 80,
conv_glu_type: str = "swish",
time_reduction: int = 8,
bias_max_distance: int = 1000,
bias_symmetric: bool = False,
nemo_activation: str = "relu",
nemo_conv_channels: int = 1024,
downsample_rate: int = 1,
initializer_range: float = 0.02,
audio_token_id: int = 200011,
feature_layer: int = -2,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.activation = activation
self.chunk_size = chunk_size
self.left_chunk = left_chunk
self.num_blocks = num_blocks
self.dropout_rate = dropout_rate
self.ext_pw_out_channel = ext_pw_out_channel
self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
self.depthwise_multiplier = depthwise_multiplier
self.kernel_size = kernel_size
self.conv_activation = conv_activation
self.input_size = input_size
self.conv_glu_type = conv_glu_type
self.time_reduction = time_reduction
self.bias_max_distance = bias_max_distance
self.bias_symmetric = bias_symmetric
self.nemo_activation = nemo_activation
self.nemo_conv_channels = nemo_conv_channels
self.downsample_rate = downsample_rate
self.audio_token_id = audio_token_id
self.initializer_range = initializer_range
self.feature_layer = feature_layer
if time_reduction % 2 != 0:
raise ValueError("`time_reduction` should be a multiple of 2!")
length = input_size
for _ in range(int(math.log(time_reduction, 2))):
length = math.floor((length - 1) / 2 + 1)
self.nemo_final_size = length
class Phi4MultimodalConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Phi4MultimodalModel`]. It is used to instantiate a
Phi4Multimodal model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 200064):
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Phi3Model`].
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value used for the RMSNorm.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`dict`, *optional*):
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
divided by the number of attention heads divided by 2.
partial_rotary_factor (`float`, *optional*, defaults to `1.0`):
Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
bos_token_id (`int`, *optional*, defaults to 199999):
The id of the "beginning-of-sequence" token.
eos_token_id (`int` or `list[int]`, *optional*, defaults to `[199999, 200020]`):
The id of the "end-of-sequence" token.
pad_token_id (`int`, *optional*, defaults to 199999):
The id of the padding token.
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model was trained with. This is used to determine the size of the
original RoPE embeddings when using long scaling.
sliding_window (`int`, *optional*):
Sliding window attention window size. If `None`, no sliding window is applied.
vision_config (`Phi4MultimodalVisionConfig` or `dict`, *optional*):
The vision config for the underlying image embedding model. If not provided, will default to the configuration
used to instantiate a model similar in architecture as
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct).
audio_config (`Phi4MultimodalAudioConfig` or `dict`, *optional*):
The audio config for the underlying audio embedding model. If not provided, will default to the configuration
used to instantiate a model similar in architecture as
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct).
Example:
```python
>>> from transformers import Phi4MultimodalModel, Phi4MultimodalConfig
>>> # Initializing a Phi4Multimodal style configuration
>>> configuration = Phi4MultimodalConfig.from_pretrained("microsoft/Phi-4-multimodal-instruct")
>>> # Initializing a model from the configuration
>>> model = Phi4MultimodalModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "phi4_multimodal"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.qkv_proj": "colwise_rep", # we need to replicate here due to the slicing of qkv
"layers.*.self_attn.o_proj": "rowwise_rep", # we need to replicate here due to the slicing of qkv
"layers.*.mlp.gate_up_proj": "colwise_rep", # we need to replicate here due to the `chunk` operation
"layers.*.mlp.down_proj": "rowwise_rep", # we need to replicate here due to the `chunk` operation
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
sub_configs = {"audio_config": Phi4MultimodalAudioConfig, "vision_config": Phi4MultimodalVisionConfig}
def __init__(
self,
vocab_size=200064,
hidden_size=3072,
intermediate_size=8192,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
resid_pdrop=0.0,
embd_pdrop=0.0,
attention_dropout=0.0,
hidden_act="silu",
max_position_embeddings=131072,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=1,
bos_token_id=199999,
eos_token_id=[199999, 200020],
pad_token_id=199999,
original_max_position_embeddings=4096,
sliding_window=None,
vision_config=None,
audio_config=None,
**kwargs,
):
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.original_max_position_embeddings = original_max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self._rope_scaling_adjustment()
self._rope_scaling_validation()
self.sliding_window = sliding_window
if isinstance(vision_config, dict):
vision_config = Phi4MultimodalVisionConfig(**vision_config)
elif vision_config is None:
Phi4MultimodalVisionConfig()
self.vision_config = vision_config
if isinstance(audio_config, dict):
audio_config = Phi4MultimodalAudioConfig(**audio_config)
elif vision_config is None:
audio_config = Phi4MultimodalAudioConfig()
self.audio_config = audio_config
def _rope_scaling_adjustment(self):
"""
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
"""
if self.rope_scaling is None:
return
rope_scaling_type = self.rope_scaling.get("type", None)
# For backward compatibility if previous version used "su" or "yarn"
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
self.rope_scaling["type"] = "longrope"
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
raise ValueError(
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
if not (
isinstance(rope_scaling_short_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
):
raise ValueError(
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
)
rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
if not len(rope_scaling_short_factor) == rotary_ndims // 2:
raise ValueError(
f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
)
if not (
isinstance(rope_scaling_long_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
):
raise ValueError(
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
)
if not len(rope_scaling_long_factor) == rotary_ndims // 2:
raise ValueError(
f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
)
__all__ = ["Phi4MultimodalVisionConfig", "Phi4MultimodalAudioConfig", "Phi4MultimodalConfig"]
```
|
=================================================================================================================================================================
SOURCE CODE FILE: feature_extraction_phi4_multimodal.py
LINES: 1
SIZE: 15.17 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi4_multimodal\feature_extraction_phi4_multimodal.py
ENCODING: utf-8
```py
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Phi4Multimodal
"""
from typing import Optional, Union
import numpy as np
from ...audio_utils import AudioInput
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...image_processing_utils import BatchFeature
from ...utils import TensorType, is_torch_available, logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
# TODO: @eustlb, remove this once #36603 is merged.
def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
"""Create a Mel filter-bank the same as SpeechLib FbankFC.
Args:
sample_rate (int): Sample rate in Hz. number > 0 [scalar]
n_fft (int): FFT size. int > 0 [scalar]
n_mel (int): Mel filter size. int > 0 [scalar]
fmin (float): lowest frequency (in Hz). If None use 0.0.
float >= 0 [scalar]
fmax: highest frequency (in Hz). If None use sample_rate / 2.
float >= 0 [scalar]
Returns
out (numpy.ndarray): Mel transform matrix
[shape=(n_mels, 1 + n_fft/2)]
"""
bank_width = int(n_fft // 2 + 1)
if fmax is None:
fmax = sample_rate / 2
if fmin is None:
fmin = 0
assert fmin >= 0, "fmin cannot be negtive"
assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"
def mel(f):
return 1127.0 * np.log(1.0 + f / 700.0)
def bin2mel(fft_bin):
return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))
def f2bin(f):
return int((f * n_fft / sample_rate) + 0.5)
# Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
klo = f2bin(fmin) + 1
khi = f2bin(fmax)
khi = max(khi, klo)
# Spec 2: SpeechLib uses trianges in Mel space
mlo = mel(fmin)
mhi = mel(fmax)
m_centers = np.linspace(mlo, mhi, n_mels + 2)
ms = (mhi - mlo) / (n_mels + 1)
matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
for m in range(0, n_mels):
left = m_centers[m]
center = m_centers[m + 1]
right = m_centers[m + 2]
for fft_bin in range(klo, khi):
mbin = bin2mel(fft_bin)
if left < mbin < right:
matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms
return matrix
class Phi4MultimodalFeatureExtractor(SequenceFeatureExtractor):
model_input_names = ["audio_input_features", "audio_embed_sizes", "audio_attention_mask"]
def __init__(
self,
feature_size: int = 80,
sampling_rate: int = 16000,
hop_length: int = 160,
n_fft: int = 512,
win_length: int = 400,
preemphasis: float = 0.97,
padding_value: float = 0.0,
audio_compression_rate: int = 8,
audio_downsample_rate: int = 1,
audio_feat_stride: int = 1,
mel_min_frequency: float = 0,
mel_max_frequency: float = 7690,
**kwargs,
):
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
self.hop_length = hop_length
self.n_fft = n_fft
self.win_length = win_length
self.preemphasis = preemphasis
self.padding_value = padding_value
self.audio_compression_rate = audio_compression_rate
self.audio_downsample_rate = audio_downsample_rate
self.audio_feat_stride = audio_feat_stride
# TODO: @eustlb, uncomment and remove speechlib_mel once #36603 is merged.
# self.mel_filters = mel_filter_bank(
# num_frequency_bins=self.n_fft // 2 + 1,
# num_mel_filters=self.feature_size,
# min_frequency=mel_min_frequency,
# max_frequency=mel_max_frequency,
# sampling_rate=self.sampling_rate,
# triangularize_in_mel_space=True,
# mel_scale="kaldi",
# )
self.mel_filters = speechlib_mel(
self.sampling_rate, self.n_fft, self.feature_size, mel_min_frequency, mel_max_frequency
).T
def __call__(
self,
raw_speech: AudioInput,
sampling_rate: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
padding: Optional[str] = "longest",
max_length: Optional[int] = None,
truncation: bool = False,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = True,
device: Optional[str] = "cpu",
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several audio sequence(s). Implementation uses PyTorch for
the STFT computation if available, otherwise a slower NumPy based one.
Args:
raw_speech (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The sequence or batch of sequences to be processed. Each sequence can be a numpy array or PyTorch tensor.
For batched inputs, sequences can be a list of numpy arrays or PyTorch tensors, or a single numpy array or
PyTorch tensor with first dimension being the batch size.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
pad_to_multiple_of (`int`, *optional*, defaults to None):
If set will pad the sequence to a multiple of the provided value.
padding (`str`, *optional*, defaults to "longest"):
Padding strategy. Can be "longest" to pad to the longest sequence in the batch, or a specific length.
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length.
truncation (`bool`, *optional*, defaults to False):
Activates truncation to cut input sequences longer than *max_length* to *max_length*.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of numpy arrays. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
- `'tf'`: Return TensorFlow `tf.constant` objects.
return_attention_mask (`bool`, *optional*, defaults to `True`):
Whether to return the extracted audio input features' attention mask.
device (`str`, *optional*, defaults to "cpu"):
Specifies the device for computation of the audio features. (e.g., "cpu", "cuda")
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **audio_input_features** -- Audio features extracted from the raw audio input, shape (batch_size, max_feature_length, feature_size).
- **audio_lengths** -- Length of each audio sample in the batch, shape (batch_size,).
- **audio_attention_mask** -- Attention mask for the audio input, shape (batch_size, max_feature_length).
If `return_tensors` is not specified, the fields will be PyTorch tensors if PyTorch is available, otherwise NumPy arrays.
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
f" was sampled with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
f"It is strongly recommended to pass the `sampling_rate` argument to `{self.__class__.__name__}()`. "
"Failing to do so can result in silent errors that might be hard to debug."
)
# Convert to torch tensor
if isinstance(raw_speech, np.ndarray):
raw_speech = torch.tensor(raw_speech)
elif isinstance(raw_speech, (list, tuple)) and isinstance(raw_speech[0], np.ndarray):
raw_speech = [torch.tensor(speech) for speech in raw_speech]
is_batched_torch = isinstance(raw_speech, torch.Tensor) and len(raw_speech.shape) > 1
if is_batched_torch and len(raw_speech.shape) > 2:
logger.warning(
f"Only mono-channel audio is supported for input to {self.__class__.__name__}. "
"We will take the mean of the channels to convert to mono."
)
raw_speech = raw_speech.mean(-1)
is_batched_sequence = isinstance(raw_speech, (list, tuple))
if is_batched_sequence:
for speech in raw_speech:
if len(speech.shape) > 1:
logger.warning(
f"Only mono-channel audio is supported for input to {self.__class__.__name__}. "
"We will take the mean of the channels to convert to mono."
)
speech = speech.mean(-1)
if is_batched_torch or is_batched_sequence:
raw_speech = [speech[:, None].to(torch.float32) for speech in raw_speech]
else:
raw_speech = [raw_speech[:, None].to(torch.float32)]
audio_lengths = [len(speech) for speech in raw_speech]
# convert into correct format for padding
batched_speech = BatchFeature(data={"audio_input_features": raw_speech, "audio_lengths": audio_lengths})
padded_inputs = self.pad(
batched_speech,
padding=padding,
max_length=max_length,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
input_features = padded_inputs.audio_input_features.squeeze(-1)
audio_lengths = padded_inputs.audio_lengths
input_features = self._torch_extract_fbank_features(input_features, audio_lengths, device)
feature_lengths = (audio_lengths - self.win_length) // self.hop_length + 1
feature_lengths = feature_lengths * self.audio_feat_stride
audio_embed_sizes = self._compute_audio_embed_size(feature_lengths)
feature_attention_mask = (
torch.arange(0, feature_lengths.max()) if is_torch_available() else np.arange(0, feature_lengths.max())
)
feature_attention_mask = (
feature_attention_mask[None, :] < feature_lengths[:, None] if len(feature_lengths) > 1 else None
)
data = {
"audio_input_features": input_features,
"audio_embed_sizes": audio_embed_sizes,
}
if feature_attention_mask is not None and return_attention_mask:
data["audio_attention_mask"] = feature_attention_mask
return BatchFeature(data=data, tensor_type=return_tensors)
# TODO; @eustlb, move this to audio_utils in a general spectogram_batch function that handles torch and numpy
def _torch_extract_fbank_features(
self, waveform: "torch.FloatTensor", audio_lengths: "torch.Tensor", device: str = "cpu"
) -> "torch.FloatTensor":
"""
Compute the log mel-scaled spectrogram of batched waveforms using PyTorch's FFT implementation.
Args:
waveform (torch.FloatTensor` of shape `(batch_size, max_audio_length)`):
The batched waveforms.
audio_lengths (`torch.Tensor` of shape `(batch_size,)`):
The lengths of the waveforms along the max_audio_length dimension.
device (`str`, *optional*, defaults to "cpu"):
The device to run the computation on. (e.g., "cpu", "cuda")
Returns:
`torch.FloatTensor` of shape `(batch_size, max_feature_length, feature_size)`:
The log mel-scaled spectrogram of the batched waveforms.
"""
fft_window = torch.hamming_window(self.win_length, periodic=False, device=device, dtype=torch.float64)
# batched implementation
batch_size = waveform.shape[0]
frames = waveform.unfold(-1, self.win_length, self.hop_length)
# ---
# the unbatched (and unpaded) original implementation skips last few audio values that can't be included in a frame
# we need to ensure that the corresponding frames for the padded input also mask these values
if batch_size > 1:
frames = frames.clone()
# concerned batch indices
to_mask_batch_idxs = torch.arange(batch_size)[audio_lengths != audio_lengths.max()]
if to_mask_batch_idxs.numel() > 0:
batch_idxs_down = (audio_lengths[to_mask_batch_idxs] - self.win_length) // self.hop_length + 1
batch_idxs_up = audio_lengths[to_mask_batch_idxs] // self.hop_length + 1
offset_idx = batch_idxs_down.min()
max_idx = batch_idxs_up.max()
mask = torch.arange(max_idx - offset_idx, device=device).expand(to_mask_batch_idxs.shape[0], -1)
mask = ((batch_idxs_down - offset_idx).unsqueeze(1) <= mask) & (
mask < (batch_idxs_up - offset_idx).unsqueeze(1)
)
mask = mask.unsqueeze(-1).expand(-1, -1, self.win_length)
masked_frames = frames[to_mask_batch_idxs, offset_idx:max_idx].masked_fill_(mask, 0)
frames[to_mask_batch_idxs, offset_idx:max_idx] = masked_frames
# ---
# apply pre-emphasis first order filter on fft windows
frames_prev = torch.roll(frames, 1, dims=-1)
frames_prev[:, :, 0] = frames_prev[:, :, 1]
frames = (frames - self.preemphasis * frames_prev) * 32768
# apply fft
S = torch.fft.rfft(fft_window * frames.view(-1, self.win_length), n=self.n_fft, dim=1)
S = S.view(frames.shape[0], -1, S.shape[-1])
S = S.to(torch.complex64)
spec = torch.abs(S)
spec_power = spec**2
# apply triangular mel filter bank
mel_filters = torch.from_numpy(self.mel_filters).to(device, torch.float32)
log_spec = torch.clamp(spec_power @ mel_filters, min=1.0)
log_spec = torch.log(log_spec)
return log_spec
def _compute_audio_embed_size(self, audio_frames):
integer = audio_frames // self.audio_compression_rate
remainder = audio_frames % self.audio_compression_rate
result = integer + (remainder > 0).to(integer.dtype)
integer = result // self.audio_downsample_rate
remainder = result % self.audio_downsample_rate
result = integer + (remainder > 0).to(integer.dtype) # qformer compression
return result
__all__ = ["Phi4MultimodalFeatureExtractor"]
```
|
====================================================================================================================================================================
SOURCE CODE FILE: image_processing_phi4_multimodal_fast.py
LINES: 1
SIZE: 11.22 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi4_multimodal\image_processing_phi4_multimodal_fast.py
ENCODING: utf-8
```py
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Phi4Multimodal
"""
import math
from typing import List, Optional, Union
import torch
from torchvision.transforms import functional as F
from ...image_processing_utils_fast import (
BaseImageProcessorFast,
BatchFeature,
DefaultFastImageProcessorKwargs,
Unpack,
convert_to_rgb,
)
from ...image_utils import ImageInput, make_flat_list_of_images, valid_images
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class Phi4MultimodalFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
image_size: Optional[int]
patch_size: Optional[int]
dynamic_hd: Optional[int]
class Phi4MultimodalImageProcessorFast(BaseImageProcessorFast):
r"""
Constructs a Phi4Multimodal image processor.
"""
image_size = 448
patch_size = 14
dynamic_hd = 36
image_mean = [0.5, 0.5, 0.5]
image_std = [0.5, 0.5, 0.5]
valid_init_kwargs = Phi4MultimodalFastImageProcessorKwargs
model_input_names = ["image_pixel_values", "image_sizes", "image_attention_mask"]
def __init__(self, **kwargs: Unpack[Phi4MultimodalFastImageProcessorKwargs]):
super().__init__(**kwargs)
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * self.image_size * self.image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(self, image, max_num=36, min_num=1):
image_size = self.image_size
patch_size = self.patch_size
mask_size = image_size // patch_size
orig_width, orig_height = image.size
w_crop_num = math.ceil(orig_width / float(image_size))
h_crop_num = math.ceil(orig_height / float(image_size))
if w_crop_num * h_crop_num > max_num:
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = {
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
}
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = self.find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
else:
target_width = image_size * w_crop_num
target_height = image_size * h_crop_num
target_aspect_ratio = (w_crop_num, h_crop_num)
# Calculate the ratio
ratio_width = target_width / orig_width
ratio_height = target_height / orig_height
if ratio_width < ratio_height:
new_size = (target_width, int(orig_height * ratio_width))
padding_width = 0
padding_height = target_height - int(orig_height * ratio_width)
else:
new_size = (int(orig_width * ratio_height), target_height)
padding_width = target_width - int(orig_width * ratio_height)
padding_height = 0
attention_mask = torch.ones((int(mask_size * target_aspect_ratio[1]), int(mask_size * target_aspect_ratio[0])))
if padding_width >= patch_size:
attention_mask[:, -math.floor(padding_width / patch_size) :] = 0
if padding_height >= patch_size:
attention_mask[-math.floor(padding_height / patch_size) :, :] = 0
if min(new_size[1], target_height) < 10 or min(new_size[0], target_width) < 10:
raise ValueError(f"the aspect ratio is very extreme {new_size}")
image = F.resize(image, [new_size[1], new_size[0]])
resized_img = F.pad(image, [0, 0, padding_width, padding_height], fill=[255, 255, 255])
return resized_img, attention_mask
def pad_to_max_num_crops(self, images, max_crops=5):
"""
images: B x 3 x H x W, B<=max_crops
"""
B, _, H, W = images.shape
if B < max_crops:
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
images = torch.cat([images, pad], dim=0)
return images
def pad_mask_to_max_num_crops(self, masks, max_crops=5):
B, H, W = masks.shape
if B < max_crops:
pad = torch.ones(max_crops - B, H, W, dtype=masks.dtype, device=masks.device)
masks = torch.cat([masks, pad], dim=0)
return masks
def preprocess(
self,
images: ImageInput,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
):
"""
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
"""
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
images = make_flat_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
images = [convert_to_rgb(image) for image in images]
image_size = self.image_size
patch_size = self.patch_size
mask_size = image_size // patch_size
imgs_and_masks = [self.dynamic_preprocess(image, max_num=self.dynamic_hd) for image in images]
images, image_attention_masks = [x[0] for x in imgs_and_masks], [x[1] for x in imgs_and_masks]
images = [F.to_tensor(image) for image in images]
hd_images = [F.normalize(image, image_mean, image_std) for image in images]
global_image = [
torch.nn.functional.interpolate(
image.unsqueeze(0).float(),
size=(image_size, image_size),
mode="bicubic",
).to(image.dtype)
for image in hd_images
]
shapes = [[image.size(1), image.size(2)] for image in hd_images]
mask_shapes = [[mask.size(0), mask.size(1)] for mask in image_attention_masks]
global_attention_mask = [torch.ones((1, mask_size, mask_size)) for _ in hd_images]
hd_images_reshape = []
for im, (h, w) in zip(hd_images, shapes):
im = im.reshape(1, 3, h // image_size, image_size, w // image_size, image_size)
im = im.permute(0, 2, 4, 1, 3, 5)
im = im.reshape(-1, 3, image_size, image_size)
hd_images_reshape.append(im.contiguous())
attention_masks_reshape = []
for mask, (h, w) in zip(image_attention_masks, mask_shapes):
mask = mask.reshape(h // mask_size, mask_size, w // mask_size, mask_size)
mask = mask.transpose(1, 2)
mask = mask.reshape(-1, mask_size, mask_size)
attention_masks_reshape.append(mask.contiguous())
downsample_attention_masks = []
for mask, (h, w) in zip(attention_masks_reshape, mask_shapes):
mask = mask[:, 0::2, 0::2]
mask = mask.reshape(
h // mask_size, w // mask_size, mask_size // 2 + mask_size % 2, mask_size // 2 + mask_size % 2
)
mask = mask.transpose(1, 2)
mask = mask.reshape(mask.size(0) * mask.size(1), mask.size(2) * mask.size(3))
downsample_attention_masks.append(mask)
num_img_tokens = [
256 + 1 + int(mask.sum().item()) + int(mask[:, 0].sum().item()) + 16 for mask in downsample_attention_masks
]
hd_images_reshape = [
torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)
]
hd_masks_reshape = [
torch.cat([_global_mask] + [_mask], dim=0)
for _global_mask, _mask in zip(global_attention_mask, attention_masks_reshape)
]
max_crops = max([img.size(0) for img in hd_images_reshape])
image_transformed = [self.pad_to_max_num_crops(im, max_crops) for im in hd_images_reshape]
image_transformed = torch.stack(image_transformed, dim=0)
mask_transformed = [self.pad_mask_to_max_num_crops(mask, max_crops) for mask in hd_masks_reshape]
mask_transformed = torch.stack(mask_transformed, dim=0)
returned_input_image_embeds = image_transformed
returned_image_sizes = torch.tensor(shapes, dtype=torch.long)
returned_image_attention_mask = mask_transformed
returned_num_img_tokens = num_img_tokens
data = {
"image_pixel_values": returned_input_image_embeds,
"image_sizes": returned_image_sizes,
"image_attention_mask": returned_image_attention_mask,
"num_img_tokens": returned_num_img_tokens,
}
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["Phi4MultimodalImageProcessorFast"]
```
|
=======================================================================================================================================================
SOURCE CODE FILE: modeling_phi4_multimodal.py
LINES: 2
SIZE: 98.39 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi4_multimodal\modeling_phi4_multimodal.py
ENCODING: utf-8
```py
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# This file was automatically generated from src/transformers/models/phi4_multimodal/modular_phi4_multimodal.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_phi4_multimodal.py file directly. One of our CI enforces this.
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from typing import Callable, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.init import _calculate_fan_in_and_fan_out
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
BaseModelOutputWithPooling,
CausalLMOutputWithPast,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
torch_int,
)
from .configuration_phi4_multimodal import Phi4MultimodalAudioConfig, Phi4MultimodalConfig, Phi4MultimodalVisionConfig
logger = logging.get_logger(__name__)
class Phi4MultimodalVisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
def simple_eager_attention_forward(
module: nn.Module,
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Phi4MultimodalVisionAttention(nn.Module):
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.scaling = self.head_dim**-0.5
self.is_causal = True
self.attention_dropout = config.attention_dropout
self.k_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.v_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.q_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
attention_interface: Callable = simple_eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class Phi4MultimodalVisionEncoderLayer(nn.Module):
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.self_attn = Phi4MultimodalVisionAttention(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Phi4MultimodalVisionMLP(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class Phi4MultimodalVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Phi4MultimodalVisionEncoderLayer`].
Args:
config: Phi4MultimodalVisionConfig
"""
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[Phi4MultimodalVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
# Ignore copy
@can_return_tuple
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> BaseModelOutput:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
def _trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
def trunc_normal_tf_(
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
) -> torch.Tensor:
"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \\leq \text{mean} \\leq b`.
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
and the result is subsequently scaled and shifted by the mean and std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
"""
with torch.no_grad():
_trunc_normal_(tensor, 0, 1.0, a, b)
tensor.mul_(std).add_(mean)
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
with torch.no_grad():
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
with torch.no_grad():
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def default_flax_embed_init(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="normal")
class Phi4MultimodalVisionPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Phi4MultimodalVisionConfig
base_model_prefix = "phi4_vision"
supports_gradient_checkpointing = True
_no_split_modules = ["Phi4MultimodalVisionEncoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, Phi4MultimodalVisionEmbeddings):
width = (
self.config.hidden_size
if isinstance(self.config, Phi4MultimodalVisionConfig)
else self.config.hidden_size
)
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
elif isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, Phi4MultimodalVisionAttention):
nn.init.normal_(module.q_proj.weight)
nn.init.normal_(module.k_proj.weight)
nn.init.normal_(module.v_proj.weight)
nn.init.normal_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, Phi4MultimodalVisionMLP):
nn.init.normal_(module.fc1.weight)
nn.init.normal_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, Phi4MultimodalVisionMultiheadAttentionPoolingHead):
nn.init.normal_(module.probe.data)
nn.init.normal_(module.attention.in_proj_weight.data)
nn.init.zeros_(module.attention.in_proj_bias.data)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class Phi4MultimodalVisionEmbeddings(nn.Module):
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.config = config
self.patch_size = config.patch_size
self.num_patches_per_side = config.image_size // self.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=config.hidden_size,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.position_embedding = nn.Embedding(self.num_patches_per_side**2, config.hidden_size)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing and no class embeddings.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1]
num_positions = self.position_embedding.weight.shape[0]
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embedding(self.position_ids)
patch_pos_embed = self.position_embedding.weight.unsqueeze(0)
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return patch_pos_embed
def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor:
batch_size = pixel_values.size(0)
patch_embeds = self.patch_embedding(pixel_values)
embeddings = patch_embeds.flatten(2).transpose(1, 2)
max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
position_ids = torch.full((batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0)
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
nb_patches_h = p_attn_mask[:, 0].sum()
nb_patches_w = p_attn_mask[0].sum()
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
position_ids = position_ids.to(self.position_embedding.weight.device)
embeddings = embeddings + self.position_embedding(position_ids)
return embeddings
class Phi4MultimodalVisionMultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = Phi4MultimodalVisionMLP(config)
def forward(self, hidden_state, attention_mask):
batch_size = hidden_state.shape[0]
probe = self.probe.repeat(batch_size, 1, 1)
hidden_state = self.attention(
query=probe, key=hidden_state, value=hidden_state, key_padding_mask=~attention_mask
)[0]
residual = hidden_state
hidden_state = self.layernorm(hidden_state)
hidden_state = residual + self.mlp(hidden_state)
return hidden_state[:, 0]
class Phi4MultimodalVisionModel(Phi4MultimodalVisionPreTrainedModel):
config_class = Phi4MultimodalVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__(config)
self.config = config
self.embeddings = Phi4MultimodalVisionEmbeddings(config)
self.encoder = Phi4MultimodalVisionEncoder(config)
self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.head = Phi4MultimodalVisionMultiheadAttentionPoolingHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embedding
def forward(
self,
pixel_values,
patch_attention_mask: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> BaseModelOutputWithPooling:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
batch_size = pixel_values.size(0)
if patch_attention_mask is None:
patch_attention_mask = torch.ones(
size=(
batch_size,
pixel_values.size(2) // self.config.patch_size,
pixel_values.size(3) // self.config.patch_size,
),
dtype=torch.bool,
device=pixel_values.device,
)
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
# The call to `_upad_input` in `_flash_attention_forward` is expensive
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
if not torch.any(~patch_attention_mask):
attention_mask = None
else:
attention_mask = (
_prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
if not self.config._attn_implementation == "flash_attention_2"
else patch_attention_mask
)
encoder_outputs: BaseModelOutput = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
last_hidden_state = encoder_outputs.last_hidden_state
last_hidden_state = self.post_layernorm(last_hidden_state)
pooled_output = self.head(
hidden_state=last_hidden_state,
attention_mask=patch_attention_mask,
)
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class Phi4MultimodalImageEmbedding(nn.Module):
"""Image embedding."""
def __init__(self, config: Phi4MultimodalConfig):
super().__init__()
self.config = config
self.layer_idx = config.vision_config.feature_layer
self.crop_size = config.vision_config.crop_size
self.image_dim_out = config.vision_config.hidden_size
n_patches = config.vision_config.image_size // config.vision_config.patch_size
if n_patches % 2 != 0:
self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1))
n_patches += 1
self.num_img_tokens = (n_patches // 2) ** 2
self.drop = nn.Dropout(config.embd_pdrop)
self.img_processor = Phi4MultimodalVisionModel._from_config(config.vision_config)
self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2)
self.img_projection_up = nn.Linear(self.image_dim_out, config.hidden_size)
self.img_projection_down = nn.Linear(config.hidden_size, config.hidden_size)
self.global_img_feature_extensor = nn.Parameter(torch.zeros([1, 1, self.image_dim_out]))
self.sub_img_feature_extensor = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out]))
def get_img_features(self, img_embeds: torch.FloatTensor, attention_mask=None) -> torch.FloatTensor:
img_processor_output = self.img_processor(
img_embeds, patch_attention_mask=attention_mask, output_hidden_states=True
)
img_feature = img_processor_output.hidden_states[self.layer_idx]
patch_feature = img_feature
# reshape to 2D tensor
width = int(math.sqrt(patch_feature.size(1)))
patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1))
# convert to NCHW
patch_feature = patch_feature.permute(0, 3, 1, 2)
if getattr(self, "img_processor_padding", None) is not None:
patch_feature = self.img_processor_padding(patch_feature)
patch_feature = self.image_token_compression(patch_feature)
# convert to NHWC
patch_feature = patch_feature.permute(0, 2, 3, 1)
patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1))
return patch_feature
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.Tensor,
image_pixel_values: torch.FloatTensor,
image_sizes: Optional[torch.Tensor] = None,
image_attention_mask: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
image_pixel_values = image_pixel_values.to(self.img_processor.embeddings.patch_embedding.weight.dtype)
target_device = self.img_projection_up.bias.device
target_dtype = self.img_projection_up.bias.dtype
batch_size = image_pixel_values.shape[0]
img_features = self.get_img_features(
image_pixel_values.flatten(0, 1),
attention_mask=image_attention_mask.flatten(0, 1).to(dtype=bool, device=target_device),
)
base_feat_size = int(np.sqrt(img_features.shape[1]))
img_features = img_features.view(batch_size, -1, base_feat_size**2, self.image_dim_out)
image_sizes = image_sizes.view(-1, 2)
output_imgs = []
for idx in range(batch_size):
height, width = image_sizes[idx]
height_ratio = height // self.crop_size
width_ratio = width // self.crop_size
area_ratio = height_ratio * width_ratio
global_img = img_features[idx, :1]
global_img = global_img.reshape(1, base_feat_size, base_feat_size, self.image_dim_out).contiguous()
temporary_extensor = self.sub_img_feature_extensor.repeat(1, base_feat_size, 1, 1)
global_img = torch.cat([global_img, temporary_extensor], dim=2).reshape(1, -1, self.image_dim_out)
sub_img = img_features[idx, 1:]
sub_img = sub_img[:area_ratio]
sub_img = (
sub_img.reshape(height_ratio, width_ratio, base_feat_size, base_feat_size, self.image_dim_out)
.transpose(1, 2)
.reshape(1, height_ratio * base_feat_size, width_ratio * base_feat_size, self.image_dim_out)
.contiguous()
)
if image_attention_mask is not None:
reshaped_image_attention_mask = (
image_attention_mask[idx, 1 : area_ratio + 1, 0::2, 0::2]
.reshape(height_ratio, width_ratio, base_feat_size, base_feat_size)
.transpose(1, 2)
.reshape(1, height_ratio * base_feat_size, width_ratio * base_feat_size)
)
useful_height = int(reshaped_image_attention_mask[0, :, 0].sum().item())
useful_width = int(reshaped_image_attention_mask[0, 0, :].sum().item())
sub_img = sub_img[:, :useful_height, :useful_width]
temporary_extensor = self.sub_img_feature_extensor.repeat(1, useful_height, 1, 1)
else:
temporary_extensor = self.sub_img_feature_extensor.repeat(1, height_ratio * base_feat_size, 1, 1)
sub_img = torch.cat([sub_img, temporary_extensor], dim=2).reshape(1, -1, self.image_dim_out)
# Merge global and sub
output_imgs.append(torch.cat([sub_img, self.global_img_feature_extensor, global_img], dim=1))
img_set_tensor = []
for output_img in output_imgs:
output_img = output_img.to(device=target_device, dtype=target_dtype)
img_feature_proj = self.img_projection_up(output_img)
img_feature_proj = nn.functional.gelu(img_feature_proj)
img_feature_proj = self.img_projection_down(img_feature_proj)
img_set_tensor.append(img_feature_proj)
merged_img_set_tensor = torch.cat(img_set_tensor, dim=1).squeeze(0)
merged_img_set_tensor = merged_img_set_tensor.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
with torch.no_grad():
positions_tuple = torch.nonzero(input_ids == self.config.vision_config.image_token_id, as_tuple=True)
# Temporarily disable autocast to avoid issue on bf16 tensors
# Ref: https://github.com/pytorch/pytorch/issues/132715
with torch.autocast(device_type=inputs_embeds.device.type, enabled=False):
image_embeds = inputs_embeds.index_put(
indices=positions_tuple, values=merged_img_set_tensor, accumulate=False
)
image_embeds = self.drop(image_embeds)
return image_embeds
########################################################## AUDIO #############################################
class Phi4MultimodalAudioMLP(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.act_fn = ACT2FN[config.activation]
self.gate_up_proj = nn.Linear(config.hidden_size, config.intermediate_size * 2)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
hidden_states = self.layer_norm(hidden_states)
up_states = self.gate_up_proj(hidden_states)
up_states, gate = up_states.chunk(2, dim=-1)
up_states = up_states * self.act_fn(gate)
up_states = self.dropout(up_states)
hidden_states = self.down_proj(up_states)
out = self.dropout(hidden_states)
return out
class Phi4MultimodalAudioAttention(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.config = config
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.dropout_rate
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
**kwargs,
):
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
attention_interface: Callable = simple_eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, _ = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
class Phi4MultimodalAudioDepthWiseSeperableConv1d(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig, padding: int = 0):
super().__init__()
self.dw_conv = nn.Conv1d(
config.hidden_size,
config.hidden_size * config.depthwise_multiplier,
config.kernel_size,
1,
padding=padding,
groups=config.hidden_size,
)
self.pw_conv = nn.Conv1d(
config.hidden_size * config.depthwise_multiplier, config.depthwise_seperable_out_channel, 1, 1, 0
)
def forward(self, hidden_states):
return self.pw_conv(self.dw_conv(hidden_states))
class Phi4MultimodalAudioGluPointWiseConv(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.config = config
self.output_dim = config.ext_pw_out_channel
self.ext_pw_conv_1d = nn.Conv1d(config.hidden_size, config.ext_pw_out_channel * 2, kernel_size=1, stride=1)
self.glu_act = ACT2FN[config.conv_glu_type]
self.b1 = nn.Parameter(torch.zeros(1, config.ext_pw_out_channel, 1))
self.b2 = nn.Parameter(torch.zeros(1, config.ext_pw_out_channel, 1))
def forward(self, hidden_states):
# we assume the input always has the #channel (#dim) in the last dimension of the
# tensor, so need to switch the dimension first for 1D-Conv case
hidden_states = hidden_states.permute([0, 2, 1])
hidden_states = self.ext_pw_conv_1d(hidden_states)
out = hidden_states[:, 0 : self.output_dim, :] + self.b1
out = out * self.glu_act(hidden_states[:, self.output_dim : self.output_dim * 2, :] + self.b2)
return out.permute([0, 2, 1])
class Phi4MultimodalAudioConvModule(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.config = config
self.kernel_size = config.kernel_size
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.glu = Phi4MultimodalAudioGluPointWiseConv(config)
self.dw_sep_conv_1d = Phi4MultimodalAudioDepthWiseSeperableConv1d(config, padding=config.kernel_size - 1)
self.act = ACT2FN[config.conv_activation]
self.ext_pw_conv_1d = nn.Conv1d(config.hidden_size, config.ext_pw_out_channel, kernel_size=1, stride=1)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.glu(self.layer_norm(hidden_states))
hidden_states = self.dw_sep_conv_1d(hidden_states.permute([0, 2, 1]))
if self.kernel_size > 1:
hidden_states = hidden_states[:, :, : -(self.kernel_size - 1)]
hidden_states = self.act(hidden_states)
hidden_states = self.ext_pw_conv_1d(hidden_states)
out = self.dropout(hidden_states.permute([0, 2, 1]))
return out
class Phi4MultimodalAudioConformerEncoderLayer(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.feed_forward_in = Phi4MultimodalAudioMLP(config)
self.self_attn = Phi4MultimodalAudioAttention(config)
self.conv = Phi4MultimodalAudioConvModule(config)
self.feed_forward_out = Phi4MultimodalAudioMLP(config)
self.layer_norm_att = nn.LayerNorm(config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
):
residual = hidden_states + 0.5 * self.feed_forward_in(hidden_states)
hidden_states = self.layer_norm_att(residual)
hidden_states = residual + self.self_attn(hidden_states, attention_mask)
hidden_states = hidden_states + self.conv(hidden_states)
hidden_states = hidden_states + 0.5 * self.feed_forward_out(hidden_states)
out = self.layer_norm(hidden_states)
return out
class Phi4MultimodalAudioNemoConvSubsampling(torch.nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.subsampling_factor = config.time_reduction
self.sampling_num = int(math.log(self.subsampling_factor, 2))
self.act_fn = ACT2FN[config.nemo_activation]
conv_channels = config.nemo_conv_channels
layers = [
nn.Conv2d(1, conv_channels, kernel_size=3, stride=2, padding=1),
self.act_fn,
]
for _ in range(self.sampling_num - 1):
layers.extend(
[
nn.Conv2d(conv_channels, conv_channels, kernel_size=3, stride=2, padding=1, groups=conv_channels),
nn.Conv2d(conv_channels, conv_channels, kernel_size=1, stride=1, padding=0, groups=1),
self.act_fn,
]
)
# Aggregate the layers
self.conv = torch.nn.Sequential(*layers)
self.out = torch.nn.Linear(conv_channels * config.nemo_final_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor, mask: Optional[torch.Tensor]):
# Unsqueeze Channel Axis
hidden_states = hidden_states.unsqueeze(1)
hidden_states = self.conv(hidden_states)
# Flatten Channel and Frequency Axes
b, _, t, _ = hidden_states.size()
hidden_states = self.out(hidden_states.transpose(1, 2).reshape(b, t, -1))
if mask is None:
return hidden_states, None
max_audio_length = hidden_states.shape[1]
feature_lens = mask.sum(1)
padding_length = torch.ceil(feature_lens / self.subsampling_factor)
arange_ = torch.arange(0, max_audio_length, device=hidden_states.device)
pad_mask = arange_.expand(padding_length.size(0), -1) < padding_length.unsqueeze(1)
return hidden_states, pad_mask.unsqueeze(1)
class Phi4MultimodalAudioRelativeAttentionBias(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.max_distance = config.bias_max_distance
self.symmetric = config.bias_symmetric
self.num_buckets = self.max_distance
if not config.bias_symmetric:
self.num_buckets *= 2
self.bias_values = nn.Embedding(self.num_buckets, config.num_attention_heads)
def forward(self, x):
# instantiate bias compatible with shape of x
max_pos = x.size(1)
context_position = torch.arange(max_pos, device=x.device, dtype=torch.long)[:, None]
memory_position = torch.arange(max_pos, device=x.device, dtype=torch.long)[None, :]
relative_position = memory_position - context_position
# clipping to a maximum distance using ops that play well with ONNX export
relative_position = relative_position.masked_fill(relative_position < -self.max_distance, -self.max_distance)
relative_position = relative_position.masked_fill(
relative_position > self.max_distance - 1, self.max_distance - 1
)
# mapping from relative position to index in the bias parameter
bias_idx = relative_position
bias_idx = bias_idx.abs() if self.symmetric else bias_idx + self.num_buckets // 2
att_bias = self.bias_values(bias_idx)
att_bias = att_bias.permute(2, 0, 1).unsqueeze(0)
return att_bias
class Phi4MultimodalAudioMeanVarianceNormLayer(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.register_buffer("global_mean", torch.zeros(config.input_size))
self.register_buffer("global_invstd", torch.ones(config.input_size))
def forward(self, x):
return (x - self.global_mean) * self.global_invstd
class Phi4MultimodalAudioPreTrainedModel(PreTrainedModel):
config_class = Phi4MultimodalAudioConfig
supports_gradient_checkpointing = True
_no_split_modules = ["Phi4MultimodalAudioConformerEncoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def unfold_tensor(tensor, max_seq_len):
"""
For a given tensor with shape of (N, T, D), if sequence length T is longer than max_seq_len,
this function unfold it to a (NT', max_seq_len, D) where T' is T // max_seq_len.
Args:
tensor: N, T, D
"""
_, _, D = tensor.shape
tensor = tensor.transpose(-1, -2)
# N x D x 1 x T => N x (D x max_seq_len) x T'
tensor = F.unfold(tensor[..., None, :], kernel_size=(1, max_seq_len), stride=(1, max_seq_len))
new_bsz, _, slen = tensor.shape
tensor = tensor.view(new_bsz, -1, max_seq_len, slen)
tensor = tensor.permute(0, 3, 2, 1)
tensor = tensor.view(-1, max_seq_len, D).contiguous()
return tensor
def adaptive_enc_mask(x_len, chunk_start_idx, left_window=0, right_window=0):
"""
The function is very important for Transformer Transducer Streaming mode
Args:
xs_len (int): sequence length
chunk_start_idx (list): first idx of each chunk, such as [0,18,36,48]. It also supports adaptive chunk size [0,10,15,45]
left_window (int): how many left chunks can be seen
right_window (int): how many right chunks can be seen. It is used for chunk overlap model.
Returns:
mask (torch.Tensor): a mask tensor for streaming model
"""
chunk_start_idx = torch.Tensor(chunk_start_idx).long()
start_pad = torch.nn.functional.pad(
chunk_start_idx, (1, 0)
) # append 0 to the beginning, so it becomes [0, 0, 18, 36, 48]
end_pad = torch.nn.functional.pad(
chunk_start_idx, (0, 1), value=x_len
) # append x_len to the end, so it becomes [0,18,36,48, x_len]
seq_range = torch.arange(0, x_len).unsqueeze(-1)
idx = ((seq_range < end_pad) & (seq_range >= start_pad)).nonzero()[:, 1]
seq_range_expand = torch.arange(0, x_len).unsqueeze(0).expand(x_len, -1)
idx_left = idx - left_window
idx_left[idx_left < 0] = 0
boundary_left = start_pad[idx_left]
mask_left = seq_range_expand >= boundary_left.unsqueeze(-1)
idx_right = idx + right_window
idx_right[idx_right > len(chunk_start_idx)] = len(chunk_start_idx)
boundary_right = end_pad[idx_right]
mask_right = seq_range_expand < boundary_right.unsqueeze(-1)
return mask_left & mask_right
class Phi4MultimodalAudioModel(Phi4MultimodalAudioPreTrainedModel):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__(config)
self.config = config
self.encoder_embedding = Phi4MultimodalAudioMeanVarianceNormLayer(config)
self.embed = Phi4MultimodalAudioNemoConvSubsampling(config)
self.relative_attention_bias_layer = Phi4MultimodalAudioRelativeAttentionBias(config)
self.encoders = nn.ModuleList(
[Phi4MultimodalAudioConformerEncoderLayer(config) for _ in range(config.num_blocks)]
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _streaming_mask(self, seq_len, batch_size, chunk_size, left_chunk):
# Create mask matrix for streaming
# S stores start index. if chunksize is 18, s is [0,18,36,....]
chunk_start_idx = np.arange(0, seq_len, chunk_size)
# avoid randomness when run evaluation or decoding
if self.training and np.random.rand() > 0.5:
# Either first or last chunk is not complete.
# If only the last one is not complete, EOS is not effective
chunk_start_idx = seq_len - chunk_start_idx
chunk_start_idx = chunk_start_idx[::-1]
chunk_start_idx = chunk_start_idx[:-1]
chunk_start_idx = np.insert(chunk_start_idx, 0, 0)
enc_streaming_mask = (
adaptive_enc_mask(seq_len, chunk_start_idx, left_window=left_chunk)
.unsqueeze(0)
.expand([batch_size, -1, -1])
)
return enc_streaming_mask
def forward_embeddings(self, hidden_states, masks):
"""Forwarding the inputs through the top embedding layers"""
seq_len = math.ceil(hidden_states.shape[1] / self.config.time_reduction)
if seq_len <= 0:
raise ValueError(
f"The squence length after time reduction is invalid: {seq_len}. Your input feature is too short."
)
batch_size = hidden_states.shape[0]
enc_streaming_mask = self._streaming_mask(seq_len, batch_size, self.config.chunk_size, self.config.left_chunk)
enc_streaming_mask = enc_streaming_mask.to(hidden_states.device)
hidden_states, masks = self.embed(hidden_states, masks)
streaming_mask = enc_streaming_mask
if streaming_mask is not None and masks is not None:
hs_mask = masks & streaming_mask
elif masks is not None:
hs_mask = masks
else:
hs_mask = streaming_mask
return hidden_states, hs_mask, masks
def calculate_hs_mask(self, hidden_states, device, mask):
max_audio_length = hidden_states.shape[1]
batch_size = hidden_states.shape[0]
enc_streaming_mask = self._streaming_mask(
max_audio_length, batch_size, self.config.chunk_size, self.config.left_chunk
)
enc_streaming_mask = enc_streaming_mask.to(device)
if mask is None:
return enc_streaming_mask
feature_lens = mask.sum(1)
padding_length = feature_lens
pad_mask = torch.arange(0, max_audio_length, device=device).expand(
padding_length.size(0), -1
) < padding_length.unsqueeze(1)
pad_mask = pad_mask.unsqueeze(1)
pad_mask = pad_mask & enc_streaming_mask
return pad_mask
def forward(self, hidden_states: torch.Tensor, mask: Optional[torch.Tensor]):
hidden_states = self.encoder_embedding(hidden_states)
hidden_states, hs_mask, mask = self.forward_embeddings(hidden_states, mask)
unfolded = False
bs, seq_len, _ = hidden_states.shape
max_seq_len = 500 # maxium position for absolute positional encoding
if seq_len > max_seq_len:
# audio sequence is longer than max_seq_len, unfold it into chunks of max_seq_len
unfolded = True
# the unfold op will drop residual frames, pad it to the multiple of max_seq_len
if seq_len % max_seq_len > 0:
chunk_pad_size = max_seq_len - (seq_len % max_seq_len)
else:
chunk_pad_size = 0
if chunk_pad_size > 0:
hidden_states_pad = F.pad(hidden_states, (0, 0, 0, chunk_pad_size), "constant", 0)
hidden_states = hidden_states_pad.to(hidden_states.device)
hidden_states = unfold_tensor(hidden_states, max_seq_len)
masks_unfold = None
if mask is not None:
# revise hs_mask here because the previous calculated hs_mask did not consider extra pad
subsampled_pad_mask = mask.squeeze(1) # [bz, subsampled_unmask_seq_len]
extra_padded_subsamlped_pad_mask = F.pad(
subsampled_pad_mask, (0, chunk_pad_size), "constant", False
) # extra padding to the pad mask
extra_padded_subsamlped_pad_mask = extra_padded_subsamlped_pad_mask.unsqueeze(-1).float()
masks_unfold = unfold_tensor(
extra_padded_subsamlped_pad_mask, max_seq_len
) # unfold the pad mask like we did to the input tensor
masks_unfold = masks_unfold.squeeze(-1).bool() # unfold op does not support bool tensor
hs_mask = self.calculate_hs_mask(
hidden_states, hidden_states.device, masks_unfold
) # calculate hs_mask based on the unfolded pad mask
relative_attention_bias = self.relative_attention_bias_layer(hidden_states)
attention_mask = hs_mask.unsqueeze(1) + relative_attention_bias
for layer in self.encoders:
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
)
else:
hidden_states = layer(hidden_states, attention_mask)
if unfolded:
embed_dim = hidden_states.shape[-1]
hidden_states = hidden_states.reshape(bs, -1, embed_dim)
# if we ever padded before unfolding, we need to remove the padding
if chunk_pad_size > 0:
hidden_states = hidden_states[:, :-chunk_pad_size, :]
return hidden_states
class Phi4MultimodalAudioEmbedding(nn.Module):
def __init__(self, config: Phi4MultimodalConfig):
super().__init__()
self.config = config
self.layer_idx = config.audio_config.feature_layer
self.drop = nn.Dropout(config.embd_pdrop)
self.encoder = Phi4MultimodalAudioModel._from_config(config.audio_config)
self.up_proj_for_speech = nn.Linear(
config.audio_config.hidden_size * config.audio_config.downsample_rate, config.hidden_size
)
self.down_proj_for_speech = nn.Linear(config.hidden_size, config.hidden_size)
self.up_proj_for_vision_speech = nn.Linear(
config.audio_config.hidden_size * config.audio_config.downsample_rate, config.hidden_size
)
self.down_proj_for_vision_speech = nn.Linear(config.hidden_size, config.hidden_size)
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.Tensor,
audio_input_features: torch.FloatTensor,
audio_embed_sizes=None,
audio_attention_mask=None,
audio_projection_mode="speech",
) -> torch.FloatTensor:
with torch.no_grad():
positions_tuple = torch.nonzero(input_ids == self.config.audio_config.audio_token_id, as_tuple=True)
up_proj = self.up_proj_for_speech if audio_projection_mode == "speech" else self.up_proj_for_vision_speech
down_proj = (
self.down_proj_for_speech if audio_projection_mode == "speech" else self.down_proj_for_vision_speech
)
target_device = up_proj.bias.device
target_dtype = up_proj.bias.dtype
audio_input_features = audio_input_features.to(device=target_device, dtype=target_dtype)
audio_encoder_hidden_states = self.encoder(audio_input_features, audio_attention_mask)
audio_encoder_hidden_states = up_proj(audio_encoder_hidden_states)
audio_encoder_hidden_states = nn.functional.gelu(audio_encoder_hidden_states)
audio_embeds = down_proj(audio_encoder_hidden_states)
merged_audio_embeds = torch.cat(
[audio_embeds[i, : audio_embed_sizes[i], :] for i in range(len(audio_embed_sizes))], dim=0
)
merged_audio_embeds = merged_audio_embeds.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
# Temporarily disable autocast to avoid issue on bf16 tensors
# Ref: https://github.com/pytorch/pytorch/issues/132715
with torch.autocast(device_type=inputs_embeds.device.type, enabled=False):
audio_embeds = inputs_embeds.index_put(
indices=positions_tuple, values=merged_audio_embeds, accumulate=False
)
audio_embeds = self.drop(audio_embeds)
return audio_embeds
class Phi4MultimodalRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Phi4MultimodalRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Phi4MultimodalMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.activation_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
up_states = self.gate_up_proj(hidden_states)
gate, up_states = up_states.chunk(2, dim=-1)
up_states = up_states * self.activation_fn(gate)
return self.down_proj(up_states)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1)
k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1)
return q_embed, k_embed
class Phi4MultimodalAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Phi4MultimodalConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.num_key_value_heads = config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
op_size = config.num_attention_heads * self.head_dim + 2 * (config.num_key_value_heads * self.head_dim)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.qkv_proj = nn.Linear(config.hidden_size, op_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
qkv = self.qkv_proj(hidden_states)
query_pos = self.config.num_attention_heads * self.head_dim
query_states = qkv[..., :query_pos]
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=getattr(self.config, "sliding_window", None),
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Phi4MultimodalDecoderLayer(nn.Module):
def __init__(self, config: Phi4MultimodalConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Phi4MultimodalAttention(config=config, layer_idx=layer_idx)
self.mlp = Phi4MultimodalMLP(config)
self.input_layernorm = Phi4MultimodalRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Phi4MultimodalRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.config = config
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_value (`Cache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + self.resid_attn_dropout(hidden_states) # main diff with Llama
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.resid_mlp_dropout(hidden_states) # main diff with Llama
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Phi4MultimodalFeatureEmbedding(nn.Module):
"""Image-audio embedding."""
def __init__(self, config: Phi4MultimodalConfig) -> None:
super().__init__()
self.config = config
self.image_token_id = config.vision_config.image_token_id
self.audio_token_id = config.audio_config.audio_token_id
self.image_embed = Phi4MultimodalImageEmbedding(config)
self.audio_embed = Phi4MultimodalAudioEmbedding(config)
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.Tensor,
image_pixel_values: Optional[torch.FloatTensor] = None,
audio_input_features: Optional[torch.FloatTensor] = None,
image_sizes=None,
image_attention_mask=None,
audio_embed_sizes=None,
audio_attention_mask=None,
) -> torch.FloatTensor:
with torch.no_grad():
image_position_mask = (input_ids == self.config.vision_config.image_token_id).unsqueeze(-1)
non_image_position_mask = ~image_position_mask
image_embeds = None
audio_embeds = None
if image_pixel_values is not None and (input_ids == self.image_token_id).any():
image_embeds = self.image_embed(
input_ids,
inputs_embeds,
image_pixel_values=image_pixel_values,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
)
if audio_input_features is not None and (input_ids == self.audio_token_id).any():
audio_projection_mode = "vision" if image_pixel_values is not None else "speech"
audio_embeds = self.audio_embed(
input_ids,
inputs_embeds,
audio_input_features=audio_input_features,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
audio_projection_mode=audio_projection_mode,
)
# merge image and audio
if image_embeds is not None and audio_embeds is not None:
inputs_embeds = image_embeds * image_position_mask + audio_embeds * non_image_position_mask
elif image_embeds is not None:
inputs_embeds = image_embeds
elif audio_embeds is not None:
inputs_embeds = audio_embeds
return inputs_embeds
PHI4_MULTIMODAL_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Phi4MultimodalConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Phi4Multimodal Model outputting raw hidden-states without any specific head on top.",
PHI4_MULTIMODAL_START_DOCSTRING,
)
class Phi4MultimodalPreTrainedModel(PreTrainedModel):
config_class = Phi4MultimodalConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Phi4MultimodalDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
_version = "0.0.5"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class Phi4MultimodalRotaryEmbedding(nn.Module):
def __init__(self, config: Phi4MultimodalConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `input_values`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`)`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
See our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
image_pixel_values (`torch.FloatTensor`, *optional*):
If the input contains images, these correspond to the pixel values after transformations (as returned by
the Processor)
image_sizes (`torch.LongTensor`, *optional*):
If the input contains images, these correspond to size of each image.
image_attention_mask (`torch.LongTensor`, *optional*):
Attention mask for the images.
audio_input_features (`torch.FloatTensor`, *optional*):
If the input contains audio samples, these correspond to the values after transformation (as returned by
the Processor).
audio_embed_sizes (`torch.Tensor`, *optional*):
Size of the audio inputs.
audio_attention_mask (`torch.Tensor, *optional*):
Attention mask for the audio inputs.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Phi4Multimodal Model outputting raw hidden-states without any specific head on top.",
PHI4_MULTIMODAL_START_DOCSTRING,
)
class Phi4MultimodalModel(Phi4MultimodalPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi4MultimodalMMDecoderLayer`]
Args:
config: Phi4MultimodalMMConfig
"""
def __init__(self, config: Phi4MultimodalConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Phi4MultimodalDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Phi4MultimodalRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Phi4MultimodalRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.embed_dropout = nn.Dropout(config.embd_pdrop)
self.embed_tokens_extend = Phi4MultimodalFeatureEmbedding(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
image_pixel_values: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.LongTensor] = None,
image_attention_mask=None,
audio_input_features: Optional[torch.FloatTensor] = None,
audio_embed_sizes=None,
audio_attention_mask=None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = self.embed_tokens_extend(
input_ids,
inputs_embeds,
image_pixel_values=image_pixel_values,
audio_input_features=audio_input_features,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Phi4Multimodal. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: Phi4MultimodalConfig,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`Phi4MultimodalConfig`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class Phi4MultimodalForCausalLM(Phi4MultimodalPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = Phi4MultimodalModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=Phi4MultimodalConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
image_pixel_values: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.LongTensor] = None,
image_attention_mask=None,
audio_input_features: Optional[torch.FloatTensor] = None,
audio_embed_sizes=None,
audio_attention_mask=None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Phi4MultimodalForCausalLM
>>> model = Phi4MultimodalForCausalLM.from_pretrained("TBA")
>>> tokenizer = AutoTokenizer.from_pretrained("TBA")
>>> prompt = "This is an example script ."
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
image_pixel_values=image_pixel_values,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
audio_input_features=audio_input_features,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
image_pixel_values=None,
image_sizes=None,
image_attention_mask=None,
audio_input_features=None,
audio_embed_sizes=None,
audio_attention_mask=None,
cache_position=None,
position_ids=None,
use_cache=True,
logits_to_keep=0,
**kwargs,
):
# Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
# process
# When the first time input length reached long and short factor switching point, enforce re-compute cache
# It will cause downside of slower at this single token position, however, better than current failure.
if (
past_key_values
and self.config.rope_scaling
and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
):
past_length = cache_position[0]
if past_length <= self.config.original_max_position_embeddings:
past_key_values = None
model_inputs = super().prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
image_pixel_values=image_pixel_values,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
audio_input_features=audio_input_features,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
**kwargs,
)
return model_inputs
__all__ = [
"Phi4MultimodalAudioPreTrainedModel",
"Phi4MultimodalAudioModel",
"Phi4MultimodalVisionPreTrainedModel",
"Phi4MultimodalVisionModel",
"Phi4MultimodalPreTrainedModel",
"Phi4MultimodalModel",
"Phi4MultimodalForCausalLM",
]
```
|
======================================================================================================================================================
SOURCE CODE FILE: modular_phi4_multimodal.py
LINES: 2
SIZE: 81.04 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi4_multimodal\modular_phi4_multimodal.py
ENCODING: utf-8
```py
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Callable, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...activations import ACT2FN
from ...cache_utils import DynamicCache
from ...configuration_utils import PretrainedConfig
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
BaseModelOutputWithPooling,
CausalLMOutputWithPast,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...utils import (
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
)
from ..phi3.configuration_phi3 import Phi3Config
from ..phi3.modeling_phi3 import Phi3DecoderLayer, Phi3ForCausalLM, Phi3Model, Phi3RMSNorm
from ..siglip.configuration_siglip import SiglipVisionConfig
from ..siglip.modeling_siglip import (
SiglipEncoder,
SiglipEncoderLayer,
SiglipMLP,
SiglipMultiheadAttentionPoolingHead,
SiglipPreTrainedModel,
SiglipVisionEmbeddings,
default_flax_embed_init,
lecun_normal_,
)
logger = logging.get_logger(__name__)
class Phi4MultimodalVisionConfig(SiglipVisionConfig):
r"""
This is the configuration class to store the configuration of a [`Phi4MultimodalVisionModel`]. It is used to instantiate a
Phi4Multimodal vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1152):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 4304):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 27):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 448):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
crop_size (`int`, *optional*, defaults to 448):
Crop size for the input images.
image_token_id (`int`, *optional*, defaults to 200010):
The image token id.
feature_layer (`int`, *optional*, defaults to -2):
The index of the layer of the encoder from which to extract image features.
Example:
```python
>>> from transformers import Phi4MultimodalVisionConfig
>>> # Initializing a Phi4MultimodalVisionConfig with microsoft/Phi-4-multimodal-instruct style configuration
>>> configuration = Phi4MultimodalVisionConfig()
```"""
model_type = "phi4_multimodal_vision"
def __init__(
self,
hidden_size=1152,
intermediate_size=4304,
num_hidden_layers=27,
num_attention_heads=16,
num_channels=3,
image_size=448,
patch_size=14,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
crop_size: int = 448,
image_token_id: int = 200010,
feature_layer: int = -2,
**kwargs,
):
super().__init__(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_channels=num_channels,
image_size=image_size,
patch_size=patch_size,
hidden_act=hidden_act,
layer_norm_eps=layer_norm_eps,
attention_dropout=attention_dropout,
**kwargs,
)
self.crop_size = crop_size
self.image_token_id = image_token_id
self.feature_layer = feature_layer
class Phi4MultimodalAudioConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Phi4MultimodalAudioModel`]. It is used to instantiate a
Phi4Multimodal audio encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the audio encoder of
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers.
intermediate_size (`int`, *optional*, defaults to 1536):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_blocks (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
activation (`str`, *optional*, defaults to `"swish"`):
The non-linear activation function in the MLPs.
chunk_size (`int`, *optional*, defaults to -1):
The chunk size to create the masks.
left_chunk (`int`, *optional*, defaults to 18):
The left chunk to create the masks.
dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout ratio.
ext_pw_out_channel (`int`, *optional*, defaults to 1024):
Number of out channels in the point-wise conv modules.
depthwise_seperable_out_channel (`int`, *optional*, defaults to 1024):
Number of out channels in the depth-wise separable conv modules.
depthwise_multiplier (`int`, *optional*, defaults to 1):
Input size multiplier for the depth-wise separable conv modules.
kernel_size (`int`, *optional*, defaults to 3):
Kernel size for the depth-wise separable conv modules.
conv_activation (`str`, *optional*, defaults to `"swish"`):
The non-linear activation function in the conv modules.
input_size (`int`, *optional*, defaults to 80):
Input size for the audio model.
conv_glu_type (`str`, *optional*, defaults to `"swish"`):
The non-linear activation function in the point-wise conv modules.
time_reduction (`int`, *optional*, defaults to 8):
Time reduction (subsampling factor).
bias_max_distance (`int`, *optional*, defaults to 1000):
Max distance for the relative attention bias module.
bias_symmetric (`bool`, *optional*, defaults to `False`):
Whether the relative attention bias should be symmetric or not.
nemo_activation (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function in the nemo conv modules.
nemo_conv_channels (`int`, *optional*, defaults to 1024):
Number of channels in the nemo conv modules.
downsample_rate (`int`, *optional*, defaults to 1):
Downsample rate for the audio feature extractor.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
audio_token_id (`int`, *optional*, defaults to 200011):
The audio token id.
feature_layer (`int`, *optional*, defaults to -2):
The index of the layer of the encoder from which to extract audio features.
Example:
```python
>>> from transformers import Phi4MultimodalAudioConfig
>>> # Initializing a Phi4MultimodalAudioConfig with microsoft/Phi-4-multimodal-instruct style configuration
>>> configuration = Phi4MultimodalAudioConfig()
```"""
model_type = "phi4_multimodal_audio"
def __init__(
self,
hidden_size: int = 1024,
intermediate_size: int = 1536,
num_blocks: int = 24,
num_attention_heads: int = 16,
activation: str = "swish",
chunk_size: int = -1,
left_chunk: int = 18,
dropout_rate: float = 0.0,
ext_pw_out_channel: int = 1024,
depthwise_seperable_out_channel: int = 1024,
depthwise_multiplier: int = 1,
kernel_size: int = 3,
conv_activation: str = "swish",
input_size: int = 80,
conv_glu_type: str = "swish",
time_reduction: int = 8,
bias_max_distance: int = 1000,
bias_symmetric: bool = False,
nemo_activation: str = "relu",
nemo_conv_channels: int = 1024,
downsample_rate: int = 1,
initializer_range: float = 0.02,
audio_token_id: int = 200011,
feature_layer: int = -2,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.activation = activation
self.chunk_size = chunk_size
self.left_chunk = left_chunk
self.num_blocks = num_blocks
self.dropout_rate = dropout_rate
self.ext_pw_out_channel = ext_pw_out_channel
self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
self.depthwise_multiplier = depthwise_multiplier
self.kernel_size = kernel_size
self.conv_activation = conv_activation
self.input_size = input_size
self.conv_glu_type = conv_glu_type
self.time_reduction = time_reduction
self.bias_max_distance = bias_max_distance
self.bias_symmetric = bias_symmetric
self.nemo_activation = nemo_activation
self.nemo_conv_channels = nemo_conv_channels
self.downsample_rate = downsample_rate
self.audio_token_id = audio_token_id
self.initializer_range = initializer_range
self.feature_layer = feature_layer
if time_reduction % 2 != 0:
raise ValueError("`time_reduction` should be a multiple of 2!")
length = input_size
for _ in range(int(math.log(time_reduction, 2))):
length = math.floor((length - 1) / 2 + 1)
self.nemo_final_size = length
class Phi4MultimodalConfig(Phi3Config):
r"""
This is the configuration class to store the configuration of a [`Phi4MultimodalModel`]. It is used to instantiate a
Phi4Multimodal model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 200064):
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Phi3Model`].
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 131072):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value used for the RMSNorm.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`dict`, *optional*):
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
divided by the number of attention heads divided by 2.
partial_rotary_factor (`float`, *optional*, defaults to `1.0`):
Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
bos_token_id (`int`, *optional*, defaults to 199999):
The id of the "beginning-of-sequence" token.
eos_token_id (`int` or `list[int]`, *optional*, defaults to `[199999, 200020]`):
The id of the "end-of-sequence" token.
pad_token_id (`int`, *optional*, defaults to 199999):
The id of the padding token.
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model was trained with. This is used to determine the size of the
original RoPE embeddings when using long scaling.
sliding_window (`int`, *optional*):
Sliding window attention window size. If `None`, no sliding window is applied.
vision_config (`Phi4MultimodalVisionConfig` or `dict`, *optional*):
The vision config for the underlying image embedding model. If not provided, will default to the configuration
used to instantiate a model similar in architecture as
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct).
audio_config (`Phi4MultimodalAudioConfig` or `dict`, *optional*):
The audio config for the underlying audio embedding model. If not provided, will default to the configuration
used to instantiate a model similar in architecture as
[microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct).
Example:
```python
>>> from transformers import Phi4MultimodalModel, Phi4MultimodalConfig
>>> # Initializing a Phi4Multimodal style configuration
>>> configuration = Phi4MultimodalConfig.from_pretrained("microsoft/Phi-4-multimodal-instruct")
>>> # Initializing a model from the configuration
>>> model = Phi4MultimodalModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
sub_configs = {"audio_config": Phi4MultimodalAudioConfig, "vision_config": Phi4MultimodalVisionConfig}
def __init__(
self,
vocab_size=200064,
hidden_size=3072,
intermediate_size=8192,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
resid_pdrop=0.0,
embd_pdrop=0.0,
attention_dropout=0.0,
hidden_act="silu",
max_position_embeddings=131072,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=1,
bos_token_id=199999,
eos_token_id=[199999, 200020],
pad_token_id=199999,
original_max_position_embeddings=4096,
sliding_window=None,
vision_config=None,
audio_config=None,
**kwargs,
):
super().__init__(
vocab_size=vocab_size,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_key_value_heads=num_key_value_heads,
resid_pdrop=resid_pdrop,
embd_pdrop=embd_pdrop,
attention_dropout=attention_dropout,
hidden_act=hidden_act,
max_position_embeddings=max_position_embeddings,
initializer_range=initializer_range,
rms_norm_eps=rms_norm_eps,
use_cache=use_cache,
tie_word_embeddings=tie_word_embeddings,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
partial_rotary_factor=partial_rotary_factor,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
original_max_position_embeddings=original_max_position_embeddings,
sliding_window=sliding_window,
**kwargs,
)
if isinstance(vision_config, dict):
vision_config = Phi4MultimodalVisionConfig(**vision_config)
elif vision_config is None:
Phi4MultimodalVisionConfig()
self.vision_config = vision_config
if isinstance(audio_config, dict):
audio_config = Phi4MultimodalAudioConfig(**audio_config)
elif vision_config is None:
audio_config = Phi4MultimodalAudioConfig()
self.audio_config = audio_config
class Phi4MultimodalVisionMLP(SiglipMLP):
pass
def simple_eager_attention_forward(
module: nn.Module,
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Phi4MultimodalVisionAttention(nn.Module):
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.scaling = self.head_dim**-0.5
self.is_causal = True
self.attention_dropout = config.attention_dropout
self.k_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.v_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.q_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
attention_interface: Callable = simple_eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class Phi4MultimodalVisionEncoderLayer(SiglipEncoderLayer):
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__(config)
self.self_attn = Phi4MultimodalVisionAttention(config)
self.mlp = Phi4MultimodalVisionMLP(config)
class Phi4MultimodalVisionEncoder(SiglipEncoder):
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__()
self.layers = nn.ModuleList(
[Phi4MultimodalVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]
)
class Phi4MultimodalVisionPreTrainedModel(SiglipPreTrainedModel):
config_class = Phi4MultimodalVisionConfig
base_model_prefix = "phi4_vision"
supports_gradient_checkpointing = True
_no_split_modules = ["Phi4MultimodalVisionEncoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, Phi4MultimodalVisionEmbeddings):
width = (
self.config.hidden_size
if isinstance(self.config, Phi4MultimodalVisionConfig)
else self.config.hidden_size
)
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
elif isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, Phi4MultimodalVisionAttention):
nn.init.normal_(module.q_proj.weight)
nn.init.normal_(module.k_proj.weight)
nn.init.normal_(module.v_proj.weight)
nn.init.normal_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, Phi4MultimodalVisionMLP):
nn.init.normal_(module.fc1.weight)
nn.init.normal_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, Phi4MultimodalVisionMultiheadAttentionPoolingHead):
nn.init.normal_(module.probe.data)
nn.init.normal_(module.attention.in_proj_weight.data)
nn.init.zeros_(module.attention.in_proj_bias.data)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class Phi4MultimodalVisionEmbeddings(SiglipVisionEmbeddings, nn.Module):
def __init__(self, config: Phi4MultimodalVisionConfig):
nn.Module.__init__()
self.config = config
self.patch_size = config.patch_size
self.num_patches_per_side = config.image_size // self.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=config.hidden_size,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.position_embedding = nn.Embedding(self.num_patches_per_side**2, config.hidden_size)
def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor:
batch_size = pixel_values.size(0)
patch_embeds = self.patch_embedding(pixel_values)
embeddings = patch_embeds.flatten(2).transpose(1, 2)
max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
position_ids = torch.full((batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0)
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
nb_patches_h = p_attn_mask[:, 0].sum()
nb_patches_w = p_attn_mask[0].sum()
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
position_ids = position_ids.to(self.position_embedding.weight.device)
embeddings = embeddings + self.position_embedding(position_ids)
return embeddings
class Phi4MultimodalVisionMultiheadAttentionPoolingHead(SiglipMultiheadAttentionPoolingHead):
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__(config)
self.mlp = Phi4MultimodalVisionMLP(config)
def forward(self, hidden_state, attention_mask):
batch_size = hidden_state.shape[0]
probe = self.probe.repeat(batch_size, 1, 1)
hidden_state = self.attention(
query=probe, key=hidden_state, value=hidden_state, key_padding_mask=~attention_mask
)[0]
residual = hidden_state
hidden_state = self.layernorm(hidden_state)
hidden_state = residual + self.mlp(hidden_state)
return hidden_state[:, 0]
class Phi4MultimodalVisionModel(Phi4MultimodalVisionPreTrainedModel):
config_class = Phi4MultimodalVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: Phi4MultimodalVisionConfig):
super().__init__(config)
self.config = config
self.embeddings = Phi4MultimodalVisionEmbeddings(config)
self.encoder = Phi4MultimodalVisionEncoder(config)
self.post_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.head = Phi4MultimodalVisionMultiheadAttentionPoolingHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embedding
def forward(
self,
pixel_values,
patch_attention_mask: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> BaseModelOutputWithPooling:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
batch_size = pixel_values.size(0)
if patch_attention_mask is None:
patch_attention_mask = torch.ones(
size=(
batch_size,
pixel_values.size(2) // self.config.patch_size,
pixel_values.size(3) // self.config.patch_size,
),
dtype=torch.bool,
device=pixel_values.device,
)
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
# The call to `_upad_input` in `_flash_attention_forward` is expensive
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
if not torch.any(~patch_attention_mask):
attention_mask = None
else:
attention_mask = (
_prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
if not self.config._attn_implementation == "flash_attention_2"
else patch_attention_mask
)
encoder_outputs: BaseModelOutput = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
last_hidden_state = encoder_outputs.last_hidden_state
last_hidden_state = self.post_layernorm(last_hidden_state)
pooled_output = self.head(
hidden_state=last_hidden_state,
attention_mask=patch_attention_mask,
)
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class Phi4MultimodalImageEmbedding(nn.Module):
"""Image embedding."""
def __init__(self, config: Phi4MultimodalConfig):
super().__init__()
self.config = config
self.layer_idx = config.vision_config.feature_layer
self.crop_size = config.vision_config.crop_size
self.image_dim_out = config.vision_config.hidden_size
n_patches = config.vision_config.image_size // config.vision_config.patch_size
if n_patches % 2 != 0:
self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1))
n_patches += 1
self.num_img_tokens = (n_patches // 2) ** 2
self.drop = nn.Dropout(config.embd_pdrop)
self.img_processor = Phi4MultimodalVisionModel._from_config(config.vision_config)
self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2)
self.img_projection_up = nn.Linear(self.image_dim_out, config.hidden_size)
self.img_projection_down = nn.Linear(config.hidden_size, config.hidden_size)
self.global_img_feature_extensor = nn.Parameter(torch.zeros([1, 1, self.image_dim_out]))
self.sub_img_feature_extensor = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out]))
def get_img_features(self, img_embeds: torch.FloatTensor, attention_mask=None) -> torch.FloatTensor:
img_processor_output = self.img_processor(
img_embeds, patch_attention_mask=attention_mask, output_hidden_states=True
)
img_feature = img_processor_output.hidden_states[self.layer_idx]
patch_feature = img_feature
# reshape to 2D tensor
width = int(math.sqrt(patch_feature.size(1)))
patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1))
# convert to NCHW
patch_feature = patch_feature.permute(0, 3, 1, 2)
if getattr(self, "img_processor_padding", None) is not None:
patch_feature = self.img_processor_padding(patch_feature)
patch_feature = self.image_token_compression(patch_feature)
# convert to NHWC
patch_feature = patch_feature.permute(0, 2, 3, 1)
patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1))
return patch_feature
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.Tensor,
image_pixel_values: torch.FloatTensor,
image_sizes: Optional[torch.Tensor] = None,
image_attention_mask: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
image_pixel_values = image_pixel_values.to(self.img_processor.embeddings.patch_embedding.weight.dtype)
target_device = self.img_projection_up.bias.device
target_dtype = self.img_projection_up.bias.dtype
batch_size = image_pixel_values.shape[0]
img_features = self.get_img_features(
image_pixel_values.flatten(0, 1),
attention_mask=image_attention_mask.flatten(0, 1).to(dtype=bool, device=target_device),
)
base_feat_size = int(np.sqrt(img_features.shape[1]))
img_features = img_features.view(batch_size, -1, base_feat_size**2, self.image_dim_out)
image_sizes = image_sizes.view(-1, 2)
output_imgs = []
for idx in range(batch_size):
height, width = image_sizes[idx]
height_ratio = height // self.crop_size
width_ratio = width // self.crop_size
area_ratio = height_ratio * width_ratio
global_img = img_features[idx, :1]
global_img = global_img.reshape(1, base_feat_size, base_feat_size, self.image_dim_out).contiguous()
temporary_extensor = self.sub_img_feature_extensor.repeat(1, base_feat_size, 1, 1)
global_img = torch.cat([global_img, temporary_extensor], dim=2).reshape(1, -1, self.image_dim_out)
sub_img = img_features[idx, 1:]
sub_img = sub_img[:area_ratio]
sub_img = (
sub_img.reshape(height_ratio, width_ratio, base_feat_size, base_feat_size, self.image_dim_out)
.transpose(1, 2)
.reshape(1, height_ratio * base_feat_size, width_ratio * base_feat_size, self.image_dim_out)
.contiguous()
)
if image_attention_mask is not None:
reshaped_image_attention_mask = (
image_attention_mask[idx, 1 : area_ratio + 1, 0::2, 0::2]
.reshape(height_ratio, width_ratio, base_feat_size, base_feat_size)
.transpose(1, 2)
.reshape(1, height_ratio * base_feat_size, width_ratio * base_feat_size)
)
useful_height = int(reshaped_image_attention_mask[0, :, 0].sum().item())
useful_width = int(reshaped_image_attention_mask[0, 0, :].sum().item())
sub_img = sub_img[:, :useful_height, :useful_width]
temporary_extensor = self.sub_img_feature_extensor.repeat(1, useful_height, 1, 1)
else:
temporary_extensor = self.sub_img_feature_extensor.repeat(1, height_ratio * base_feat_size, 1, 1)
sub_img = torch.cat([sub_img, temporary_extensor], dim=2).reshape(1, -1, self.image_dim_out)
# Merge global and sub
output_imgs.append(torch.cat([sub_img, self.global_img_feature_extensor, global_img], dim=1))
img_set_tensor = []
for output_img in output_imgs:
output_img = output_img.to(device=target_device, dtype=target_dtype)
img_feature_proj = self.img_projection_up(output_img)
img_feature_proj = nn.functional.gelu(img_feature_proj)
img_feature_proj = self.img_projection_down(img_feature_proj)
img_set_tensor.append(img_feature_proj)
merged_img_set_tensor = torch.cat(img_set_tensor, dim=1).squeeze(0)
merged_img_set_tensor = merged_img_set_tensor.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
with torch.no_grad():
positions_tuple = torch.nonzero(input_ids == self.config.vision_config.image_token_id, as_tuple=True)
# Temporarily disable autocast to avoid issue on bf16 tensors
# Ref: https://github.com/pytorch/pytorch/issues/132715
with torch.autocast(device_type=inputs_embeds.device.type, enabled=False):
image_embeds = inputs_embeds.index_put(
indices=positions_tuple, values=merged_img_set_tensor, accumulate=False
)
image_embeds = self.drop(image_embeds)
return image_embeds
########################################################## AUDIO #############################################
class Phi4MultimodalAudioMLP(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.act_fn = ACT2FN[config.activation]
self.gate_up_proj = nn.Linear(config.hidden_size, config.intermediate_size * 2)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
hidden_states = self.layer_norm(hidden_states)
up_states = self.gate_up_proj(hidden_states)
up_states, gate = up_states.chunk(2, dim=-1)
up_states = up_states * self.act_fn(gate)
up_states = self.dropout(up_states)
hidden_states = self.down_proj(up_states)
out = self.dropout(hidden_states)
return out
class Phi4MultimodalAudioAttention(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.config = config
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.dropout_rate
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
**kwargs,
):
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
attention_interface: Callable = simple_eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, _ = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
class Phi4MultimodalAudioDepthWiseSeperableConv1d(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig, padding: int = 0):
super().__init__()
self.dw_conv = nn.Conv1d(
config.hidden_size,
config.hidden_size * config.depthwise_multiplier,
config.kernel_size,
1,
padding=padding,
groups=config.hidden_size,
)
self.pw_conv = nn.Conv1d(
config.hidden_size * config.depthwise_multiplier, config.depthwise_seperable_out_channel, 1, 1, 0
)
def forward(self, hidden_states):
return self.pw_conv(self.dw_conv(hidden_states))
class Phi4MultimodalAudioGluPointWiseConv(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.config = config
self.output_dim = config.ext_pw_out_channel
self.ext_pw_conv_1d = nn.Conv1d(config.hidden_size, config.ext_pw_out_channel * 2, kernel_size=1, stride=1)
self.glu_act = ACT2FN[config.conv_glu_type]
self.b1 = nn.Parameter(torch.zeros(1, config.ext_pw_out_channel, 1))
self.b2 = nn.Parameter(torch.zeros(1, config.ext_pw_out_channel, 1))
def forward(self, hidden_states):
# we assume the input always has the #channel (#dim) in the last dimension of the
# tensor, so need to switch the dimension first for 1D-Conv case
hidden_states = hidden_states.permute([0, 2, 1])
hidden_states = self.ext_pw_conv_1d(hidden_states)
out = hidden_states[:, 0 : self.output_dim, :] + self.b1
out = out * self.glu_act(hidden_states[:, self.output_dim : self.output_dim * 2, :] + self.b2)
return out.permute([0, 2, 1])
class Phi4MultimodalAudioConvModule(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.config = config
self.kernel_size = config.kernel_size
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.glu = Phi4MultimodalAudioGluPointWiseConv(config)
self.dw_sep_conv_1d = Phi4MultimodalAudioDepthWiseSeperableConv1d(config, padding=config.kernel_size - 1)
self.act = ACT2FN[config.conv_activation]
self.ext_pw_conv_1d = nn.Conv1d(config.hidden_size, config.ext_pw_out_channel, kernel_size=1, stride=1)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.glu(self.layer_norm(hidden_states))
hidden_states = self.dw_sep_conv_1d(hidden_states.permute([0, 2, 1]))
if self.kernel_size > 1:
hidden_states = hidden_states[:, :, : -(self.kernel_size - 1)]
hidden_states = self.act(hidden_states)
hidden_states = self.ext_pw_conv_1d(hidden_states)
out = self.dropout(hidden_states.permute([0, 2, 1]))
return out
class Phi4MultimodalAudioConformerEncoderLayer(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.feed_forward_in = Phi4MultimodalAudioMLP(config)
self.self_attn = Phi4MultimodalAudioAttention(config)
self.conv = Phi4MultimodalAudioConvModule(config)
self.feed_forward_out = Phi4MultimodalAudioMLP(config)
self.layer_norm_att = nn.LayerNorm(config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
):
residual = hidden_states + 0.5 * self.feed_forward_in(hidden_states)
hidden_states = self.layer_norm_att(residual)
hidden_states = residual + self.self_attn(hidden_states, attention_mask)
hidden_states = hidden_states + self.conv(hidden_states)
hidden_states = hidden_states + 0.5 * self.feed_forward_out(hidden_states)
out = self.layer_norm(hidden_states)
return out
class Phi4MultimodalAudioNemoConvSubsampling(torch.nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.subsampling_factor = config.time_reduction
self.sampling_num = int(math.log(self.subsampling_factor, 2))
self.act_fn = ACT2FN[config.nemo_activation]
conv_channels = config.nemo_conv_channels
layers = [
nn.Conv2d(1, conv_channels, kernel_size=3, stride=2, padding=1),
self.act_fn,
]
for _ in range(self.sampling_num - 1):
layers.extend(
[
nn.Conv2d(conv_channels, conv_channels, kernel_size=3, stride=2, padding=1, groups=conv_channels),
nn.Conv2d(conv_channels, conv_channels, kernel_size=1, stride=1, padding=0, groups=1),
self.act_fn,
]
)
# Aggregate the layers
self.conv = torch.nn.Sequential(*layers)
self.out = torch.nn.Linear(conv_channels * config.nemo_final_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor, mask: Optional[torch.Tensor]):
# Unsqueeze Channel Axis
hidden_states = hidden_states.unsqueeze(1)
hidden_states = self.conv(hidden_states)
# Flatten Channel and Frequency Axes
b, _, t, _ = hidden_states.size()
hidden_states = self.out(hidden_states.transpose(1, 2).reshape(b, t, -1))
if mask is None:
return hidden_states, None
max_audio_length = hidden_states.shape[1]
feature_lens = mask.sum(1)
padding_length = torch.ceil(feature_lens / self.subsampling_factor)
arange_ = torch.arange(0, max_audio_length, device=hidden_states.device)
pad_mask = arange_.expand(padding_length.size(0), -1) < padding_length.unsqueeze(1)
return hidden_states, pad_mask.unsqueeze(1)
class Phi4MultimodalAudioRelativeAttentionBias(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.max_distance = config.bias_max_distance
self.symmetric = config.bias_symmetric
self.num_buckets = self.max_distance
if not config.bias_symmetric:
self.num_buckets *= 2
self.bias_values = nn.Embedding(self.num_buckets, config.num_attention_heads)
def forward(self, x):
# instantiate bias compatible with shape of x
max_pos = x.size(1)
context_position = torch.arange(max_pos, device=x.device, dtype=torch.long)[:, None]
memory_position = torch.arange(max_pos, device=x.device, dtype=torch.long)[None, :]
relative_position = memory_position - context_position
# clipping to a maximum distance using ops that play well with ONNX export
relative_position = relative_position.masked_fill(relative_position < -self.max_distance, -self.max_distance)
relative_position = relative_position.masked_fill(
relative_position > self.max_distance - 1, self.max_distance - 1
)
# mapping from relative position to index in the bias parameter
bias_idx = relative_position
bias_idx = bias_idx.abs() if self.symmetric else bias_idx + self.num_buckets // 2
att_bias = self.bias_values(bias_idx)
att_bias = att_bias.permute(2, 0, 1).unsqueeze(0)
return att_bias
class Phi4MultimodalAudioMeanVarianceNormLayer(nn.Module):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__()
self.register_buffer("global_mean", torch.zeros(config.input_size))
self.register_buffer("global_invstd", torch.ones(config.input_size))
def forward(self, x):
return (x - self.global_mean) * self.global_invstd
class Phi4MultimodalAudioPreTrainedModel(PreTrainedModel):
config_class = Phi4MultimodalAudioConfig
supports_gradient_checkpointing = True
_no_split_modules = ["Phi4MultimodalAudioConformerEncoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class Phi4MultimodalAudioModel(Phi4MultimodalAudioPreTrainedModel):
def __init__(self, config: Phi4MultimodalAudioConfig):
super().__init__(config)
self.config = config
self.encoder_embedding = Phi4MultimodalAudioMeanVarianceNormLayer(config)
self.embed = Phi4MultimodalAudioNemoConvSubsampling(config)
self.relative_attention_bias_layer = Phi4MultimodalAudioRelativeAttentionBias(config)
self.encoders = nn.ModuleList(
[Phi4MultimodalAudioConformerEncoderLayer(config) for _ in range(config.num_blocks)]
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _streaming_mask(self, seq_len, batch_size, chunk_size, left_chunk):
# Create mask matrix for streaming
# S stores start index. if chunksize is 18, s is [0,18,36,....]
chunk_start_idx = np.arange(0, seq_len, chunk_size)
# avoid randomness when run evaluation or decoding
if self.training and np.random.rand() > 0.5:
# Either first or last chunk is not complete.
# If only the last one is not complete, EOS is not effective
chunk_start_idx = seq_len - chunk_start_idx
chunk_start_idx = chunk_start_idx[::-1]
chunk_start_idx = chunk_start_idx[:-1]
chunk_start_idx = np.insert(chunk_start_idx, 0, 0)
enc_streaming_mask = (
adaptive_enc_mask(seq_len, chunk_start_idx, left_window=left_chunk)
.unsqueeze(0)
.expand([batch_size, -1, -1])
)
return enc_streaming_mask
def forward_embeddings(self, hidden_states, masks):
"""Forwarding the inputs through the top embedding layers"""
seq_len = math.ceil(hidden_states.shape[1] / self.config.time_reduction)
if seq_len <= 0:
raise ValueError(
f"The squence length after time reduction is invalid: {seq_len}. Your input feature is too short."
)
batch_size = hidden_states.shape[0]
enc_streaming_mask = self._streaming_mask(seq_len, batch_size, self.config.chunk_size, self.config.left_chunk)
enc_streaming_mask = enc_streaming_mask.to(hidden_states.device)
hidden_states, masks = self.embed(hidden_states, masks)
streaming_mask = enc_streaming_mask
if streaming_mask is not None and masks is not None:
hs_mask = masks & streaming_mask
elif masks is not None:
hs_mask = masks
else:
hs_mask = streaming_mask
return hidden_states, hs_mask, masks
def calculate_hs_mask(self, hidden_states, device, mask):
max_audio_length = hidden_states.shape[1]
batch_size = hidden_states.shape[0]
enc_streaming_mask = self._streaming_mask(
max_audio_length, batch_size, self.config.chunk_size, self.config.left_chunk
)
enc_streaming_mask = enc_streaming_mask.to(device)
if mask is None:
return enc_streaming_mask
feature_lens = mask.sum(1)
padding_length = feature_lens
pad_mask = torch.arange(0, max_audio_length, device=device).expand(
padding_length.size(0), -1
) < padding_length.unsqueeze(1)
pad_mask = pad_mask.unsqueeze(1)
pad_mask = pad_mask & enc_streaming_mask
return pad_mask
def forward(self, hidden_states: torch.Tensor, mask: Optional[torch.Tensor]):
hidden_states = self.encoder_embedding(hidden_states)
hidden_states, hs_mask, mask = self.forward_embeddings(hidden_states, mask)
unfolded = False
bs, seq_len, _ = hidden_states.shape
max_seq_len = 500 # maxium position for absolute positional encoding
if seq_len > max_seq_len:
# audio sequence is longer than max_seq_len, unfold it into chunks of max_seq_len
unfolded = True
# the unfold op will drop residual frames, pad it to the multiple of max_seq_len
if seq_len % max_seq_len > 0:
chunk_pad_size = max_seq_len - (seq_len % max_seq_len)
else:
chunk_pad_size = 0
if chunk_pad_size > 0:
hidden_states_pad = F.pad(hidden_states, (0, 0, 0, chunk_pad_size), "constant", 0)
hidden_states = hidden_states_pad.to(hidden_states.device)
hidden_states = unfold_tensor(hidden_states, max_seq_len)
masks_unfold = None
if mask is not None:
# revise hs_mask here because the previous calculated hs_mask did not consider extra pad
subsampled_pad_mask = mask.squeeze(1) # [bz, subsampled_unmask_seq_len]
extra_padded_subsamlped_pad_mask = F.pad(
subsampled_pad_mask, (0, chunk_pad_size), "constant", False
) # extra padding to the pad mask
extra_padded_subsamlped_pad_mask = extra_padded_subsamlped_pad_mask.unsqueeze(-1).float()
masks_unfold = unfold_tensor(
extra_padded_subsamlped_pad_mask, max_seq_len
) # unfold the pad mask like we did to the input tensor
masks_unfold = masks_unfold.squeeze(-1).bool() # unfold op does not support bool tensor
hs_mask = self.calculate_hs_mask(
hidden_states, hidden_states.device, masks_unfold
) # calculate hs_mask based on the unfolded pad mask
relative_attention_bias = self.relative_attention_bias_layer(hidden_states)
attention_mask = hs_mask.unsqueeze(1) + relative_attention_bias
for layer in self.encoders:
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
)
else:
hidden_states = layer(hidden_states, attention_mask)
if unfolded:
embed_dim = hidden_states.shape[-1]
hidden_states = hidden_states.reshape(bs, -1, embed_dim)
# if we ever padded before unfolding, we need to remove the padding
if chunk_pad_size > 0:
hidden_states = hidden_states[:, :-chunk_pad_size, :]
return hidden_states
def unfold_tensor(tensor, max_seq_len):
"""
For a given tensor with shape of (N, T, D), if sequence length T is longer than max_seq_len,
this function unfold it to a (NT', max_seq_len, D) where T' is T // max_seq_len.
Args:
tensor: N, T, D
"""
_, _, D = tensor.shape
tensor = tensor.transpose(-1, -2)
# N x D x 1 x T => N x (D x max_seq_len) x T'
tensor = F.unfold(tensor[..., None, :], kernel_size=(1, max_seq_len), stride=(1, max_seq_len))
new_bsz, _, slen = tensor.shape
tensor = tensor.view(new_bsz, -1, max_seq_len, slen)
tensor = tensor.permute(0, 3, 2, 1)
tensor = tensor.view(-1, max_seq_len, D).contiguous()
return tensor
def adaptive_enc_mask(x_len, chunk_start_idx, left_window=0, right_window=0):
"""
The function is very important for Transformer Transducer Streaming mode
Args:
xs_len (int): sequence length
chunk_start_idx (list): first idx of each chunk, such as [0,18,36,48]. It also supports adaptive chunk size [0,10,15,45]
left_window (int): how many left chunks can be seen
right_window (int): how many right chunks can be seen. It is used for chunk overlap model.
Returns:
mask (torch.Tensor): a mask tensor for streaming model
"""
chunk_start_idx = torch.Tensor(chunk_start_idx).long()
start_pad = torch.nn.functional.pad(
chunk_start_idx, (1, 0)
) # append 0 to the beginning, so it becomes [0, 0, 18, 36, 48]
end_pad = torch.nn.functional.pad(
chunk_start_idx, (0, 1), value=x_len
) # append x_len to the end, so it becomes [0,18,36,48, x_len]
seq_range = torch.arange(0, x_len).unsqueeze(-1)
idx = ((seq_range < end_pad) & (seq_range >= start_pad)).nonzero()[:, 1]
seq_range_expand = torch.arange(0, x_len).unsqueeze(0).expand(x_len, -1)
idx_left = idx - left_window
idx_left[idx_left < 0] = 0
boundary_left = start_pad[idx_left]
mask_left = seq_range_expand >= boundary_left.unsqueeze(-1)
idx_right = idx + right_window
idx_right[idx_right > len(chunk_start_idx)] = len(chunk_start_idx)
boundary_right = end_pad[idx_right]
mask_right = seq_range_expand < boundary_right.unsqueeze(-1)
return mask_left & mask_right
class Phi4MultimodalAudioEmbedding(nn.Module):
def __init__(self, config: Phi4MultimodalConfig):
super().__init__()
self.config = config
self.layer_idx = config.audio_config.feature_layer
self.drop = nn.Dropout(config.embd_pdrop)
self.encoder = Phi4MultimodalAudioModel._from_config(config.audio_config)
self.up_proj_for_speech = nn.Linear(
config.audio_config.hidden_size * config.audio_config.downsample_rate, config.hidden_size
)
self.down_proj_for_speech = nn.Linear(config.hidden_size, config.hidden_size)
self.up_proj_for_vision_speech = nn.Linear(
config.audio_config.hidden_size * config.audio_config.downsample_rate, config.hidden_size
)
self.down_proj_for_vision_speech = nn.Linear(config.hidden_size, config.hidden_size)
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.Tensor,
audio_input_features: torch.FloatTensor,
audio_embed_sizes=None,
audio_attention_mask=None,
audio_projection_mode="speech",
) -> torch.FloatTensor:
with torch.no_grad():
positions_tuple = torch.nonzero(input_ids == self.config.audio_config.audio_token_id, as_tuple=True)
up_proj = self.up_proj_for_speech if audio_projection_mode == "speech" else self.up_proj_for_vision_speech
down_proj = (
self.down_proj_for_speech if audio_projection_mode == "speech" else self.down_proj_for_vision_speech
)
target_device = up_proj.bias.device
target_dtype = up_proj.bias.dtype
audio_input_features = audio_input_features.to(device=target_device, dtype=target_dtype)
audio_encoder_hidden_states = self.encoder(audio_input_features, audio_attention_mask)
audio_encoder_hidden_states = up_proj(audio_encoder_hidden_states)
audio_encoder_hidden_states = nn.functional.gelu(audio_encoder_hidden_states)
audio_embeds = down_proj(audio_encoder_hidden_states)
merged_audio_embeds = torch.cat(
[audio_embeds[i, : audio_embed_sizes[i], :] for i in range(len(audio_embed_sizes))], dim=0
)
merged_audio_embeds = merged_audio_embeds.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
# Temporarily disable autocast to avoid issue on bf16 tensors
# Ref: https://github.com/pytorch/pytorch/issues/132715
with torch.autocast(device_type=inputs_embeds.device.type, enabled=False):
audio_embeds = inputs_embeds.index_put(
indices=positions_tuple, values=merged_audio_embeds, accumulate=False
)
audio_embeds = self.drop(audio_embeds)
return audio_embeds
#################################################### TEXT ####################################################
class Phi4MultimodalRMSNorm(Phi3RMSNorm):
pass
class Phi4MultimodalDecoderLayer(Phi3DecoderLayer):
pass
class Phi4MultimodalFeatureEmbedding(nn.Module):
"""Image-audio embedding."""
def __init__(self, config: Phi4MultimodalConfig) -> None:
super().__init__()
self.config = config
self.image_token_id = config.vision_config.image_token_id
self.audio_token_id = config.audio_config.audio_token_id
self.image_embed = Phi4MultimodalImageEmbedding(config)
self.audio_embed = Phi4MultimodalAudioEmbedding(config)
def forward(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.Tensor,
image_pixel_values: Optional[torch.FloatTensor] = None,
audio_input_features: Optional[torch.FloatTensor] = None,
image_sizes=None,
image_attention_mask=None,
audio_embed_sizes=None,
audio_attention_mask=None,
) -> torch.FloatTensor:
with torch.no_grad():
image_position_mask = (input_ids == self.config.vision_config.image_token_id).unsqueeze(-1)
non_image_position_mask = ~image_position_mask
image_embeds = None
audio_embeds = None
if image_pixel_values is not None and (input_ids == self.image_token_id).any():
image_embeds = self.image_embed(
input_ids,
inputs_embeds,
image_pixel_values=image_pixel_values,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
)
if audio_input_features is not None and (input_ids == self.audio_token_id).any():
audio_projection_mode = "vision" if image_pixel_values is not None else "speech"
audio_embeds = self.audio_embed(
input_ids,
inputs_embeds,
audio_input_features=audio_input_features,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
audio_projection_mode=audio_projection_mode,
)
# merge image and audio
if image_embeds is not None and audio_embeds is not None:
inputs_embeds = image_embeds * image_position_mask + audio_embeds * non_image_position_mask
elif image_embeds is not None:
inputs_embeds = image_embeds
elif audio_embeds is not None:
inputs_embeds = audio_embeds
return inputs_embeds
PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding indices in `input_values`. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`)`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
See our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
image_pixel_values (`torch.FloatTensor`, *optional*):
If the input contains images, these correspond to the pixel values after transformations (as returned by
the Processor)
image_sizes (`torch.LongTensor`, *optional*):
If the input contains images, these correspond to size of each image.
image_attention_mask (`torch.LongTensor`, *optional*):
Attention mask for the images.
audio_input_features (`torch.FloatTensor`, *optional*):
If the input contains audio samples, these correspond to the values after transformation (as returned by
the Processor).
audio_embed_sizes (`torch.Tensor`, *optional*):
Size of the audio inputs.
audio_attention_mask (`torch.Tensor, *optional*):
Attention mask for the audio inputs.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
class Phi4MultimodalModel(Phi3Model, nn.Module):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi4MultimodalMMDecoderLayer`]
Args:
config: Phi4MultimodalMMConfig
"""
def __init__(self, config: Phi4MultimodalConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.embed_dropout = nn.Dropout(config.embd_pdrop)
self.embed_tokens_extend = Phi4MultimodalFeatureEmbedding(config)
self.layers = nn.ModuleList(
[Phi4MultimodalDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Phi4MultimodalRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
image_pixel_values: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.LongTensor] = None,
image_attention_mask=None,
audio_input_features: Optional[torch.FloatTensor] = None,
audio_embed_sizes=None,
audio_attention_mask=None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = self.embed_tokens_extend(
input_ids,
inputs_embeds,
image_pixel_values=image_pixel_values,
audio_input_features=audio_input_features,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class Phi4MultimodalForCausalLM(Phi3ForCausalLM, nn.Module):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = Phi4MultimodalModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI4_MULTIMODAL_MODEL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=Phi4MultimodalConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
image_pixel_values: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.LongTensor] = None,
image_attention_mask=None,
audio_input_features: Optional[torch.FloatTensor] = None,
audio_embed_sizes=None,
audio_attention_mask=None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Phi4MultimodalForCausalLM
>>> model = Phi4MultimodalForCausalLM.from_pretrained("TBA")
>>> tokenizer = AutoTokenizer.from_pretrained("TBA")
>>> prompt = "This is an example script ."
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
image_pixel_values=image_pixel_values,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
audio_input_features=audio_input_features,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
image_pixel_values=None,
image_sizes=None,
image_attention_mask=None,
audio_input_features=None,
audio_embed_sizes=None,
audio_attention_mask=None,
cache_position=None,
position_ids=None,
use_cache=True,
logits_to_keep=0,
**kwargs,
):
# Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
# process
# When the first time input length reached long and short factor switching point, enforce re-compute cache
# It will cause downside of slower at this single token position, however, better than current failure.
if (
past_key_values
and self.config.rope_scaling
and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
):
past_length = cache_position[0]
if past_length <= self.config.original_max_position_embeddings:
past_key_values = None
model_inputs = super().prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
image_pixel_values=image_pixel_values,
image_sizes=image_sizes,
image_attention_mask=image_attention_mask,
audio_input_features=audio_input_features,
audio_embed_sizes=audio_embed_sizes,
audio_attention_mask=audio_attention_mask,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
**kwargs,
)
return model_inputs
__all__ = [
"Phi4MultimodalAudioPreTrainedModel",
"Phi4MultimodalAudioModel",
"Phi4MultimodalVisionPreTrainedModel",
"Phi4MultimodalVisionModel",
"Phi4MultimodalPreTrainedModel", # noqa
"Phi4MultimodalModel",
"Phi4MultimodalForCausalLM",
"Phi4MultimodalVisionConfig",
"Phi4MultimodalAudioConfig",
"Phi4MultimodalConfig",
]
```
|
=========================================================================================================================================================
SOURCE CODE FILE: processing_phi4_multimodal.py
LINES: 1
SIZE: 8.56 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi4_multimodal\processing_phi4_multimodal.py
ENCODING: utf-8
```py
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Phi4Multimodal
"""
import re
from typing import List, Optional, Union
from ...audio_utils import AudioInput
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import TextInput
from ...utils import logging
logger = logging.get_logger(__name__)
class Phi4MultimodalProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"audio_kwargs": {
"device": "cpu",
},
}
class Phi4MultimodalProcessor(ProcessorMixin):
r"""
Constructs a Phi4Multimodal processor which raps an image processor, a audio processor, and a GPT tokenizer into a single processor.
[`Phi4MultimodalProcessor`] offers all the functionalities of [`Phi4MultimodalImageProcessorFast`] and [`GPT2Tokenizer`]. See the
[`~Phi4MultimodalProcessor.__call__`] and [`~Phi4MultimodalProcessor.decode`] for more information.
Args:
image_processor (`Phi4MultimodalImageProcessorFast`):
The image processor to use for images.
audio_processor (`Phi4MultimodalFeatureExtractor`):
The audio processor to use for audio inputs.
tokenizer (`GPT2TokenizerFast`):
The tokenizer to use for text.
fake_image_token_pattern (`str`, *optional*, defaults to `r"<\|image_\d+\|>"`):
The fake image token pattern.
fake_audio_token_pattern (`str`, *optional*, defaults to `r"<\|audio_\d+\|>"`):
The fake audio token pattern.
"""
attributes = ["image_processor", "audio_processor", "tokenizer"]
tokenizer_class = "GPT2TokenizerFast"
image_processor_class = "Phi4MultimodalImageProcessorFast"
audio_processor_class = "Phi4MultimodalFeatureExtractor"
valid_kwargs = ["chat_template"]
def __init__(
self,
image_processor,
audio_processor,
tokenizer,
**kwargs,
):
super().__init__(image_processor, audio_processor, tokenizer, **kwargs)
def __call__(
self,
text: Union[TextInput, List[TextInput]],
images: Optional[ImageInput] = None,
audio: Optional[AudioInput] = None,
**kwargs: Unpack[ProcessingKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forards the `text`
and `kwargs` arguments to GPT2Tokenizer's [`~GPT2Tokenizer.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
Phi4MultimodalImageProcessorFast's [`~Phi4MultimodalImageProcessorFast.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
audio (`List[Union[np.ndarray, torch.Tensor]]`):
List of the audios to be prepared.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
- **input_image_embeds** -- Pixel values to be fed to a model.
- **image_sizes** -- List of tuples specifying the size of each image in `input_image_embeds`.
- **image_attention_mask** -- List of attention masks for each image in `input_image_embeds`.
- **input_audio_embeds** -- Audio embeddings to be fed to a model.
- **audio_embed_sizes** -- List of integers specifying the size of each audio in `input_audio_embeds`.
"""
output_kwargs = self._merge_kwargs(Phi4MultimodalProcessorKwargs, self.tokenizer.init_kwargs, **kwargs)
image_kwargs = output_kwargs["images_kwargs"]
audio_kwargs = output_kwargs["audio_kwargs"]
text_kwargs = output_kwargs["text_kwargs"]
image_inputs = self.image_processor(images, **image_kwargs) if images is not None else {}
audio_inputs = self.audio_processor(audio, **audio_kwargs) if audio is not None else {}
# We pop here for images as we don't need it later
num_img_tokens = image_inputs.pop("num_img_tokens", [])
audio_embed_sizes = audio_inputs.get("audio_embed_sizes", [])
# Replace certain special tokens for compatibility
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
image_token = self.tokenizer.image_token
audio_token = self.tokenizer.audio_token
# Check that the number of special tokens is sound
concatenated_prompt = "".join(text)
if concatenated_prompt.count(image_token) != len(num_img_tokens):
raise ValueError(
"You should add as much image tokens `<|image|>` in your prompt as you pass `images` to the processor. ",
f"Input contains {concatenated_prompt.count(image_token)} tokens != {len(num_img_tokens)} images",
)
if concatenated_prompt.count(audio_token) != len(audio_embed_sizes):
raise ValueError(
"You should add as much audio tokens `<|audio|>` in your prompt as you pass `audios` to the processor. "
f"Input contains {concatenated_prompt.count(audio_token)} tokens != {len(audio_embed_sizes)} audios"
)
# Add appropriate number of image/audio tokens (note that the count of replacement is dynamic)
image_count_iter = iter(num_img_tokens)
audio_count_iter = iter(audio_embed_sizes)
processed_text = [
re.sub(re.escape(image_token), lambda _: image_token * next(image_count_iter), t) for t in text
]
processed_text = [
re.sub(re.escape(audio_token), lambda _: audio_token * next(audio_count_iter), t) for t in processed_text
]
text_inputs = self.tokenizer(processed_text, **text_kwargs)
# prepare batch feature
data = {
**text_inputs,
**image_inputs,
**audio_inputs,
}
return BatchFeature(data=data)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
audio_processor_input_names = self.audio_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + audio_processor_input_names))
__all__ = ["Phi4MultimodalProcessor"]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.76 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi\__init__.py
ENCODING: utf-8
```py
# Copyright 2023 Microsoft and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_phi": ["PhiConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_phi"] = [
"PhiPreTrainedModel",
"PhiModel",
"PhiForCausalLM",
"PhiForSequenceClassification",
"PhiForTokenClassification",
]
if TYPE_CHECKING:
from .configuration_phi import PhiConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_phi import (
PhiForCausalLM,
PhiForSequenceClassification,
PhiForTokenClassification,
PhiModel,
PhiPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_phi.py
LINES: 1
SIZE: 10.88 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi\configuration_phi.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Phi model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class PhiConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Phi
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 51200):
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`PhiModel`].
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
Percentage of the query and keys which will have rotary embedding.
qk_layernorm (`bool`, *optional*, defaults to `False`):
Whether or not to normalize the Queries and Keys after projecting the hidden states.
bos_token_id (`int`, *optional*, defaults to 1):
Denotes beginning of sequences token id.
eos_token_id (`int`, *optional*, defaults to 2):
Denotes end of sequences token id.
Example:
```python
>>> from transformers import PhiModel, PhiConfig
>>> # Initializing a Phi-1 style configuration
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
>>> # Initializing a model from the configuration
>>> model = PhiModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "phi"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.dense": "rowwise",
"layers.*.mlp.fc1": "colwise",
"layers.*.mlp.fc2": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"embed_dropout": (["inputs_embeds"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"final_layernorm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=51200,
hidden_size=2048,
intermediate_size=8192,
num_hidden_layers=24,
num_attention_heads=32,
num_key_value_heads=None,
resid_pdrop=0.0,
embd_pdrop=0.0,
attention_dropout=0.0,
hidden_act="gelu_new",
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.5,
qk_layernorm=False,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self.qk_layernorm = qk_layernorm
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_phi.py
LINES: 2
SIZE: 44.09 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi\modeling_phi.py
ENCODING: utf-8
```py
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# This file was automatically generated from src/transformers/models/phi/modular_phi.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_phi.py file directly. One of our CI enforces this.
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
from functools import partial
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
LossKwargs,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
is_torch_flex_attn_available,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_phi import PhiConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/phi-1"
_CONFIG_FOR_DOC = "PhiConfig"
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class PhiAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: PhiConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
self.dense = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True)
self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor)
self.qk_layernorm = config.qk_layernorm
if self.qk_layernorm:
self.q_layernorm = nn.LayerNorm(
config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True
)
self.k_layernorm = nn.LayerNorm(
config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
if self.qk_layernorm:
query_states = self.q_layernorm(query_states)
key_states = self.k_layernorm(key_states)
cos, sin = position_embeddings
# Partial rotary embedding
query_rot, query_pass = (
query_states[..., : self.rotary_ndims],
query_states[..., self.rotary_ndims :],
)
key_rot, key_pass = (
key_states[..., : self.rotary_ndims],
key_states[..., self.rotary_ndims :],
)
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
# [batch_size, seq_length, num_heads, head_dim]
query_states = torch.cat((query_rot, query_pass), dim=-1)
key_states = torch.cat((key_rot, key_pass), dim=-1)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.dense(attn_output)
return attn_output, attn_weights
class PhiMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class PhiDecoderLayer(nn.Module):
def __init__(self, config: PhiConfig, layer_idx: int):
super().__init__()
self.self_attn = PhiAttention(config, layer_idx=layer_idx)
self.mlp = PhiMLP(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
attn_outputs, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
attn_outputs = self.resid_dropout(attn_outputs)
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
hidden_states = attn_outputs + feed_forward_hidden_states + residual
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class PhiRotaryEmbedding(nn.Module):
def __init__(self, config: PhiConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
PHI_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PhiConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Phi Model outputting raw hidden-states without any specific head on top.",
PHI_START_DOCSTRING,
)
class PhiPreTrainedModel(PreTrainedModel):
config_class = PhiConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["PhiDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
PHI_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Phi Model outputting raw hidden-states without any specific head on top.",
PHI_START_DOCSTRING,
)
class PhiModel(PhiPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`]
Args:
config: PhiConfig
"""
def __init__(self, config: PhiConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.rotary_emb = PhiRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.embed_dropout = nn.Dropout(config.embd_pdrop)
self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
inputs_embeds = self.embed_dropout(inputs_embeds) # diff with Llama
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.final_layernorm(hidden_states) # diff with Llama
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class PhiForCausalLM(PhiPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = PhiModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, PhiForCausalLM
>>> model = PhiForCausalLM.from_pretrained("meta-phi/Phi-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-phi/Phi-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The Phi Model transformer with a sequence classification head on top (linear layer).
[`PhiForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
PHI_START_DOCSTRING,
)
class PhiForSequenceClassification(PhiPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = PhiModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Phi Model transformer with a token classification head on top (a linear layer on top of the hidden-states
output) e.g. for Named-Entity-Recognition (NER) tasks.
""",
PHI_START_DOCSTRING,
)
class PhiForTokenClassification(PhiPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = PhiModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> TokenClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
```
|
==============================================================================================================================
SOURCE CODE FILE: modular_phi.py
LINES: 1
SIZE: 11.76 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phi\modular_phi.py
ENCODING: utf-8
```py
from functools import partial
from typing import Callable, Optional, Tuple
import torch
import torch.nn as nn
from ...cache_utils import Cache, DynamicCache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import logging
from ..clip.modeling_clip import CLIPMLP
from ..llama.modeling_llama import (
LlamaAttention,
LlamaForCausalLM,
LlamaForSequenceClassification,
LlamaForTokenClassification,
LlamaModel,
apply_rotary_pos_emb,
eager_attention_forward, # copied from Llama
)
from .configuration_phi import PhiConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "microsoft/phi-1"
_CONFIG_FOR_DOC = "PhiConfig"
class PhiAttention(LlamaAttention):
def __init__(self, config: PhiConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
self.dense = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=True)
del self.o_proj
self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor)
self.qk_layernorm = config.qk_layernorm
if self.qk_layernorm:
self.q_layernorm = nn.LayerNorm(
config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True
)
self.k_layernorm = nn.LayerNorm(
config.hidden_size // config.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=True
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
if self.qk_layernorm:
query_states = self.q_layernorm(query_states)
key_states = self.k_layernorm(key_states)
cos, sin = position_embeddings
# Partial rotary embedding
query_rot, query_pass = (
query_states[..., : self.rotary_ndims],
query_states[..., self.rotary_ndims :],
)
key_rot, key_pass = (
key_states[..., : self.rotary_ndims],
key_states[..., self.rotary_ndims :],
)
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
# [batch_size, seq_length, num_heads, head_dim]
query_states = torch.cat((query_rot, query_pass), dim=-1)
key_states = torch.cat((key_rot, key_pass), dim=-1)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.dense(attn_output)
return attn_output, attn_weights
class PhiMLP(CLIPMLP):
pass
class PhiDecoderLayer(nn.Module):
def __init__(self, config: PhiConfig, layer_idx: int):
super().__init__()
self.self_attn = PhiAttention(config, layer_idx=layer_idx)
self.mlp = PhiMLP(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
attn_outputs, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
attn_outputs = self.resid_dropout(attn_outputs)
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
hidden_states = attn_outputs + feed_forward_hidden_states + residual
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class PhiModel(LlamaModel):
def __init__(self, config: PhiConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.embed_dropout = nn.Dropout(config.embd_pdrop)
self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
del self.norm
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
inputs_embeds = self.embed_dropout(inputs_embeds) # diff with Llama
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
partial(decoder_layer.__call__, **flash_attn_kwargs),
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.final_layernorm(hidden_states) # diff with Llama
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class PhiForCausalLM(LlamaForCausalLM):
def __init__(self, config):
super().__init__(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
class PhiForSequenceClassification(LlamaForSequenceClassification):
pass
class PhiForTokenClassification(LlamaForTokenClassification):
pass
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.99 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phimoe\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 Microsoft and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_phimoe import *
from .modeling_phimoe import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==========================================================================================================================================
SOURCE CODE FILE: configuration_phimoe.py
LINES: 1
SIZE: 10.03 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phimoe\configuration_phimoe.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Phi-MoE model."""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class PhimoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PhimoeModel`]. It is used to instantiate a Phi-moe
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the
[microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32064):
Vocabulary size of the Phimoe model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`PhimoeModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 6400):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
allows sequence of up to 4096*32 tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
rope_scaling (`dict`, *optional*):
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and
`original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must
be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of
the attention head size and the `original_max_position_embeddings` must be an integer.
sliding_window (`int`, *optional*):
Sliding window attention window size. If not specified, will default to `262144`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
num_experts_per_tok (`int`, *optional*, defaults to 2):
The number of experts to root per-token, can be also interpreted as the `top-p` routing
parameter
num_local_experts (`int`, *optional*, defaults to 16):
Number of experts per Sparse MLP layer.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabling this will also
allow the model to output the auxiliary loss. See [here]() for more details
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
router_jitter_noise (`float`, *optional*, defaults to 0.01):
Amount of noise to add to the router.
input_jitter_noise (`float`, *optional*, defaults to 0.0): Input jitter noise
attention_bias (`bool`, *optional*, defaults to `False`): Attention bias
lm_head_bias (`bool`, *optional*, defaults to `False`): LM head bias
Example:
```python
>>> from transformers import PhimoeModel, PhimoeConfig
>>> # Initializing a Phi-3 style configuration
>>> configuration = PhimoeConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
>>> # Initializing a model from the configuration
>>> model = PhimoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "phimoe"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32064,
hidden_size=4096,
intermediate_size=6400,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
hidden_act="silu",
max_position_embeddings=4096 * 32,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=1e6,
rope_scaling=None,
sliding_window=None,
attention_dropout=0.0,
num_experts_per_tok=2,
num_local_experts=16,
output_router_logits=False,
router_aux_loss_coef=0.001,
router_jitter_noise=0.01,
input_jitter_noise=0.0,
attention_bias=False,
lm_head_bias=False,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.sliding_window = sliding_window
self.attention_bias = attention_bias
self.lm_head_bias = lm_head_bias
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.num_experts_per_tok = num_experts_per_tok
self.num_local_experts = num_local_experts
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.router_jitter_noise = router_jitter_noise
self.input_jitter_noise = input_jitter_noise
self.rope_scaling = rope_scaling
if isinstance(self.rope_scaling, dict):
if "rope_type" not in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling.get("type", None)
if "original_max_position_embeddings" in self.rope_scaling:
self.original_max_position_embeddings = self.rope_scaling["original_max_position_embeddings"]
rope_scaling_short_mscale = self.rope_scaling.get("short_mscale", None)
rope_scaling_long_mscale = self.rope_scaling.get("long_mscale", None)
if not isinstance(rope_scaling_short_mscale, (int, float)):
raise ValueError(
f"`rope_scaling`'s short_mscale field must be a number, got {rope_scaling_short_mscale}"
)
if not isinstance(rope_scaling_long_mscale, (int, float)):
raise ValueError(
f"`rope_scaling`'s long_mscale field must be a number, got {rope_scaling_long_mscale}"
)
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["PhimoeConfig"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: modeling_phimoe.py
LINES: 2
SIZE: 71.76 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phimoe\modeling_phimoe.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Phimoe model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter, _prepare_4d_causal_attention_mask
from ...modeling_flash_attention_utils import is_flash_attn_available
from ...modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
SequenceClassifierOutputWithPast,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ...utils.import_utils import is_torch_fx_available
from .configuration_phimoe import PhimoeConfig
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
# It means that the function will not be traced through and simply appear as a node in the graph.
if is_torch_fx_available():
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "PhimoeConfig"
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
def load_balancing_loss_func(
gate_logits: Union[torch.Tensor, Tuple[torch.Tensor], None],
num_experts: Optional[int] = None,
top_k=2,
attention_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, int]:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits:
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
num_experts:
Number of experts
top_k:
The number of experts to route per-token, can be also interpreted as the `top-k` routing
parameter.
attention_mask (`torch.Tensor`, *optional*):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if gate_logits is None or not isinstance(gate_logits, tuple):
return 0
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
class PhimoeRotaryEmbedding(nn.Module):
def __init__(
self,
config: Optional[PhimoeConfig] = None,
):
super().__init__()
self.config = config
if config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
self.short_mscale = config.rope_scaling.get("short_mscale")
self.long_mscale = config.rope_scaling.get("long_mscale")
else:
self.rope_type = "default"
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
def forward(self, x, seq_len=None):
mscale = None
if self.config.rope_scaling and seq_len:
mscale = (
self.long_mscale
if seq_len > self.config.rope_scaling["original_max_position_embeddings"]
else self.short_mscale
)
inv_freq, attention_scaling = self.rope_init_fn(self.config, x.device, seq_len)
mscale = attention_scaling if mscale is None else mscale
t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
freqs = torch.outer(t, inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
return (emb.cos() * mscale).to(x.dtype), (emb.sin() * mscale).to(x.dtype)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class PhimoeAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: PhimoeConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.config.attention_bias)
self.k_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.config.attention_bias
)
self.v_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.config.attention_bias
)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.config.attention_bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class PhimoeFlashAttention2(PhimoeAttention):
"""
Phimoe flash attention module. This module inherits from `PhimoeAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self.config, "sliding_window", None),
is_causal=self.is_causal,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class PhimoeSdpaAttention(PhimoeAttention):
"""
Phimoe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`PhimoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from PhimoeAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"PhimoeModel is using PhimoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
PHIMOE_ATTENTION_CLASSES = {
"eager": PhimoeAttention,
"flash_attention_2": PhimoeFlashAttention2,
"sdpa": PhimoeSdpaAttention,
}
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralBlockSparseTop2MLP with Mixtral->Phimoe
class PhimoeBlockSparseTop2MLP(nn.Module):
def __init__(self, config: PhimoeConfig):
super().__init__()
self.ffn_dim = config.intermediate_size
self.hidden_dim = config.hidden_size
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
class MultiplierProcessor(torch.autograd.Function):
@staticmethod
def forward(
ctx,
scores: torch.Tensor,
multiplier: torch.Tensor,
selected_experts: torch.Tensor,
masked_gates: torch.Tensor,
mask_for_one: torch.Tensor,
):
"""
Forward pass for the custom autograd function.
Args:
ctx: Context object to save information for backward computation.
scores (torch.Tensor): Input scores tensor.
multiplier (torch.Tensor): Multiplier tensor.
selected_experts (torch.Tensor): Tensor of selected experts.
masked_gates (torch.Tensor): Masked gates tensor.
mask_for_one (torch.Tensor): Mask for one tensor.
Returns:
torch.Tensor: Result of the forward pass.
"""
ctx.save_for_backward(multiplier, selected_experts, masked_gates)
return multiplier * mask_for_one
@staticmethod
def backward(
ctx,
grad_at_output: torch.Tensor,
):
"""
Backward pass for the custom autograd function.
Args:
ctx: Context object with saved tensors from the forward pass.
grad_at_output (torch.Tensor): Gradient at the output.
Returns:
Tuple[torch.Tensor, None, None, None, None]: Gradients for the inputs.
"""
multiplier, selected_experts, masked_gates = ctx.saved_tensors
grad_at_output = grad_at_output * multiplier
grad_at_scores_expanded = masked_gates * grad_at_output.mul(-1)
grad_at_scores_expanded.scatter_add_(
dim=-1,
index=selected_experts,
src=grad_at_output,
)
return (
grad_at_scores_expanded,
None,
None,
None,
None,
)
def sparsemixer(scores, jitter_eps, training, top_k=2):
"""
Sparse mixer function to select top-k experts and compute multipliers.
Based on the paper: https://arxiv.org/pdf/2409.12136
We first replace the TopK(Β·) function as random sampling of discrete variables
in model training. Then, following Liu et al. (2023a) and Liu et al. (2023b), we apply Heun's
third order method to approximate the expert routing gradient and construct a modified
back-propagation to give a mathematically sound gradient estimation for expert routing.
Args:
scores (torch.Tensor): Input scores tensor.
jitter_eps (float): Jitter epsilon for numerical stability.
training (bool): Flag indicating if the model is in training mode.
top_k (int): Number of top experts to select.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Multiplier and selected experts tensors.
"""
if top_k != 2:
raise ValueError("top_k must be equal to 2")
# first expert
with torch.no_grad():
# Compute mask for sparsity
mask_logits_threshold, max_ind = scores.max(dim=-1, keepdim=True)
factor = scores.abs().clamp(min=mask_logits_threshold)
mask_logits_threshold = ((mask_logits_threshold - scores) / factor) > (2 * jitter_eps)
# Apply mask
masked_gates = scores.masked_fill(mask_logits_threshold, float("-inf"))
if training:
selected_experts = (
(
masked_gates
- torch.empty_like(masked_gates, memory_format=torch.legacy_contiguous_format).exponential_().log()
)
.max(dim=-1)[1]
.unsqueeze(-1)
) # Gumbel sampling, more robust than the multinomial method
else:
selected_experts = max_ind
# Compute scores for gradients
masked_gates = torch.softmax(masked_gates, dim=-1)
multiplier_o = masked_gates.gather(dim=-1, index=selected_experts)
if training:
# Compute midpoint mask
max_scores, max_ind = masked_gates.max(dim=-1, keepdim=True)
mask_for_one = torch.logical_or(
selected_experts == max_ind,
torch.rand_like(max_scores) > 0.75, # Heun's third-order method
)
# 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
mask_for_one = torch.add(0.3333, mask_for_one, alpha=0.6667).type_as(masked_gates)
multiplier = MultiplierProcessor.apply(
scores,
multiplier_o,
selected_experts,
masked_gates,
mask_for_one,
)
else:
multiplier = multiplier_o
# Masked out first expert
masked_scores = torch.scatter(
scores,
-1,
selected_experts,
float("-inf"),
)
with torch.no_grad():
# Compute mask for sparsity
mask_logits_threshold, max_ind = masked_scores.max(dim=-1, keepdim=True)
factor = scores.abs().clamp(min=mask_logits_threshold)
mask_logits_threshold = ((mask_logits_threshold - scores) / factor) > (2 * jitter_eps)
# Apply mask
masked_gates_top2 = masked_scores.masked_fill(mask_logits_threshold, float("-inf"))
if training:
selected_experts_top2 = (
(
masked_gates_top2
- torch.empty_like(masked_gates_top2, memory_format=torch.legacy_contiguous_format)
.exponential_()
.log()
)
.max(dim=-1)[1]
.unsqueeze(-1)
) # Gumbel sampling, more robust than the multinomial method
else:
selected_experts_top2 = max_ind
# Compute scores for gradients
masked_gates_top2 = torch.softmax(masked_gates_top2, dim=-1)
multiplier_top2_o = masked_gates_top2.gather(dim=-1, index=selected_experts_top2)
if training:
# Compute midpoint mask
max_scores, max_ind = masked_gates_top2.max(dim=-1, keepdim=True)
mask_for_one_top2 = torch.logical_or(
selected_experts_top2 == max_ind,
torch.rand_like(max_scores).uniform_() > 0.75, # Heun's third-order method
)
# 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
mask_for_one_top2 = torch.add(0.3333, mask_for_one_top2, alpha=0.6667).type_as(masked_gates_top2)
multiplier_top2 = MultiplierProcessor.apply(
scores,
multiplier_top2_o,
selected_experts_top2,
masked_gates_top2,
mask_for_one_top2,
)
else:
multiplier_top2 = multiplier_top2_o
multiplier = torch.concat((multiplier, multiplier_top2), dim=-1)
selected_experts = torch.concat((selected_experts, selected_experts_top2), dim=-1)
return (
multiplier,
selected_experts,
)
class PhimoeSparseMoeBlock(nn.Module):
"""
This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accommodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, config):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
# gating
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = nn.ModuleList([PhimoeBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
# Jitter parameters
self.router_jitter_noise = config.router_jitter_noise
self.input_jitter_noise = config.input_jitter_noise
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
if self.training and self.input_jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(
1.0 - self.input_jitter_noise, 1.0 + self.input_jitter_noise
)
hidden_states = hidden_states.view(-1, hidden_dim)
router_logits = self.gate(hidden_states)
routing_weights, selected_experts = sparsemixer(
router_logits,
jitter_eps=self.router_jitter_noise,
training=self.training,
)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class PhimoeDecoderLayer(nn.Module):
def __init__(self, config: PhimoeConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = PHIMOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
self.block_sparse_moe = PhimoeSparseMoeBlock(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
self.post_attention_layernorm = nn.LayerNorm(
config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
PHIMOE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PhimoeConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Phimoe Model outputting raw hidden-states without any specific head on top.",
PHIMOE_START_DOCSTRING,
)
class PhimoePreTrainedModel(PreTrainedModel):
config_class = PhimoeConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["PhimoeDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = False # MoE models don't work with torch.compile (`torch.where(condition)` not supported)
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
PHIMOE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Phimoe Model outputting raw hidden-states without any specific head on top.",
PHIMOE_START_DOCSTRING,
)
class PhimoeModel(PhimoePreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhimoeDecoderLayer`]
Args:
config: PhimoeConfig
"""
def __init__(self, config: PhimoeConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[PhimoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._attn_implementation = config._attn_implementation
self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
self.rotary_emb = PhimoeRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PHIMOE_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> MoeModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
position_embeddings = self.rotary_emb(hidden_states, seq_len=cache_position[-1] + 1)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
# Copied from transformers.models.phi3.modeling_phi3.Phi3Model._update_causal_mask with Phi3->Phimoe
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Phimoe. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.mistral.modeling_mistral.MistralModel._prepare_4d_causal_attention_mask_with_cache_position with Mistral->Phimoe
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: PhimoeConfig,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`PhimoeConfig`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class PhimoeForCausalLM(PhimoePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = PhimoeModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=self.config.lm_head_bias)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_local_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
def get_input_embeddings(self):
return self.model.embed_tokens
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
def set_input_embeddings(self, value):
self.model.embed_tokens = value
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
def set_decoder(self, decoder):
self.model = decoder
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
def get_decoder(self):
return self.model
@can_return_tuple
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(PHIMOE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
# Ignore copy
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> MoeCausalLMOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, PhimoeForCausalLM
>>> model = PhimoeForCausalLM.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
if (
use_cache
and self.config.rope_scaling
and cache_position is not None
and cache_position[0] == self.config.original_max_position_embeddings
):
logger.warning(
f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: MoeModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
cache_position=cache_position,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits,
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
# Copied from transformers.models.phi3.modeling_phi3.Phi3ForCausalLM.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
logits_to_keep=None,
**kwargs,
):
# Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
# process
# When the first time input length reached long and short factor switching point, enforce re-compute cache
# It will cause downside of slower at this single token position, however, better than current failure.
if (
past_key_values
and self.config.rope_scaling
and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
):
past_length = cache_position[0]
if past_length <= self.config.original_max_position_embeddings:
past_key_values = None
model_inputs = super().prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
**kwargs,
)
return model_inputs
@add_start_docstrings(
"""
The Phimoe Model transformer with a sequence classification head on top (linear layer).
[`PhimoeForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
PHIMOE_START_DOCSTRING,
)
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phimoe, LLAMA->PHIMOE, BaseModelOutputWithPast->MoeModelOutputWithPast
class PhimoeForSequenceClassification(PhimoePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = PhimoeModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@can_return_tuple
@add_start_docstrings_to_model_forward(PHIMOE_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> SequenceClassifierOutputWithPast:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
transformer_outputs: MoeModelOutputWithPast = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
hidden_states = transformer_outputs.last_hidden_state
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
__all__ = [
"PhimoePreTrainedModel",
"PhimoeModel",
"PhimoeForCausalLM",
"PhimoeForSequenceClassification",
]
```
|
===============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.94 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phobert\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .tokenization_phobert import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
===========================================================================================================================================
SOURCE CODE FILE: tokenization_phobert.py
LINES: 3
SIZE: 12.82 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\phobert\tokenization_phobert.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for PhoBERT"""
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.txt",
"merges_file": "bpe.codes",
}
def get_pairs(word):
"""
Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
pairs = set(pairs)
return pairs
class PhobertTokenizer(PreTrainedTokenizer):
"""
Construct a PhoBERT tokenizer. Based on Byte-Pair-Encoding.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
bos_token (`st`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
merges_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
**kwargs,
):
self.vocab_file = vocab_file
self.merges_file = merges_file
self.encoder = {}
self.encoder[str(bos_token)] = 0
self.encoder[str(pad_token)] = 1
self.encoder[str(eos_token)] = 2
self.encoder[str(unk_token)] = 3
self.add_from_file(vocab_file)
self.decoder = {v: k for k, v in self.encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
merges = merges_handle.read().split("\n")[:-1]
merges = [tuple(merge.split()[:-1]) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
**kwargs,
)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A PhoBERT sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = "@@ ".join(word)
word = word[:-4]
self.cache[token] = word
return word
def _tokenize(self, text):
"""Tokenize a string."""
split_tokens = []
words = re.findall(r"\S+\n?", text)
for token in words:
split_tokens.extend(list(self.bpe(token).split(" ")))
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace("@@ ", "").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
out_merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file):
copyfile(self.merges_file, out_merge_file)
return out_vocab_file, out_merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
def add_from_file(self, f):
"""
Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
"""
if isinstance(f, str):
try:
with open(f, "r", encoding="utf-8") as fd:
self.add_from_file(fd)
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset")
return
lines = f.readlines()
for lineTmp in lines:
line = lineTmp.strip()
idx = line.rfind(" ")
if idx == -1:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
word = line[:idx]
self.encoder[word] = len(self.encoder)
__all__ = ["PhobertTokenizer"]
```
|
==================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.06 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pix2struct\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_pix2struct import *
from .image_processing_pix2struct import *
from .modeling_pix2struct import *
from .processing_pix2struct import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==================================================================================================================================================
SOURCE CODE FILE: configuration_pix2struct.py
LINES: 1
SIZE: 15.43 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pix2struct\configuration_pix2struct.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pix2Struct model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class Pix2StructTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate
a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by
the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50244):
Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Dimensionality of the key, query, value projections in each attention head.
d_ff (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
dropout_rate (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string).
decoder_start_token_id (`int`, *optional*, defaults to 0):
The id of the `decoder_start_token_id` token.
use_cache (`bool`, *optional*, defaults to `False`):
Whether or not the model should return the last key/values attentions (not used by all models).
pad_token_id (`int`, *optional*, defaults to 0):
The id of the `padding` token.
eos_token_id (`int`, *optional*, defaults to 1):
The id of the `end-of-sequence` token.
Example:
```python
>>> from transformers import Pix2StructTextConfig, Pix2StructTextModel
>>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration
>>> configuration = Pix2StructTextConfig()
>>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration
>>> model = Pix2StructTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "pix2struct_text_model"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "hidden_size",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
"decoder_attention_heads": "num_heads",
"encoder_attention_heads": "num_heads",
"encoder_layers": "num_layers",
"decoder_layers": "num_layers",
}
def __init__(
self,
vocab_size=50244,
hidden_size=768,
d_kv=64,
d_ff=2048,
num_layers=12,
num_heads=12,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
dense_act_fn="gelu_new",
decoder_start_token_id=0,
use_cache=False,
pad_token_id=0,
eos_token_id=1,
tie_word_embeddings=False,
is_decoder=True,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.use_cache = use_cache
self.eos_token_id = eos_token_id
self.decoder_start_token_id = decoder_start_token_id
# for backwards compatibility
self.dense_act_fn = dense_act_fn
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
tie_word_embeddings=tie_word_embeddings,
is_decoder=is_decoder,
**kwargs,
)
class Pix2StructVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to
instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture.
Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base
[google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
patch_embed_hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the input patch_embedding layer in the Transformer encoder.
d_ff (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
d_kv (`int`, *optional*, defaults to 64):
Dimensionality of the key, query, value projections per attention head.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 1e-10):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
seq_len (`int`, *optional*, defaults to 4096):
Maximum sequence length (here number of patches) supported by the model.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance (in tokens) to use for each attention layer.
Example:
```python
>>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel
>>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration
>>> configuration = Pix2StructVisionConfig()
>>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration
>>> model = Pix2StructVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "pix2struct_vision_model"
def __init__(
self,
hidden_size=768,
patch_embed_hidden_size=768,
d_ff=2048,
d_kv=64,
num_hidden_layers=12,
num_attention_heads=12,
dense_act_fn="gelu_new",
layer_norm_eps=1e-6,
dropout_rate=0.0,
attention_dropout=0.0,
initializer_range=1e-10,
initializer_factor=1.0,
seq_len=4096,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.patch_embed_hidden_size = patch_embed_hidden_size
self.d_ff = d_ff
self.dropout_rate = dropout_rate
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.dense_act_fn = dense_act_fn
self.seq_len = seq_len
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.d_kv = d_kv
class Pix2StructConfig(PretrainedConfig):
r"""
[`Pix2StructConfig`] is the configuration class to store the configuration of a
[`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified
arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will
yield a similar configuration to that of the Pix2Struct-base
[google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Pix2StructTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`].
initializer_factor (`float`, *optional*, defaults to 1.0):
Factor to multiply the initialization range with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
is_vqa (`bool`, *optional*, defaults to `False`):
Whether the model has been fine-tuned for VQA or not.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration
>>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration
>>> configuration = Pix2StructConfig()
>>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration
>>> model = Pix2StructForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig
>>> # Initializing a Pix2Struct text and Pix2Struct vision configuration
>>> config_text = Pix2StructTextConfig()
>>> config_vision = Pix2StructVisionConfig()
>>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "pix2struct"
def __init__(
self,
text_config=None,
vision_config=None,
initializer_factor=1.0,
initializer_range=0.02,
is_vqa=False,
tie_word_embeddings=False,
is_encoder_decoder=True,
**kwargs,
):
super().__init__(tie_word_embeddings=tie_word_embeddings, is_encoder_decoder=is_encoder_decoder, **kwargs)
if text_config is None:
text_config = {}
logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values.")
if vision_config is None:
vision_config = {}
logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values.")
text_config["is_encoder_decoder"] = is_encoder_decoder
text_config["tie_word_embeddings"] = tie_word_embeddings
self.text_config = Pix2StructTextConfig(**text_config)
self.vision_config = Pix2StructVisionConfig(**vision_config)
self.decoder_start_token_id = self.text_config.decoder_start_token_id
self.pad_token_id = self.text_config.pad_token_id
self.eos_token_id = self.text_config.eos_token_id
self.initializer_factor = initializer_factor
self.initializer_range = initializer_range
self.text_config.initializer_range = self.initializer_range
self.vision_config.initializer_range = self.initializer_range
self.is_vqa = is_vqa
@classmethod
def from_text_vision_configs(
cls, text_config: Pix2StructTextConfig, vision_config: Pix2StructVisionConfig, **kwargs
):
r"""
Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct
vision model configuration.
Returns:
[`Pix2StructConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
__all__ = ["Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig"]
```
|
=====================================================================================================================================================
SOURCE CODE FILE: image_processing_pix2struct.py
LINES: 2
SIZE: 19.32 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pix2struct\image_processing_pix2struct.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Pix2Struct."""
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
DEFAULT_FONT_PATH = "ybelkada/fonts"
# adapted from: https://discuss.pytorch.org/t/tf-image-extract-patches-in-pytorch/171409/2
def torch_extract_patches(image_tensor, patch_height, patch_width):
"""
Utiliy function to extract patches from a given image tensor. Returns a tensor of shape (1, `patch_height`,
`patch_width`, `num_channels`x `patch_height` x `patch_width`)
Args:
image_tensor (torch.Tensor):
The image tensor to extract patches from.
patch_height (int):
The height of the patches to extract.
patch_width (int):
The width of the patches to extract.
"""
requires_backends(torch_extract_patches, ["torch"])
image_tensor = image_tensor.unsqueeze(0)
patches = torch.nn.functional.unfold(image_tensor, (patch_height, patch_width), stride=(patch_height, patch_width))
patches = patches.reshape(image_tensor.size(0), image_tensor.size(1), patch_height, patch_width, -1)
patches = patches.permute(0, 4, 2, 3, 1).reshape(
image_tensor.size(2) // patch_height,
image_tensor.size(3) // patch_width,
image_tensor.size(1) * patch_height * patch_width,
)
return patches.unsqueeze(0)
# Adapted from https://github.com/google-research/pix2struct/blob/0e1779af0f4db4b652c1d92b3bbd2550a7399123/pix2struct/preprocessing/preprocessing_utils.py#L106
def render_text(
text: str,
text_size: int = 36,
text_color: str = "black",
background_color: str = "white",
left_padding: int = 5,
right_padding: int = 5,
top_padding: int = 5,
bottom_padding: int = 5,
font_bytes: Optional[bytes] = None,
font_path: Optional[str] = None,
) -> Image.Image:
"""
Render text. This script is entirely adapted from the original script that can be found here:
https://github.com/google-research/pix2struct/blob/main/pix2struct/preprocessing/preprocessing_utils.py
Args:
text (`str`, *optional*, defaults to ):
Text to render.
text_size (`int`, *optional*, defaults to 36):
Size of the text.
text_color (`str`, *optional*, defaults to `"black"`):
Color of the text.
background_color (`str`, *optional*, defaults to `"white"`):
Color of the background.
left_padding (`int`, *optional*, defaults to 5):
Padding on the left.
right_padding (`int`, *optional*, defaults to 5):
Padding on the right.
top_padding (`int`, *optional*, defaults to 5):
Padding on the top.
bottom_padding (`int`, *optional*, defaults to 5):
Padding on the bottom.
font_bytes (`bytes`, *optional*):
Bytes of the font to use. If `None`, the default font will be used.
font_path (`str`, *optional*):
Path to the font to use. If `None`, the default font will be used.
"""
requires_backends(render_text, "vision")
# Add new lines so that each line is no more than 80 characters.
wrapper = textwrap.TextWrapper(width=80)
lines = wrapper.wrap(text=text)
wrapped_text = "\n".join(lines)
if font_bytes is not None and font_path is None:
font = io.BytesIO(font_bytes)
elif font_path is not None:
font = font_path
else:
font = hf_hub_download(DEFAULT_FONT_PATH, "Arial.TTF")
font = ImageFont.truetype(font, encoding="UTF-8", size=text_size)
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
temp_draw = ImageDraw.Draw(Image.new("RGB", (1, 1), background_color))
_, _, text_width, text_height = temp_draw.textbbox((0, 0), wrapped_text, font)
# Create the actual image with a bit of padding around the text.
image_width = text_width + left_padding + right_padding
image_height = text_height + top_padding + bottom_padding
image = Image.new("RGB", (image_width, image_height), background_color)
draw = ImageDraw.Draw(image)
draw.text(xy=(left_padding, top_padding), text=wrapped_text, fill=text_color, font=font)
return image
# Adapted from https://github.com/google-research/pix2struct/blob/0e1779af0f4db4b652c1d92b3bbd2550a7399123/pix2struct/preprocessing/preprocessing_utils.py#L87
def render_header(
image: np.ndarray, header: str, input_data_format: Optional[Union[str, ChildProcessError]] = None, **kwargs
):
"""
Renders the input text as a header on the input image.
Args:
image (`np.ndarray`):
The image to render the header on.
header (`str`):
The header text.
data_format (`Union[ChannelDimension, str]`, *optional*):
The data format of the image. Can be either "ChannelDimension.channels_first" or
"ChannelDimension.channels_last".
Returns:
`np.ndarray`: The image with the header rendered.
"""
requires_backends(render_header, "vision")
# Convert to PIL image if necessary
image = to_pil_image(image, input_data_format=input_data_format)
header_image = render_text(header, **kwargs)
new_width = max(header_image.width, image.width)
new_height = int(image.height * (new_width / image.width))
new_header_height = int(header_image.height * (new_width / header_image.width))
new_image = Image.new("RGB", (new_width, new_height + new_header_height), "white")
new_image.paste(header_image.resize((new_width, new_header_height)), (0, 0))
new_image.paste(image.resize((new_width, new_height)), (0, new_header_height))
# Convert back to the original framework if necessary
new_image = to_numpy_array(new_image)
if infer_channel_dimension_format(new_image) == ChannelDimension.LAST:
new_image = to_channel_dimension_format(new_image, ChannelDimension.LAST)
return new_image
class Pix2StructImageProcessor(BaseImageProcessor):
r"""
Constructs a Pix2Struct image processor.
Args:
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method. According to Pix2Struct paper and code, the image is normalized with its own mean and standard
deviation.
patch_size (`Dict[str, int]`, *optional*, defaults to `{"height": 16, "width": 16}`):
The patch size to use for the image. According to Pix2Struct paper and code, the patch size is 16x16.
max_patches (`int`, *optional*, defaults to 2048):
The maximum number of patches to extract from the image as per the [Pix2Struct
paper](https://arxiv.org/pdf/2210.03347.pdf).
is_vqa (`bool`, *optional*, defaults to `False`):
Whether or not the image processor is for the VQA task. If `True` and `header_text` is passed in, text is
rendered onto the input images.
"""
model_input_names = ["flattened_patches"]
def __init__(
self,
do_convert_rgb: bool = True,
do_normalize: bool = True,
patch_size: Dict[str, int] = None,
max_patches: int = 2048,
is_vqa: bool = False,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16}
self.do_normalize = do_normalize
self.do_convert_rgb = do_convert_rgb
self.max_patches = max_patches
self.is_vqa = is_vqa
def extract_flattened_patches(
self,
image: np.ndarray,
max_patches: int,
patch_size: dict,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Extract flattened patches from an image.
Args:
image (`np.ndarray`):
Image to extract flattened patches from.
max_patches (`int`):
Maximum number of patches to extract.
patch_size (`dict`):
Dictionary containing the patch height and width.
Returns:
result (`np.ndarray`):
A sequence of `max_patches` flattened patches.
"""
requires_backends(self.extract_flattened_patches, "torch")
# convert to torch
image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format)
image = torch.from_numpy(image)
patch_height, patch_width = patch_size["height"], patch_size["width"]
image_height, image_width = get_image_size(image, ChannelDimension.FIRST)
# maximize scale s.t.
scale = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width))
num_feasible_rows = max(min(math.floor(scale * image_height / patch_height), max_patches), 1)
num_feasible_cols = max(min(math.floor(scale * image_width / patch_width), max_patches), 1)
resized_height = max(num_feasible_rows * patch_height, 1)
resized_width = max(num_feasible_cols * patch_width, 1)
image = torch.nn.functional.interpolate(
image.unsqueeze(0),
size=(resized_height, resized_width),
mode="bilinear",
align_corners=False,
antialias=True,
).squeeze(0)
# [1, rows, columns, patch_height * patch_width * image_channels]
patches = torch_extract_patches(image, patch_height, patch_width)
patches_shape = patches.shape
rows = patches_shape[1]
columns = patches_shape[2]
depth = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
patches = patches.reshape([rows * columns, depth])
# [rows * columns, 1]
row_ids = torch.arange(rows).reshape([rows, 1]).repeat(1, columns).reshape([rows * columns, 1])
col_ids = torch.arange(columns).reshape([1, columns]).repeat(rows, 1).reshape([rows * columns, 1])
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
row_ids = row_ids.to(torch.float32)
col_ids = col_ids.to(torch.float32)
# [rows * columns, 2 + patch_height * patch_width * image_channels]
result = torch.cat([row_ids, col_ids, patches], -1)
# [max_patches, 2 + patch_height * patch_width * image_channels]
result = torch.nn.functional.pad(result, [0, 0, 0, max_patches - (rows * columns)]).float()
result = to_numpy_array(result)
return result
def normalize(
self,
image: np.ndarray,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
The image std is to mimic the tensorflow implementation of the `per_image_standardization`:
https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization
Args:
image (`np.ndarray`):
Image to normalize.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if image.dtype == np.uint8:
image = image.astype(np.float32)
# take mean across the whole `image`
mean = np.mean(image)
std = np.std(image)
adjusted_stddev = max(std, 1.0 / math.sqrt(np.prod(image.shape)))
return normalize(
image,
mean=mean,
std=adjusted_stddev,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
images: ImageInput,
header_text: Optional[str] = None,
do_convert_rgb: Optional[bool] = None,
do_normalize: Optional[bool] = None,
max_patches: Optional[int] = None,
patch_size: Optional[Dict[str, int]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> ImageInput:
"""
Preprocess an image or batch of images. The processor first computes the maximum possible number of
aspect-ratio preserving patches of size `patch_size` that can be extracted from the image. It then pads the
image with zeros to make the image respect the constraint of `max_patches`. Before extracting the patches the
images are standardized following the tensorflow implementation of `per_image_standardization`
(https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization).
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images.
header_text (`Union[List[str], str]`, *optional*):
Text to render as a header. Only has an effect if `image_processor.is_vqa` is `True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
max_patches (`int`, *optional*, defaults to `self.max_patches`):
Maximum number of patches to extract.
patch_size (`dict`, *optional*, defaults to `self.patch_size`):
Dictionary containing the patch height and width.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
patch_size = patch_size if patch_size is not None else self.patch_size
max_patches = max_patches if max_patches is not None else self.max_patches
is_vqa = self.is_vqa
if kwargs.get("data_format", None) is not None:
raise ValueError("data_format is not an accepted input as the outputs are ")
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# PIL RGBA images are converted to RGB
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if is_vqa:
if header_text is None:
raise ValueError("A header text must be provided for VQA models.")
font_bytes = kwargs.pop("font_bytes", None)
font_path = kwargs.pop("font_path", None)
if isinstance(header_text, str):
header_text = [header_text] * len(images)
images = [
render_header(image, header_text[i], font_bytes=font_bytes, font_path=font_path)
for i, image in enumerate(images)
]
if do_normalize:
images = [self.normalize(image=image, input_data_format=input_data_format) for image in images]
# convert to torch tensor and permute
images = [
self.extract_flattened_patches(
image=image, max_patches=max_patches, patch_size=patch_size, input_data_format=input_data_format
)
for image in images
]
# create attention mask in numpy
attention_masks = [(image.sum(axis=-1) != 0).astype(np.float32) for image in images]
encoded_outputs = BatchFeature(
data={"flattened_patches": images, "attention_mask": attention_masks}, tensor_type=return_tensors
)
return encoded_outputs
__all__ = ["Pix2StructImageProcessor"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: modeling_pix2struct.py
LINES: 1
SIZE: 87.13 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pix2struct\modeling_pix2struct.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. & Google team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pix2Struct modeling file"""
import math
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
from ...utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_flex_attn_available,
is_torch_fx_proxy,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from .configuration_pix2struct import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "Pix2StructConfig"
# Adapted from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pix2Struct
class Pix2StructLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
try:
from apex.normalization import FusedRMSNorm
Pix2StructLayerNorm = FusedRMSNorm # noqa
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pix2StructLayerNorm")
except ImportError:
# using the normal Pix2StructLayerNorm
pass
except Exception:
logger.warning("Discovered apex but it failed to load, falling back to Pix2StructLayerNorm")
pass
ALL_LAYERNORM_LAYERS.append(Pix2StructLayerNorm)
class Pix2StructVisionEmbeddings(nn.Module):
r"""
Construct the embeddings from patch. In `Pix2Struct` the input is different from classic Vision-transformer models.
Here the input is a sequence of `seq_len` flattened patches that also combines padding patches (tokens). Each patch
is represented by a vector of `hidden_size` values.
"""
def __init__(self, config: Pix2StructConfig) -> None:
super().__init__()
self.patch_projection = nn.Linear(config.patch_embed_hidden_size, config.hidden_size)
self.row_embedder = nn.Embedding(config.seq_len, config.hidden_size)
self.column_embedder = nn.Embedding(config.seq_len, config.hidden_size)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, flattened_patches: torch.Tensor) -> torch.Tensor:
# the row and column indices are stored in the first and second position of the flattened_patches
# flattened_patches: `batch_size`, `seq_len`, `hidden_size` + 2
row_indices = flattened_patches[:, :, 0].long()
col_indices = flattened_patches[:, :, 1].long()
flattened_patches = flattened_patches[:, :, 2:]
embeddings = self.patch_projection(flattened_patches)
row_embeddings = self.row_embedder(row_indices)
col_embeddings = self.column_embedder(col_indices)
# sum all embeddings together
embeddings = embeddings + row_embeddings + col_embeddings
embeddings = self.dropout(embeddings)
return embeddings
class Pix2StructVisionAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_attention_heads
self.dropout = config.attention_dropout
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.query = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
self.key = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
self.value = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
self.output = nn.Linear(self.inner_dim, self.hidden_size, bias=False)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
"""
Self-attention block
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
batch_size, seq_length = hidden_states.shape[:2]
def to_projection_shape(states):
"""projection"""
return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
# get query states
# (batch_size, n_heads, seq_length, dim_per_head)
query_states = to_projection_shape(self.query(hidden_states))
# get key/value states
key_states = to_projection_shape(self.key(hidden_states))
value_states = to_projection_shape(self.value(hidden_states))
# compute scores
# equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, seq_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
if attention_mask.dim() == 2:
position_bias = position_bias + attention_mask[:, None, None, :].to(position_bias.device)
elif attention_mask is not None:
# (batch_size, n_heads, seq_length, key_length)
position_bias = position_bias + attention_mask.to(position_bias.device)
elif not is_torchdynamo_compiling():
attention_mask = torch.ones(
(batch_size, seq_length), device=position_bias.device, dtype=position_bias.dtype
)
position_bias = position_bias + attention_mask.to(position_bias.device)
position_bias = 1 - position_bias
position_bias_masked = position_bias.masked_fill(position_bias == 1, torch.finfo(scores.dtype).min)
scores += position_bias_masked
scores = torch.max(scores, torch.tensor(torch.finfo(scores.dtype).min))
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores, dim=-1, dtype=torch.float32).type_as(scores)
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
# (batch_size, seq_length, dim)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
attn_output = self.output(attn_output)
outputs = (attn_output,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5DenseGatedActDense->Pix2StructVisionMlp,T5Config->Pix2StructVisionConfig,config.d_model->config.hidden_size,dropout_rate->dropout_rate
class Pix2StructVisionMlp(nn.Module):
def __init__(self, config: Pix2StructVisionConfig):
super().__init__()
self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
class Pix2StructVisionLayer(nn.Module):
def __init__(self, config: Pix2StructConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = Pix2StructVisionAttention(config)
self.mlp = Pix2StructVisionMlp(config)
self.pre_mlp_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pre_attention_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
residual = hidden_states
# in Pix2StructVision, layernorm is applied before self-attention
hidden_states = self.pre_attention_layer_norm(hidden_states)
self_attention_outputs = self.attention(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + residual
# in Pix2StructVision, layernorm is also applied after self-attention
layer_output = self.pre_mlp_layer_norm(hidden_states)
layer_output = self.mlp(layer_output) + hidden_states # second residual connection
outputs = (layer_output,) + outputs
return outputs
class Pix2StructVisionEncoder(nn.Module):
def __init__(self, config: Pix2StructConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([Pix2StructVisionLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class Pix2StructPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Pix2StructConfig
_supports_cache_class = True
_supports_static_cache = False
@property
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, Pix2StructLayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, Pix2StructTextDenseGatedActDense):
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
d_ff = self.config.text_config.d_ff if isinstance(self.config, Pix2StructConfig) else self.config.d_ff
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, Pix2StructTextAttention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
key_value_proj_dim = (
self.config.text_config.d_kv if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size
)
n_heads = (
self.config.text_config.num_heads
if isinstance(self.config, Pix2StructConfig)
else self.config.num_heads
)
module.query.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * key_value_proj_dim) ** -0.5))
module.key.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5))
module.value.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5))
module.output.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
elif isinstance(module, nn.Embedding):
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
module.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, Pix2StructTextModel):
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
module.lm_head.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
elif isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, Pix2StructLayerNorm):
if module.weight is not None:
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->Pix2Struct
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In Pix2Struct it is usually set to the pad_token_id. "
"See Pix2Struct docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
PIX2STRUCT_VISION_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`Pix2StructConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PIX2STRUCT_VISION_INPUTS_DOCSTRING = r"""
Args:
flattened_patches (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_channels x patch_height x patch_width)`):
Flattened and padded pixel values. These values can be obtained using [`AutoImageProcessor`]. See
[`Pix2StructVisionImageProcessor.__call__`] for details. Check the [original
paper](https://arxiv.org/abs/2210.03347) (figure 5) for more details.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Pix2StructVision Model transformer outputting raw hidden-states without any specific head on top.",
PIX2STRUCT_VISION_START_DOCSTRING,
)
class Pix2StructVisionModel(Pix2StructPreTrainedModel):
config_class = Pix2StructVisionConfig
main_input_name = "flattened_patches"
supports_gradient_checkpointing = True
_no_split_modules = ["Pix2StructVisionLayer"]
def __init__(self, config: Pix2StructConfig):
super().__init__(config)
self.config = config
self.embeddings = Pix2StructVisionEmbeddings(config)
self.encoder = Pix2StructVisionEncoder(config)
self.layernorm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_projection
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(PIX2STRUCT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
flattened_patches: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Example:
```python
>>> import requests
>>> from PIL import Image
>>> from transformers import AutoProcessor, Pix2StructVisionModel
>>> image_processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
>>> model = Pix2StructVisionModel.from_pretrained("google/pix2struct-textcaps-base")
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 2048, 768]
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if flattened_patches is None:
raise ValueError("You have to specify flattened_patches")
if attention_mask is None:
# check where `flattened_patches` is not 0
attention_mask = (flattened_patches.sum(dim=-1) != 0).float()
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(flattened_patches)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
if not return_dict:
head_outputs = (sequence_output,)
return head_outputs + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pix2StructText,d_model->hidden_size
class Pix2StructTextDenseGatedActDense(nn.Module):
def __init__(self, config: Pix2StructTextConfig):
super().__init__()
self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
class Pix2StructTextLayerFF(nn.Module):
def __init__(self, config: Pix2StructTextConfig):
super().__init__()
self.DenseReluDense = Pix2StructTextDenseGatedActDense(config)
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Copied from transformers.models.t5.modeling_t5.T5LayerFF.forward
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
class Pix2StructTextAttention(nn.Module):
def __init__(
self, config: Pix2StructTextConfig, has_relative_attention_bias=False, layer_idx: Optional[int] = None
):
super().__init__()
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.hidden_size = config.hidden_size
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
# Mesh TensorFlow initialization to avoid scaling before softmax
self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.key = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.value = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.output = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
# Adapted from transformers.models.t5.modeling_t5.T5Attention.compute_bias
def compute_bias(self, query_length, key_length, device=None, cache_position=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
if cache_position is None:
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
else:
context_position = cache_position[:, None].to(device)
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=False,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
# Adapted from transformers.models.t5.modeling_t5.T5Attention.forward
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, 1, 1, key_length) (non-causal) or (batch_size, 1, seq_length, key_length) (causal decoder)
batch_size, seq_length = hidden_states.shape[:2]
# if key_value_states are provided this layer is used as a cross-attention layer for the decoder
is_cross_attention = key_value_states is not None
query_states = self.query(hidden_states)
query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
curr_past_key_value = past_key_value.cross_attention_cache
else:
curr_past_key_value = past_key_value.self_attention_cache
current_states = key_value_states if is_cross_attention else hidden_states
if is_cross_attention and past_key_value and is_updated:
# reuse k,v, cross_attentions
key_states = curr_past_key_value.key_cache[self.layer_idx]
value_states = curr_past_key_value.value_cache[self.layer_idx]
else:
key_states = self.key(current_states)
value_states = self.value(current_states)
key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = curr_past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
if is_cross_attention:
past_key_value.is_updated[self.layer_idx] = True
# compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
key_length = key_states.shape[-2]
# cache position is 0-indexed so we add 1 to get the real length of queries (aka with past)
real_seq_length = query_length if query_length is not None else cache_position[-1] + 1
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(
real_seq_length, key_length, device=scores.device, cache_position=cache_position
)
position_bias = position_bias[:, :, -seq_length:, :]
if mask is not None:
causal_mask = mask[:, :, :, : key_states.shape[-2]]
position_bias = position_bias + causal_mask
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, -1, self.inner_dim)
attn_output = self.output(attn_output)
outputs = (attn_output, past_key_value, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,T5LayerSelfAttention->Pix2StructTextLayerSelfAttention,self.SelfAttention->self.attention,config.d_model->config.hidden_size
class Pix2StructTextLayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.attention = Pix2StructTextAttention(
config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
)
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.attention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,T5LayerCrossAttention->Pix2StructTextLayerCrossAttention,self.EncDecAttention->self.attention,config.d_model->config.hidden_size
class Pix2StructTextLayerCrossAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=False, layer_idx=layer_idx)
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.attention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
cache_position=cache_position,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class Pix2StructTextBlock(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.self_attention = Pix2StructTextLayerSelfAttention(
config,
has_relative_attention_bias=has_relative_attention_bias,
layer_idx=layer_idx,
)
self.encoder_decoder_attention = Pix2StructTextLayerCrossAttention(
config,
layer_idx=layer_idx,
)
self.mlp = Pix2StructTextLayerFF(config)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
cache_position=None,
):
self_attention_outputs = self.self_attention(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states, past_key_value = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.encoder_decoder_attention(
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
query_length=cache_position[-1] + 1,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, past_key_value = cross_attention_outputs[:2]
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.mlp(hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (past_key_value,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs
PIX2STRUCT_START_DOCSTRING = r"""
The Pix2Struct model was proposed in [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language
Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu,
Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. It's an encoder decoder
transformer pre-trained in a image-to-text setting.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config (Union[`Pix2StructConfig`, `Pix2StructTextConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PIX2STRUCT_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Pix2StructText is a model with relative position
embeddings so you should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [Pix2StructText
Training](./t5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText
Training](./t5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the
cache in the correct position and to infer the complete sequence length.
"""
PIX2STRUCT_INPUTS_DOCSTRING = r"""
Args:
flattened_patches (`torch.FloatTensor` of shape `(batch_size, seq_length, hidden_size)`):
Flattened pixel patches. the `hidden_size` is obtained by the following formula: `hidden_size` =
`num_channels` * `patch_size` * `patch_size`
The process of flattening the pixel patches is done by `Pix2StructProcessor`.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText
Training](./t5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss for the decoder.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The standalone text decoder of Pix2Struct",
PIX2STRUCT_START_DOCSTRING,
)
class Pix2StructTextModel(Pix2StructPreTrainedModel):
config_class = Pix2StructTextConfig
_no_split_modules = ["Pix2StructTextBlock"]
_tied_weights_keys = ["lm_head.weight"]
supports_gradient_checkpointing = True
def __init__(self, config):
super().__init__(config)
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layer = nn.ModuleList(
[
Pix2StructTextBlock(config, has_relative_attention_bias=bool(i == 0), layer_idx=i)
for i in range(config.num_layers)
]
)
self.final_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._reorder_cache
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
raise ValueError(
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
)
if len(reordered_layer_past_states) != len(layer_past_states):
raise ValueError(
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(PIX2STRUCT_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor, ...], CausalLMOutputWithCrossAttentions]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoProcessor, Pix2StructTextModel
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
>>> model = Pix2StructTextModel.from_pretrained("google/pix2struct-textcaps-base")
>>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> loss = outputs.loss
```
"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if inputs_embeds is None:
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# initialize past_key_values
return_legacy_cache = False
return_self_attention_cache = False
if use_cache or past_key_values is not None:
if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache):
return_self_attention_cache = True
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
elif not isinstance(past_key_values, EncoderDecoderCache):
return_legacy_cache = True
logger.warning_once(
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. "
"You should pass an instance of `EncoderDecoderCache` instead, e.g. "
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
)
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
elif past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
past_key_values_length = 0
if cache_position is not None:
past_key_values_length = cache_position[0]
elif past_key_values is not None:
past_key_values_length = past_key_values.get_seq_length()
if cache_position is None:
cache_position = torch.arange(
past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
)
if attention_mask is None:
# required mask seq length can be calculated via length of past
mask_seq_length = (
past_key_values.get_seq_length() + seq_length if past_key_values is not None else seq_length
)
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.config.is_decoder:
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values.self_attention_cache if past_key_values is not None else None,
output_attentions,
)
else:
causal_mask = attention_mask[:, None, None, :]
causal_mask = causal_mask.to(dtype=inputs_embeds.dtype)
causal_mask = (1.0 - causal_mask) * torch.finfo(inputs_embeds.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, layer_module in enumerate(self.layer):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
causal_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
cache_position,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=causal_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, next_decoder_cache = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
loss_fct = nn.CrossEntropyLoss(ignore_index=-100, reduction="mean")
loss = loss_fct(logits.contiguous().view(-1, logits.size(-1)), labels.contiguous().view(-1))
next_cache = next_decoder_cache if use_cache else None
if return_self_attention_cache:
next_cache = past_key_values.self_attention_cache
if return_legacy_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [
loss,
logits,
next_cache,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
@add_start_docstrings(
"A conditional generation model with a language modeling head. Can be used for sequence generation tasks.",
PIX2STRUCT_START_DOCSTRING,
)
class Pix2StructForConditionalGeneration(Pix2StructPreTrainedModel, GenerationMixin):
config_class = Pix2StructConfig
main_input_name = "flattened_patches"
_tied_weights_keys = ["decoder.lm_head.weight"]
def __init__(self, config: Pix2StructConfig):
super().__init__(config)
self.encoder = Pix2StructVisionModel(config.vision_config)
self.decoder = Pix2StructTextModel(config.text_config)
self.is_vqa = config.is_vqa
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.decoder.set_input_embeddings(new_embeddings)
def get_output_embeddings(self) -> nn.Module:
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.decoder.set_output_embeddings(new_embeddings)
def get_decoder(self):
return self.decoder
def get_encoder(self):
return self.encoder
@add_start_docstrings_to_model_forward(PIX2STRUCT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
flattened_patches: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
Inference:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
>>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base")
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> # autoregressive generation
>>> generated_ids = model.generate(**inputs, max_new_tokens=50)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_text)
A stop sign is on a street corner.
>>> # conditional generation
>>> text = "A picture of"
>>> inputs = processor(text=text, images=image, return_tensors="pt", add_special_tokens=False)
>>> generated_ids = model.generate(**inputs, max_new_tokens=50)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_text)
A picture of a stop sign with a red stop sign
```
Training:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-base")
>>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-base")
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "A stop sign is on the street corner."
>>> inputs = processor(images=image, return_tensors="pt")
>>> labels = processor(text=text, return_tensors="pt").input_ids
>>> # forward pass
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> print(f"{loss.item():.5f}")
5.94282
```"""
use_cache = use_cache if use_cache is not None else self.config.text_config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
flattened_patches=flattened_patches,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
decoder_attention_mask = (
decoder_attention_mask
if decoder_attention_mask is not None
else decoder_input_ids.ne(self.config.pad_token_id).float()
)
# Always attend to the first token
decoder_attention_mask[:, 0] = 1
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
labels=labels,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=decoder_outputs.loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
__all__ = [
"Pix2StructPreTrainedModel",
"Pix2StructForConditionalGeneration",
"Pix2StructVisionModel",
"Pix2StructTextModel",
]
```
|
===============================================================================================================================================
SOURCE CODE FILE: processing_pix2struct.py
LINES: 1
SIZE: 6.18 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pix2struct\processing_pix2struct.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Pix2Struct.
"""
from typing import List, Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput
from ...utils import logging
class Pix2StructImagesKwargs(ImagesKwargs, total=False):
max_patches: Optional[int]
header_text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]]
class Pix2StructProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: Pix2StructImagesKwargs
_defaults = {
"text_kwargs": {
"add_special_tokens": True,
"padding": False,
"stride": 0,
"return_overflowing_tokens": False,
"return_special_tokens_mask": False,
"return_offsets_mapping": False,
"return_token_type_ids": False,
"return_length": False,
"verbose": True,
},
"images_kwargs": {
"max_patches": 2048,
},
}
logger = logging.get_logger(__name__)
class Pix2StructProcessor(ProcessorMixin):
r"""
Constructs a PIX2STRUCT processor which wraps a BERT tokenizer and PIX2STRUCT image processor into a single
processor.
[`Pix2StructProcessor`] offers all the functionalities of [`Pix2StructImageProcessor`] and [`T5TokenizerFast`]. See
the docstring of [`~Pix2StructProcessor.__call__`] and [`~Pix2StructProcessor.decode`] for more information.
Args:
image_processor (`Pix2StructImageProcessor`):
An instance of [`Pix2StructImageProcessor`]. The image processor is a required input.
tokenizer (Union[`T5TokenizerFast`, `T5Tokenizer`]):
An instance of ['T5TokenizerFast`] or ['T5Tokenizer`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "Pix2StructImageProcessor"
tokenizer_class = ("T5Tokenizer", "T5TokenizerFast")
def __init__(self, image_processor, tokenizer):
tokenizer.return_token_type_ids = False
super().__init__(image_processor, tokenizer)
def __call__(
self,
images=None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[Pix2StructProcessorKwargs],
) -> Union[BatchEncoding, BatchFeature]:
"""
This method uses [`Pix2StructImageProcessor.preprocess`] method to prepare image(s) for the model, and
[`T5TokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
"""
if images is None and text is None:
raise ValueError("You have to specify either images or text.")
output_kwargs = self._merge_kwargs(
Pix2StructProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
add_special_tokens = output_kwargs["text_kwargs"].pop("add_special_tokens", None)
# Get only text
if images is None and not self.image_processor.is_vqa:
output_kwargs["text_kwargs"]["add_special_tokens"] = (
add_special_tokens if add_special_tokens is not None else True
)
self.current_processor = self.tokenizer
text_encoding = self.tokenizer(text=text, **output_kwargs["text_kwargs"])
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
else:
# add pixel_values and bbox
output_kwargs["images_kwargs"].setdefault("header_text", text)
encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
if text is not None and not self.image_processor.is_vqa:
output_kwargs["text_kwargs"]["add_special_tokens"] = (
add_special_tokens if add_special_tokens is not None else False
)
text_encoding = self.tokenizer(text=text, **output_kwargs["text_kwargs"])
if "attention_mask" in text_encoding:
text_encoding["decoder_attention_mask"] = text_encoding.pop("attention_mask")
if "input_ids" in text_encoding:
text_encoding["decoder_input_ids"] = text_encoding.pop("input_ids")
else:
text_encoding = None
if text_encoding is not None:
encoding_image_processor.update(text_encoding)
return encoding_image_processor
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["Pix2StructProcessor"]
```
|
===============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.10 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pixtral\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_pixtral import *
from .image_processing_pixtral import *
from .image_processing_pixtral_fast import *
from .modeling_pixtral import *
from .processing_pixtral import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
============================================================================================================================================
SOURCE CODE FILE: configuration_pixtral.py
LINES: 1
SIZE: 4.14 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pixtral\configuration_pixtral.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pixtral model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class PixtralVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PixtralVisionModel`]. It is used to instantiate an
Pixtral vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to the vision encoder used by Pixtral-12B.
e.g. [pixtral-hf/pixtral-9b](https://huggingface.co/pixtral-hf/pixtral-9b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 4096):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of input channels in the input images.
image_size (`int`, *optional*, defaults to 1024):
Max dimension of the input images.
patch_size (`int`, *optional*, defaults to 16):
Size of the image patches.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
Activation function used in the hidden layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
Dropout probability for the attention layers.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import PixtralVisionModel, PixtralVisionConfig
>>> # Initializing a Pixtral-12B style configuration
>>> config = PixtralVisionConfig()
>>> # Initializing a model (with randomly initialized weights) from the configuration
>>> model = PixtralVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "pixtral"
def __init__(
self,
hidden_size=1024,
intermediate_size=4096,
num_hidden_layers=24,
num_attention_heads=16,
num_channels=3,
image_size=1024,
patch_size=16,
hidden_act="gelu",
attention_dropout=0.0,
rope_theta=10000.0,
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.rope_theta = rope_theta
self.head_dim = hidden_size // num_attention_heads
self.initializer_range = initializer_range
__all__ = ["PixtralVisionConfig"]
```
|
===============================================================================================================================================
SOURCE CODE FILE: image_processing_pixtral.py
LINES: 1
SIZE: 21.47 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pixtral\image_processing_pixtral.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Pixtral."""
import math
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
pad,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_vision_available, logging
from ...utils.import_utils import requires_backends
logger = logging.get_logger(__name__)
if is_vision_available():
import PIL
# Adapted from function in image_transforms.py to ensure any transparent pixels are converted to white.
def convert_to_rgb(image: ImageInput) -> ImageInput:
"""
Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image
as is.
Args:
image (Image):
The image to convert.
"""
requires_backends(convert_to_rgb, ["vision"])
if not isinstance(image, PIL.Image.Image):
return image
if image.mode == "RGB":
return image
# First we convert to RGBA to set background to white.
image = image.convert("RGBA")
# Create a new image with a white background.
new_image = PIL.Image.new("RGBA", image.size, "WHITE")
new_image.paste(image, (0, 0), image)
new_image = new_image.convert("RGB")
return new_image
def _num_image_tokens(image_size: Tuple[int, int], patch_size: Tuple[int, int]) -> int:
"""
Calculate the number of image tokens given the image size and patch size.
Args:
image_size (`Tuple[int, int]`):
The size of the image as `(height, width)`.
patch_size (`Tuple[int, int]`):
The patch size as `(height, width)`.
Returns:
`int`: The number of image tokens.
"""
height, width = image_size
patch_height, patch_width = patch_size if isinstance(patch_size, (tuple, list)) else (patch_size, patch_size)
num_width_tokens = (width - 1) // patch_width + 1
num_height_tokens = (height - 1) // patch_height + 1
return num_height_tokens, num_width_tokens
def get_resize_output_image_size(
input_image: ImageInput,
size: Union[int, Tuple[int, int], List[int], Tuple[int]],
patch_size: Union[int, Tuple[int, int], List[int], Tuple[int]],
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> tuple:
"""
Find the target (height, width) dimension of the output image after resizing given the input image and the desired
size.
Args:
input_image (`ImageInput`):
The image to resize.
size (`int` or `Tuple[int, int]`):
Max image size an input image can be. Must be a dictionary with the key "longest_edge".
patch_size (`int` or `Tuple[int, int]`):
The patch_size as `(height, width)` to use for resizing the image. If patch_size is an integer, `(patch_size, patch_size)`
will be used
input_data_format (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If unset, will use the inferred format from the input.
Returns:
`tuple`: The target (height, width) dimension of the output image after resizing.
"""
max_height, max_width = size if isinstance(size, (tuple, list)) else (size, size)
patch_height, patch_width = patch_size if isinstance(patch_size, (tuple, list)) else (patch_size, patch_size)
height, width = get_image_size(input_image, input_data_format)
ratio = max(height / max_height, width / max_width)
if ratio > 1:
# Orgiginal implementation uses `round` which utilises bankers rounding, which can lead to surprising results
# Here we use floor to ensure the image is always smaller than the given "longest_edge"
height = int(math.floor(height / ratio))
width = int(math.floor(width / ratio))
num_height_tokens, num_width_tokens = _num_image_tokens((height, width), (patch_height, patch_width))
return num_height_tokens * patch_height, num_width_tokens * patch_width
class PixtralImageProcessor(BaseImageProcessor):
r"""
Constructs a Pixtral image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"longest_edge": 1024}`):
Size of the maximum dimension of either the height or width dimension of the image. Used to control how
images are resized. If either the height or width are greater than `size["longest_edge"]` then both the height and width are rescaled by `height / ratio`, `width /ratio` where `ratio = max(height / longest_edge, width / longest_edge)`
patch_size (`Dict[str, int]` *optional*, defaults to `{"height": 16, "width": 16}`):
Size of the patches in the model, used to calculate the output image size. Can be overridden by `patch_size` in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
patch_size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"longest_edge": 1024}
patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16}
patch_size = get_size_dict(patch_size, default_to_square=True)
self.do_resize = do_resize
self.size = size
self.patch_size = patch_size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else [0.48145466, 0.4578275, 0.40821073]
self.image_std = image_std if image_std is not None else [0.26862954, 0.26130258, 0.27577711]
self.do_convert_rgb = do_convert_rgb
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"patch_size",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"do_convert_rgb",
"return_tensors",
"data_format",
"input_data_format",
]
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
patch_size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dict containing the longest possible edge of the image.
patch_size (`Dict[str, int]`):
Patch size used to calculate the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if "longest_edge" in size:
size = (size["longest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError("size must contain either 'longest_edge' or 'height' and 'width'.")
if "height" in patch_size and "width" in patch_size:
patch_size = (patch_size["height"], patch_size["width"])
else:
raise ValueError("patch_size must contain either 'shortest_edge' or 'height' and 'width'.")
output_size = get_resize_output_image_size(
image,
size=size,
patch_size=patch_size,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def _pad_for_batching(
self,
pixel_values: List[np.ndarray],
image_sizes: List[List[int]],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
Args:
pixel_values (`List[np.ndarray]`):
An array of pixel values of each images of shape (`batch_size`, `height`, `width`, `channels`)
image_sizes (`List[List[int]]`):
A list of sizes for each image in `pixel_values` in (height, width) format.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
Returns:
List[`np.ndarray`]: The padded images.
"""
max_shape = (
max([size[0] for size in image_sizes]),
max([size[1] for size in image_sizes]),
)
pixel_values = [
pad(
image,
padding=((0, max_shape[0] - size[0]), (0, max_shape[1] - size[1])),
data_format=data_format,
input_data_format=input_data_format,
)
for image, size in zip(pixel_values, image_sizes)
]
return pixel_values
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
patch_size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Describes the maximum input dimensions to the model.
patch_size (`Dict[str, int]`, *optional*, defaults to `self.patch_size`):
Patch size in the model. Used to calculate the image after resizing.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
patch_size = patch_size if patch_size is not None else self.patch_size
patch_size = get_size_dict(patch_size, default_to_square=True)
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
images = make_list_of_images(images)
if not valid_images(images[0]):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
batch_images = []
batch_image_sizes = []
for image in images:
if do_resize:
image = self.resize(
image=image,
size=size,
patch_size=patch_size,
resample=resample,
input_data_format=input_data_format,
)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
batch_images.append(image)
batch_image_sizes.append(get_image_size(image, data_format))
pixel_values = self._pad_for_batching(
pixel_values=batch_images,
image_sizes=batch_image_sizes,
input_data_format=data_format,
data_format=data_format,
)
return BatchFeature(
data={"pixel_values": pixel_values, "image_sizes": batch_image_sizes}, tensor_type=return_tensors
)
__all__ = ["PixtralImageProcessor"]
```
|
====================================================================================================================================================
SOURCE CODE FILE: image_processing_pixtral_fast.py
LINES: 1
SIZE: 8.37 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pixtral\image_processing_pixtral_fast.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Pixtral."""
from typing import Dict, List, Optional, Union
from ...image_processing_utils import BatchFeature, get_size_dict
from ...image_processing_utils_fast import (
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
BaseImageProcessorFast,
DefaultFastImageProcessorKwargs,
group_images_by_shape,
reorder_images,
)
from ...image_utils import (
ImageInput,
PILImageResampling,
SizeDict,
)
from ...processing_utils import Unpack
from ...utils import (
TensorType,
add_start_docstrings,
is_torch_available,
is_torchvision_available,
is_torchvision_v2_available,
is_vision_available,
logging,
)
from .image_processing_pixtral import (
get_resize_output_image_size,
)
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
if is_torchvision_available():
if is_vision_available():
pass
if is_torchvision_v2_available():
from torchvision.transforms.v2 import functional as F
else:
from torchvision.transforms import functional as F
class PixtralFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
patch_size: Optional[Dict[str, int]]
@add_start_docstrings(
r"Constructs a fast ConvNeXT image processor.",
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
"""
patch_size (`Dict[str, int]` *optional*, defaults to `{"height": 16, "width": 16}`):
Size of the patches in the model, used to calculate the output image size. Can be overridden by `patch_size` in the `preprocess` method.
""",
)
class PixtralImageProcessorFast(BaseImageProcessorFast):
resample = PILImageResampling.BICUBIC
image_mean = [0.48145466, 0.4578275, 0.40821073]
image_std = [0.26862954, 0.26130258, 0.27577711]
patch_size = {"height": 16, "width": 16}
size = {"longest_edge": 1024}
default_to_square = True
do_resize = True
do_rescale = True
do_normalize = True
do_convert_rgb = True
valid_kwargs = PixtralFastImageProcessorKwargs
def __init__(self, **kwargs: Unpack[PixtralFastImageProcessorKwargs]):
super().__init__(**kwargs)
@add_start_docstrings(
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS,
"""
patch_size (`Dict[str, int]` *optional*, defaults to `{"height": 16, "width": 16}`):
Size of the patches in the model, used to calculate the output image size. Can be overridden by `patch_size` in the `preprocess` method.
""",
)
def preprocess(self, images: ImageInput, **kwargs: Unpack[PixtralFastImageProcessorKwargs]) -> BatchFeature:
return super().preprocess(images, **kwargs)
def resize(
self,
image: torch.Tensor,
size: SizeDict,
patch_size: SizeDict,
interpolation: "F.InterpolationMode" = None,
**kwargs,
) -> torch.Tensor:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`torch.Tensor`):
Image to resize.
size (`SizeDict`):
Dict containing the longest possible edge of the image.
patch_size (`SizeDict`):
Patch size used to calculate the size of the output image.
interpolation (`InterpolationMode`, *optional*, defaults to `InterpolationMode.BILINEAR`):
Resampling filter to use when resiizing the image.
"""
interpolation = interpolation if interpolation is not None else F.InterpolationMode.BILINEAR
if size.longest_edge:
size = (size.longest_edge, size.longest_edge)
elif size.height and size.width:
size = (size.height, size.width)
else:
raise ValueError("size must contain either 'longest_edge' or 'height' and 'width'.")
if patch_size.height and patch_size.width:
patch_size = (patch_size.height, patch_size.width)
else:
raise ValueError("patch_size must contain either 'shortest_edge' or 'height' and 'width'.")
output_size = get_resize_output_image_size(image, size=size, patch_size=patch_size)
return F.resize(image, size=output_size, interpolation=interpolation, **kwargs)
# Adapted from transformers.models.pixtral.image_processing_pixtral.PixtralImageProcessor._pad_for_batching
def _pad_for_batching(
self,
pixel_values: List[torch.Tensor],
image_sizes: List[List[int]],
):
"""
Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches.
Args:
pixel_values (`List[torch.Tensor]`):
An array of pixel values of each images of shape (`batch_size`, `channels`, `height`, `width`)
image_sizes (`List[List[int]]`):
A list of sizes for each image in `pixel_values` in (height, width) format.
Returns:
List[`torch.Tensor`]: The padded images.
"""
max_shape = (max([size[0] for size in image_sizes]), max([size[1] for size in image_sizes]))
pixel_values = [
torch.nn.functional.pad(image, pad=(0, max_shape[1] - size[1], 0, max_shape[0] - size[0]))
for image, size in zip(pixel_values, image_sizes)
]
return torch.stack(pixel_values)
def _preprocess(
self,
images: List["torch.Tensor"],
do_resize: bool,
size: SizeDict,
patch_size: Dict[str, int],
interpolation: Optional["F.InterpolationMode"],
do_center_crop: bool,
crop_size: Dict[str, int],
do_rescale: bool,
rescale_factor: float,
do_normalize: bool,
image_mean: Optional[Union[float, List[float]]],
image_std: Optional[Union[float, List[float]]],
return_tensors: Optional[Union[str, TensorType]],
) -> BatchFeature:
patch_size = get_size_dict(patch_size, default_to_square=True)
patch_size = SizeDict(**patch_size)
# Group images by size for batched resizing
grouped_images, grouped_images_index = group_images_by_shape(images)
resized_images_grouped = {}
for shape, stacked_images in grouped_images.items():
if do_resize:
stacked_images = self.resize(
image=stacked_images, size=size, patch_size=patch_size, interpolation=interpolation
)
resized_images_grouped[shape] = stacked_images
resized_images = reorder_images(resized_images_grouped, grouped_images_index)
# Group images by size for further processing
# Needed in case do_resize is False, or resize returns images with different sizes
grouped_images, grouped_images_index = group_images_by_shape(resized_images)
batch_image_sizes = [grouped_images_index[i][0] for i in range(len(grouped_images_index))]
processed_images_grouped = {}
for shape, stacked_images in grouped_images.items():
if do_center_crop:
stacked_images = self.center_crop(stacked_images, crop_size)
# Fused rescale and normalize
stacked_images = self.rescale_and_normalize(
stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std
)
processed_images_grouped[shape] = stacked_images
processed_images = reorder_images(processed_images_grouped, grouped_images_index)
padded_images = self._pad_for_batching(
pixel_values=processed_images,
image_sizes=batch_image_sizes,
)
return BatchFeature(
data={"pixel_values": padded_images, "image_sizes": batch_image_sizes}, tensor_type=return_tensors
)
__all__ = ["PixtralImageProcessorFast"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: modeling_pixtral.py
LINES: 1
SIZE: 20.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pixtral\modeling_pixtral.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Mistral and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Pixtral model."""
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ... import PreTrainedModel
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput
from ...modeling_rope_utils import dynamic_rope_update
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_pixtral import PixtralVisionConfig
logger = logging.get_logger(__name__)
def position_ids_in_meshgrid(patch_embeds_list, max_width):
positions = []
for patch in patch_embeds_list:
height, width = patch.shape[-2:]
mesh = torch.meshgrid(torch.arange(height), torch.arange(width), indexing="ij")
h_grid, v_grid = torch.stack(mesh, dim=-1).reshape(-1, 2).chunk(2, -1)
ids = h_grid * max_width + v_grid
positions.append(ids[:, 0])
return torch.cat(positions)
class PixtralRotaryEmbedding(nn.Module):
"""
The key with pixtral embedding is just that you have a frequency for each pixel positions.
If you have height x width pixels (or embedding pixels), then the frequency used for ROPE
is given by indexing the pre_computed frequency on the width and height.
What you output is of dimension (batch, height * width, dim) with dim the embed dim.
This simply means that for each image hidden state, you are going to add
a corresponding positional embedding, based on its index in the grid.
"""
def __init__(self, config, device=None):
super().__init__()
self.rope_type = "default"
self.dim = config.head_dim
self.base = config.rope_theta
max_patches_per_side = config.image_size // config.patch_size
freqs = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
h = torch.arange(max_patches_per_side, device=freqs.device)
w = torch.arange(max_patches_per_side, device=freqs.device)
freqs_h = torch.outer(h, freqs[::2]).float()
freqs_w = torch.outer(w, freqs[1::2]).float()
inv_freq = torch.cat(
[
freqs_h[:, None, :].repeat(1, max_patches_per_side, 1),
freqs_w[None, :, :].repeat(max_patches_per_side, 1, 1),
],
dim=-1,
).reshape(-1, self.dim // 2) # we reshape to only index on the position indexes, not tuple of indexes
# Different from paper, but it uses a different permutation in order to obtain the same calculation
# TODO maybe make it torch compatible later on. We can also just slice
self.register_buffer("inv_freq", torch.cat((inv_freq, inv_freq), dim=-1), persistent=False)
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
freqs = self.inv_freq[position_ids]
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
emb = freqs
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class PixtralAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.o_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, patches, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=0)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, patches, -1)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Pixtral
class PixtralMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Pixtral
class PixtralRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
PixtralRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class PixtralAttentionLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention_norm = PixtralRMSNorm(config.hidden_size, eps=1e-5)
self.feed_forward = PixtralMLP(config)
self.attention = PixtralAttention(config)
self.ffn_norm = PixtralRMSNorm(config.hidden_size, eps=1e-5)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
output_attentions: Optional[bool] = None,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.attention_norm(hidden_states)
hidden_states, attn_weights = self.attention(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_embeddings=position_embeddings,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.ffn_norm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class PixtralTransformer(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layers = torch.nn.ModuleList()
for _ in range(config.num_hidden_layers):
self.layers.append(PixtralAttentionLayer(config))
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Embeddings which serve as input to the Transformer.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
position_embeddings,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
position_embeddings=position_embeddings,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
PIXTRAL_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PixtralVisionConfig`]):
Model configuration class with all the parameters of the vision encoder. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
class PixtralPreTrainedModel(PreTrainedModel):
config_class = PixtralVisionConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["PixtralAttentionLayer"]
def _init_weights(self, module):
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.initializer_range
)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
PIXTRAL_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`AutoImageProcessor.__call__`]
for details.
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
The sizes of the images in the batch, being (height, width) for each image.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def generate_block_attention_mask(patch_embeds_list, tensor):
dtype = tensor.dtype
device = tensor.device
seq_len = tensor.shape[1]
d_min = torch.finfo(dtype).min
causal_mask = torch.full((seq_len, seq_len), fill_value=d_min, dtype=dtype, device=device)
block_end_idx = torch.tensor(patch_embeds_list).cumsum(-1)
block_start_idx = torch.tensor([0] + patch_embeds_list[:-1]).cumsum(-1)
for start, end in zip(block_start_idx, block_end_idx):
causal_mask[start:end, start:end] = 0
causal_mask = causal_mask[None, None, :, :].expand(tensor.shape[0], 1, -1, -1)
return causal_mask
@add_start_docstrings(
"The bare Pixtral vision encoder outputting raw hidden-states without any specific head on top.",
PIXTRAL_START_DOCSTRING,
)
class PixtralVisionModel(PixtralPreTrainedModel):
base_model_prefix = "vision_encoder"
def __init__(self, config):
super().__init__(config)
self.config = config
self.patch_conv = nn.Conv2d(
in_channels=config.num_channels,
out_channels=config.hidden_size,
kernel_size=config.patch_size,
stride=config.patch_size,
bias=False,
)
self.patch_size = config.patch_size
self.ln_pre = PixtralRMSNorm(config.hidden_size, eps=1e-5)
self.transformer = PixtralTransformer(config)
self.patch_positional_embedding = PixtralRotaryEmbedding(config)
self.post_init()
def get_input_embeddings(self):
return self.patch_conv
@add_start_docstrings_to_model_forward(PIXTRAL_INPUTS_DOCSTRING)
def forward(
self,
pixel_values: torch.Tensor,
image_sizes: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
*args,
**kwargs,
) -> Union[Tuple, BaseModelOutput]:
"""
Returns:
pixel_values: tensor of token features for
all tokens of all images of shape (N_toks, D)
"""
# pass images through initial convolution independently
patch_embeds = self.patch_conv(pixel_values)
patch_embeds_list = [
embed[..., : (size[0] // self.patch_size), : (size[1] // self.patch_size)]
for embed, size in zip(patch_embeds, image_sizes)
]
# flatten to a single sequence
patch_embeds = torch.cat([p.flatten(1).T for p in patch_embeds_list], dim=0).unsqueeze(0)
patch_embeds = self.ln_pre(patch_embeds)
# positional embeddings
position_ids = position_ids_in_meshgrid(
patch_embeds_list, max_width=self.config.image_size // self.config.patch_size
)
position_embeddings = self.patch_positional_embedding(patch_embeds, position_ids)
attention_mask = generate_block_attention_mask(
[p.shape[-2] * p.shape[-1] for p in patch_embeds_list], patch_embeds
)
out = self.transformer(
patch_embeds,
attention_mask=attention_mask,
position_embeddings=position_embeddings,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
return out
__all__ = ["PixtralVisionModel", "PixtralPreTrainedModel"]
```
|
=========================================================================================================================================
SOURCE CODE FILE: processing_pixtral.py
LINES: 1
SIZE: 10.77 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pixtral\processing_pixtral.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Pixtral.
"""
from typing import List, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput, is_valid_image, load_image
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
logger = logging.get_logger(__name__)
class PixtralProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
"images_kwargs": {},
"common_kwargs": {
"return_tensors": "pt",
},
}
# Copied from transformers.models.idefics2.processing_idefics2.is_url
def is_url(val) -> bool:
return isinstance(val, str) and val.startswith("http")
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
def is_image_or_image_url(elem):
return is_url(elem) or is_valid_image(elem)
class PixtralProcessor(ProcessorMixin):
r"""
Constructs a Pixtral processor which wraps a Pixtral image processor and a Pixtral tokenizer into a single processor.
[`PixtralProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~PixtralProcessor.__call__`] and [`~PixtralProcessor.decode`] for more information.
Args:
image_processor ([`PixtralImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
patch_size (`int`, *optional*, defaults to 16):
Patch size from the vision tower.
spatial_merge_size (`int`, *optional*, defaults to 1):
The downsampling factor for the spatial merge operation.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
image_token (`str`, *optional*, defaults to `"[IMG]"`):
Special token used to denote image location.
image_break_token (`str`, *optional*, defaults to `"[IMG_BREAK]"`):
Special token used to denote the end of a line of pixels in an image.
image_end_token (`str`, *optional*, defaults to `"[IMG_END]"`):
Special token used to denote the end of an image input.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = [
"chat_template",
"patch_size",
"spatial_merge_size",
"image_token",
"image_break_token",
"image_end_token",
]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor=None,
tokenizer=None,
patch_size: int = 16,
spatial_merge_size: int = 1,
chat_template=None,
image_token="[IMG]", # set the default and let users change if they have peculiar special tokens in rare cases
image_break_token="[IMG_BREAK]",
image_end_token="[IMG_END]",
**kwargs,
):
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.image_token = image_token
self.image_break_token = image_break_token
self.image_end_token = image_end_token
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[PixtralProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
# check if images and text inputs are reversed for BC
images, text = _validate_images_text_input_order(images, text)
output_kwargs = self._merge_kwargs(
PixtralProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
patch_size = self.patch_size * self.spatial_merge_size
if images is not None:
if is_image_or_image_url(images):
images = [images]
elif isinstance(images, (list, tuple)) and is_image_or_image_url(images[0]):
pass
elif (
isinstance(images, (list, tuple))
and isinstance(images[0], (list, tuple))
and is_image_or_image_url(images[0][0])
):
images = [image for sublist in images for image in sublist]
else:
raise ValueError(
"Invalid input images. Please provide a single image, a list of images, or a list of lists of images."
)
images = [load_image(im) if isinstance(im, str) else im for im in images]
image_inputs = self.image_processor(images, patch_size=patch_size, **output_kwargs["images_kwargs"])
else:
image_inputs = {}
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
# try to expand inputs in processing if we have the necessary parts
prompt_strings = text
if image_inputs.get("pixel_values") is not None:
# Replace the image token with the expanded image token sequence
image_sizes = iter(image_inputs["image_sizes"])
prompt_strings = []
replace_strings = []
for sample in text:
while self.image_token in sample:
height, width = next(image_sizes)
num_height_tokens = height // patch_size
num_width_tokens = width // patch_size
replace_tokens = [
[self.image_token] * num_width_tokens + [self.image_break_token]
] * num_height_tokens
# Flatten list
replace_tokens = [item for sublist in replace_tokens for item in sublist]
replace_tokens[-1] = self.image_end_token
replace_str = "".join(replace_tokens)
replace_strings.append(replace_str)
sample = sample.replace(self.image_token, "<placeholder>", 1)
while "<placeholder>" in sample:
replace_str = replace_strings.pop(0)
sample = sample.replace("<placeholder>", replace_str, 1)
prompt_strings.append(sample)
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
return BatchFeature(
data={**text_inputs, **image_inputs}, tensor_type=output_kwargs["common_kwargs"]["return_tensors"]
)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["PixtralProcessor"]
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.01 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\plbart\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_plbart import *
from .modeling_plbart import *
from .tokenization_plbart import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==========================================================================================================================================
SOURCE CODE FILE: configuration_plbart.py
LINES: 1
SIZE: 8.33 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\plbart\configuration_plbart.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022, UCLA NLP, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PLBART model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
logger = logging.get_logger(__name__)
class PLBartConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PLBartModel`]. It is used to instantiate an
PLBART model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the PLBART
[uclanlp/plbart-base](https://huggingface.co/uclanlp/plbart-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50005):
Vocabulary size of the PLBART model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`PLBartModel`].
d_model (`int`, *optional*, defaults to 768):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 6):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 6):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `True`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (`int`, *optional*, defaults to 2):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
Example:
```python
>>> from transformers import PLBartConfig, PLBartModel
>>> # Initializing a PLBART uclanlp/plbart-base style configuration
>>> configuration = PLBartConfig()
>>> # Initializing a model (with random weights) from the uclanlp/plbart-base style configuration
>>> model = PLBartModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "plbart"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=50005,
max_position_embeddings=1024,
encoder_layers=6,
encoder_ffn_dim=3072,
encoder_attention_heads=12,
decoder_layers=6,
decoder_ffn_dim=3072,
decoder_attention_heads=12,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=768,
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
init_std=0.02,
classifier_dropout=0.0,
scale_embedding=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
forced_eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
class PLBartOnnxConfig(OnnxConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("attention_mask", {0: "batch", 1: "sequence"}),
]
)
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.use_past:
return OrderedDict(
[
("last_hidden_state", {0: "batch", 1: "sequence"}),
("past_keys", {0: "batch", 2: "sequence"}),
("encoder_last_hidden_state", {0: "batch", 1: "sequence"}),
]
)
else:
return OrderedDict(
[
("last_hidden_state", {0: "batch", 1: "sequence"}),
("encoder_last_hidden_state", {0: "batch", 1: "sequence"}),
]
)
__all__ = ["PLBartConfig"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: modeling_plbart.py
LINES: 1
SIZE: 80.65 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\plbart\modeling_plbart.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022, UCLA NLP, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch PLBART model."""
import copy
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
_prepare_4d_attention_mask,
_prepare_4d_attention_mask_for_sdpa,
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_plbart import PLBartConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "uclanlp/plbart-base"
_CONFIG_FOR_DOC = "PLBartConfig"
# Copied from transformers.models.mbart.modeling_mbart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int):
"""
Shift input ids one token to the right, and wrap the last non pad token (the <LID> token) Note that MBart does not
have a single `decoder_start_token_id` in contrast to other Bart-like models.
"""
prev_output_tokens = input_ids.clone()
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
prev_output_tokens.masked_fill_(prev_output_tokens == -100, pad_token_id)
index_of_eos = (prev_output_tokens.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
decoder_start_tokens = prev_output_tokens.gather(1, index_of_eos).squeeze()
prev_output_tokens[:, 1:] = prev_output_tokens[:, :-1].clone()
prev_output_tokens[:, 0] = decoder_start_tokens
return prev_output_tokens
# Copied from transformers.models.bart.modeling_bart.BartLearnedPositionalEmbedding with Bart->PLBart
class PLBartLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# PLBart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
"""`input_ids' shape is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids.shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
).expand(bsz, -1)
return super().forward(positions + self.offset)
# Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->PLBart
class PLBartScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PLBart
class PLBartAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[PLBartConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->PLBart, BART->PLBART
class PLBartEncoderLayer(nn.Module):
def __init__(self, config: PLBartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = PLBART_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
layer_head_mask: torch.FloatTensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# TODO: Implement attention with SDPA for PLBart.
PLBART_ATTENTION_CLASSES = {"eager": PLBartAttention}
# Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->PLBart, BART->PLBART
class PLBartDecoderLayer(nn.Module):
def __init__(self, config: PLBartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = PLBART_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = PLBART_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->PLBart
class PLBartClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class PLBartPreTrainedModel(PreTrainedModel):
config_class = PLBartConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["PLBartDecoderLayer", "PLBartEncoderLayer"]
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
PLBART_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`PLBartConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PLBART_GENERATION_EXAMPLE = r"""
Mask-filling example:
```python
>>> from transformers import AutoTokenizer, PLBartForConditionalGeneration
>>> model = PLBartForConditionalGeneration.from_pretrained("uclanlp/plbart-base")
>>> tokenizer = AutoTokenizer.from_pretrained("uclanlp/plbart-base")
>>> # en_XX is the language symbol id <LID> for English
>>> TXT = "<s> Is 0 the <mask> Fibonacci number ? </s> en_XX"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt").input_ids
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
['first', 'same', 'highest', 'result', 'number']
```
"""
PLBART_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`] or [`PLBartMultiTokenizer`] depending on the checkpoint.
See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`] or [`PLBartMultiTokenizer`] depending on the checkpoint.
See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
PLBart uses a specific language id token as the starting token for `decoder_input_ids` generation that
varies according to source and target language, *e.g.* 50003 for *en_XX*, and 50001 for *java*. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (:
obj:*torch.LongTensor* of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior:
generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:
obj:*torch.Tensor* of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify
selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (:
obj:*tuple(tuple(torch.FloatTensor))*, *optional*, returned when `use_cache=True` is passed or when
`config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple
having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional
tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (:
obj:*torch.FloatTensor* of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally,
instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful
if you want more control over how to convert `input_ids` indices into associated vectors than the model's
internal embedding lookup matrix.
decoder_inputs_embeds (:
obj:*torch.FloatTensor* of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.bart.modeling_bart.BartEncoder with Bart->PLBart
class PLBartEncoder(PLBartPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`PLBartEncoderLayer`].
Args:
config: PLBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: PLBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = PLBartScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = PLBartLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([PLBartEncoderLayer(config) for _ in range(config.encoder_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_ids = input_ids.view(-1, input_ids.shape[-1])
elif inputs_embeds is not None:
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(input)
embed_pos = embed_pos.to(inputs_embeds.device)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
if self._use_flash_attention_2:
attention_mask = attention_mask if 0 in attention_mask else None
elif self._use_sdpa and head_mask is None and not output_attentions:
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to
# the manual implementation that requires a 4D causal mask in all cases.
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Copied from transformers.models.bart.modeling_bart.BartDecoder with Bart->PLBart
class PLBartDecoder(PLBartPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PLBartDecoderLayer`]
Args:
config: PLBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: PLBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = PLBartScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = PLBartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([PLBartDecoderLayer(config) for _ in range(config.decoder_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
input_shape,
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
if self._use_flash_attention_2:
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions:
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
encoder_attention_mask,
inputs_embeds.dtype,
tgt_len=input_shape[-1],
)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare PLBART Model outputting raw hidden-states without any specific head on top.",
PLBART_START_DOCSTRING,
)
class PLBartModel(PLBartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: PLBartConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.shared = PLBartScaledWordEmbedding(vocab_size, config.d_model, padding_idx, embed_scale=embed_scale)
self.encoder = PLBartEncoder(config, self.shared)
self.decoder = PLBartDecoder(config, self.shared)
self.init_weights()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(PLBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.LongTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# different to other models, PLBart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The PLBART Model with a language modeling head. Can be used for code-to-text, text-to-code and code-to-code.",
PLBART_START_DOCSTRING,
)
class PLBartForConditionalGeneration(PLBartPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: PLBartConfig):
super().__init__(config)
self.model = PLBartModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
self.init_weights()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(
self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None, mean_resizing: bool = True
) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(PLBART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(PLBART_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.LongTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"""
PLBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for code
classification.
""",
PLBART_START_DOCSTRING,
)
class PLBartForSequenceClassification(PLBartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: PLBartConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = PLBartModel(config)
self.classification_head = PLBartClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PLBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.forward
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->PLBart
class PLBartDecoderWrapper(PLBartPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = PLBartDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->PLBart, facebook/bart-base->uclanlp/plbart-base
class PLBartForCausalLM(PLBartPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = PLBartDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, PLBartForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("uclanlp/plbart-base")
>>> model = PLBartForCausalLM.from_pretrained("uclanlp/plbart-base", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
__all__ = [
"PLBartForCausalLM",
"PLBartForConditionalGeneration",
"PLBartForSequenceClassification",
"PLBartModel",
"PLBartPreTrainedModel",
]
```
|
=========================================================================================================================================
SOURCE CODE FILE: tokenization_plbart.py
LINES: 1
SIZE: 18.45 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\plbart\tokenization_plbart.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022, UCLA NLP, The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "β"
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
FAIRSEQ_LANGUAGE_CODES = {
"base": ["__java__", "__python__", "__en_XX__"],
"multi": ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"],
}
FAIRSEQ_LANGUAGE_CODES_MAP = {
"java": "__java__",
"python": "__python__",
"en_XX": "__en_XX__",
"javascript": "__javascript__",
"php": "__php__",
"ruby": "__ruby__",
"go": "__go__",
}
class PLBartTokenizer(PreTrainedTokenizer):
"""
Construct an PLBART tokenizer.
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[SentencePiece](https://github.com/google/sentencepiece).
The tokenization method is `<tokens> <eos> <language code>` for source language documents, and `<language code>
<tokens> <eos>` for target language documents.
Args:
vocab_file (`str`):
Path to the vocabulary file.
src_lang (`str`, *optional*):
A string representing the source language.
tgt_lang (`str`, *optional*):
A string representing the target language.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The start of sequence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The cls token, which is a special token used as the first token for all tasks.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token(`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masking tasks. This
is only used in the `"base"` tokenizer type. For `"multi"` tokenizer, masking is never done for the
downstream tasks.
language_codes (`str`, *optional*, defaults to `"base"`):
What language codes to use. Should be one of `"base"` or `"multi"`.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Examples:
```python
>>> from transformers import PLBartTokenizer
>>> tokenizer = PLBartTokenizer.from_pretrained("uclanlp/plbart-python-en_XX", src_lang="python", tgt_lang="en_XX")
>>> example_python_phrase = "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])"
>>> expected_translation_english = "Returns the maximum value of a b c."
>>> inputs = tokenizer(example_python_phrase, text_target=expected_translation_english, return_tensors="pt")
```"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
prefix_tokens: List[int] = []
suffix_tokens: List[int] = []
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
language_codes="base",
tokenizer_file=None,
src_lang=None,
tgt_lang=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
additional_special_tokens=None,
clean_up_tokenization_spaces=True,
**kwargs,
):
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
src_lang = self._convert_lang_code_special_format(src_lang)
tgt_lang = self._convert_lang_code_special_format(tgt_lang)
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(vocab_file))
self.vocab_file = vocab_file
self.language_codes = language_codes
fairseq_language_codes = FAIRSEQ_LANGUAGE_CODES[self.language_codes]
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | 'β' | 's' | 'βde' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | 'β' | 's' | 'βde' | '-' | 'βa'
# Mimic fairseq token-to-id alignment for the first 4 token
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
self.fairseq_offset = 1
self.sp_model_size = len(self.sp_model)
self.lang_code_to_id = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(fairseq_language_codes)
}
self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()}
if self.language_codes == "base":
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id)
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
_additional_special_tokens = list(self.lang_code_to_id.keys())
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens]
)
if self.language_codes == "base":
self._src_lang = src_lang
self.cur_lang_code_id = (
self.lang_code_to_id[self._src_lang] if self._src_lang is not None else self._src_lang
)
else:
self._src_lang = src_lang if src_lang is not None else "__en_XX__"
self.cur_lang_code_id = self.lang_code_to_id[self._src_lang]
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
language_codes=language_codes,
tokenizer_file=tokenizer_file,
src_lang=src_lang,
tgt_lang=tgt_lang,
additional_special_tokens=_additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
self.tgt_lang = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
@property
def vocab_size(self):
if self.language_codes == "base":
return (
len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1
) # Plus 1 for the mask token
else:
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
@property
def src_lang(self) -> str:
return self._src_lang
@src_lang.setter
def src_lang(self, new_src_lang: str) -> None:
new_src_lang = self._convert_lang_code_special_format(new_src_lang)
self._src_lang = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
prefix_ones = [1] * len(self.prefix_tokens)
suffix_ones = [1] * len(self.suffix_tokens)
if token_ids_1 is None:
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An PLBART sequence has the following format, where `X` represents the sequence:
- `input_ids` (for encoder) `X [eos, src_lang_code]`
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. PLBart does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def _build_translation_inputs(
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
):
"""Used by translation pipeline, to prepare inputs for the generate function"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
self.src_lang = self._convert_lang_code_special_format(src_lang)
self.tgt_lang = self._convert_lang_code_special_format(tgt_lang)
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
tgt_lang_id = self.convert_tokens_to_ids(self.tgt_lang)
inputs["forced_bos_token_id"] = tgt_lang_id
return inputs
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text: str) -> List[str]:
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
spm_id = self.sp_model.PieceToId(token)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def prepare_seq2seq_batch(
self,
src_texts: List[str],
src_lang: str = "en_XX",
tgt_texts: Optional[List[str]] = None,
tgt_lang: str = "python",
**kwargs,
) -> BatchEncoding:
self.src_lang = self._convert_lang_code_special_format(src_lang)
self.tgt_lang = self._convert_lang_code_special_format(tgt_lang)
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
def _switch_to_input_mode(self):
return self.set_src_lang_special_tokens(self.src_lang)
def _switch_to_target_mode(self):
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def set_src_lang_special_tokens(self, src_lang) -> None:
"""Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code]."""
src_lang = self._convert_lang_code_special_format(src_lang)
self.cur_lang_code = self.lang_code_to_id[src_lang] if src_lang is not None else None
self.prefix_tokens = []
if self.cur_lang_code is not None:
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
else:
self.suffix_tokens = [self.eos_token_id]
def set_tgt_lang_special_tokens(self, lang: str) -> None:
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code]."""
lang = self._convert_lang_code_special_format(lang)
self.cur_lang_code = self.lang_code_to_id[lang] if lang is not None else None
self.prefix_tokens = []
if self.cur_lang_code is not None:
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
else:
self.suffix_tokens = [self.eos_token_id]
def _convert_lang_code_special_format(self, lang: str) -> str:
"""Convert Language Codes to format tokenizer uses if required"""
lang = FAIRSEQ_LANGUAGE_CODES_MAP[lang] if lang in FAIRSEQ_LANGUAGE_CODES_MAP.keys() else lang
return lang
__all__ = ["PLBartTokenizer"]
```
|
==================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.07 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\poolformer\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_poolformer import *
from .feature_extraction_poolformer import *
from .image_processing_poolformer import *
from .modeling_poolformer import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==================================================================================================================================================
SOURCE CODE FILE: configuration_poolformer.py
LINES: 1
SIZE: 5.50 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\poolformer\configuration_poolformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Sea AI Labs and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PoolFormer model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class PoolFormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of [`PoolFormerModel`]. It is used to instantiate a
PoolFormer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the PoolFormer
[sail/poolformer_s12](https://huggingface.co/sail/poolformer_s12) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of channels in the input image.
patch_size (`int`, *optional*, defaults to 16):
The size of the input patch.
stride (`int`, *optional*, defaults to 16):
The stride of the input patch.
pool_size (`int`, *optional*, defaults to 3):
The size of the pooling window.
mlp_ratio (`float`, *optional*, defaults to 4.0):
The ratio of the number of channels in the output of the MLP to the number of channels in the input.
depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`):
The depth of each encoder block.
hidden_sizes (`list`, *optional*, defaults to `[64, 128, 320, 512]`):
The hidden sizes of each encoder block.
patch_sizes (`list`, *optional*, defaults to `[7, 3, 3, 3]`):
The size of the input patch for each encoder block.
strides (`list`, *optional*, defaults to `[4, 2, 2, 2]`):
The stride of the input patch for each encoder block.
padding (`list`, *optional*, defaults to `[2, 1, 1, 1]`):
The padding of the input patch for each encoder block.
num_encoder_blocks (`int`, *optional*, defaults to 4):
The number of encoder blocks.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The dropout rate for the dropout layers.
hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function for the hidden layers.
use_layer_scale (`bool`, *optional*, defaults to `True`):
Whether to use layer scale.
layer_scale_init_value (`float`, *optional*, defaults to 1e-05):
The initial value for the layer scale.
initializer_range (`float`, *optional*, defaults to 0.02):
The initializer range for the weights.
Example:
```python
>>> from transformers import PoolFormerConfig, PoolFormerModel
>>> # Initializing a PoolFormer sail/poolformer_s12 style configuration
>>> configuration = PoolFormerConfig()
>>> # Initializing a model (with random weights) from the sail/poolformer_s12 style configuration
>>> model = PoolFormerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "poolformer"
def __init__(
self,
num_channels=3,
patch_size=16,
stride=16,
pool_size=3,
mlp_ratio=4.0,
depths=[2, 2, 6, 2],
hidden_sizes=[64, 128, 320, 512],
patch_sizes=[7, 3, 3, 3],
strides=[4, 2, 2, 2],
padding=[2, 1, 1, 1],
num_encoder_blocks=4,
drop_path_rate=0.0,
hidden_act="gelu",
use_layer_scale=True,
layer_scale_init_value=1e-5,
initializer_range=0.02,
**kwargs,
):
self.num_channels = num_channels
self.patch_size = patch_size
self.stride = stride
self.padding = padding
self.pool_size = pool_size
self.hidden_sizes = hidden_sizes
self.mlp_ratio = mlp_ratio
self.depths = depths
self.patch_sizes = patch_sizes
self.strides = strides
self.num_encoder_blocks = num_encoder_blocks
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_layer_scale = use_layer_scale
self.layer_scale_init_value = layer_scale_init_value
self.initializer_range = initializer_range
super().__init__(**kwargs)
class PoolFormerOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 2e-3
__all__ = ["PoolFormerConfig", "PoolFormerOnnxConfig"]
```
|
=======================================================================================================================================================
SOURCE CODE FILE: feature_extraction_poolformer.py
LINES: 1
SIZE: 1.23 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\poolformer\feature_extraction_poolformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for PoolFormer."""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
logger = logging.get_logger(__name__)
class PoolFormerFeatureExtractor(PoolFormerImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use PoolFormerImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
__all__ = ["PoolFormerFeatureExtractor"]
```
|
=====================================================================================================================================================
SOURCE CODE FILE: image_processing_poolformer.py
LINES: 1
SIZE: 17.49 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\poolformer\image_processing_poolformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for PoolFormer."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
get_resize_output_image_size,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
if is_vision_available():
import PIL
logger = logging.get_logger(__name__)
class PoolFormerImageProcessor(BaseImageProcessor):
r"""
Constructs a PoolFormer image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. If crop_pct is
unset:
- size is `{"height": h, "width": w}`: the image is resized to `(h, w)`.
- size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the
aspect ratio.
If crop_pct is set:
- size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)),
int(floor(w/crop_pct)))`
- size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
- size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
crop_pct (`float`, *optional*, defaults to 0.9):
Percentage of the image to crop from the center. Can be overridden by `crop_pct` in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in the `preprocess`
method.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after applying center crop. Only has an effect if `do_center_crop` is set to `True`. Can
be overridden by the `crop_size` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
`preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
crop_pct: int = 0.9,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.crop_pct = crop_pct
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
crop_pct: Optional[float] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image.
If crop_pct is unset:
- size is `{"height": h, "width": w}`: the image is resized to `(h, w)`.
- size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the
aspect ratio.
if crop_pct is set:
- size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)),
int(floor(w/crop_pct)))`
- size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
- size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)`
whilst maintaining the aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
crop_pct (`float`, *optional*):
Percentage of the image that will be cropped from the center. If set, the image is resized
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=False)
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}")
if crop_pct is not None:
if "shortest_edge" in size:
scale_size = int(size["shortest_edge"] / crop_pct)
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
scale_size = int(size["height"] / crop_pct)
else:
scale_size = (int(size["height"] / crop_pct), int(size["width"] / crop_pct))
else:
raise ValueError("Invalid size for resize: {}".format(size))
output_size = get_resize_output_image_size(
image, size=scale_size, default_to_square=False, input_data_format=input_data_format
)
else:
if "shortest_edge" in size:
output_size = get_resize_output_image_size(
image, size=size["shortest_edge"], default_to_square=False, input_data_format=input_data_format
)
elif "height" in size and "width" in size:
output_size = (size["height"], size["width"])
else:
raise ValueError("Invalid size for resize: {}".format(size))
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
crop_pct: Optional[int] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Dict[str, int] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after applying resize.
crop_pct (`float`, *optional*, defaults to `self.crop_pct`):
Percentage of the image to crop. Only has an effect if `do_resize` is set to `True`.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after applying center crop.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
crop_pct = crop_pct if crop_pct is not None else self.crop_pct
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(
image=image, size=size, crop_pct=crop_pct, resample=resample, input_data_format=input_data_format
)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["PoolFormerImageProcessor"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: modeling_poolformer.py
LINES: 1
SIZE: 17.72 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\poolformer\modeling_poolformer.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2022 Sea AI Lab and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch PoolFormer model."""
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "PoolFormerConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "sail/poolformer_s12"
_EXPECTED_OUTPUT_SHAPE = [1, 512, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "sail/poolformer_s12"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->PoolFormer
class PoolFormerDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class PoolFormerEmbeddings(nn.Module):
"""
Construct Patch Embeddings.
"""
def __init__(self, hidden_size, num_channels, patch_size, stride, padding, norm_layer=None):
super().__init__()
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride)
padding = padding if isinstance(padding, collections.abc.Iterable) else (padding, padding)
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=padding)
self.norm = norm_layer(hidden_size) if norm_layer else nn.Identity()
def forward(self, pixel_values):
embeddings = self.projection(pixel_values)
embeddings = self.norm(embeddings)
return embeddings
class PoolFormerGroupNorm(nn.GroupNorm):
"""
Group Normalization with 1 group. Input: tensor in shape [B, C, H, W]
"""
def __init__(self, num_channels, **kwargs):
super().__init__(1, num_channels, **kwargs)
class PoolFormerPooling(nn.Module):
def __init__(self, pool_size):
super().__init__()
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False)
def forward(self, hidden_states):
return self.pool(hidden_states) - hidden_states
class PoolFormerOutput(nn.Module):
def __init__(self, config, dropout_prob, hidden_size, intermediate_size):
super().__init__()
self.conv1 = nn.Conv2d(hidden_size, intermediate_size, 1)
self.conv2 = nn.Conv2d(intermediate_size, hidden_size, 1)
self.drop = PoolFormerDropPath(dropout_prob)
if isinstance(config.hidden_act, str):
self.act_fn = ACT2FN[config.hidden_act]
else:
self.act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.conv1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.drop(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.drop(hidden_states)
return hidden_states
class PoolFormerLayer(nn.Module):
"""This corresponds to the 'PoolFormerBlock' class in the original implementation."""
def __init__(self, config, num_channels, pool_size, hidden_size, intermediate_size, drop_path):
super().__init__()
self.pooling = PoolFormerPooling(pool_size)
self.output = PoolFormerOutput(config, drop_path, hidden_size, intermediate_size)
self.before_norm = PoolFormerGroupNorm(num_channels)
self.after_norm = PoolFormerGroupNorm(num_channels)
# Useful for training neural nets
self.drop_path = PoolFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.use_layer_scale = config.use_layer_scale
if config.use_layer_scale:
self.layer_scale_1 = nn.Parameter(
config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True
)
self.layer_scale_2 = nn.Parameter(
config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True
)
def forward(self, hidden_states):
if self.use_layer_scale:
pooling_output = self.pooling(self.before_norm(hidden_states))
scaled_op = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * pooling_output
# First residual connection
hidden_states = hidden_states + self.drop_path(scaled_op)
outputs = ()
layer_output = self.output(self.after_norm(hidden_states))
scaled_op = self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * layer_output
# Second residual connection
output = hidden_states + self.drop_path(scaled_op)
outputs = (output,) + outputs
return outputs
else:
pooling_output = self.drop_path(self.pooling(self.before_norm(hidden_states)))
# First residual connection
hidden_states = pooling_output + hidden_states
outputs = ()
# Second residual connection inside the PoolFormerOutput block
layer_output = self.drop_path(self.output(self.after_norm(hidden_states)))
output = hidden_states + layer_output
outputs = (output,) + outputs
return outputs
class PoolFormerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
# patch embeddings
embeddings = []
for i in range(config.num_encoder_blocks):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i],
stride=config.strides[i],
padding=config.padding[i],
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
hidden_size=config.hidden_sizes[i],
)
)
self.patch_embeddings = nn.ModuleList(embeddings)
# Transformer blocks
blocks = []
cur = 0
for i in range(config.num_encoder_blocks):
# each block consists of layers
layers = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i]):
layers.append(
PoolFormerLayer(
config,
num_channels=config.hidden_sizes[i],
pool_size=config.pool_size,
hidden_size=config.hidden_sizes[i],
intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio),
drop_path=dpr[cur + j],
)
)
blocks.append(nn.ModuleList(layers))
self.block = nn.ModuleList(blocks)
def forward(self, pixel_values, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
hidden_states = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings, self.block)):
embedding_layer, block_layer = layers
# Get patch embeddings from hidden_states
hidden_states = embedding_layer(hidden_states)
# Send the embeddings through the blocks
for _, blk in enumerate(block_layer):
layer_outputs = blk(hidden_states)
hidden_states = layer_outputs[0]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
class PoolFormerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PoolFormerConfig
base_model_prefix = "poolformer"
main_input_name = "pixel_values"
_no_split_modules = ["PoolFormerLayer"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.GroupNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, PoolFormerLayer):
if hasattr(module, "layer_scale_1"):
module.layer_scale_1.data.fill_(self.config.layer_scale_init_value)
module.layer_scale_2.data.fill_(self.config.layer_scale_init_value)
POOLFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
POOLFORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`PoolFormerImageProcessor.__call__`] for details.
"""
@add_start_docstrings(
"The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.",
POOLFORMER_START_DOCSTRING,
)
class PoolFormerModel(PoolFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.encoder = PoolFormerEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
)
class PoolFormerFinalPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, hidden_states):
output = self.dense(hidden_states)
return output
@add_start_docstrings(
"""
PoolFormer Model transformer with an image classification head on top
""",
POOLFORMER_START_DOCSTRING,
)
class PoolFormerForImageClassification(PoolFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.poolformer = PoolFormerModel(config)
# Final norm
self.norm = PoolFormerGroupNorm(config.hidden_sizes[-1])
# Classifier head
self.classifier = (
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.poolformer(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(self.norm(sequence_output).mean([-2, -1]))
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
__all__ = ["PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel"]
```
|
=================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.98 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pop2piano\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_pop2piano import *
from .modeling_pop2piano import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
================================================================================================================================================
SOURCE CODE FILE: configuration_pop2piano.py
LINES: 1
SIZE: 5.82 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pop2piano\configuration_pop2piano.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pop2Piano model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class Pop2PianoConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Pop2PianoForConditionalGeneration`]. It is used
to instantiate a Pop2PianoForConditionalGeneration model according to the specified arguments, defining the model
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
Pop2Piano [sweetcocoa/pop2piano](https://huggingface.co/sweetcocoa/pop2piano) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 2400):
Vocabulary size of the `Pop2PianoForConditionalGeneration` model. Defines the number of different tokens
that can be represented by the `inputs_ids` passed when calling [`Pop2PianoForConditionalGeneration`].
composer_vocab_size (`int`, *optional*, defaults to 21):
Denotes the number of composers.
d_model (`int`, *optional*, defaults to 512):
Size of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
be defined as `num_heads * d_kv`.
d_ff (`int`, *optional*, defaults to 2048):
Size of the intermediate feed forward layer in each `Pop2PianoBlock`.
num_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer encoder.
num_decoder_layers (`int`, *optional*):
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
num_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
dropout_rate (`float`, *optional*, defaults to 0.1):
The ratio for all dropout layers.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
testing).
feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`):
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
dense_act_fn (`string`, *optional*, defaults to `"relu"`):
Type of Activation Function to be used in `Pop2PianoDenseActDense` and in `Pop2PianoDenseGatedActDense`.
"""
model_type = "pop2piano"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=2400,
composer_vocab_size=21,
d_model=512,
d_kv=64,
d_ff=2048,
num_layers=6,
num_decoder_layers=None,
num_heads=8,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj="gated-gelu", # noqa
is_encoder_decoder=True,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
dense_act_fn="relu",
**kwargs,
):
self.vocab_size = vocab_size
self.composer_vocab_size = composer_vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_decoder_layers = num_decoder_layers if num_decoder_layers is not None else self.num_layers
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj
self.use_cache = use_cache
self.dense_act_fn = dense_act_fn
self.is_gated_act = self.feed_forward_proj.split("-")[0] == "gated"
self.hidden_size = self.d_model
self.num_attention_heads = num_heads
self.num_hidden_layers = num_layers
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
__all__ = ["Pop2PianoConfig"]
```
|
=====================================================================================================================================================
SOURCE CODE FILE: feature_extraction_pop2piano.py
LINES: 1
SIZE: 19.41 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pop2piano\feature_extraction_pop2piano.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for Pop2Piano"""
import warnings
from typing import List, Optional, Union
import numpy
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import (
TensorType,
is_essentia_available,
is_librosa_available,
is_scipy_available,
logging,
requires_backends,
)
if is_essentia_available():
import essentia
import essentia.standard
if is_librosa_available():
import librosa
if is_scipy_available():
import scipy
logger = logging.get_logger(__name__)
class Pop2PianoFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a Pop2Piano feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
This class extracts rhythm and preprocesses the audio before it is passed to the model. First the audio is passed
to `RhythmExtractor2013` algorithm which extracts the beat_times, beat positions and estimates their confidence as
well as tempo in bpm, then beat_times is interpolated and to get beatsteps. Later we calculate
extrapolated_beatsteps from it to be used in tokenizer. On the other hand audio is resampled to self.sampling_rate
and preprocessed and then log mel spectogram is computed from that to be used in our transformer model.
Args:
sampling_rate (`int`, *optional*, defaults to 22050):
Target Sampling rate of audio signal. It's the sampling rate that we forward to the model.
padding_value (`int`, *optional*, defaults to 0):
Padding value used to pad the audio. Should correspond to silences.
window_size (`int`, *optional*, defaults to 4096):
Length of the window in samples to which the Fourier transform is applied.
hop_length (`int`, *optional*, defaults to 1024):
Step size between each window of the waveform, in samples.
min_frequency (`float`, *optional*, defaults to 10.0):
Lowest frequency that will be used in the log-mel spectrogram.
feature_size (`int`, *optional*, defaults to 512):
The feature dimension of the extracted features.
num_bars (`int`, *optional*, defaults to 2):
Determines interval between each sequence.
"""
model_input_names = ["input_features", "beatsteps", "extrapolated_beatstep"]
def __init__(
self,
sampling_rate: int = 22050,
padding_value: int = 0,
window_size: int = 4096,
hop_length: int = 1024,
min_frequency: float = 10.0,
feature_size: int = 512,
num_bars: int = 2,
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
**kwargs,
)
self.sampling_rate = sampling_rate
self.padding_value = padding_value
self.window_size = window_size
self.hop_length = hop_length
self.min_frequency = min_frequency
self.feature_size = feature_size
self.num_bars = num_bars
self.mel_filters = mel_filter_bank(
num_frequency_bins=(self.window_size // 2) + 1,
num_mel_filters=self.feature_size,
min_frequency=self.min_frequency,
max_frequency=float(self.sampling_rate // 2),
sampling_rate=self.sampling_rate,
norm=None,
mel_scale="htk",
)
def mel_spectrogram(self, sequence: np.ndarray):
"""
Generates MelSpectrogram.
Args:
sequence (`numpy.ndarray`):
The sequence of which the mel-spectrogram will be computed.
"""
mel_specs = []
for seq in sequence:
window = np.hanning(self.window_size + 1)[:-1]
mel_specs.append(
spectrogram(
waveform=seq,
window=window,
frame_length=self.window_size,
hop_length=self.hop_length,
power=2.0,
mel_filters=self.mel_filters,
)
)
mel_specs = np.array(mel_specs)
return mel_specs
def extract_rhythm(self, audio: np.ndarray):
"""
This algorithm(`RhythmExtractor2013`) extracts the beat positions and estimates their confidence as well as
tempo in bpm for an audio signal. For more information please visit
https://essentia.upf.edu/reference/std_RhythmExtractor2013.html .
Args:
audio(`numpy.ndarray`):
raw audio waveform which is passed to the Rhythm Extractor.
"""
requires_backends(self, ["essentia"])
essentia_tracker = essentia.standard.RhythmExtractor2013(method="multifeature")
bpm, beat_times, confidence, estimates, essentia_beat_intervals = essentia_tracker(audio)
return bpm, beat_times, confidence, estimates, essentia_beat_intervals
def interpolate_beat_times(
self, beat_times: numpy.ndarray, steps_per_beat: numpy.ndarray, n_extend: numpy.ndarray
):
"""
This method takes beat_times and then interpolates that using `scipy.interpolate.interp1d` and the output is
then used to convert raw audio to log-mel-spectrogram.
Args:
beat_times (`numpy.ndarray`):
beat_times is passed into `scipy.interpolate.interp1d` for processing.
steps_per_beat (`int`):
used as an parameter to control the interpolation.
n_extend (`int`):
used as an parameter to control the interpolation.
"""
requires_backends(self, ["scipy"])
beat_times_function = scipy.interpolate.interp1d(
np.arange(beat_times.size),
beat_times,
bounds_error=False,
fill_value="extrapolate",
)
ext_beats = beat_times_function(
np.linspace(0, beat_times.size + n_extend - 1, beat_times.size * steps_per_beat + n_extend)
)
return ext_beats
def preprocess_mel(self, audio: np.ndarray, beatstep: np.ndarray):
"""
Preprocessing for log-mel-spectrogram
Args:
audio (`numpy.ndarray` of shape `(audio_length, )` ):
Raw audio waveform to be processed.
beatstep (`numpy.ndarray`):
Interpolated values of the raw audio. If beatstep[0] is greater than 0.0, then it will be shifted by
the value at beatstep[0].
"""
if audio is not None and len(audio.shape) != 1:
raise ValueError(
f"Expected `audio` to be a single channel audio input of shape `(n, )` but found shape {audio.shape}."
)
if beatstep[0] > 0.0:
beatstep = beatstep - beatstep[0]
num_steps = self.num_bars * 4
num_target_steps = len(beatstep)
extrapolated_beatstep = self.interpolate_beat_times(
beat_times=beatstep, steps_per_beat=1, n_extend=(self.num_bars + 1) * 4 + 1
)
sample_indices = []
max_feature_length = 0
for i in range(0, num_target_steps, num_steps):
start_idx = i
end_idx = min(i + num_steps, num_target_steps)
start_sample = int(extrapolated_beatstep[start_idx] * self.sampling_rate)
end_sample = int(extrapolated_beatstep[end_idx] * self.sampling_rate)
sample_indices.append((start_sample, end_sample))
max_feature_length = max(max_feature_length, end_sample - start_sample)
padded_batch = []
for start_sample, end_sample in sample_indices:
feature = audio[start_sample:end_sample]
padded_feature = np.pad(
feature,
((0, max_feature_length - feature.shape[0]),),
"constant",
constant_values=0,
)
padded_batch.append(padded_feature)
padded_batch = np.asarray(padded_batch)
return padded_batch, extrapolated_beatstep
def _pad(self, features: np.ndarray, add_zero_line=True):
features_shapes = [each_feature.shape for each_feature in features]
attention_masks, padded_features = [], []
for i, each_feature in enumerate(features):
# To pad "input_features".
if len(each_feature.shape) == 3:
features_pad_value = max([*zip(*features_shapes)][1]) - features_shapes[i][1]
attention_mask = np.ones(features_shapes[i][:2], dtype=np.int64)
feature_padding = ((0, 0), (0, features_pad_value), (0, 0))
attention_mask_padding = (feature_padding[0], feature_padding[1])
# To pad "beatsteps" and "extrapolated_beatstep".
else:
each_feature = each_feature.reshape(1, -1)
features_pad_value = max([*zip(*features_shapes)][0]) - features_shapes[i][0]
attention_mask = np.ones(features_shapes[i], dtype=np.int64).reshape(1, -1)
feature_padding = attention_mask_padding = ((0, 0), (0, features_pad_value))
each_padded_feature = np.pad(each_feature, feature_padding, "constant", constant_values=self.padding_value)
attention_mask = np.pad(
attention_mask, attention_mask_padding, "constant", constant_values=self.padding_value
)
if add_zero_line:
# if it is batched then we seperate each examples using zero array
zero_array_len = max([*zip(*features_shapes)][1])
# we concatenate the zero array line here
each_padded_feature = np.concatenate(
[each_padded_feature, np.zeros([1, zero_array_len, self.feature_size])], axis=0
)
attention_mask = np.concatenate(
[attention_mask, np.zeros([1, zero_array_len], dtype=attention_mask.dtype)], axis=0
)
padded_features.append(each_padded_feature)
attention_masks.append(attention_mask)
padded_features = np.concatenate(padded_features, axis=0).astype(np.float32)
attention_masks = np.concatenate(attention_masks, axis=0).astype(np.int64)
return padded_features, attention_masks
def pad(
self,
inputs: BatchFeature,
is_batched: bool,
return_attention_mask: bool,
return_tensors: Optional[Union[str, TensorType]] = None,
):
"""
Pads the inputs to same length and returns attention_mask.
Args:
inputs (`BatchFeature`):
Processed audio features.
is_batched (`bool`):
Whether inputs are batched or not.
return_attention_mask (`bool`):
Whether to return attention mask or not.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
If nothing is specified, it will return list of `np.ndarray` arrays.
Return:
`BatchFeature` with attention_mask, attention_mask_beatsteps and attention_mask_extrapolated_beatstep added
to it:
- **attention_mask** numpy.ndarray of shape `(batch_size, max_input_features_seq_length)` --
Example :
1, 1, 1, 0, 0 (audio 1, also here it is padded to max length of 5 thats why there are 2 zeros at
the end indicating they are padded)
0, 0, 0, 0, 0 (zero pad to seperate audio 1 and 2)
1, 1, 1, 1, 1 (audio 2)
0, 0, 0, 0, 0 (zero pad to seperate audio 2 and 3)
1, 1, 1, 1, 1 (audio 3)
- **attention_mask_beatsteps** numpy.ndarray of shape `(batch_size, max_beatsteps_seq_length)`
- **attention_mask_extrapolated_beatstep** numpy.ndarray of shape `(batch_size,
max_extrapolated_beatstep_seq_length)`
"""
processed_features_dict = {}
for feature_name, feature_value in inputs.items():
if feature_name == "input_features":
padded_feature_values, attention_mask = self._pad(feature_value, add_zero_line=True)
processed_features_dict[feature_name] = padded_feature_values
if return_attention_mask:
processed_features_dict["attention_mask"] = attention_mask
else:
padded_feature_values, attention_mask = self._pad(feature_value, add_zero_line=False)
processed_features_dict[feature_name] = padded_feature_values
if return_attention_mask:
processed_features_dict[f"attention_mask_{feature_name}"] = attention_mask
# If we are processing only one example, we should remove the zero array line since we don't need it to
# seperate examples from each other.
if not is_batched and not return_attention_mask:
processed_features_dict["input_features"] = processed_features_dict["input_features"][:-1, ...]
outputs = BatchFeature(processed_features_dict, tensor_type=return_tensors)
return outputs
def __call__(
self,
audio: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
sampling_rate: Union[int, List[int]],
steps_per_beat: int = 2,
resample: Optional[bool] = True,
return_attention_mask: Optional[bool] = False,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model.
Args:
audio (`np.ndarray`, `List`):
The audio or batch of audio to be processed. Each audio can be a numpy array, a list of float values, a
list of numpy arrays or a list of list of float values.
sampling_rate (`int`):
The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
steps_per_beat (`int`, *optional*, defaults to 2):
This is used in interpolating `beat_times`.
resample (`bool`, *optional*, defaults to `True`):
Determines whether to resample the audio to `sampling_rate` or not before processing. Must be True
during inference.
return_attention_mask (`bool` *optional*, defaults to `False`):
Denotes if attention_mask for input_features, beatsteps and extrapolated_beatstep will be given as
output or not. Automatically set to True for batched inputs.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
If nothing is specified, it will return list of `np.ndarray` arrays.
"""
requires_backends(self, ["librosa"])
is_batched = bool(isinstance(audio, (list, tuple)) and isinstance(audio[0], (np.ndarray, tuple, list)))
if is_batched:
# This enables the user to process files of different sampling_rate at same time
if not isinstance(sampling_rate, list):
raise ValueError(
"Please give sampling_rate of each audio separately when you are passing multiple raw_audios at the same time. "
f"Received {sampling_rate}, expected [audio_1_sr, ..., audio_n_sr]."
)
return_attention_mask = True if return_attention_mask is None else return_attention_mask
else:
audio = [audio]
sampling_rate = [sampling_rate]
return_attention_mask = False if return_attention_mask is None else return_attention_mask
batch_input_features, batch_beatsteps, batch_ext_beatstep = [], [], []
for single_raw_audio, single_sampling_rate in zip(audio, sampling_rate):
bpm, beat_times, confidence, estimates, essentia_beat_intervals = self.extract_rhythm(
audio=single_raw_audio
)
beatsteps = self.interpolate_beat_times(beat_times=beat_times, steps_per_beat=steps_per_beat, n_extend=1)
if self.sampling_rate != single_sampling_rate and self.sampling_rate is not None:
if resample:
# Change sampling_rate to self.sampling_rate
single_raw_audio = librosa.core.resample(
single_raw_audio,
orig_sr=single_sampling_rate,
target_sr=self.sampling_rate,
res_type="kaiser_best",
)
else:
warnings.warn(
f"The sampling_rate of the provided audio is different from the target sampling_rate "
f"of the Feature Extractor, {self.sampling_rate} vs {single_sampling_rate}. "
f"In these cases it is recommended to use `resample=True` in the `__call__` method to "
f"get the optimal behaviour."
)
single_sampling_rate = self.sampling_rate
start_sample = int(beatsteps[0] * single_sampling_rate)
end_sample = int(beatsteps[-1] * single_sampling_rate)
input_features, extrapolated_beatstep = self.preprocess_mel(
single_raw_audio[start_sample:end_sample], beatsteps - beatsteps[0]
)
mel_specs = self.mel_spectrogram(input_features.astype(np.float32))
# apply np.log to get log mel-spectrograms
log_mel_specs = np.log(np.clip(mel_specs, a_min=1e-6, a_max=None))
input_features = np.transpose(log_mel_specs, (0, -1, -2))
batch_input_features.append(input_features)
batch_beatsteps.append(beatsteps)
batch_ext_beatstep.append(extrapolated_beatstep)
output = BatchFeature(
{
"input_features": batch_input_features,
"beatsteps": batch_beatsteps,
"extrapolated_beatstep": batch_ext_beatstep,
}
)
output = self.pad(
output,
is_batched=is_batched,
return_attention_mask=return_attention_mask,
return_tensors=return_tensors,
)
return output
__all__ = ["Pop2PianoFeatureExtractor"]
```
|
===========================================================================================================================================
SOURCE CODE FILE: modeling_pop2piano.py
LINES: 1
SIZE: 70.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pop2piano\modeling_pop2piano.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The Pop2Piano Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Pop2Piano model."""
import copy
import math
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.generation import GenerationConfig
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_flex_attn_available,
is_torch_fx_proxy,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from .configuration_pop2piano import Pop2PianoConfig
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
_load_pop2piano_layer_norm = True
try:
from apex.normalization import FusedRMSNorm
_load_pop2piano_layer_norm = False
logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pop2PianoLayerNorm")
except ImportError:
# using the normal Pop2PianoLayerNorm
pass
except Exception:
logger.warning("Discovered apex but it failed to load, falling back to Pop2PianoLayerNorm")
pass
_CONFIG_FOR_DOC = "Pop2PianoConfig"
_CHECKPOINT_FOR_DOC = "sweetcocoa/pop2piano"
POP2PIANO_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Pop2Piano is a model with relative position embeddings
so you should be able to pad the inputs on both the right and the left. Indices can be obtained using
[`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining
take a look a [Pop2Piano Training](./Pop2Piano#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using
[`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids) Pop2Piano uses the `pad_token_id` as the
starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last
`decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Does the same task as `inputs_embeds`. If `inputs_embeds` is not present but `input_features` is present
then `input_features` will be considered as `inputs_embeds`.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If
`decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of
`inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the
cache in the correct position and to infer the complete sequence length.
"""
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pop2Piano
class Pop2PianoLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the Pop2Piano style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# Pop2Piano uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
if not _load_pop2piano_layer_norm:
Pop2PianoLayerNorm = FusedRMSNorm # noqa
ALL_LAYERNORM_LAYERS.append(Pop2PianoLayerNorm)
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->Pop2Piano,t5->pop2piano
class Pop2PianoDenseActDense(nn.Module):
def __init__(self, config: Pop2PianoConfig):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pop2Piano
class Pop2PianoDenseGatedActDense(nn.Module):
def __init__(self, config: Pop2PianoConfig):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->Pop2Piano
class Pop2PianoLayerFF(nn.Module):
def __init__(self, config: Pop2PianoConfig):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = Pop2PianoDenseGatedActDense(config)
else:
self.DenseReluDense = Pop2PianoDenseActDense(config)
self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->Pop2Piano,t5->pop2piano
class Pop2PianoAttention(nn.Module):
def __init__(
self,
config: Pop2PianoConfig,
has_relative_attention_bias=False,
layer_idx: Optional[int] = None,
):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.layer_idx = layer_idx
if layer_idx is None and self.is_decoder:
logger.warning_once(
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None, cache_position=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
if cache_position is None:
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
else:
context_position = cache_position[:, None].to(device)
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, 1, 1, key_length) (non-causal encoder) or (batch_size, 1, seq_length, key_length) (causal decoder)
batch_size, seq_length = hidden_states.shape[:2]
# if key_value_states are provided this layer is used as a cross-attention layer for the decoder
is_cross_attention = key_value_states is not None
query_states = self.q(hidden_states)
query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
curr_past_key_value = past_key_value.cross_attention_cache
else:
curr_past_key_value = past_key_value.self_attention_cache
current_states = key_value_states if is_cross_attention else hidden_states
if is_cross_attention and past_key_value is not None and is_updated:
# reuse k,v, cross_attentions
key_states = curr_past_key_value.key_cache[self.layer_idx]
value_states = curr_past_key_value.value_cache[self.layer_idx]
else:
key_states = self.k(current_states)
value_states = self.v(current_states)
key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = curr_past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
if is_cross_attention:
past_key_value.is_updated[self.layer_idx] = True
# compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
key_length = key_states.shape[-2]
# cache position is 0-indexed so we add 1 to get the real length of queries (aka with past)
real_seq_length = query_length if query_length is not None else cache_position[-1] + 1
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(
real_seq_length, key_length, device=scores.device, cache_position=cache_position
)
position_bias = position_bias[:, :, -seq_length:, :]
if mask is not None:
causal_mask = mask[:, :, :, : key_states.shape[-2]]
position_bias = position_bias + causal_mask
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, -1, self.inner_dim)
attn_output = self.o(attn_output)
outputs = (attn_output, past_key_value, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->Pop2Piano,t5->pop2piano
class Pop2PianoLayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.SelfAttention = Pop2PianoAttention(
config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
)
self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->Pop2Piano,t5->pop2piano
class Pop2PianoLayerCrossAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.EncDecAttention = Pop2PianoAttention(config, has_relative_attention_bias=False, layer_idx=layer_idx)
self.layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
cache_position=cache_position,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5Block with T5->Pop2Piano,t5->pop2piano
class Pop2PianoBlock(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(
Pop2PianoLayerSelfAttention(
config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
)
)
if self.is_decoder:
self.layer.append(Pop2PianoLayerCrossAttention(config, layer_idx=layer_idx))
self.layer.append(Pop2PianoLayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
cache_position=None,
):
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states, past_key_value = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
query_length=cache_position[-1] + 1,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, past_key_value = cross_attention_outputs[:2]
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (past_key_value,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, past_key_value, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
class Pop2PianoPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Pop2PianoConfig
base_model_prefix = "transformer"
is_parallelizable = False
supports_gradient_checkpointing = True
_supports_cache_class = True
_supports_static_cache = False
_no_split_modules = ["Pop2PianoBlock"]
_keep_in_fp32_modules = ["wo"]
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, Pop2PianoLayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, Pop2PianoConcatEmbeddingToMel):
module.embedding.weight.data.normal_(mean=0.0, std=factor * 1.0)
elif isinstance(module, Pop2PianoForConditionalGeneration):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
elif isinstance(module, Pop2PianoDenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, Pop2PianoDenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, Pop2PianoAttention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In Pop2Piano it is usually set to the pad_token_id."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class Pop2PianoStack(Pop2PianoPreTrainedModel):
# Copied from transformers.models.t5.modeling_t5.T5Stack.__init__ with T5->Pop2Piano,t5->pop2piano
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList(
[
Pop2PianoBlock(config, has_relative_attention_bias=bool(i == 0), layer_idx=i)
for i in range(config.num_layers)
]
)
self.final_layer_norm = Pop2PianoLayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5Stack.get_input_embeddings
def get_input_embeddings(self):
return self.embed_tokens
# Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
cache_position=None,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
if self.embed_tokens is None:
raise ValueError("You have to initialize the model with valid token embeddings")
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
if use_cache is True:
if not self.is_decoder:
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
# initialize past_key_values
return_legacy_cache = False
return_self_attention_cache = False
if self.is_decoder and (use_cache or past_key_values is not None):
if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache):
return_self_attention_cache = True
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
elif not isinstance(past_key_values, EncoderDecoderCache):
return_legacy_cache = True
logger.warning_once(
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. "
"You should pass an instance of `EncoderDecoderCache` instead, e.g. "
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
)
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
elif past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
elif not self.is_decoder:
# do not pass cache object down the line for encoder stack
# it messes indexing later in decoder-stack because cache object is modified in-place
past_key_values = None
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
if cache_position is None:
cache_position = torch.arange(
past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
)
if attention_mask is None and not is_torchdynamo_compiling():
# required mask seq length can be calculated via length of past cache
mask_seq_length = past_key_values_length + seq_length
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.config.is_decoder:
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values.self_attention_cache if past_key_values is not None else None,
output_attentions,
)
else:
causal_mask = attention_mask[:, None, None, :]
causal_mask = causal_mask.to(dtype=inputs_embeds.dtype)
causal_mask = (1.0 - causal_mask) * torch.finfo(inputs_embeds.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, layer_module in enumerate(self.block):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
causal_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
cache_position,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=causal_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, next_decoder_cache = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_self_attention_cache:
next_cache = past_key_values.self_attention_cache
if return_legacy_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask)
if isinstance(attention_mask, BlockMask):
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class Pop2PianoConcatEmbeddingToMel(nn.Module):
"""Embedding Matrix for `composer` tokens."""
def __init__(self, config):
super().__init__()
self.embedding = nn.Embedding(num_embeddings=config.composer_vocab_size, embedding_dim=config.d_model)
def forward(self, feature, index_value, embedding_offset):
index_shifted = index_value - embedding_offset
composer_embedding = self.embedding(index_shifted).unsqueeze(1)
inputs_embeds = torch.cat([composer_embedding, feature], dim=1)
return inputs_embeds
Pop2Piano_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Pop2PianoConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings("""Pop2Piano Model with a `language modeling` head on top.""", Pop2Piano_START_DOCSTRING)
class Pop2PianoForConditionalGeneration(Pop2PianoPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: Pop2PianoConfig):
super().__init__(config)
self.config = config
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
self.mel_conditioner = Pop2PianoConcatEmbeddingToMel(config)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = Pop2PianoStack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = Pop2PianoStack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def get_mel_conditioner_outputs(
self,
input_features: torch.FloatTensor,
composer: str,
generation_config: GenerationConfig,
attention_mask: Optional[torch.FloatTensor] = None,
):
"""
This method is used to concatenate mel conditioner tokens at the front of the input_features in order to
control the type of MIDI token generated by the model.
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
input features extracted from the feature extractor.
composer (`str`):
composer token which determines the type of MIDI tokens to be generated.
generation_config (`~generation.GenerationConfig`):
The generation is used to get the composer-feature_token pair.
attention_mask (``, *optional*):
For batched generation `input_features` are padded to have the same shape across all examples.
`attention_mask` helps to determine which areas were padded and which were not.
- 1 for tokens that are **not padded**,
- 0 for tokens that are **padded**.
"""
composer_to_feature_token = generation_config.composer_to_feature_token
if composer not in composer_to_feature_token.keys():
raise ValueError(
f"Please choose a composer from {list(composer_to_feature_token.keys())}. Composer received - {composer}"
)
composer_value = composer_to_feature_token[composer]
composer_value = torch.tensor(composer_value, device=self.device)
composer_value = composer_value.repeat(input_features.shape[0])
embedding_offset = min(composer_to_feature_token.values())
input_features = self.mel_conditioner(
feature=input_features,
index_value=composer_value,
embedding_offset=embedding_offset,
)
if attention_mask is not None:
input_features[~attention_mask[:, 0].bool()] = 0.0
# since self.mel_conditioner adds a new array at the front of inputs_embeds we need to do the same for attention_mask to keep the shapes same
attention_mask = torch.concatenate([attention_mask[:, 0].view(-1, 1), attention_mask], axis=1)
return input_features, attention_mask
return input_features, None
@add_start_docstrings_to_model_forward(POP2PIANO_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
input_features: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None and input_features is not None:
raise ValueError("Both `inputs_embeds` and `input_features` received! Please provide only one of them")
elif input_features is not None and inputs_embeds is None:
inputs_embeds = input_features
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_features,
attention_mask=None,
composer="composer1",
generation_config=None,
**kwargs,
):
"""
Generates token ids for midi outputs.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation
strategies and code examples, check out the [following guide](./generation_strategies).
</Tip>
Parameters:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
This is the featurized version of audio generated by `Pop2PianoFeatureExtractor`.
attention_mask:
For batched generation `input_features` are padded to have the same shape across all examples.
`attention_mask` helps to determine which areas were padded and which were not.
- 1 for tokens that are **not padded**,
- 0 for tokens that are **padded**.
composer (`str`, *optional*, defaults to `"composer1"`):
This value is passed to `Pop2PianoConcatEmbeddingToMel` to generate different embeddings for each
`"composer"`. Please make sure that the composet value is present in `composer_to_feature_token` in
`generation_config`. For an example please see
https://huggingface.co/sweetcocoa/pop2piano/blob/main/generation_config.json .
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
kwargs:
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
Since Pop2Piano is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
if generation_config is None:
generation_config = self.generation_config
generation_config.update(**kwargs)
# check for composer_to_feature_token
if not hasattr(generation_config, "composer_to_feature_token"):
raise ValueError(
"`composer_to_feature_token` was not found! Please refer to "
"https://huggingface.co/sweetcocoa/pop2piano/blob/main/generation_config.json"
"and parse a dict like that."
)
if len(generation_config.composer_to_feature_token) != self.config.composer_vocab_size:
raise ValueError(
"config.composer_vocab_size must be same as the number of keys in "
f"generation_config.composer_to_feature_token! "
f"Found {self.config.composer_vocab_size} vs {len(generation_config.composer_to_feature_token)}."
)
# to control the variation of generated MIDI tokens we concatenate mel-conditioner tokens(which depends on composer_token)
# at the front of input_features.
input_features, attention_mask = self.get_mel_conditioner_outputs(
input_features=input_features,
attention_mask=attention_mask,
composer=composer,
generation_config=generation_config,
)
return super().generate(
inputs=None,
inputs_embeds=input_features,
attention_mask=attention_mask,
generation_config=generation_config,
**kwargs,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
raise ValueError(
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
)
if len(reordered_layer_past_states) != len(layer_past_states):
raise ValueError(
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
__all__ = ["Pop2PianoForConditionalGeneration", "Pop2PianoPreTrainedModel"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: processing_pop2piano.py
LINES: 1
SIZE: 5.43 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pop2piano\processing_pop2piano.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processor class for Pop2Piano."""
import os
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...tokenization_utils import BatchEncoding, PaddingStrategy, TruncationStrategy
from ...utils import TensorType
class Pop2PianoProcessor(ProcessorMixin):
r"""
Constructs an Pop2Piano processor which wraps a Pop2Piano Feature Extractor and Pop2Piano Tokenizer into a single
processor.
[`Pop2PianoProcessor`] offers all the functionalities of [`Pop2PianoFeatureExtractor`] and [`Pop2PianoTokenizer`].
See the docstring of [`~Pop2PianoProcessor.__call__`] and [`~Pop2PianoProcessor.decode`] for more information.
Args:
feature_extractor (`Pop2PianoFeatureExtractor`):
An instance of [`Pop2PianoFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`Pop2PianoTokenizer`):
An instance of ['Pop2PianoTokenizer`]. The tokenizer is a required input.
"""
attributes = ["feature_extractor", "tokenizer"]
feature_extractor_class = "Pop2PianoFeatureExtractor"
tokenizer_class = "Pop2PianoTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
def __call__(
self,
audio: Union[np.ndarray, List[float], List[np.ndarray]] = None,
sampling_rate: Union[int, List[int]] = None,
steps_per_beat: int = 2,
resample: Optional[bool] = True,
notes: Union[List, TensorType] = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
verbose: bool = True,
**kwargs,
) -> Union[BatchFeature, BatchEncoding]:
"""
This method uses [`Pop2PianoFeatureExtractor.__call__`] method to prepare log-mel-spectrograms for the model,
and [`Pop2PianoTokenizer.__call__`] to prepare token_ids from notes.
Please refer to the docstring of the above two methods for more information.
"""
# Since Feature Extractor needs both audio and sampling_rate and tokenizer needs both token_ids and
# feature_extractor_output, we must check for both.
if (audio is None and sampling_rate is None) and (notes is None):
raise ValueError(
"You have to specify at least audios and sampling_rate in order to use feature extractor or "
"notes to use the tokenizer part."
)
if audio is not None and sampling_rate is not None:
inputs = self.feature_extractor(
audio=audio,
sampling_rate=sampling_rate,
steps_per_beat=steps_per_beat,
resample=resample,
**kwargs,
)
if notes is not None:
encoded_token_ids = self.tokenizer(
notes=notes,
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
if notes is None:
return inputs
elif audio is None or sampling_rate is None:
return encoded_token_ids
else:
inputs["token_ids"] = encoded_token_ids["token_ids"]
return inputs
def batch_decode(
self,
token_ids,
feature_extractor_output: BatchFeature,
return_midi: bool = True,
) -> BatchEncoding:
"""
This method uses [`Pop2PianoTokenizer.batch_decode`] method to convert model generated token_ids to midi_notes.
Please refer to the docstring of the above two methods for more information.
"""
return self.tokenizer.batch_decode(
token_ids=token_ids, feature_extractor_output=feature_extractor_output, return_midi=return_midi
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
def save_pretrained(self, save_directory, **kwargs):
if os.path.isfile(save_directory):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
return super().save_pretrained(save_directory, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
return cls(*args)
__all__ = ["Pop2PianoProcessor"]
```
|
===============================================================================================================================================
SOURCE CODE FILE: tokenization_pop2piano.py
LINES: 1
SIZE: 31.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pop2piano\tokenization_pop2piano.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The Pop2Piano Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for Pop2Piano."""
import json
import os
from typing import List, Optional, Tuple, Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...tokenization_utils import AddedToken, BatchEncoding, PaddingStrategy, PreTrainedTokenizer, TruncationStrategy
from ...utils import TensorType, is_pretty_midi_available, logging, requires_backends, to_numpy
if is_pretty_midi_available():
import pretty_midi
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab": "vocab.json",
}
def token_time_to_note(number, cutoff_time_idx, current_idx):
current_idx += number
if cutoff_time_idx is not None:
current_idx = min(current_idx, cutoff_time_idx)
return current_idx
def token_note_to_note(number, current_velocity, default_velocity, note_onsets_ready, current_idx, notes):
if note_onsets_ready[number] is not None:
# offset with onset
onset_idx = note_onsets_ready[number]
if onset_idx < current_idx:
# Time shift after previous note_on
offset_idx = current_idx
notes.append([onset_idx, offset_idx, number, default_velocity])
onsets_ready = None if current_velocity == 0 else current_idx
note_onsets_ready[number] = onsets_ready
else:
note_onsets_ready[number] = current_idx
return notes
class Pop2PianoTokenizer(PreTrainedTokenizer):
"""
Constructs a Pop2Piano tokenizer. This tokenizer does not require training.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab (`str`):
Path to the vocab file which contains the vocabulary.
default_velocity (`int`, *optional*, defaults to 77):
Determines the default velocity to be used while creating midi Notes.
num_bars (`int`, *optional*, defaults to 2):
Determines cutoff_time_idx in for each token.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"-1"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 1):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 0):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to 2):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
"""
model_input_names = ["token_ids", "attention_mask"]
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab,
default_velocity=77,
num_bars=2,
unk_token="-1",
eos_token="1",
pad_token="0",
bos_token="2",
**kwargs,
):
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
self.default_velocity = default_velocity
self.num_bars = num_bars
# Load the vocab
with open(vocab, "rb") as file:
self.encoder = json.load(file)
# create mappings for encoder
self.decoder = {v: k for k, v in self.encoder.items()}
super().__init__(
unk_token=unk_token,
eos_token=eos_token,
pad_token=pad_token,
bos_token=bos_token,
**kwargs,
)
@property
def vocab_size(self):
"""Returns the vocabulary size of the tokenizer."""
return len(self.encoder)
def get_vocab(self):
"""Returns the vocabulary of the tokenizer."""
return dict(self.encoder, **self.added_tokens_encoder)
def _convert_id_to_token(self, token_id: int) -> list:
"""
Decodes the token ids generated by the transformer into notes.
Args:
token_id (`int`):
This denotes the ids generated by the transformers to be converted to Midi tokens.
Returns:
`List`: A list consists of token_type (`str`) and value (`int`).
"""
token_type_value = self.decoder.get(token_id, f"{self.unk_token}_TOKEN_TIME")
token_type_value = token_type_value.split("_")
token_type, value = "_".join(token_type_value[1:]), int(token_type_value[0])
return [token_type, value]
def _convert_token_to_id(self, token, token_type="TOKEN_TIME") -> int:
"""
Encodes the Midi tokens to transformer generated token ids.
Args:
token (`int`):
This denotes the token value.
token_type (`str`):
This denotes the type of the token. There are four types of midi tokens such as "TOKEN_TIME",
"TOKEN_VELOCITY", "TOKEN_NOTE" and "TOKEN_SPECIAL".
Returns:
`int`: returns the id of the token.
"""
return self.encoder.get(f"{token}_{token_type}", int(self.unk_token))
def relative_batch_tokens_ids_to_notes(
self,
tokens: np.ndarray,
beat_offset_idx: int,
bars_per_batch: int,
cutoff_time_idx: int,
):
"""
Converts relative tokens to notes which are then used to generate pretty midi object.
Args:
tokens (`numpy.ndarray`):
Tokens to be converted to notes.
beat_offset_idx (`int`):
Denotes beat offset index for each note in generated Midi.
bars_per_batch (`int`):
A parameter to control the Midi output generation.
cutoff_time_idx (`int`):
Denotes the cutoff time index for each note in generated Midi.
"""
notes = None
for index in range(len(tokens)):
_tokens = tokens[index]
_start_idx = beat_offset_idx + index * bars_per_batch * 4
_cutoff_time_idx = cutoff_time_idx + _start_idx
_notes = self.relative_tokens_ids_to_notes(
_tokens,
start_idx=_start_idx,
cutoff_time_idx=_cutoff_time_idx,
)
if len(_notes) == 0:
pass
elif notes is None:
notes = _notes
else:
notes = np.concatenate((notes, _notes), axis=0)
if notes is None:
return []
return notes
def relative_batch_tokens_ids_to_midi(
self,
tokens: np.ndarray,
beatstep: np.ndarray,
beat_offset_idx: int = 0,
bars_per_batch: int = 2,
cutoff_time_idx: int = 12,
):
"""
Converts tokens to Midi. This method calls `relative_batch_tokens_ids_to_notes` method to convert batch tokens
to notes then uses `notes_to_midi` method to convert them to Midi.
Args:
tokens (`numpy.ndarray`):
Denotes tokens which alongside beatstep will be converted to Midi.
beatstep (`np.ndarray`):
We get beatstep from feature extractor which is also used to get Midi.
beat_offset_idx (`int`, *optional*, defaults to 0):
Denotes beat offset index for each note in generated Midi.
bars_per_batch (`int`, *optional*, defaults to 2):
A parameter to control the Midi output generation.
cutoff_time_idx (`int`, *optional*, defaults to 12):
Denotes the cutoff time index for each note in generated Midi.
"""
beat_offset_idx = 0 if beat_offset_idx is None else beat_offset_idx
notes = self.relative_batch_tokens_ids_to_notes(
tokens=tokens,
beat_offset_idx=beat_offset_idx,
bars_per_batch=bars_per_batch,
cutoff_time_idx=cutoff_time_idx,
)
midi = self.notes_to_midi(notes, beatstep, offset_sec=beatstep[beat_offset_idx])
return midi
# Taken from the original code
# Please see https://github.com/sweetcocoa/pop2piano/blob/fac11e8dcfc73487513f4588e8d0c22a22f2fdc5/midi_tokenizer.py#L257
def relative_tokens_ids_to_notes(
self, tokens: np.ndarray, start_idx: float, cutoff_time_idx: Optional[float] = None
):
"""
Converts relative tokens to notes which will then be used to create Pretty Midi objects.
Args:
tokens (`numpy.ndarray`):
Relative Tokens which will be converted to notes.
start_idx (`float`):
A parameter which denotes the starting index.
cutoff_time_idx (`float`, *optional*):
A parameter used while converting tokens to notes.
"""
words = [self._convert_id_to_token(token) for token in tokens]
current_idx = start_idx
current_velocity = 0
note_onsets_ready = [None for i in range(sum([k.endswith("NOTE") for k in self.encoder.keys()]) + 1)]
notes = []
for token_type, number in words:
if token_type == "TOKEN_SPECIAL":
if number == 1:
break
elif token_type == "TOKEN_TIME":
current_idx = token_time_to_note(
number=number, cutoff_time_idx=cutoff_time_idx, current_idx=current_idx
)
elif token_type == "TOKEN_VELOCITY":
current_velocity = number
elif token_type == "TOKEN_NOTE":
notes = token_note_to_note(
number=number,
current_velocity=current_velocity,
default_velocity=self.default_velocity,
note_onsets_ready=note_onsets_ready,
current_idx=current_idx,
notes=notes,
)
else:
raise ValueError("Token type not understood!")
for pitch, note_onset in enumerate(note_onsets_ready):
# force offset if no offset for each pitch
if note_onset is not None:
if cutoff_time_idx is None:
cutoff = note_onset + 1
else:
cutoff = max(cutoff_time_idx, note_onset + 1)
offset_idx = max(current_idx, cutoff)
notes.append([note_onset, offset_idx, pitch, self.default_velocity])
if len(notes) == 0:
return []
else:
notes = np.array(notes)
note_order = notes[:, 0] * 128 + notes[:, 1]
notes = notes[note_order.argsort()]
return notes
def notes_to_midi(self, notes: np.ndarray, beatstep: np.ndarray, offset_sec: int = 0.0):
"""
Converts notes to Midi.
Args:
notes (`numpy.ndarray`):
This is used to create Pretty Midi objects.
beatstep (`numpy.ndarray`):
This is the extrapolated beatstep that we get from feature extractor.
offset_sec (`int`, *optional*, defaults to 0.0):
This represents the offset seconds which is used while creating each Pretty Midi Note.
"""
requires_backends(self, ["pretty_midi"])
new_pm = pretty_midi.PrettyMIDI(resolution=384, initial_tempo=120.0)
new_inst = pretty_midi.Instrument(program=0)
new_notes = []
for onset_idx, offset_idx, pitch, velocity in notes:
new_note = pretty_midi.Note(
velocity=velocity,
pitch=pitch,
start=beatstep[onset_idx] - offset_sec,
end=beatstep[offset_idx] - offset_sec,
)
new_notes.append(new_note)
new_inst.notes = new_notes
new_pm.instruments.append(new_inst)
new_pm.remove_invalid_notes()
return new_pm
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Saves the tokenizer's vocabulary dictionary to the provided save_directory.
Args:
save_directory (`str`):
A path to the directory where to saved. It will be created if it doesn't exist.
filename_prefix (`Optional[str]`, *optional*):
A prefix to add to the names of the files saved by the tokenizer.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
# Save the encoder.
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"]
)
with open(out_vocab_file, "w") as file:
file.write(json.dumps(self.encoder))
return (out_vocab_file,)
def encode_plus(
self,
notes: Union[np.ndarray, List[pretty_midi.Note]],
truncation_strategy: Optional[TruncationStrategy] = None,
max_length: Optional[int] = None,
**kwargs,
) -> BatchEncoding:
r"""
This is the `encode_plus` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer
generated token ids. It only works on a single batch, to process multiple batches please use
`batch_encode_plus` or `__call__` method.
Args:
notes (`numpy.ndarray` of shape `[sequence_length, 4]` or `list` of `pretty_midi.Note` objects):
This represents the midi notes. If `notes` is a `numpy.ndarray`:
- Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`.
If `notes` is a `list` containing `pretty_midi.Note` objects:
- Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`.
truncation_strategy ([`~tokenization_utils_base.TruncationStrategy`], *optional*):
Indicates the truncation strategy that is going to be used during truncation.
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
Returns:
`BatchEncoding` containing the tokens ids.
"""
requires_backends(self, ["pretty_midi"])
# check if notes is a pretty_midi object or not, if yes then extract the attributes and put them into a numpy
# array.
if isinstance(notes[0], pretty_midi.Note):
notes = np.array(
[[each_note.start, each_note.end, each_note.pitch, each_note.velocity] for each_note in notes]
).reshape(-1, 4)
# to round up all the values to the closest int values.
notes = np.round(notes).astype(np.int32)
max_time_idx = notes[:, :2].max()
times = [[] for i in range((max_time_idx + 1))]
for onset, offset, pitch, velocity in notes:
times[onset].append([pitch, velocity])
times[offset].append([pitch, 0])
tokens = []
current_velocity = 0
for i, time in enumerate(times):
if len(time) == 0:
continue
tokens.append(self._convert_token_to_id(i, "TOKEN_TIME"))
for pitch, velocity in time:
velocity = int(velocity > 0)
if current_velocity != velocity:
current_velocity = velocity
tokens.append(self._convert_token_to_id(velocity, "TOKEN_VELOCITY"))
tokens.append(self._convert_token_to_id(pitch, "TOKEN_NOTE"))
total_len = len(tokens)
# truncation
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
tokens, _, _ = self.truncate_sequences(
ids=tokens,
num_tokens_to_remove=total_len - max_length,
truncation_strategy=truncation_strategy,
**kwargs,
)
return BatchEncoding({"token_ids": tokens})
def batch_encode_plus(
self,
notes: Union[np.ndarray, List[pretty_midi.Note]],
truncation_strategy: Optional[TruncationStrategy] = None,
max_length: Optional[int] = None,
**kwargs,
) -> BatchEncoding:
r"""
This is the `batch_encode_plus` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer
generated token ids. It works on multiple batches by calling `encode_plus` multiple times in a loop.
Args:
notes (`numpy.ndarray` of shape `[batch_size, sequence_length, 4]` or `list` of `pretty_midi.Note` objects):
This represents the midi notes. If `notes` is a `numpy.ndarray`:
- Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`.
If `notes` is a `list` containing `pretty_midi.Note` objects:
- Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`.
truncation_strategy ([`~tokenization_utils_base.TruncationStrategy`], *optional*):
Indicates the truncation strategy that is going to be used during truncation.
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
Returns:
`BatchEncoding` containing the tokens ids.
"""
encoded_batch_token_ids = []
for i in range(len(notes)):
encoded_batch_token_ids.append(
self.encode_plus(
notes[i],
truncation_strategy=truncation_strategy,
max_length=max_length,
**kwargs,
)["token_ids"]
)
return BatchEncoding({"token_ids": encoded_batch_token_ids})
def __call__(
self,
notes: Union[
np.ndarray,
List[pretty_midi.Note],
List[List[pretty_midi.Note]],
],
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
r"""
This is the `__call__` method for `Pop2PianoTokenizer`. It converts the midi notes to the transformer generated
token ids.
Args:
notes (`numpy.ndarray` of shape `[batch_size, max_sequence_length, 4]` or `list` of `pretty_midi.Note` objects):
This represents the midi notes.
If `notes` is a `numpy.ndarray`:
- Each sequence must have 4 values, they are `onset idx`, `offset idx`, `pitch` and `velocity`.
If `notes` is a `list` containing `pretty_midi.Note` objects:
- Each sequence must have 4 attributes, they are `start`, `end`, `pitch` and `velocity`.
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
to the maximum acceptable input length for the model if that argument is not provided. This will
truncate token by token, removing a token from the longest sequence in the pair if a pair of
sequences (or a batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to
`None`, this will use the predefined model maximum length if a maximum length is required by one of the
truncation/padding parameters. If the model has no specific maximum input length (like XLNet)
truncation/padding to a maximum length will be deactivated.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
verbose (`bool`, *optional*, defaults to `True`):
Whether or not to print more information and warnings.
Returns:
`BatchEncoding` containing the token_ids.
"""
# check if it is batched or not
# it is batched if its a list containing a list of `pretty_midi.Notes` where the outer list contains all the
# batches and the inner list contains all Notes for a single batch. Otherwise if np.ndarray is passed it will be
# considered batched if it has shape of `[batch_size, seqence_length, 4]` or ndim=3.
is_batched = notes.ndim == 3 if isinstance(notes, np.ndarray) else isinstance(notes[0], list)
# get the truncation and padding strategy
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
if is_batched:
# If the user has not explicitly mentioned `return_attention_mask` as False, we change it to True
return_attention_mask = True if return_attention_mask is None else return_attention_mask
token_ids = self.batch_encode_plus(
notes=notes,
truncation_strategy=truncation_strategy,
max_length=max_length,
**kwargs,
)
else:
token_ids = self.encode_plus(
notes=notes,
truncation_strategy=truncation_strategy,
max_length=max_length,
**kwargs,
)
# since we already have truncated sequnences we are just left to do padding
token_ids = self.pad(
token_ids,
padding=padding_strategy,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_tensors=return_tensors,
verbose=verbose,
)
return token_ids
def batch_decode(
self,
token_ids,
feature_extractor_output: BatchFeature,
return_midi: bool = True,
):
r"""
This is the `batch_decode` method for `Pop2PianoTokenizer`. It converts the token_ids generated by the
transformer to midi_notes and returns them.
Args:
token_ids (`Union[np.ndarray, torch.Tensor, tf.Tensor]`):
Output token_ids of `Pop2PianoConditionalGeneration` model.
feature_extractor_output (`BatchFeature`):
Denotes the output of `Pop2PianoFeatureExtractor.__call__`. It must contain `"beatstep"` and
`"extrapolated_beatstep"`. Also `"attention_mask_beatsteps"` and
`"attention_mask_extrapolated_beatstep"`
should be present if they were returned by the feature extractor.
return_midi (`bool`, *optional*, defaults to `True`):
Whether to return midi object or not.
Returns:
If `return_midi` is True:
- `BatchEncoding` containing both `notes` and `pretty_midi.pretty_midi.PrettyMIDI` objects.
If `return_midi` is False:
- `BatchEncoding` containing `notes`.
"""
# check if they have attention_masks(attention_mask, attention_mask_beatsteps, attention_mask_extrapolated_beatstep) or not
attention_masks_present = bool(
hasattr(feature_extractor_output, "attention_mask")
and hasattr(feature_extractor_output, "attention_mask_beatsteps")
and hasattr(feature_extractor_output, "attention_mask_extrapolated_beatstep")
)
# if we are processing batched inputs then we must need attention_masks
if not attention_masks_present and feature_extractor_output["beatsteps"].shape[0] > 1:
raise ValueError(
"attention_mask, attention_mask_beatsteps and attention_mask_extrapolated_beatstep must be present "
"for batched inputs! But one of them were not present."
)
# check for length mismatch between inputs_embeds, beatsteps and extrapolated_beatstep
if attention_masks_present:
# since we know about the number of examples in token_ids from attention_mask
if (
sum(feature_extractor_output["attention_mask"][:, 0] == 0)
!= feature_extractor_output["beatsteps"].shape[0]
or feature_extractor_output["beatsteps"].shape[0]
!= feature_extractor_output["extrapolated_beatstep"].shape[0]
):
raise ValueError(
"Length mistamtch between token_ids, beatsteps and extrapolated_beatstep! Found "
f"token_ids length - {token_ids.shape[0]}, beatsteps shape - {feature_extractor_output['beatsteps'].shape[0]} "
f"and extrapolated_beatsteps shape - {feature_extractor_output['extrapolated_beatstep'].shape[0]}"
)
if feature_extractor_output["attention_mask"].shape[0] != token_ids.shape[0]:
raise ValueError(
f"Found attention_mask of length - {feature_extractor_output['attention_mask'].shape[0]} but token_ids of length - {token_ids.shape[0]}"
)
else:
# if there is no attention mask present then it's surely a single example
if (
feature_extractor_output["beatsteps"].shape[0] != 1
or feature_extractor_output["extrapolated_beatstep"].shape[0] != 1
):
raise ValueError(
"Length mistamtch of beatsteps and extrapolated_beatstep! Since attention_mask is not present the number of examples must be 1, "
f"But found beatsteps length - {feature_extractor_output['beatsteps'].shape[0]}, extrapolated_beatsteps length - {feature_extractor_output['extrapolated_beatstep'].shape[0]}."
)
if attention_masks_present:
# check for zeros(since token_ids are seperated by zero arrays)
batch_idx = np.where(feature_extractor_output["attention_mask"][:, 0] == 0)[0]
else:
batch_idx = [token_ids.shape[0]]
notes_list = []
pretty_midi_objects_list = []
start_idx = 0
for index, end_idx in enumerate(batch_idx):
each_tokens_ids = token_ids[start_idx:end_idx]
# check where the whole example ended by searching for eos_token_id and getting the upper bound
each_tokens_ids = each_tokens_ids[:, : np.max(np.where(each_tokens_ids == int(self.eos_token))[1]) + 1]
beatsteps = feature_extractor_output["beatsteps"][index]
extrapolated_beatstep = feature_extractor_output["extrapolated_beatstep"][index]
# if attention mask is present then mask out real array/tensor
if attention_masks_present:
attention_mask_beatsteps = feature_extractor_output["attention_mask_beatsteps"][index]
attention_mask_extrapolated_beatstep = feature_extractor_output[
"attention_mask_extrapolated_beatstep"
][index]
beatsteps = beatsteps[: np.max(np.where(attention_mask_beatsteps == 1)[0]) + 1]
extrapolated_beatstep = extrapolated_beatstep[
: np.max(np.where(attention_mask_extrapolated_beatstep == 1)[0]) + 1
]
each_tokens_ids = to_numpy(each_tokens_ids)
beatsteps = to_numpy(beatsteps)
extrapolated_beatstep = to_numpy(extrapolated_beatstep)
pretty_midi_object = self.relative_batch_tokens_ids_to_midi(
tokens=each_tokens_ids,
beatstep=extrapolated_beatstep,
bars_per_batch=self.num_bars,
cutoff_time_idx=(self.num_bars + 1) * 4,
)
for note in pretty_midi_object.instruments[0].notes:
note.start += beatsteps[0]
note.end += beatsteps[0]
notes_list.append(note)
pretty_midi_objects_list.append(pretty_midi_object)
start_idx += end_idx + 1 # 1 represents the zero array
if return_midi:
return BatchEncoding({"notes": notes_list, "pretty_midi_objects": pretty_midi_objects_list})
return BatchEncoding({"notes": notes_list})
__all__ = ["Pop2PianoTokenizer"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.21 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\prompt_depth_anything\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_prompt_depth_anything import PromptDepthAnythingConfig
from .image_processing_prompt_depth_anything import PromptDepthAnythingImageProcessor
from .modeling_prompt_depth_anything import (
PromptDepthAnythingForDepthEstimation,
PromptDepthAnythingPreTrainedModel,
)
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
========================================================================================================================================================================
SOURCE CODE FILE: configuration_prompt_depth_anything.py
LINES: 1
SIZE: 8.64 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\prompt_depth_anything\configuration_prompt_depth_anything.py
ENCODING: utf-8
```py
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# This file was automatically generated from src/transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_prompt_depth_anything.py file directly. One of our CI enforces this.
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# Copyright 2025 The HuggingFace Team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import verify_backbone_config_arguments
from ..auto.configuration_auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
class PromptDepthAnythingConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PromptDepthAnythingModel`]. It is used to instantiate a PromptDepthAnything
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the PromptDepthAnything
[LiheYoung/depth-anything-small-hf](https://huggingface.co/LiheYoung/depth-anything-small-hf) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
backbone_config (`Union[Dict[str, Any], PretrainedConfig]`, *optional*):
The configuration of the backbone model. Only used in case `is_hybrid` is `True` or in case you want to
leverage the [`AutoBackbone`] API.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use pretrained weights for the backbone.
use_timm_backbone (`bool`, *optional*, defaults to `False`):
Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
API.
backbone_kwargs (`dict`, *optional*):
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
patch_size (`int`, *optional*, defaults to 14):
The size of the patches to extract from the backbone features.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
reassemble_hidden_size (`int`, *optional*, defaults to 384):
The number of input channels of the reassemble layers.
reassemble_factors (`List[int]`, *optional*, defaults to `[4, 2, 1, 0.5]`):
The up/downsampling factors of the reassemble layers.
neck_hidden_sizes (`List[str]`, *optional*, defaults to `[48, 96, 192, 384]`):
The hidden sizes to project to for the feature maps of the backbone.
fusion_hidden_size (`int`, *optional*, defaults to 64):
The number of channels before fusion.
head_in_index (`int`, *optional*, defaults to -1):
The index of the features to use in the depth estimation head.
head_hidden_size (`int`, *optional*, defaults to 32):
The number of output channels in the second convolution of the depth estimation head.
depth_estimation_type (`str`, *optional*, defaults to `"relative"`):
The type of depth estimation to use. Can be one of `["relative", "metric"]`.
max_depth (`float`, *optional*):
The maximum depth to use for the "metric" depth estimation head. 20 should be used for indoor models
and 80 for outdoor models. For "relative" depth estimation, this value is ignored.
Example:
```python
>>> from transformers import PromptDepthAnythingConfig, PromptDepthAnythingForDepthEstimation
>>> # Initializing a PromptDepthAnything small style configuration
>>> configuration = PromptDepthAnythingConfig()
>>> # Initializing a model from the PromptDepthAnything small style configuration
>>> model = PromptDepthAnythingForDepthEstimation(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "prompt_depth_anything"
def __init__(
self,
backbone_config=None,
backbone=None,
use_pretrained_backbone=False,
use_timm_backbone=False,
backbone_kwargs=None,
patch_size=14,
initializer_range=0.02,
reassemble_hidden_size=384,
reassemble_factors=[4, 2, 1, 0.5],
neck_hidden_sizes=[48, 96, 192, 384],
fusion_hidden_size=64,
head_in_index=-1,
head_hidden_size=32,
depth_estimation_type="relative",
max_depth=None,
**kwargs,
):
super().__init__(**kwargs)
if backbone_config is None and backbone is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `Dinov2` backbone.")
backbone_config = CONFIG_MAPPING["dinov2"](
image_size=518,
hidden_size=384,
num_attention_heads=6,
out_indices=[9, 10, 11, 12],
apply_layernorm=True,
reshape_hidden_states=False,
)
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
verify_backbone_config_arguments(
use_timm_backbone=use_timm_backbone,
use_pretrained_backbone=use_pretrained_backbone,
backbone=backbone,
backbone_config=backbone_config,
backbone_kwargs=backbone_kwargs,
)
self.backbone_config = backbone_config
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.use_timm_backbone = use_timm_backbone
self.backbone_kwargs = backbone_kwargs
self.reassemble_hidden_size = reassemble_hidden_size
self.patch_size = patch_size
self.initializer_range = initializer_range
self.reassemble_factors = reassemble_factors
self.neck_hidden_sizes = neck_hidden_sizes
self.fusion_hidden_size = fusion_hidden_size
self.head_in_index = head_in_index
self.head_hidden_size = head_hidden_size
if depth_estimation_type not in ["relative", "metric"]:
raise ValueError("depth_estimation_type must be one of ['relative', 'metric']")
self.depth_estimation_type = depth_estimation_type
self.max_depth = max_depth if max_depth else 1
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
if output["backbone_config"] is not None:
output["backbone_config"] = self.backbone_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
__all__ = ["PromptDepthAnythingConfig"]
```
|
===========================================================================================================================================================================
SOURCE CODE FILE: image_processing_prompt_depth_anything.py
LINES: 1
SIZE: 24.24 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\prompt_depth_anything\image_processing_prompt_depth_anything.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for PromptDepthAnything."""
import math
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Union
if TYPE_CHECKING:
from ...modeling_outputs import DepthEstimatorOutput
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import pad, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
is_torch_available,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import (
TensorType,
filter_out_non_signature_kwargs,
logging,
requires_backends,
)
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
def _constrain_to_multiple_of(val, multiple, min_val=0, max_val=None):
x = round(val / multiple) * multiple
if max_val is not None and x > max_val:
x = math.floor(val / multiple) * multiple
if x < min_val:
x = math.ceil(val / multiple) * multiple
return x
def _get_resize_output_image_size(
input_image: np.ndarray,
output_size: Union[int, Iterable[int]],
keep_aspect_ratio: bool,
multiple: int,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
output_size = (output_size, output_size) if isinstance(output_size, int) else output_size
input_height, input_width = get_image_size(input_image, input_data_format)
output_height, output_width = output_size
# determine new height and width
scale_height = output_height / input_height
scale_width = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
new_height = _constrain_to_multiple_of(scale_height * input_height, multiple=multiple)
new_width = _constrain_to_multiple_of(scale_width * input_width, multiple=multiple)
return (new_height, new_width)
class PromptDepthAnythingImageProcessor(BaseImageProcessor):
r"""
Constructs a PromptDepthAnything image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions. Can be overidden by `do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 384, "width": 384}`):
Size of the image after resizing. Can be overidden by `size` in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Defines the resampling filter to use if resizing the image. Can be overidden by `resample` in `preprocess`.
keep_aspect_ratio (`bool`, *optional*, defaults to `False`):
If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. Can
be overidden by `keep_aspect_ratio` in `preprocess`.
ensure_multiple_of (`int`, *optional*, defaults to 1):
If `do_resize` is `True`, the image is resized to a size that is a multiple of this value. Can be overidden
by `ensure_multiple_of` in `preprocess`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overidden by `do_rescale` in
`preprocess`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overidden by `rescale_factor` in `preprocess`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_pad (`bool`, *optional*, defaults to `False`):
Whether to apply center padding. This was introduced in the DINOv2 paper, which uses the model in
combination with DPT.
size_divisor (`int`, *optional*):
If `do_pad` is `True`, pads the image dimensions to be divisible by this value. This was introduced in the
DINOv2 paper, which uses the model in combination with DPT.
prompt_scale_to_meter (`float`, *optional*, defaults to 0.001):
Scale factor to convert the prompt depth to meters.
"""
model_input_names = ["pixel_values", "prompt_depth"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
keep_aspect_ratio: bool = False,
ensure_multiple_of: int = 1,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: bool = False,
size_divisor: Optional[int] = None,
prompt_scale_to_meter: float = 0.001, # default unit is mm
**kwargs,
):
super().__init__(**kwargs)
size = size if size is not None else {"height": 384, "width": 384}
size = get_size_dict(size)
self.do_resize = do_resize
self.size = size
self.keep_aspect_ratio = keep_aspect_ratio
self.ensure_multiple_of = ensure_multiple_of
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.do_pad = do_pad
self.size_divisor = size_divisor
self.prompt_scale_to_meter = prompt_scale_to_meter
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
keep_aspect_ratio: bool = False,
ensure_multiple_of: int = 1,
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to target size `(size["height"], size["width"])`. If `keep_aspect_ratio` is `True`, the image
is resized to the largest possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is
set, the image is resized to a size that is a multiple of this value.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Target size of the output image.
keep_aspect_ratio (`bool`, *optional*, defaults to `False`):
If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved.
ensure_multiple_of (`int`, *optional*, defaults to 1):
The image is resized to a size that is a multiple of this value.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}")
output_size = _get_resize_output_image_size(
image,
output_size=(size["height"], size["width"]),
keep_aspect_ratio=keep_aspect_ratio,
multiple=ensure_multiple_of,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def pad_image(
self,
image: np.ndarray,
size_divisor: int,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Center pad an image to be a multiple of `multiple`.
Args:
image (`np.ndarray`):
Image to pad.
size_divisor (`int`):
The width and height of the image will be padded to a multiple of this number.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
def _get_pad(size, size_divisor):
new_size = math.ceil(size / size_divisor) * size_divisor
pad_size = new_size - size
pad_size_left = pad_size // 2
pad_size_right = pad_size - pad_size_left
return pad_size_left, pad_size_right
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
height, width = get_image_size(image, input_data_format)
pad_size_left, pad_size_right = _get_pad(height, size_divisor)
pad_size_top, pad_size_bottom = _get_pad(width, size_divisor)
padded_image = pad(
image, ((pad_size_left, pad_size_right), (pad_size_top, pad_size_bottom)), data_format=data_format
)
return padded_image
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
prompt_depth: Optional[ImageInput] = None,
do_resize: Optional[bool] = None,
size: Optional[int] = None,
keep_aspect_ratio: Optional[bool] = None,
ensure_multiple_of: Optional[int] = None,
resample: Optional[PILImageResampling] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
size_divisor: Optional[int] = None,
prompt_scale_to_meter: Optional[float] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> BatchFeature:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
prompt_depth (`ImageInput`, *optional*):
Prompt depth to preprocess, which can be sparse depth obtained from multi-view geometry or
low-resolution depth from a depth sensor. Generally has shape (height, width), where height
and width can be smaller than those of the images. It's optional and can be None, which means no prompt depth
is used. If it is None, the output depth will be a monocular relative depth.
It is recommended to provide a prompt_scale_to_meter value, which is the scale factor to convert the prompt depth
to meters. This is useful when the prompt depth is not in meters.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. If `keep_aspect_ratio` is `True`, the image is resized to the largest
possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is set, the image is
resized to a size that is a multiple of this value.
keep_aspect_ratio (`bool`, *optional*, defaults to `self.keep_aspect_ratio`):
Whether to keep the aspect ratio of the image. If False, the image will be resized to (size, size). If
True, the image will be resized to keep the aspect ratio and the size will be the maximum possible.
ensure_multiple_of (`int`, *optional*, defaults to `self.ensure_multiple_of`):
Ensure that the image size is a multiple of this value.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
prompt_scale_to_meter (`float`, *optional*, defaults to `self.prompt_scale_to_meter`):
Scale factor to convert the prompt depth to meters.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
keep_aspect_ratio = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
ensure_multiple_of = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_pad = do_pad if do_pad is not None else self.do_pad
size_divisor = size_divisor if size_divisor is not None else self.size_divisor
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_pad=do_pad,
size_divisibility=size_divisor,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
preprocessed_images = []
for image in images:
if do_resize:
image = self.resize(
image=image,
size=size,
resample=resample,
keep_aspect_ratio=keep_aspect_ratio,
ensure_multiple_of=ensure_multiple_of,
input_data_format=input_data_format,
)
if do_rescale:
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
)
if do_pad:
image = self.pad_image(image=image, size_divisor=size_divisor, input_data_format=input_data_format)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
preprocessed_images.append(image)
images = preprocessed_images
data = {"pixel_values": images}
if prompt_depth is not None:
# prompt_depth is a list of images with shape (height, width)
# we need to convert it to a list of images with shape (1, height, width)
prompt_depths = make_list_of_images(prompt_depth, expected_ndims=2)
# Validate prompt_depths has same length as images
if len(prompt_depths) != len(images):
raise ValueError(
f"Number of prompt depth images ({len(prompt_depths)}) does not match number of input images ({len(images)})"
)
if prompt_scale_to_meter is None:
prompt_scale_to_meter = self.prompt_scale_to_meter
processed_prompt_depths = []
for depth in prompt_depths:
depth = to_numpy_array(depth)
depth = depth * prompt_scale_to_meter
if depth.min() == depth.max():
# Prompt depth is invalid, min and max are the same.
# We can simply select one pixel and set it to a small value.
depth[0, 0] = depth[0, 0] + 1e-6
depth = depth[..., None].astype(np.float32)
depth = to_channel_dimension_format(depth, data_format, input_channel_dim=input_data_format)
processed_prompt_depths.append(depth)
prompt_depths = processed_prompt_depths
data["prompt_depth"] = prompt_depths
return BatchFeature(data=data, tensor_type=return_tensors)
# Copied from transformers.models.dpt.image_processing_dpt.DPTImageProcessor.post_process_depth_estimation with DPT->PromptDepthAnything
def post_process_depth_estimation(
self,
outputs: "DepthEstimatorOutput",
target_sizes: Optional[Union[TensorType, List[Tuple[int, int]], None]] = None,
) -> List[Dict[str, TensorType]]:
"""
Converts the raw output of [`DepthEstimatorOutput`] into final depth predictions and depth PIL images.
Only supports PyTorch.
Args:
outputs ([`DepthEstimatorOutput`]):
Raw outputs of the model.
target_sizes (`TensorType` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
(height, width) of each image in the batch. If left to None, predictions will not be resized.
Returns:
`List[Dict[str, TensorType]]`: A list of dictionaries of tensors representing the processed depth
predictions.
"""
requires_backends(self, "torch")
predicted_depth = outputs.predicted_depth
if (target_sizes is not None) and (len(predicted_depth) != len(target_sizes)):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the predicted depth"
)
results = []
target_sizes = [None] * len(predicted_depth) if target_sizes is None else target_sizes
for depth, target_size in zip(predicted_depth, target_sizes):
if target_size is not None:
depth = torch.nn.functional.interpolate(
depth.unsqueeze(0).unsqueeze(1), size=target_size, mode="bicubic", align_corners=False
).squeeze()
results.append({"predicted_depth": depth})
return results
__all__ = ["PromptDepthAnythingImageProcessor"]
```
|
===================================================================================================================================================================
SOURCE CODE FILE: modeling_prompt_depth_anything.py
LINES: 1
SIZE: 22.56 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\prompt_depth_anything\modeling_prompt_depth_anything.py
ENCODING: utf-8
```py
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# This file was automatically generated from src/transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_prompt_depth_anything.py file directly. One of our CI enforces this.
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# Copyright 2025 The HuggingFace Team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers.utils.generic import torch_int
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...modeling_outputs import DepthEstimatorOutput
from ...modeling_utils import PreTrainedModel
from ...utils.backbone_utils import load_backbone
from .configuration_prompt_depth_anything import PromptDepthAnythingConfig
_CONFIG_FOR_DOC = "PromptDepthAnythingConfig"
class PromptDepthAnythingLayer(nn.Module):
def __init__(self, config: PromptDepthAnythingConfig):
super().__init__()
self.convolution1 = nn.Conv2d(
1,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=True,
)
self.activation1 = nn.ReLU()
self.convolution2 = nn.Conv2d(
config.fusion_hidden_size,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=True,
)
self.activation2 = nn.ReLU()
self.convolution3 = nn.Conv2d(
config.fusion_hidden_size,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=True,
)
def forward(self, prompt_depth: torch.Tensor) -> torch.Tensor:
hidden_state = self.convolution1(prompt_depth)
hidden_state = self.activation1(hidden_state)
hidden_state = self.convolution2(hidden_state)
hidden_state = self.activation2(hidden_state)
hidden_state = self.convolution3(hidden_state)
return hidden_state
class PromptDepthAnythingPreActResidualLayer(nn.Module):
"""
ResidualConvUnit, pre-activate residual unit.
Args:
config (`[PromptDepthAnythingConfig]`):
Model configuration class defining the model architecture.
"""
def __init__(self, config):
super().__init__()
self.activation1 = nn.ReLU()
self.convolution1 = nn.Conv2d(
config.fusion_hidden_size,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=True,
)
self.activation2 = nn.ReLU()
self.convolution2 = nn.Conv2d(
config.fusion_hidden_size,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=True,
)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
residual = hidden_state
hidden_state = self.activation1(hidden_state)
hidden_state = self.convolution1(hidden_state)
hidden_state = self.activation2(hidden_state)
hidden_state = self.convolution2(hidden_state)
return hidden_state + residual
class PromptDepthAnythingFeatureFusionLayer(nn.Module):
"""Feature fusion layer, merges feature maps from different stages.
Args:
config (`[PromptDepthAnythingConfig]`):
Model configuration class defining the model architecture.
"""
def __init__(self, config: PromptDepthAnythingConfig):
super().__init__()
self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True)
self.residual_layer1 = PromptDepthAnythingPreActResidualLayer(config)
self.residual_layer2 = PromptDepthAnythingPreActResidualLayer(config)
self.prompt_depth_layer = PromptDepthAnythingLayer(config)
def forward(self, hidden_state, residual=None, size=None, prompt_depth=None):
if residual is not None:
if hidden_state.shape != residual.shape:
residual = nn.functional.interpolate(
residual, size=hidden_state.shape[2:], mode="bilinear", align_corners=False
)
hidden_state = hidden_state + self.residual_layer1(residual)
hidden_state = self.residual_layer2(hidden_state)
if prompt_depth is not None:
prompt_depth = nn.functional.interpolate(
prompt_depth, size=hidden_state.shape[2:], mode="bilinear", align_corners=False
)
res = self.prompt_depth_layer(prompt_depth)
hidden_state = hidden_state + res
modifier = {"scale_factor": 2} if size is None else {"size": size}
hidden_state = nn.functional.interpolate(
hidden_state,
**modifier,
mode="bilinear",
align_corners=True,
)
hidden_state = self.projection(hidden_state)
return hidden_state
class PromptDepthAnythingFeatureFusionStage(nn.Module):
def __init__(self, config):
super().__init__()
self.layers = nn.ModuleList()
for _ in range(len(config.neck_hidden_sizes)):
self.layers.append(PromptDepthAnythingFeatureFusionLayer(config))
def forward(self, hidden_states, size=None, prompt_depth=None):
# reversing the hidden_states, we start from the last
hidden_states = hidden_states[::-1]
fused_hidden_states = []
fused_hidden_state = None
for idx, (hidden_state, layer) in enumerate(zip(hidden_states, self.layers)):
size = hidden_states[idx + 1].shape[2:] if idx != (len(hidden_states) - 1) else None
if fused_hidden_state is None:
# first layer only uses the last hidden_state
fused_hidden_state = layer(hidden_state, size=size, prompt_depth=prompt_depth)
else:
fused_hidden_state = layer(fused_hidden_state, hidden_state, size=size, prompt_depth=prompt_depth)
fused_hidden_states.append(fused_hidden_state)
return fused_hidden_states
class PromptDepthAnythingDepthEstimationHead(nn.Module):
"""
Output head consisting of 3 convolutional layers. It progressively halves the feature dimension and upsamples
the predictions to the input resolution after the first convolutional layer (details can be found in the DPT paper's
supplementary material). The final activation function is either ReLU or Sigmoid, depending on the depth estimation
type (relative or metric). For metric depth estimation, the output is scaled by the maximum depth used during pretraining.
"""
def __init__(self, config):
super().__init__()
self.head_in_index = config.head_in_index
self.patch_size = config.patch_size
features = config.fusion_hidden_size
self.conv1 = nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(features // 2, config.head_hidden_size, kernel_size=3, stride=1, padding=1)
self.activation1 = nn.ReLU()
self.conv3 = nn.Conv2d(config.head_hidden_size, 1, kernel_size=1, stride=1, padding=0)
if config.depth_estimation_type == "relative":
self.activation2 = nn.ReLU()
elif config.depth_estimation_type == "metric":
self.activation2 = nn.Sigmoid()
else:
raise ValueError(f"Unknown depth estimation type: {config.depth_estimation_type}")
self.max_depth = config.max_depth
def forward(self, hidden_states: List[torch.Tensor], patch_height: int, patch_width: int) -> torch.Tensor:
hidden_states = hidden_states[-1]
predicted_depth = self.conv1(hidden_states)
target_height = torch_int(patch_height * self.patch_size)
target_width = torch_int(patch_width * self.patch_size)
predicted_depth = nn.functional.interpolate(
predicted_depth,
(target_height, target_width),
mode="bilinear",
align_corners=True,
)
predicted_depth = self.conv2(predicted_depth)
predicted_depth = self.activation1(predicted_depth)
predicted_depth = self.conv3(predicted_depth)
predicted_depth = self.activation2(predicted_depth)
# (batch_size, 1, height, width) -> (batch_size, height, width), which
# keeps the same behavior as Depth Anything v1 & v2
predicted_depth = predicted_depth.squeeze(dim=1)
return predicted_depth
class PromptDepthAnythingPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PromptDepthAnythingConfig
base_model_prefix = "prompt_depth_anything"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class PromptDepthAnythingReassembleLayer(nn.Module):
def __init__(self, config: PromptDepthAnythingConfig, channels: int, factor: int):
super().__init__()
self.projection = nn.Conv2d(in_channels=config.reassemble_hidden_size, out_channels=channels, kernel_size=1)
# up/down sampling depending on factor
if factor > 1:
self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0)
elif factor == 1:
self.resize = nn.Identity()
elif factor < 1:
# so should downsample
stride = torch_int(1 / factor)
self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=stride, padding=1)
def forward(self, hidden_state):
hidden_state = self.projection(hidden_state)
hidden_state = self.resize(hidden_state)
return hidden_state
class PromptDepthAnythingReassembleStage(nn.Module):
"""
This class reassembles the hidden states of the backbone into image-like feature representations at various
resolutions.
This happens in 3 stages:
1. Take the patch embeddings and reshape them to image-like feature representations.
2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`.
3. Resizing the spatial dimensions (height, width).
Args:
config (`[PromptDepthAnythingConfig]`):
Model configuration class defining the model architecture.
"""
def __init__(self, config):
super().__init__()
self.config = config
self.layers = nn.ModuleList()
for channels, factor in zip(config.neck_hidden_sizes, config.reassemble_factors):
self.layers.append(PromptDepthAnythingReassembleLayer(config, channels=channels, factor=factor))
def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]:
"""
Args:
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`):
List of hidden states from the backbone.
"""
out = []
for i, hidden_state in enumerate(hidden_states):
# reshape to (batch_size, num_channels, height, width)
hidden_state = hidden_state[:, 1:]
batch_size, _, num_channels = hidden_state.shape
hidden_state = hidden_state.reshape(batch_size, patch_height, patch_width, num_channels)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
hidden_state = self.layers[i](hidden_state)
out.append(hidden_state)
return out
class PromptDepthAnythingNeck(nn.Module):
"""
PromptDepthAnythingNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as
input and produces another list of tensors as output. For PromptDepthAnything, it includes 2 stages:
* PromptDepthAnythingReassembleStage
* PromptDepthAnythingFeatureFusionStage.
Args:
config (dict): config dict.
"""
def __init__(self, config):
super().__init__()
self.config = config
self.reassemble_stage = PromptDepthAnythingReassembleStage(config)
self.convs = nn.ModuleList()
for channel in config.neck_hidden_sizes:
self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False))
# fusion
self.fusion_stage = PromptDepthAnythingFeatureFusionStage(config)
def forward(
self,
hidden_states: List[torch.Tensor],
patch_height: Optional[int] = None,
patch_width: Optional[int] = None,
prompt_depth: Optional[torch.Tensor] = None,
) -> List[torch.Tensor]:
"""
Args:
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`):
List of hidden states from the backbone.
"""
if not isinstance(hidden_states, (tuple, list)):
raise TypeError("hidden_states should be a tuple or list of tensors")
if len(hidden_states) != len(self.config.neck_hidden_sizes):
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")
# postprocess hidden states
hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width)
features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)]
# fusion blocks
output = self.fusion_stage(features, prompt_depth=prompt_depth)
return output
PROMPT_DEPTH_ANYTHING_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PromptDepthAnythingConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PROMPT_DEPTH_ANYTHING_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`]
for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
prompt_depth (`torch.FloatTensor` of shape `(batch_size, 1, height, width)`, *optional*):
Prompt depth is the sparse or low-resolution depth obtained from multi-view geometry or a
low-resolution depth sensor. It generally has shape (height, width), where height
and width can be smaller than those of the images. It is optional and can be None, which means no prompt depth
will be used. If it is None, the output will be a monocular relative depth.
The values are recommended to be in meters, but this is not necessary.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""
Prompt Depth Anything Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2.
""",
PROMPT_DEPTH_ANYTHING_START_DOCSTRING,
)
class PromptDepthAnythingForDepthEstimation(PromptDepthAnythingPreTrainedModel):
_no_split_modules = ["DPTViTEmbeddings"]
def __init__(self, config):
super().__init__(config)
self.backbone = load_backbone(config)
self.neck = PromptDepthAnythingNeck(config)
self.head = PromptDepthAnythingDepthEstimationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PROMPT_DEPTH_ANYTHING_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
prompt_depth: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth depth estimation maps for computing the loss.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoModelForDepthEstimation
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> import requests
>>> url = "https://github.com/DepthAnything/PromptDA/blob/main/assets/example_images/image.jpg?raw=true"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("depth-anything/prompt-depth-anything-vits-hf")
>>> model = AutoModelForDepthEstimation.from_pretrained("depth-anything/prompt-depth-anything-vits-hf")
>>> prompt_depth_url = "https://github.com/DepthAnything/PromptDA/blob/main/assets/example_images/arkit_depth.png?raw=true"
>>> prompt_depth = Image.open(requests.get(prompt_depth_url, stream=True).raw)
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt", prompt_depth=prompt_depth)
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # interpolate to original size
>>> post_processed_output = image_processor.post_process_depth_estimation(
... outputs,
... target_sizes=[(image.height, image.width)],
... )
>>> # visualize the prediction
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
>>> depth = predicted_depth * 1000.
>>> depth = depth.detach().cpu().numpy()
>>> depth = Image.fromarray(depth.astype("uint16")) # mm
```"""
loss = None
if labels is not None:
raise NotImplementedError("Training is not implemented yet")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
outputs = self.backbone.forward_with_filtered_kwargs(
pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions
)
hidden_states = outputs.feature_maps
_, _, height, width = pixel_values.shape
patch_size = self.config.patch_size
patch_height = height // patch_size
patch_width = width // patch_size
if prompt_depth is not None:
# normalize prompt depth
batch_size = prompt_depth.shape[0]
depth_min = torch.min(prompt_depth.reshape(batch_size, -1), dim=1).values
depth_max = torch.max(prompt_depth.reshape(batch_size, -1), dim=1).values
depth_min, depth_max = depth_min.view(batch_size, 1, 1, 1), depth_max.view(batch_size, 1, 1, 1)
prompt_depth = (prompt_depth - depth_min) / (depth_max - depth_min)
# normalize done
hidden_states = self.neck(hidden_states, patch_height, patch_width, prompt_depth=prompt_depth)
predicted_depth = self.head(hidden_states, patch_height, patch_width)
if prompt_depth is not None:
# denormalize predicted depth
depth_min = depth_min.squeeze(1).to(predicted_depth.device)
depth_max = depth_max.squeeze(1).to(predicted_depth.device)
predicted_depth = predicted_depth * (depth_max - depth_min) + depth_min
# denormalize done
if not return_dict:
if output_hidden_states:
output = (predicted_depth,) + outputs[1:]
else:
output = (predicted_depth,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return DepthEstimatorOutput(
loss=loss,
predicted_depth=predicted_depth,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
__all__ = ["PromptDepthAnythingForDepthEstimation", "PromptDepthAnythingPreTrainedModel"]
```
|
==================================================================================================================================================================
SOURCE CODE FILE: modular_prompt_depth_anything.py
LINES: 1
SIZE: 15.93 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\prompt_depth_anything\modular_prompt_depth_anything.py
ENCODING: utf-8
```py
# Copyright 2025 The HuggingFace Team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers.models.depth_anything.configuration_depth_anything import DepthAnythingConfig
from transformers.models.depth_anything.modeling_depth_anything import (
DepthAnythingDepthEstimationHead,
DepthAnythingFeatureFusionLayer,
DepthAnythingFeatureFusionStage,
DepthAnythingForDepthEstimation,
DepthAnythingNeck,
DepthAnythingReassembleStage,
)
from transformers.utils.generic import torch_int
from ...file_utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_outputs import DepthEstimatorOutput
from ...modeling_utils import PreTrainedModel
_CONFIG_FOR_DOC = "PromptDepthAnythingConfig"
class PromptDepthAnythingConfig(DepthAnythingConfig):
model_type = "prompt_depth_anything"
class PromptDepthAnythingLayer(nn.Module):
def __init__(self, config: PromptDepthAnythingConfig):
super().__init__()
self.convolution1 = nn.Conv2d(
1,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=True,
)
self.activation1 = nn.ReLU()
self.convolution2 = nn.Conv2d(
config.fusion_hidden_size,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=True,
)
self.activation2 = nn.ReLU()
self.convolution3 = nn.Conv2d(
config.fusion_hidden_size,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=True,
)
def forward(self, prompt_depth: torch.Tensor) -> torch.Tensor:
hidden_state = self.convolution1(prompt_depth)
hidden_state = self.activation1(hidden_state)
hidden_state = self.convolution2(hidden_state)
hidden_state = self.activation2(hidden_state)
hidden_state = self.convolution3(hidden_state)
return hidden_state
class PromptDepthAnythingFeatureFusionLayer(DepthAnythingFeatureFusionLayer):
def __init__(self, config: PromptDepthAnythingConfig):
super().__init__(config)
self.prompt_depth_layer = PromptDepthAnythingLayer(config)
def forward(self, hidden_state, residual=None, size=None, prompt_depth=None):
if residual is not None:
if hidden_state.shape != residual.shape:
residual = nn.functional.interpolate(
residual, size=hidden_state.shape[2:], mode="bilinear", align_corners=False
)
hidden_state = hidden_state + self.residual_layer1(residual)
hidden_state = self.residual_layer2(hidden_state)
if prompt_depth is not None:
prompt_depth = nn.functional.interpolate(
prompt_depth, size=hidden_state.shape[2:], mode="bilinear", align_corners=False
)
res = self.prompt_depth_layer(prompt_depth)
hidden_state = hidden_state + res
modifier = {"scale_factor": 2} if size is None else {"size": size}
hidden_state = nn.functional.interpolate(
hidden_state,
**modifier,
mode="bilinear",
align_corners=True,
)
hidden_state = self.projection(hidden_state)
return hidden_state
class PromptDepthAnythingFeatureFusionStage(DepthAnythingFeatureFusionStage):
def forward(self, hidden_states, size=None, prompt_depth=None):
# reversing the hidden_states, we start from the last
hidden_states = hidden_states[::-1]
fused_hidden_states = []
fused_hidden_state = None
for idx, (hidden_state, layer) in enumerate(zip(hidden_states, self.layers)):
size = hidden_states[idx + 1].shape[2:] if idx != (len(hidden_states) - 1) else None
if fused_hidden_state is None:
# first layer only uses the last hidden_state
fused_hidden_state = layer(hidden_state, size=size, prompt_depth=prompt_depth)
else:
fused_hidden_state = layer(fused_hidden_state, hidden_state, size=size, prompt_depth=prompt_depth)
fused_hidden_states.append(fused_hidden_state)
return fused_hidden_states
class PromptDepthAnythingDepthEstimationHead(DepthAnythingDepthEstimationHead):
def forward(self, hidden_states: List[torch.Tensor], patch_height: int, patch_width: int) -> torch.Tensor:
hidden_states = hidden_states[-1]
predicted_depth = self.conv1(hidden_states)
target_height = torch_int(patch_height * self.patch_size)
target_width = torch_int(patch_width * self.patch_size)
predicted_depth = nn.functional.interpolate(
predicted_depth,
(target_height, target_width),
mode="bilinear",
align_corners=True,
)
predicted_depth = self.conv2(predicted_depth)
predicted_depth = self.activation1(predicted_depth)
predicted_depth = self.conv3(predicted_depth)
predicted_depth = self.activation2(predicted_depth)
# (batch_size, 1, height, width) -> (batch_size, height, width), which
# keeps the same behavior as Depth Anything v1 & v2
predicted_depth = predicted_depth.squeeze(dim=1)
return predicted_depth
PROMPT_DEPTH_ANYTHING_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PromptDepthAnythingConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PROMPT_DEPTH_ANYTHING_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`]
for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
prompt_depth (`torch.FloatTensor` of shape `(batch_size, 1, height, width)`, *optional*):
Prompt depth is the sparse or low-resolution depth obtained from multi-view geometry or a
low-resolution depth sensor. It generally has shape (height, width), where height
and width can be smaller than those of the images. It is optional and can be None, which means no prompt depth
will be used. If it is None, the output will be a monocular relative depth.
The values are recommended to be in meters, but this is not necessary.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
class PromptDepthAnythingPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PromptDepthAnythingConfig
base_model_prefix = "prompt_depth_anything"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class PromptDepthAnythingReassembleLayer(nn.Module):
def __init__(self, config: PromptDepthAnythingConfig, channels: int, factor: int):
super().__init__()
self.projection = nn.Conv2d(in_channels=config.reassemble_hidden_size, out_channels=channels, kernel_size=1)
# up/down sampling depending on factor
if factor > 1:
self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0)
elif factor == 1:
self.resize = nn.Identity()
elif factor < 1:
# so should downsample
stride = torch_int(1 / factor)
self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=stride, padding=1)
def forward(self, hidden_state):
hidden_state = self.projection(hidden_state)
hidden_state = self.resize(hidden_state)
return hidden_state
class PromptDepthAnythingReassembleStage(DepthAnythingReassembleStage):
pass
class PromptDepthAnythingNeck(DepthAnythingNeck):
def forward(
self,
hidden_states: List[torch.Tensor],
patch_height: Optional[int] = None,
patch_width: Optional[int] = None,
prompt_depth: Optional[torch.Tensor] = None,
) -> List[torch.Tensor]:
"""
Args:
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`):
List of hidden states from the backbone.
"""
if not isinstance(hidden_states, (tuple, list)):
raise TypeError("hidden_states should be a tuple or list of tensors")
if len(hidden_states) != len(self.config.neck_hidden_sizes):
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")
# postprocess hidden states
hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width)
features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)]
# fusion blocks
output = self.fusion_stage(features, prompt_depth=prompt_depth)
return output
@add_start_docstrings(
"""
Prompt Depth Anything Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2.
""",
PROMPT_DEPTH_ANYTHING_START_DOCSTRING,
)
class PromptDepthAnythingForDepthEstimation(DepthAnythingForDepthEstimation):
@add_start_docstrings_to_model_forward(PROMPT_DEPTH_ANYTHING_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
prompt_depth: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
r"""
```python
>>> from transformers import AutoImageProcessor, AutoModelForDepthEstimation
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> import requests
>>> url = "https://github.com/DepthAnything/PromptDA/blob/main/assets/example_images/image.jpg?raw=true"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("depth-anything/prompt-depth-anything-vits-hf")
>>> model = AutoModelForDepthEstimation.from_pretrained("depth-anything/prompt-depth-anything-vits-hf")
>>> prompt_depth_url = "https://github.com/DepthAnything/PromptDA/blob/main/assets/example_images/arkit_depth.png?raw=true"
>>> prompt_depth = Image.open(requests.get(prompt_depth_url, stream=True).raw)
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt", prompt_depth=prompt_depth)
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # interpolate to original size
>>> post_processed_output = image_processor.post_process_depth_estimation(
... outputs,
... target_sizes=[(image.height, image.width)],
... )
>>> # visualize the prediction
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
>>> depth = predicted_depth * 1000.
>>> depth = depth.detach().cpu().numpy()
>>> depth = Image.fromarray(depth.astype("uint16")) # mm
```"""
loss = None
if labels is not None:
raise NotImplementedError("Training is not implemented yet")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
outputs = self.backbone.forward_with_filtered_kwargs(
pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions
)
hidden_states = outputs.feature_maps
_, _, height, width = pixel_values.shape
patch_size = self.config.patch_size
patch_height = height // patch_size
patch_width = width // patch_size
if prompt_depth is not None:
# normalize prompt depth
batch_size = prompt_depth.shape[0]
depth_min = torch.min(prompt_depth.reshape(batch_size, -1), dim=1).values
depth_max = torch.max(prompt_depth.reshape(batch_size, -1), dim=1).values
depth_min, depth_max = depth_min.view(batch_size, 1, 1, 1), depth_max.view(batch_size, 1, 1, 1)
prompt_depth = (prompt_depth - depth_min) / (depth_max - depth_min)
# normalize done
hidden_states = self.neck(hidden_states, patch_height, patch_width, prompt_depth=prompt_depth)
predicted_depth = self.head(hidden_states, patch_height, patch_width)
if prompt_depth is not None:
# denormalize predicted depth
depth_min = depth_min.squeeze(1).to(predicted_depth.device)
depth_max = depth_max.squeeze(1).to(predicted_depth.device)
predicted_depth = predicted_depth * (depth_max - depth_min) + depth_min
# denormalize done
if not return_dict:
if output_hidden_states:
output = (predicted_depth,) + outputs[1:]
else:
output = (predicted_depth,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return DepthEstimatorOutput(
loss=loss,
predicted_depth=predicted_depth,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
__all__ = [
"PromptDepthAnythingConfig",
"PromptDepthAnythingForDepthEstimation",
"PromptDepthAnythingPreTrainedModel",
]
```
|
==================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.02 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\prophetnet\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_prophetnet import *
from .modeling_prophetnet import *
from .tokenization_prophetnet import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==================================================================================================================================================
SOURCE CODE FILE: configuration_prophetnet.py
LINES: 1
SIZE: 8.69 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\prophetnet\configuration_prophetnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ProphetNet model configuration"""
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class ProphetNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a
ProphetNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the ProphetNet
[microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`ProphetNetModel`].
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
num_encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
num_encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the `intermediate` (often named feed-forward) layer in decoder.
num_decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
num_decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
add_cross_attention (`bool`, *optional*, defaults to `True`):
Whether cross-attention layers should be added to the model.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether this is an encoder/decoder model.
pad_token_id (`int`, *optional*, defaults to 1)
Padding token id.
bos_token_id (`int`, *optional*, defaults to 0)
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2)
End of stream token id.
ngram (`int`, *optional*, defaults to 2)
Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first
token.
num_buckets (`int`, *optional*, defaults to 32)
The number of buckets to use for each attention layer. This is for relative position calculation. See the
[T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
relative_max_distance (`int`, *optional*, defaults to 128)
Relative distances greater than this number will be put into the last same bucket. This is for relative
position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
disable_ngram_loss (`bool`, *optional*, defaults to `False`):
Whether be trained predicting only the next first token.
eps (`float`, *optional*, defaults to 0.0):
Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label
smoothing is performed.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
"""
model_type = "prophetnet"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "num_encoder_attention_heads",
}
def __init__(
self,
activation_dropout: Optional[float] = 0.1,
activation_function: Optional[Union[str, Callable]] = "gelu",
vocab_size: Optional[int] = 30522,
hidden_size: Optional[int] = 1024,
encoder_ffn_dim: Optional[int] = 4096,
num_encoder_layers: Optional[int] = 12,
num_encoder_attention_heads: Optional[int] = 16,
decoder_ffn_dim: Optional[int] = 4096,
num_decoder_layers: Optional[int] = 12,
num_decoder_attention_heads: Optional[int] = 16,
attention_dropout: Optional[float] = 0.1,
dropout: Optional[float] = 0.1,
max_position_embeddings: Optional[int] = 512,
init_std: Optional[float] = 0.02,
is_encoder_decoder: Optional[bool] = True,
add_cross_attention: Optional[bool] = True,
decoder_start_token_id: Optional[int] = 0,
ngram: Optional[int] = 2,
num_buckets: Optional[int] = 32,
relative_max_distance: Optional[int] = 128,
disable_ngram_loss: Optional[bool] = False,
eps: Optional[float] = 0.0,
use_cache: Optional[bool] = True,
pad_token_id: Optional[int] = 0,
bos_token_id: Optional[int] = 1,
eos_token_id: Optional[int] = 2,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.encoder_ffn_dim = encoder_ffn_dim
self.num_encoder_layers = num_encoder_layers
self.num_encoder_attention_heads = num_encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.num_decoder_layers = num_decoder_layers
self.num_decoder_attention_heads = num_decoder_attention_heads
self.max_position_embeddings = max_position_embeddings
self.init_std = init_std # Normal(0, this parameter)
self.activation_function = activation_function
# parameters for prophetnet
self.ngram = ngram
self.num_buckets = num_buckets
self.relative_max_distance = relative_max_distance
self.disable_ngram_loss = disable_ngram_loss
self.eps = eps
# 3 Types of Dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.dropout = dropout
self.use_cache = use_cache
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
add_cross_attention=add_cross_attention,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
@property
def num_hidden_layers(self) -> int:
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def num_hidden_layers(self, value):
raise NotImplementedError(
"This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"
" `num_decoder_layers`."
)
__all__ = ["ProphetNetConfig"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: modeling_prophetnet.py
LINES: 1
SIZE: 112.03 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\prophetnet\modeling_prophetnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ProphetNet model, ported from ProphetNet repo(fairsequery_states version)."""
import copy
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import LayerNorm
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_outputs import BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_prophetnet import ProphetNetConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "ProphenetConfig"
_CHECKPOINT_FOR_DOC = "microsoft/prophetnet-large-uncased"
PROPHETNET_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted
from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the
file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`.
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and
behavior.
Parameters:
config ([`ProphetNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PROPHETNET_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
ProphetNet uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
PROPHETNET_STANDALONE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def softmax(hidden_state, dim, onnx_trace=False):
if onnx_trace:
return nn.functional.softmax(hidden_state.float(), dim=dim)
else:
return nn.functional.softmax(hidden_state, dim=dim, dtype=torch.float32)
def ngram_attention_bias(sequence_length, ngram, device, dtype):
"""
This function computes the bias for the predict stream
"""
left_block = (
torch.ones((ngram, sequence_length, sequence_length), device=device, dtype=dtype) * torch.finfo(dtype).min
)
right_block = left_block.detach().clone()
# create bias
for stream_idx in range(ngram):
right_block[stream_idx].fill_diagonal_(0, wrap=False)
left_block[stream_idx].triu_(-stream_idx + 1)
left_block[:, :, 0] = 0
return torch.cat([left_block, right_block], dim=2)
def compute_relative_buckets(num_buckets, max_distance, relative_positions, is_bidirectional=False):
"""
This function computes individual parts of the relative position buckets. For more detail, see paper.
"""
inv_relative_positions = -relative_positions
rel_positions_bucket = 0
if is_bidirectional:
num_buckets = num_buckets // 2
rel_positions_bucket = (
rel_positions_bucket
+ torch.lt(inv_relative_positions, torch.zeros_like(inv_relative_positions)).int() * num_buckets
)
inv_relative_positions = torch.abs(inv_relative_positions)
else:
inv_relative_positions = torch.max(inv_relative_positions, torch.zeros_like(inv_relative_positions))
max_exact = num_buckets // 2
is_small = torch.lt(inv_relative_positions, max_exact)
val_if_large = max_exact + torch.log(inv_relative_positions.float() / max_exact) / math.log(
max_distance / max_exact
) * (num_buckets - max_exact)
val_if_large = torch.min(val_if_large, torch.ones_like(val_if_large) * (num_buckets - 1)).int()
rel_positions_bucket = rel_positions_bucket + torch.where(is_small, inv_relative_positions.int(), val_if_large)
return rel_positions_bucket
def compute_all_stream_relative_buckets(num_buckets, max_distance, position_ids):
"""
This function computes both main and predict relative position buckets. For more detail, see paper.
"""
# main stream
main_stream_relative_positions = position_ids.unsqueeze(1).repeat(1, position_ids.size(-1), 1)
main_stream_relative_positions = main_stream_relative_positions - position_ids.unsqueeze(-1)
# predicting stream
predicting_stream_relative_positions = torch.cat((position_ids - 1, position_ids), dim=-1).unsqueeze(1)
predicting_stream_relative_positions = predicting_stream_relative_positions.repeat(1, position_ids.size(-1), 1)
predicting_stream_relative_positions = predicting_stream_relative_positions - position_ids.unsqueeze(-1)
# get both position buckets
main_relative_position_buckets = compute_relative_buckets(
num_buckets, max_distance, main_stream_relative_positions, is_bidirectional=False
)
predict_relative_position_buckets = compute_relative_buckets(
num_buckets, max_distance, predicting_stream_relative_positions, is_bidirectional=False
)
return main_relative_position_buckets, predict_relative_position_buckets
@dataclass
class ProphetNetSeq2SeqLMOutput(ModelOutput):
"""
Base class for sequence-to-sequence language models outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`):
Prediction scores of the main stream language modeling head (scores for each vocabulary token before
SoftMax).
logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`):
Prediction scores of the predict stream language modeling head (scores for each vocabulary token before
SoftMax).
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, decoder_sequence_length, hidden_size)`.
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
decoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
decoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
encoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
compute the weighted average in the
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, encoder_sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention
softmax, used to compute the weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
logits_ngram: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[torch.FloatTensor]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
@property
def decoder_cross_attentions(self):
warnings.warn(
"`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`"
" instead.",
FutureWarning,
)
return self.cross_attentions
@dataclass
class ProphetNetSeq2SeqModelOutput(ModelOutput):
"""
Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
decoding.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`):
Sequence of main stream hidden-states at the output of the last layer of the decoder of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size,ngram * decoder_sequence_length, config.vocab_size)`, *optional*):
Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model.
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, decoder_sequence_length, hidden_size)`.
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
decoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
decoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
weighted average in the
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
encoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
compute the weighted average in the
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, encoder_sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
encoder_sequence_length, encoder_sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
last_hidden_state: torch.FloatTensor
last_hidden_state_ngram: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[torch.FloatTensor]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
@property
def decoder_cross_attentions(self):
warnings.warn(
"`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`"
" instead.",
FutureWarning,
)
return self.cross_attentions
@dataclass
class ProphetNetDecoderModelOutput(ModelOutput):
"""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`):
Sequence of main stream hidden-states at the output of the last layer of the decoder of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`):
Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model.
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, decoder_sequence_length, hidden_size)`.
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
decoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
decoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
weighted average in the
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
encoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
compute the weighted average in the
"""
last_hidden_state: torch.FloatTensor
last_hidden_state_ngram: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class ProphetNetDecoderLMOutput(ModelOutput):
"""
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`):
Prediction scores of the main stream language modeling head (scores for each vocabulary token before
SoftMax).
logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`):
Prediction scores of the predict stream language modeling head (scores for each vocabulary token before
SoftMax).
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, decoder_sequence_length, hidden_size)`.
Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
decoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
decoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
weighted average in the
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
encoder_sequence_length, decoder_sequence_length)`.
Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
compute the weighted average in the
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
logits_ngram: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class ProphetNetPreTrainedModel(PreTrainedModel):
config_class = ProphetNetConfig
base_model_prefix = "prophetnet"
supports_gradient_checkpointing = True
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
assert decoder_start_token_id is not None, (
"self.model.config.decoder_start_token_id has to be defined. In ProphetNet it is usually set to the"
" pad_token_id. See ProphetNet docs for more information"
)
# shift inputs to the right
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values"
return shifted_input_ids
class ProphetNetPositionalEmbeddings(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting
based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to
the forward function.
"""
def __init__(self, config: ProphetNetConfig) -> None:
self.max_length = config.max_position_embeddings
super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id)
def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None):
assert (position_ids is None) or (self.padding_idx is None), (
"If position_ids is pre-computed then padding_idx should not be set."
)
if position_ids is None:
if past_key_values is not None:
# position_ids is the same for every token when decoding a single step
# Without the int() cast, it doesn't work in some cases when exporting to ONNX
prev_num_input_ids = past_key_values[0][0].shape[2]
num_input_ids = inputs_shape[1] + prev_num_input_ids
position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * (
int(self.padding_idx + num_input_ids)
)
else:
if attention_mask is None:
attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device)
# retrieve position_ids from input_ids / attention_mask
position_ids = (
torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask
).long() + self.padding_idx
# make sure position_ids are not bigger then max_length
position_ids = position_ids.clamp(0, self.max_length - 1)
return super().forward(position_ids), position_ids
def _forward(self, position_ids):
return super().forward(position_ids)
class ProphetNetAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: ProphetNetConfig,
num_attn_heads: int,
):
super().__init__()
hidden_size = config.hidden_size
self.attention_dropout = config.attention_dropout
self.dropout = config.dropout
self.num_attn_heads = num_attn_heads
self.head_dim = hidden_size // num_attn_heads
assert self.head_dim * num_attn_heads == hidden_size, (
"`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and"
" `config.num_decoder_attention_heads`"
)
self.key_proj = nn.Linear(hidden_size, hidden_size)
self.value_proj = nn.Linear(hidden_size, hidden_size)
self.query_proj = nn.Linear(hidden_size, hidden_size)
self.out_proj = nn.Linear(hidden_size, hidden_size)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states,
key_value_states: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
layer_head_mask: Optional[Tensor] = None,
past_key_value: Optional[Tuple[Tensor]] = None,
output_attentions: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
batch_size, tgt_len, hidden_size = hidden_states.size()
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
assert list(hidden_states.size()) == [
batch_size,
tgt_len,
hidden_size,
], f"Size of hidden states should be {batch_size, tgt_len, hidden_size}, but is {hidden_states.size()}"
# previous time steps are cached - no need to recompute key and value if they are static
query_states = self.query_proj(hidden_states) / (self.head_dim**0.5)
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.key_proj(key_value_states), -1, batch_size)
value_states = self._shape(self.value_proj(key_value_states), -1, batch_size)
else:
# self_attention
key_states = self._shape(self.key_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.value_proj(hidden_states), -1, batch_size)
if is_cross_attention:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
# project states into the correct shape
proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(2)
attn_weights = torch.einsum("bsij,bsjk->bsik", query_states, key_states.transpose(2, 3))
expected_shape = (batch_size, self.num_attn_heads, tgt_len, src_len)
if attn_weights.size() != expected_shape:
raise ValueError(f"Attention weights should have size {expected_shape}, but is {attn_weights.size()}")
# This is part of a workaround to get around fork/join parallelism not supporting Optional types.
if attention_mask is not None and attention_mask.dim() == 0:
attention_mask = None
expected_shape = (batch_size, self.num_attn_heads, 1, src_len)
if attention_mask is not None and attention_mask.size() != expected_shape:
raise ValueError(f"Attention mask should have size {expected_shape}, but is {attention_mask.size()}")
if attention_mask is not None: # don't attend to padding symbols
attn_weights = attn_weights + attention_mask
if output_attentions:
attn_weights_reshaped = attn_weights
else:
attn_weights_reshaped = None
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
assert layer_head_mask.size() == (self.num_attn_heads,), (
f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
batch_size, self.num_attn_heads, tgt_len, src_len
)
# apply head_mask also on attn_weights_reshaped which is used for n-gram attention inside the model
attn_weights_reshaped = layer_head_mask.view(1, -1, 1, 1) * attn_weights_reshaped
attn_probs = nn.functional.dropout(
attn_weights,
p=self.attention_dropout,
training=self.training,
)
attn_output = torch.einsum("bsij,bsjk->bsik", attn_probs, value_states)
expected_shape = (batch_size, self.num_attn_heads, tgt_len, self.head_dim)
if attn_output.size() != expected_shape:
raise ValueError(f"`attn_output` should have shape {expected_shape}, but is of shape {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).reshape(batch_size, tgt_len, hidden_size)
attn_output = self.out_proj(attn_output)
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
return attn_output, attn_weights_reshaped, past_key_value
class ProphetNetFeedForward(nn.Module):
"""
This is the residual two feed-forward layer block based on the original Transformer implementation.
"""
def __init__(self, config: ProphetNetConfig, ffn_dim: int):
super().__init__()
self.activation_fn = ACT2FN[config.activation_function]
self.intermediate = nn.Linear(config.hidden_size, ffn_dim)
self.output = nn.Linear(ffn_dim, config.hidden_size)
self.activation_dropout = config.activation_dropout
self.dropout = config.dropout
def forward(self, hidden_states):
hidden_states = self.intermediate(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.output(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
return hidden_states
class ProphetNetNgramSelfAttention(nn.Module):
def __init__(self, config: ProphetNetConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.num_buckets = config.num_buckets
self.relative_max_distance = config.relative_max_distance
self.num_attn_heads = config.num_decoder_attention_heads
self.dropout = config.dropout
self.attention_dropout = config.attention_dropout
self.head_dim = config.hidden_size // self.num_attn_heads
self.ngram = config.ngram
assert self.head_dim * self.num_attn_heads == config.hidden_size, (
"config.hidden_size must be divisible by num_attn_heads"
)
# key, value, query projection
self.key_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.value_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.query_proj = nn.Linear(config.hidden_size, config.hidden_size)
# out projection
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)
# rel position embeddings
self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads)
# for onnx runtime
self.onnx_trace = False
def _shape(self, tensor, seq_len, batch_size):
return tensor.view(batch_size, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous()
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def forward(
self,
hidden_states,
past_key_value: Optional[Tuple[Tensor]] = None,
attention_mask=None,
layer_head_mask=None,
extended_predict_attention_mask=None,
main_relative_position_buckets=None,
predict_relative_position_buckets=None,
position_ids=None,
):
batch_size, ngram_sequence_length, hidden_size = hidden_states.size()
assert list(hidden_states.size()) == [batch_size, ngram_sequence_length, hidden_size], (
f"`hidden_states` should be of shape {batch_size, ngram_sequence_length, hidden_size}, but is of shape"
f" {hidden_states.shape}"
)
# project
query_states = self.query_proj(hidden_states)
key_states = self.key_proj(hidden_states)
value_states = self.value_proj(hidden_states)
# normalize
query_states = query_states / (self.head_dim**0.5)
# reshape
query_states = self._shape(query_states, ngram_sequence_length, batch_size)
key_states = self._shape(key_states, -1, batch_size)
value_states = self._shape(value_states, -1, batch_size)
proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim)
query_states = query_states.view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
# chunk into main stream and predict stream
hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=1)
query_states_list = query_states.chunk(1 + self.ngram, dim=2)
key_states_list = key_states.chunk(1 + self.ngram, dim=2)
value_states_list = value_states.chunk(1 + self.ngram, dim=2)
main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:]
main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:]
main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:]
main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:]
# saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim)
if past_key_value is not None:
prev_main_key_states = past_key_value[0]
main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=2)
prev_main_value_states = past_key_value[1]
main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=2)
# Update cache
past_key_value = (main_key_states, main_value_states)
# get seq_length of main stream only
sequence_length = ngram_sequence_length // (1 + self.ngram)
# MAIN-STREAM
# main attn weights
# [batch_size, number_heads, sequence_length, head_dimesion]
# x [batch_size, number_heads, head_dimesion, sequence_length]
# -> [batch_size, number_heads, sequence_length, sequence_length]
main_attn_weights = torch.einsum("bntc,bncs->bnts", main_query_states, main_key_states.transpose(2, 3))
# retrieve relative position embeddings for each layer -> see paper for more details
main_relative_pos_embeddings = self.get_main_relative_pos_embeddings(
main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets
)
main_attn_weights = main_attn_weights + main_relative_pos_embeddings
if attention_mask is not None:
main_attn_weights = main_attn_weights + attention_mask
main_attn_probs = softmax(
main_attn_weights,
dim=-1,
onnx_trace=self.onnx_trace,
).type_as(main_attn_weights)
if layer_head_mask is not None:
assert layer_head_mask.size() == (self.num_attn_heads,), (
f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is"
f" {layer_head_mask.size()}"
)
main_attn_probs = layer_head_mask.view(1, -1, 1, 1) * main_attn_probs.view(
batch_size, self.num_attn_heads, -1, sequence_length
)
main_attn_probs = nn.functional.dropout(main_attn_probs, p=self.attention_dropout, training=self.training)
# project to attn_output
# [batch_size, number_heads, sequence_length, sequence_length]
# x [batch_size, number_heads, sequence_length, head_dimesion]
# -> [batch_size, number_heads, sequence_length, head_dimesion]
main_attn_output = torch.einsum("bntc,bncs->bnts", main_attn_probs, main_value_states)
# reshape so that num_heads dim is merged into last `head_dim` axis
main_attn_output = main_attn_output.transpose(1, 2).reshape(batch_size, 1, sequence_length, hidden_size)
main_attn_output = self.out_proj(main_attn_output)
# PREDICT-STREAM
# [batch_size, ngram, number_heads, sequence_length, head_dimesion]
predict_query_states = torch.stack(predict_query_states_list, 1).view(
batch_size, self.ngram, self.num_attn_heads, sequence_length, self.head_dim
)
# [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion]
predict_key_states = torch.stack([torch.cat([main_key_states, key], 2) for key in predict_key_states_list], 1)
# [batch_size, sequence_length, ngram, hidden_size]
predict_hidden_states = torch.stack(hidden_states_predict_list, dim=2)
# [batch_size, number_heads, ngram, 2*sequence_length, head_dimesion]
predict_value_states = torch.cat(
[torch.cat([main_value_states, v_p], 2).unsqueeze(2) for v_p in predict_value_states_list], 2
)
# [batch_size, ngram, number_heads, sequence_length, head_dimesion]
# x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion]
# -> [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
predict_attn_weights = torch.einsum("bnhtc,bnhsc->bnhts", (predict_query_states, predict_key_states))
# retrieve relative position embeddings for each layer -> see paper for more details
# [batch_size, ngram, number_heads, sequence_length, predict_relative_pos_embeddings]
predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings(
predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets
)
# [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings
if extended_predict_attention_mask is not None:
# Permuting Predict attention mask to [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
extended_predict_attention_mask = extended_predict_attention_mask.permute(0, 2, 1, 3, 4)
extended_predict_attention_mask = extended_predict_attention_mask.to(predict_attn_weights.dtype)
predict_attn_weights = predict_attn_weights + extended_predict_attention_mask
predict_attn_probs = softmax(
predict_attn_weights,
dim=-1,
onnx_trace=self.onnx_trace,
).type_as(predict_attn_weights)
if layer_head_mask is not None:
assert layer_head_mask.size() == (self.num_attn_heads,), (
f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is"
f" {layer_head_mask.size()}"
)
predict_attn_probs = layer_head_mask.view(1, 1, -1, 1, 1) * predict_attn_probs
predict_attn_probs = nn.functional.dropout(
predict_attn_probs, p=self.attention_dropout, training=self.training
)
# project to attention output
# [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
# x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion]
# -> [batch_size, ngram, number_heads, sequence_length, head_dimesion]
predict_attn_output = torch.einsum(
"bnhts,bnhsc->bnhtc", (predict_attn_probs, predict_value_states.transpose(1, 2))
)
# reshape so that num_heads dim is merged into last `head_dim` axis
# [batch_size, ngram, number_heads, sequence_length, head_dimesion] -> [batch_size, ngram, sequence_length, hidden_size]
predict_attn_output = predict_attn_output.transpose(2, 3)
predict_attn_output = predict_attn_output.reshape(batch_size, self.ngram, sequence_length, hidden_size)
predict_attn_output = self.out_proj(predict_attn_output)
# concat to single attn output
# [batch_size, (1+ngram)*sequence_length, hidden_size]
attn_output = torch.cat([main_attn_output, predict_attn_output], 1).view(batch_size, -1, hidden_size)
# reshape into better form for `config.output_attentions`
main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, sequence_length, -1)
attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
return attn_output, main_attn_probs, predict_attn_probs, past_key_value
def get_main_relative_pos_embeddings(
self, hidden_states, attn_weights, position_ids, main_relative_position_buckets
):
# input hidden_states [batch_size, sequence_length, hidden_size]
# input attn_weights [batch_size, num_heads, sequence_length, sequence_length]
# input position_ids [batch_size, sequence_length] or [1,1]
batch_size, num_attn_heads, tgt_len, src_len = attn_weights.shape
attn_weights = attn_weights.view(batch_size, num_attn_heads, tgt_len, src_len)
if main_relative_position_buckets is None:
batch_size, sequence_length = hidden_states.shape[:2]
relative_positions = (
torch.arange(1, attn_weights.shape[-1] + 1)
.unsqueeze(0)
.unsqueeze(0)
.repeat(batch_size, sequence_length, 1)
.to(position_ids.device)
)
# [batch_size, sequence_length, sequence_length+1]
relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1)
main_relative_position_buckets = compute_relative_buckets(
self.num_buckets, self.relative_max_distance, relative_positions, False
)
# [batch_size, sequence_length, num_buckets * num_heads]
rel_pos_embeddings = self.relative_pos_embeddings(hidden_states)
rel_pos_embeddings = rel_pos_embeddings.view(
rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads)
)
rel_pos_embeddings = rel_pos_embeddings.permute(0, 3, 1, 2)
# [batch_size, num_heads, sequence_length, num_buckets]
rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:3] + (-1,))
main_relative_position_buckets = main_relative_position_buckets.repeat(1, self.num_attn_heads, 1)
# [batch_size * num_heads * sequence_length, sequence_length]
main_relative_position_buckets = main_relative_position_buckets.view(
-1, main_relative_position_buckets.shape[-1]
)
main_relative_position_buckets = main_relative_position_buckets.long()
# [batch_size * num_heads * sequence_length, sequence_length]
rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1))
main_relative_pos_embeddings = torch.gather(rel_pos_embeddings, dim=1, index=main_relative_position_buckets)
main_relative_pos_embeddings = main_relative_pos_embeddings.view(batch_size, num_attn_heads, tgt_len, -1)
return main_relative_pos_embeddings
def get_predict_relative_pos_embeddings(
self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets
):
# input hidden_states [batch_size, sequence_length, ngram, hidden_size]
# input attn_weights [batch_size, ngram, num_heads, sequence_length, 2*sequence_length]
# input position_ids [batch_size, sequence_length] or [1,1]
# input predict_relative_position_buckets [batch_size, sequence_length, 2*sequence_length] or None
batch_size, sequence_length = hidden_states.shape[0:2]
if predict_relative_position_buckets is None:
key_sequence_length = attn_weights.shape[-1]
assert position_ids[0][0] == key_sequence_length - 1, (
"`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)"
)
relative_positions = (
torch.arange(0, key_sequence_length)
.unsqueeze(0)
.unsqueeze(0)
.repeat(batch_size, sequence_length, 1)
.to(position_ids.device)
)
relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1)
predict_relative_position_buckets = compute_relative_buckets(
self.num_buckets, self.relative_max_distance, relative_positions, False
)
# [batch_size, ngram, sequence_length, hidden_size]
hidden_states = hidden_states.transpose(1, 2)
rel_pos_embeddings = self.relative_pos_embeddings(hidden_states)
# [batch_size, ngram, sequence_length, num_buckets, num_heads]
rel_pos_embeddings = rel_pos_embeddings.view(
hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads)
)
rel_pos_embeddings = rel_pos_embeddings.permute(0, 2, 1, 4, 3)
# [batch_size * ngram * sequence_length * num_heads, num_buckets]
rel_pos_embeddings = rel_pos_embeddings.reshape(-1, self.num_buckets)
# [ngram, batch_size, num_heads * sequence_length, -1]
predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0)
predict_relative_position_buckets = predict_relative_position_buckets.repeat(
self.ngram, 1, self.num_attn_heads, 1
)
# [ngram * batch_size * num_heads * sequence_length, -1]
predict_relative_position_buckets = predict_relative_position_buckets.view(
-1, predict_relative_position_buckets.size(-1)
).long()
predict_relative_pos_embeddings = torch.gather(
rel_pos_embeddings, dim=1, index=predict_relative_position_buckets
)
# [batch_size, gram, num_heads, sequence_length, -1]
predict_relative_pos_embeddings = predict_relative_pos_embeddings.view(
batch_size, self.ngram, self.num_attn_heads, sequence_length, -1
)
return predict_relative_pos_embeddings
class ProphetNetEncoderLayer(nn.Module):
"""
Encoder block for Prophetnet
"""
def __init__(self, config: ProphetNetConfig):
super().__init__()
# 1st residual block
self.self_attn = ProphetNetAttention(config, config.num_encoder_attention_heads)
self.self_attn_layer_norm = LayerNorm(config.hidden_size)
# 2nd residual block
self.feed_forward = ProphetNetFeedForward(config, config.encoder_ffn_dim)
self.feed_forward_layer_norm = LayerNorm(config.hidden_size)
def forward(
self,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions: bool = False,
):
# 1st residual block
attention_output, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = self.self_attn_layer_norm(attention_output + hidden_states)
# 2nd residual block
feed_forward_output = self.feed_forward(hidden_states)
hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class ProphetNetDecoderLayer(nn.Module):
"""
Decoder block for Prophetnet
"""
def __init__(self, config: ProphetNetConfig):
super().__init__()
# 1st residual block
self.self_attn = ProphetNetNgramSelfAttention(config)
self.self_attn_layer_norm = LayerNorm(config.hidden_size)
# 2nd residual block
if config.add_cross_attention:
self.cross_attn = ProphetNetAttention(config, config.num_decoder_attention_heads)
self.cross_attn_layer_norm = LayerNorm(config.hidden_size)
# 3rd residual block
self.feed_forward = ProphetNetFeedForward(config, config.decoder_ffn_dim)
self.feed_forward_layer_norm = LayerNorm(config.hidden_size)
def forward(
self,
hidden_states,
attention_mask=None,
encoder_hidden_states=None,
encoder_attn_mask=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
extended_predict_attention_mask=None,
main_relative_position_buckets=None,
predict_relative_position_buckets=None,
position_ids=None,
past_key_value=None,
use_cache: bool = True,
output_attentions: bool = False,
):
# 1st residual block
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
ngram_attention_output, self_attn_weights, self_attn_weights_ngram, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
extended_predict_attention_mask=extended_predict_attention_mask,
main_relative_position_buckets=main_relative_position_buckets,
predict_relative_position_buckets=predict_relative_position_buckets,
position_ids=position_ids,
)
hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attn_weights = None
if encoder_hidden_states is not None:
# 2nd residual block
attention_output, cross_attn_weights, cross_attn_present_key_value = self.cross_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attn_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# 3rd residual block
feed_forward_output = self.feed_forward(hidden_states)
hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, self_attn_weights_ngram, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
@add_start_docstrings(
"The standalone encoder part of the ProphetNetModel.",
PROPHETNET_START_DOCSTRING,
)
class ProphetNetEncoder(ProphetNetPreTrainedModel):
r"""
word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*):
The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word
embeddings instead of randomly initialized word embeddings.
"""
def __init__(self, config: ProphetNetConfig, word_embeddings: nn.Embedding = None):
super().__init__(config)
self.word_embeddings = (
word_embeddings
if word_embeddings is not None
else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
)
self.position_embeddings = ProphetNetPositionalEmbeddings(config)
self.embeddings_layer_norm = LayerNorm(config.hidden_size)
self.layers = nn.ModuleList([ProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)])
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.word_embeddings
def set_input_embeddings(self, value):
self.word_embeddings = value
@add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ProphetNetEncoder
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
>>> model = ProphetNetEncoder.from_pretrained("patrickvonplaten/prophetnet-large-uncased-standalone")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None and inputs_embeds is None:
raise ValueError("Either input_ids or inputs_embeds has to be passed.")
elif input_ids is not None and inputs_embeds is not None:
raise ValueError("Make sure to only pass input_ids or inputs_embeds.")
elif input_ids is not None and inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
# prepare attention mask
if attention_mask is not None:
extended_attention_mask = (
1.0 - attention_mask[:, None, None, :].repeat(1, self.config.num_encoder_attention_heads, 1, 1)
) * torch.finfo(self.dtype).min
extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype)
else:
extended_attention_mask = None
position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device)
hidden_states = inputs_embeds + position_embeddings
hidden_states = self.embeddings_layer_norm(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.config.dropout, training=self.training)
encoder_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (len(self.layers)), (
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_hidden_states = encoder_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
extended_attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask=extended_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_hidden_states = encoder_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions
)
@add_start_docstrings(
"The standalone decoder part of the ProphetNetModel.",
PROPHETNET_START_DOCSTRING,
)
class ProphetNetDecoder(ProphetNetPreTrainedModel):
r"""
word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*):
The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word
embeddings instead of randomly initialized word embeddings.
"""
def __init__(self, config: ProphetNetConfig, word_embeddings: Optional[nn.Embedding] = None):
super().__init__(config)
self.ngram = config.ngram
self.num_buckets = config.num_buckets
self.relative_max_distance = config.relative_max_distance
self.dropout = config.dropout
self.max_target_positions = config.max_position_embeddings
self.word_embeddings = (
word_embeddings
if word_embeddings is not None
else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
)
self.position_embeddings = ProphetNetPositionalEmbeddings(config)
self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None)
self.layers = nn.ModuleList([ProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)])
self.embeddings_layer_norm = LayerNorm(config.hidden_size)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.word_embeddings
def set_input_embeddings(self, value):
self.word_embeddings = value
@add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ProphetNetDecoderModelOutput]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ProphetNetDecoder
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
>>> model = ProphetNetDecoder.from_pretrained("microsoft/prophetnet-large-uncased", add_cross_attention=False)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None and inputs_embeds is None:
raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.")
elif input_ids is not None and inputs_embeds is not None:
raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.")
elif input_ids is not None and inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
batch_size, sequence_length = inputs_embeds.shape[:2]
main_stream_pos_embed, position_ids = self.position_embeddings(
(batch_size, sequence_length),
device=inputs_embeds.device,
past_key_values=past_key_values,
)
if past_key_values is not None:
main_relative_position_buckets, predict_relative_position_buckets = None, None
else:
(
main_relative_position_buckets,
predict_relative_position_buckets,
) = self.compute_buffered_relative_buckets(position_ids)
predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1)
# add position embeddings
hidden_states = inputs_embeds + main_stream_pos_embed
ngram_embeddings = self.ngram_embeddings.weight
# prepare attention mask
if past_key_values is not None:
assert hidden_states.size(1) == 1, (
"At the moment `use_cache` is only supported for `decoder_input_ids` of length 1"
)
ngram_hidden_states = [
(ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1)
for ngram in range(self.ngram)
]
extended_attention_mask = None
extended_predict_attention_mask = None
else:
ngram_hidden_states = [
(ngram_embeddings[ngram - 1] + predicting_stream_pos_embed) for ngram in range(self.ngram)
]
extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask)
extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask)
# prepare encoder attention mask
if encoder_attention_mask is not None:
extended_encoder_attention_mask = (
1.0 - encoder_attention_mask[:, None, None, :].repeat(1, self.config.num_decoder_attention_heads, 1, 1)
) * torch.finfo(self.dtype).min
extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype)
else:
extended_encoder_attention_mask = None
hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 1)
if self.embeddings_layer_norm:
hidden_states = self.embeddings_layer_norm(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# init attentions, hidden_states and cache with empty tuples
all_main_stream_hidden_states = () if output_hidden_states else None
all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None
all_main_stream_attns = () if output_attentions else None
all_ngram_stream_attns = () if output_attentions else None
all_cross_attns = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
present_key_values = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
assert attn_mask.size()[0] == (len(self.layers)), (
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
# grad cannot be kept because tensor is sliced
all_main_stream_hidden_states += (hidden_states[:, :sequence_length],)
if self.config.ngram > 0:
all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
extended_attention_mask,
encoder_hidden_states,
extended_encoder_attention_mask,
(head_mask[idx] if head_mask is not None else None),
(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
extended_predict_attention_mask,
main_relative_position_buckets,
predict_relative_position_buckets,
position_ids,
None,
use_cache,
output_attentions,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=extended_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attn_mask=extended_encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
extended_predict_attention_mask=extended_predict_attention_mask,
main_relative_position_buckets=main_relative_position_buckets,
predict_relative_position_buckets=predict_relative_position_buckets,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
present_key_values += (layer_outputs[4 if output_attentions else 1],)
if output_attentions:
all_main_stream_attns += (layer_outputs[1],)
all_ngram_stream_attns += (layer_outputs[2],)
if self.config.add_cross_attention:
all_cross_attns += (layer_outputs[3],)
if output_hidden_states:
all_main_stream_hidden_states += (hidden_states[:, :sequence_length],)
if self.config.ngram > 0:
all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],)
# split last_hidden_state for return
last_hidden_state = hidden_states[:, :sequence_length]
last_hidden_state_ngram = hidden_states[:, sequence_length:] if self.config.ngram > 0 else None
if not return_dict:
return tuple(
v
for v in [
last_hidden_state,
last_hidden_state_ngram,
present_key_values,
all_main_stream_hidden_states,
all_ngram_stream_hidden_states,
all_main_stream_attns,
all_ngram_stream_attns,
all_cross_attns,
]
if v is not None
)
return ProphetNetDecoderModelOutput(
last_hidden_state=last_hidden_state,
last_hidden_state_ngram=last_hidden_state_ngram,
past_key_values=present_key_values,
hidden_states=all_main_stream_hidden_states,
hidden_states_ngram=all_ngram_stream_hidden_states,
attentions=all_main_stream_attns,
ngram_attentions=all_ngram_stream_attns,
cross_attentions=all_cross_attns,
)
def compute_buffered_relative_buckets(self, position_ids):
batch_size, sequence_length = position_ids.shape
position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1)
main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets(
self.num_buckets, self.relative_max_distance, position_ids
)
# buffer relative buckets
main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1)
predict_relative_buckets = torch.cat(
[
predict_relative_buckets[:, :sequence_length, :sequence_length],
predict_relative_buckets[
:, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length
],
],
2,
).repeat(batch_size, 1, 1)
return main_relative_buckets, predict_relative_buckets
def prepare_attention_mask(self, hidden_states, attention_mask):
batch_size, seq_length = hidden_states.shape[:2]
# get causal mask
causal_mask = torch.full(
(seq_length, seq_length),
torch.finfo(hidden_states.dtype).min,
dtype=hidden_states.dtype,
device=hidden_states.device,
)
causal_mask = torch.triu(causal_mask, 1)
extended_causal_mask = causal_mask[:seq_length, :seq_length][None, None, :, :].expand(
(batch_size, self.config.num_decoder_attention_heads) + causal_mask.shape
)
# add usual attention mask
if attention_mask is not None:
extended_attention_mask = (1.0 - attention_mask[:, None, None, :]) * torch.finfo(self.dtype).min
extended_attention_mask = extended_causal_mask + extended_attention_mask
else:
extended_attention_mask = extended_causal_mask
return extended_attention_mask.to(hidden_states.dtype)
def prepare_predict_attention_mask(self, hidden_states, attention_mask):
batch_size, seq_length = hidden_states.shape[:2]
# get causal mask
predict_causal_mask = ngram_attention_bias(
self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype
)
predict_causal_mask = torch.cat(
[
predict_causal_mask[:, :seq_length, :seq_length],
predict_causal_mask[
:, :seq_length, self.max_target_positions : self.max_target_positions + seq_length
],
],
dim=-1,
)
extended_predict_causal_mask = predict_causal_mask[None, None, :, :, :].expand(
(batch_size, self.config.num_decoder_attention_heads) + predict_causal_mask.shape
)
# add usual attention mask
if attention_mask is not None:
extended_attention_mask = (1.0 - attention_mask[:, None, None, None, :]) * torch.finfo(self.dtype).min
extended_attention_mask = extended_attention_mask.expand(
(batch_size, self.config.num_decoder_attention_heads, self.ngram, seq_length, seq_length)
)
# predicted stream attention_mask should always be 0
extended_attention_mask = torch.cat(
[extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1
)
extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask
else:
extended_predict_attention_mask = extended_predict_causal_mask
return extended_predict_attention_mask.to(hidden_states.dtype)
@add_start_docstrings(
"The bare ProphetNet Model outputting raw hidden-states without any specific head on top.",
PROPHETNET_START_DOCSTRING,
)
class ProphetNetModel(ProphetNetPreTrainedModel):
_tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight"]
def __init__(self, config: ProphetNetConfig):
super().__init__(config)
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
encoder_config = copy.deepcopy(config)
encoder_config.is_encoder_decoder = False
encoder_config.use_cache = False
self.encoder = ProphetNetEncoder(encoder_config, self.word_embeddings)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
self.decoder = ProphetNetDecoder(decoder_config, self.word_embeddings)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.word_embeddings
def set_input_embeddings(self, value):
self.word_embeddings = value
self.encoder.word_embeddings = self.word_embeddings
self.decoder.word_embeddings = self.word_embeddings
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.word_embeddings, self.word_embeddings)
self._tie_or_clone_weights(self.decoder.word_embeddings, self.word_embeddings)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ProphetNetSeq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ProphetNetModel
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
>>> model = ProphetNetModel.from_pretrained("microsoft/prophetnet-large-uncased")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state # main stream hidden states
>>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return ProphetNetSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram,
decoder_attentions=decoder_outputs.attentions,
decoder_ngram_attentions=decoder_outputs.ngram_attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The ProphetNet Model with a language modeling head. Can be used for sequence generation tasks.",
PROPHETNET_START_DOCSTRING,
)
class ProphetNetForConditionalGeneration(ProphetNetPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight", "lm_head.weight"]
def __init__(self, config: ProphetNetConfig):
super().__init__(config)
self.prophetnet = ProphetNetModel(config)
self.padding_idx = config.pad_token_id
self.disable_ngram_loss = config.disable_ngram_loss
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.prophetnet.word_embeddings, self.lm_head)
def get_input_embeddings(self):
return self.prophetnet.word_embeddings
@add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ProphetNetSeq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ProphetNetForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
>>> model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> logits_next_token = outputs.logits # logits to predict next token as usual
>>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
outputs = self.prophetnet(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
batch_size, sequence_length = (
decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2]
)
predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1)
predict_logits = self.lm_head(predicting_streams)
logits = predict_logits[:, 0]
logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None
# To use .view in loss computation, make sure that logits is contiguous.
if not logits.is_contiguous():
logits = logits.contiguous()
loss = None
if labels is not None:
loss = self._compute_loss(predict_logits, labels)
if not return_dict:
all_logits = tuple(v for v in [logits, logits_ngram] if v is not None)
return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:]
else:
return ProphetNetSeq2SeqLMOutput(
loss=loss,
logits=logits,
logits_ngram=logits_ngram,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states,
decoder_attentions=outputs.decoder_attentions,
decoder_ngram_attentions=outputs.decoder_ngram_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def _compute_loss(self, logits, labels, ignore_index=-100):
expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index)
for i in range(self.config.ngram):
if i > 0 and self.disable_ngram_loss:
break
expend_targets[i, :, :] = labels
logits = logits.transpose(0, 1).contiguous()
lprobs = nn.functional.log_softmax(
logits.view(-1, logits.size(-1)),
dim=-1,
dtype=torch.float32,
)
loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean")
if self.config.eps > 0.0:
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
non_masked_tokens = expend_targets.ne(ignore_index).view(-1)
smooth_loss = smooth_loss[non_masked_tokens]
smooth_loss = smooth_loss.mean()
eps_i = self.config.eps / lprobs.size(-1)
loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss
return loss
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
@staticmethod
# Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration._reorder_cache
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
def get_encoder(self):
return self.prophetnet.encoder
def get_decoder(self):
return self.prophetnet.decoder
@add_start_docstrings(
"The standalone decoder part of the ProphetNetModel with a lm head on top. The model can be used for causal"
" language modeling.",
PROPHETNET_START_DOCSTRING,
)
class ProphetNetForCausalLM(ProphetNetPreTrainedModel, GenerationMixin):
_tied_weights_keys = [
"prophetnet.word_embeddings.weight",
"prophetnet.decoder.word_embeddings.weight",
"lm_head.weight",
]
def __init__(self, config: ProphetNetConfig):
# set config for CLM
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.prophetnet = ProphetNetDecoderWrapper(config)
self.padding_idx = config.pad_token_id
self.disable_ngram_loss = config.disable_ngram_loss
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.prophetnet.decoder.word_embeddings
def set_input_embeddings(self, value):
self.prophetnet.decoder.word_embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.prophetnet.decoder.word_embeddings, self.lm_head)
def set_decoder(self, decoder):
self.prophetnet.decoder = decoder
def get_decoder(self):
return self.prophetnet.decoder
@add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ProphetNetDecoderLMOutput]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ProphetNetForCausalLM
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
>>> model = ProphetNetForCausalLM.from_pretrained("microsoft/prophetnet-large-uncased")
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # Model can also be used with EncoderDecoder framework
>>> from transformers import BertTokenizer, EncoderDecoderModel, AutoTokenizer
>>> import torch
>>> tokenizer_enc = BertTokenizer.from_pretrained("google-bert/bert-large-uncased")
>>> tokenizer_dec = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained(
... "google-bert/bert-large-uncased", "microsoft/prophetnet-large-uncased"
... )
>>> ARTICLE = (
... "the us state department said wednesday it had received no "
... "formal word from bolivia that it was expelling the us ambassador there "
... "but said the charges made against him are `` baseless ."
... )
>>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids
>>> labels = tokenizer_dec(
... "us rejects charges against its ambassador in bolivia", return_tensors="pt"
... ).input_ids
>>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:])
>>> loss = outputs.loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn)
outputs = self.prophetnet.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2]
predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1)
predict_logits = self.lm_head(predicting_streams)
logits = predict_logits[:, 0]
logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None
loss = None
if labels is not None:
loss = self._compute_loss(predict_logits, labels)
if not return_dict:
all_logits = tuple(v for v in [logits, logits_ngram] if v is not None)
return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:]
else:
return ProphetNetDecoderLMOutput(
loss=loss,
logits=logits,
logits_ngram=logits_ngram,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
hidden_states_ngram=outputs.hidden_states_ngram,
attentions=outputs.attentions,
ngram_attentions=outputs.ngram_attentions,
cross_attentions=outputs.cross_attentions,
)
def _compute_loss(self, logits, labels, ignore_index=-100):
expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index)
for i in range(self.config.ngram):
if i > 0 and self.disable_ngram_loss:
break
expend_targets[i, :, :] = labels
logits = logits.transpose(0, 1).contiguous()
lprobs = nn.functional.log_softmax(
logits.view(-1, logits.size(-1)),
dim=-1,
dtype=torch.float32,
)
loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean")
if self.config.eps > 0.0:
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
non_masked_tokens = expend_targets.ne(ignore_index).view(-1)
smooth_loss = smooth_loss[non_masked_tokens]
smooth_loss = smooth_loss.mean()
eps_i = self.config.eps / lprobs.size(-1)
loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss
return loss
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
use_cache=None,
**kwargs,
):
# Overwritten -- our tests complain if we use GenerationMixin.prepare_inputs_for_generation
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past_key_values:
input_ids = input_ids[:, -1:]
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
"attention_mask": attention_mask,
"head_mask": head_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
@staticmethod
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM._reorder_cache
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
class ProphetNetDecoderWrapper(ProphetNetPreTrainedModel):
"""
This is a wrapper class, so that [`ProphetNetForCausalLM`] can correctly be loaded from pretrained prophetnet
classes.
"""
def __init__(self, config: ProphetNetConfig):
super().__init__(config)
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.decoder = ProphetNetDecoder(config, word_embeddings=self.word_embeddings)
# Initialize weights and apply final processing
self.post_init()
def _tie_weights(self):
self._tie_or_clone_weights(self.word_embeddings, self.decoder.get_input_embeddings())
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
__all__ = [
"ProphetNetDecoder",
"ProphetNetEncoder",
"ProphetNetForCausalLM",
"ProphetNetForConditionalGeneration",
"ProphetNetModel",
"ProphetNetPreTrainedModel",
]
```
|
=================================================================================================================================================
SOURCE CODE FILE: tokenization_prophetnet.py
LINES: 3
SIZE: 20.74 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\prophetnet\tokenization_prophetnet.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
import unicodedata
from typing import Iterable, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "prophetnet.tokenizer"}
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
class ProphetNetTokenizer(PreTrainedTokenizer):
r"""
Construct a ProphetNetTokenizer. Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
x_sep_token (`str`, *optional*, defaults to `"[X_SEP]"`):
Special second separator token, which can be generated by [`ProphetNetForConditionalGeneration`]. It is
used to separate bullet-point like sentences in summarization, *e.g.*.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
# first name has to correspond to main model input name
# to make sure `tokenizer.pad(...)` works correctly
# `ProphetNet` doesn't have `token_type_ids` as argument.
model_input_names: List[str] = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file: str,
do_lower_case: Optional[bool] = True,
do_basic_tokenize: Optional[bool] = True,
never_split: Optional[Iterable] = None,
unk_token: Optional[str] = "[UNK]",
sep_token: Optional[str] = "[SEP]",
x_sep_token: Optional[str] = "[X_SEP]",
pad_token: Optional[str] = "[PAD]",
mask_token: Optional[str] = "[MASK]",
tokenize_chinese_chars: Optional[bool] = True,
strip_accents: Optional[bool] = None,
clean_up_tokenization_spaces: bool = True,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
x_sep_token=x_sep_token,
pad_token=pad_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token: str):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index: int):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens: str):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def get_special_tokens_mask(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: Optional[bool] = False,
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return ([0] * len(token_ids_0)) + [1]
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ProphetNet
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0]
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return token_ids_0 + [self.sep_token_id]
sep = [self.sep_token_id]
return token_ids_0 + sep + token_ids_1 + sep
__all__ = ["ProphetNetTokenizer"]
```
|
===========================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.00 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pvt\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_pvt import *
from .image_processing_pvt import *
from .modeling_pvt import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
====================================================================================================================================
SOURCE CODE FILE: configuration_pvt.py
LINES: 1
SIZE: 6.80 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pvt\configuration_pvt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pvt model configuration"""
from collections import OrderedDict
from typing import Callable, List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class PvtConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PvtModel`]. It is used to instantiate an Pvt
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Pvt
[Xrenya/pvt-tiny-224](https://huggingface.co/Xrenya/pvt-tiny-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The input image size
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
num_encoder_blocks (`int`, *optional*, defaults to 4):
The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
The number of layers in each encoder block.
sequence_reduction_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
Sequence reduction ratios in each encoder block.
hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`):
Dimension of each of the encoder blocks.
patch_sizes (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
Patch size before each encoder block.
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
Stride before each encoder block.
num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
Number of attention heads for each attention layer in each block of the Transformer encoder.
mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`):
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
encoder blocks.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether or not a learnable bias should be added to the queries, keys and values.
num_labels ('int', *optional*, defaults to 1000):
The number of classes.
Example:
```python
>>> from transformers import PvtModel, PvtConfig
>>> # Initializing a PVT Xrenya/pvt-tiny-224 style configuration
>>> configuration = PvtConfig()
>>> # Initializing a model from the Xrenya/pvt-tiny-224 style configuration
>>> model = PvtModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "pvt"
def __init__(
self,
image_size: int = 224,
num_channels: int = 3,
num_encoder_blocks: int = 4,
depths: List[int] = [2, 2, 2, 2],
sequence_reduction_ratios: List[int] = [8, 4, 2, 1],
hidden_sizes: List[int] = [64, 128, 320, 512],
patch_sizes: List[int] = [4, 2, 2, 2],
strides: List[int] = [4, 2, 2, 2],
num_attention_heads: List[int] = [1, 2, 5, 8],
mlp_ratios: List[int] = [8, 8, 4, 4],
hidden_act: Mapping[str, Callable] = "gelu",
hidden_dropout_prob: float = 0.0,
attention_probs_dropout_prob: float = 0.0,
initializer_range: float = 0.02,
drop_path_rate: float = 0.0,
layer_norm_eps: float = 1e-6,
qkv_bias: bool = True,
num_labels: int = 1000,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.num_channels = num_channels
self.num_encoder_blocks = num_encoder_blocks
self.depths = depths
self.sequence_reduction_ratios = sequence_reduction_ratios
self.hidden_sizes = hidden_sizes
self.patch_sizes = patch_sizes
self.strides = strides
self.mlp_ratios = mlp_ratios
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.drop_path_rate = drop_path_rate
self.layer_norm_eps = layer_norm_eps
self.num_labels = num_labels
self.qkv_bias = qkv_bias
class PvtOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
@property
def default_onnx_opset(self) -> int:
return 12
__all__ = ["PvtConfig", "PvtOnnxConfig"]
```
|
=======================================================================================================================================
SOURCE CODE FILE: image_processing_pvt.py
LINES: 1
SIZE: 13.54 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pvt\image_processing_pvt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Pvt."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, filter_out_non_signature_kwargs, logging
logger = logging.get_logger(__name__)
class PvtImageProcessor(BaseImageProcessor):
r"""
Constructs a PVT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
self.do_resize = do_resize
self.do_rescale = do_rescale
self.do_normalize = do_normalize
self.size = size
self.resample = resample
self.rescale_factor = rescale_factor
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
resizing.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use if `do_normalize` is set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
resample = resample if resample is not None else self.resample
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size_dict = get_size_dict(size)
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size_dict, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["PvtImageProcessor"]
```
|
===============================================================================================================================
SOURCE CODE FILE: modeling_pvt.py
LINES: 1
SIZE: 27.82 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pvt\modeling_pvt.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch PVT model."""
import collections
import math
from typing import Iterable, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_pvt import PvtConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "PvtConfig"
_CHECKPOINT_FOR_DOC = "Zetatech/pvt-tiny-224"
_EXPECTED_OUTPUT_SHAPE = [1, 50, 512]
_IMAGE_CLASS_CHECKPOINT = "Zetatech/pvt-tiny-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Pvt
class PvtDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class PvtPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(
self,
config: PvtConfig,
image_size: Union[int, Iterable[int]],
patch_size: Union[int, Iterable[int]],
stride: int,
num_channels: int,
hidden_size: int,
cls_token: bool = False,
):
super().__init__()
self.config = config
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.position_embeddings = nn.Parameter(
torch.randn(1, num_patches + 1 if cls_token else num_patches, hidden_size)
)
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size)) if cls_token else None
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=stride, stride=patch_size)
self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(p=config.hidden_dropout_prob)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
num_patches = height * width
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == self.config.image_size * self.config.image_size:
return self.position_embeddings
embeddings = embeddings.reshape(1, height, width, -1).permute(0, 3, 1, 2)
interpolated_embeddings = F.interpolate(embeddings, size=(height, width), mode="bilinear")
interpolated_embeddings = interpolated_embeddings.reshape(1, -1, height * width).permute(0, 2, 1)
return interpolated_embeddings
def forward(self, pixel_values: torch.Tensor) -> Tuple[torch.Tensor, int, int]:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
patch_embed = self.projection(pixel_values)
*_, height, width = patch_embed.shape
patch_embed = patch_embed.flatten(2).transpose(1, 2)
embeddings = self.layer_norm(patch_embed)
if self.cls_token is not None:
cls_token = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_token, embeddings), dim=1)
position_embeddings = self.interpolate_pos_encoding(self.position_embeddings[:, 1:], height, width)
position_embeddings = torch.cat((self.position_embeddings[:, :1], position_embeddings), dim=1)
else:
position_embeddings = self.interpolate_pos_encoding(self.position_embeddings, height, width)
embeddings = self.dropout(embeddings + position_embeddings)
return embeddings, height, width
class PvtSelfOutput(nn.Module):
def __init__(self, config: PvtConfig, hidden_size: int):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class PvtEfficientSelfAttention(nn.Module):
"""Efficient self-attention mechanism with reduction of the sequence [PvT paper](https://arxiv.org/abs/2102.12122)."""
def __init__(
self, config: PvtConfig, hidden_size: int, num_attention_heads: int, sequences_reduction_ratio: float
):
super().__init__()
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
f"heads ({self.num_attention_heads})"
)
self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.sequences_reduction_ratio = sequences_reduction_ratio
if sequences_reduction_ratio > 1:
self.sequence_reduction = nn.Conv2d(
hidden_size, hidden_size, kernel_size=sequences_reduction_ratio, stride=sequences_reduction_ratio
)
self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
def transpose_for_scores(self, hidden_states: int) -> torch.Tensor:
new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
hidden_states = hidden_states.view(new_shape)
return hidden_states.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
height: int,
width: int,
output_attentions: bool = False,
) -> Tuple[torch.Tensor]:
query_layer = self.transpose_for_scores(self.query(hidden_states))
if self.sequences_reduction_ratio > 1:
batch_size, seq_len, num_channels = hidden_states.shape
# Reshape to (batch_size, num_channels, height, width)
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
# Apply sequence reduction
hidden_states = self.sequence_reduction(hidden_states)
# Reshape back to (batch_size, seq_len, num_channels)
hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1)
hidden_states = self.layer_norm(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class PvtAttention(nn.Module):
def __init__(
self, config: PvtConfig, hidden_size: int, num_attention_heads: int, sequences_reduction_ratio: float
):
super().__init__()
self.self = PvtEfficientSelfAttention(
config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
sequences_reduction_ratio=sequences_reduction_ratio,
)
self.output = PvtSelfOutput(config, hidden_size=hidden_size)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False
) -> Tuple[torch.Tensor]:
self_outputs = self.self(hidden_states, height, width, output_attentions)
attention_output = self.output(self_outputs[0])
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class PvtFFN(nn.Module):
def __init__(
self,
config: PvtConfig,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
):
super().__init__()
out_features = out_features if out_features is not None else in_features
self.dense1 = nn.Linear(in_features, hidden_features)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.dense2 = nn.Linear(hidden_features, out_features)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense1(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense2(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class PvtLayer(nn.Module):
def __init__(
self,
config: PvtConfig,
hidden_size: int,
num_attention_heads: int,
drop_path: float,
sequences_reduction_ratio: float,
mlp_ratio: float,
):
super().__init__()
self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
self.attention = PvtAttention(
config=config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
sequences_reduction_ratio=sequences_reduction_ratio,
)
self.drop_path = PvtDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
mlp_hidden_size = int(hidden_size * mlp_ratio)
self.mlp = PvtFFN(config=config, in_features=hidden_size, hidden_features=mlp_hidden_size)
def forward(self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False):
self_attention_outputs = self.attention(
hidden_states=self.layer_norm_1(hidden_states),
height=height,
width=width,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:]
attention_output = self.drop_path(attention_output)
hidden_states = attention_output + hidden_states
mlp_output = self.mlp(self.layer_norm_2(hidden_states))
mlp_output = self.drop_path(mlp_output)
layer_output = hidden_states + mlp_output
outputs = (layer_output,) + outputs
return outputs
class PvtEncoder(nn.Module):
def __init__(self, config: PvtConfig):
super().__init__()
self.config = config
# stochastic depth decay rule
drop_path_decays = torch.linspace(0, config.drop_path_rate, sum(config.depths)).tolist()
# patch embeddings
embeddings = []
for i in range(config.num_encoder_blocks):
embeddings.append(
PvtPatchEmbeddings(
config=config,
image_size=config.image_size if i == 0 else self.config.image_size // (2 ** (i + 1)),
patch_size=config.patch_sizes[i],
stride=config.strides[i],
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
hidden_size=config.hidden_sizes[i],
cls_token=i == config.num_encoder_blocks - 1,
)
)
self.patch_embeddings = nn.ModuleList(embeddings)
# Transformer blocks
blocks = []
cur = 0
for i in range(config.num_encoder_blocks):
# each block consists of layers
layers = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i]):
layers.append(
PvtLayer(
config=config,
hidden_size=config.hidden_sizes[i],
num_attention_heads=config.num_attention_heads[i],
drop_path=drop_path_decays[cur + j],
sequences_reduction_ratio=config.sequence_reduction_ratios[i],
mlp_ratio=config.mlp_ratios[i],
)
)
blocks.append(nn.ModuleList(layers))
self.block = nn.ModuleList(blocks)
# Layer norms
self.layer_norm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
batch_size = pixel_values.shape[0]
num_blocks = len(self.block)
hidden_states = pixel_values
for idx, (embedding_layer, block_layer) in enumerate(zip(self.patch_embeddings, self.block)):
# first, obtain patch embeddings
hidden_states, height, width = embedding_layer(hidden_states)
# second, send embeddings through blocks
for block in block_layer:
layer_outputs = block(hidden_states, height, width, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if idx != num_blocks - 1:
hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class PvtPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PvtConfig
base_model_prefix = "pvt"
main_input_name = "pixel_values"
_no_split_modules = []
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, PvtPatchEmbeddings):
module.position_embeddings.data = nn.init.trunc_normal_(
module.position_embeddings.data,
mean=0.0,
std=self.config.initializer_range,
)
if module.cls_token is not None:
module.cls_token.data = nn.init.trunc_normal_(
module.cls_token.data,
mean=0.0,
std=self.config.initializer_range,
)
PVT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~PvtConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PVT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PvtImageProcessor.__call__`]
for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Pvt encoder outputting raw hidden-states without any specific head on top.",
PVT_START_DOCSTRING,
)
class PvtModel(PvtPreTrainedModel):
def __init__(self, config: PvtConfig):
super().__init__(config)
self.config = config
# hierarchical Transformer encoder
self.encoder = PvtEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(PVT_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""
Pvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
""",
PVT_START_DOCSTRING,
)
class PvtForImageClassification(PvtPreTrainedModel):
def __init__(self, config: PvtConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.pvt = PvtModel(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PVT_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor],
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.pvt(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output[:, 0, :])
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = ["PvtForImageClassification", "PvtModel", "PvtPreTrainedModel"]
```
|
==============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 0.97 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pvt_v2\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_pvt_v2 import *
from .modeling_pvt_v2 import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==========================================================================================================================================
SOURCE CODE FILE: configuration_pvt_v2.py
LINES: 1
SIZE: 7.80 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pvt_v2\configuration_pvt_v2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pvt V2 model configuration"""
from typing import Callable, List, Tuple, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
class PvtV2Config(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PvtV2Model`]. It is used to instantiate a Pvt V2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Pvt V2 B0
[OpenGVLab/pvt_v2_b0](https://huggingface.co/OpenGVLab/pvt_v2_b0) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`Union[int, Tuple[int, int]]`, *optional*, defaults to 224):
The input image size. Pass int value for square image, or tuple of (height, width).
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
num_encoder_blocks (`[int]`, *optional*, defaults to 4):
The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
The number of layers in each encoder block.
sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
Spatial reduction ratios in each encoder block.
hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`):
Dimension of each of the encoder blocks.
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
Patch size for overlapping patch embedding before each encoder block.
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
Stride for overlapping patch embedding before each encoder block.
num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
Number of attention heads for each attention layer in each block of the Transformer encoder.
mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`):
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
encoder blocks.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether or not a learnable bias should be added to the queries, keys and values.
linear_attention (`bool`, *optional*, defaults to `False`):
Use linear attention complexity. If set to True, `sr_ratio` is ignored and average pooling is used for
dimensionality reduction in the attention layers rather than strided convolution.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage.
Example:
```python
>>> from transformers import PvtV2Model, PvtV2Config
>>> # Initializing a pvt_v2_b0 style configuration
>>> configuration = PvtV2Config()
>>> # Initializing a model from the OpenGVLab/pvt_v2_b0 style configuration
>>> model = PvtV2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "pvt_v2"
def __init__(
self,
image_size: Union[int, Tuple[int, int]] = 224,
num_channels: int = 3,
num_encoder_blocks: int = 4,
depths: List[int] = [2, 2, 2, 2],
sr_ratios: List[int] = [8, 4, 2, 1],
hidden_sizes: List[int] = [32, 64, 160, 256],
patch_sizes: List[int] = [7, 3, 3, 3],
strides: List[int] = [4, 2, 2, 2],
num_attention_heads: List[int] = [1, 2, 5, 8],
mlp_ratios: List[int] = [8, 8, 4, 4],
hidden_act: Union[str, Callable] = "gelu",
hidden_dropout_prob: float = 0.0,
attention_probs_dropout_prob: float = 0.0,
initializer_range: float = 0.02,
drop_path_rate: float = 0.0,
layer_norm_eps: float = 1e-6,
qkv_bias: bool = True,
linear_attention: bool = False,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
image_size = (image_size, image_size) if isinstance(image_size, int) else image_size
self.image_size = image_size
self.num_channels = num_channels
self.num_encoder_blocks = num_encoder_blocks
self.depths = depths
self.sr_ratios = sr_ratios
self.hidden_sizes = hidden_sizes
self.patch_sizes = patch_sizes
self.strides = strides
self.mlp_ratios = mlp_ratios
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.drop_path_rate = drop_path_rate
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.linear_attention = linear_attention
self.stage_names = [f"stage{idx}" for idx in range(1, len(depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
__all__ = ["PvtV2Config"]
```
|
=====================================================================================================================================
SOURCE CODE FILE: modeling_pvt_v2.py
LINES: 1
SIZE: 28.82 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\pvt_v2\modeling_pvt_v2.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2024 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch PVTv2 model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput, BaseModelOutput, ImageClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_pvt_v2 import PvtV2Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "PvtV2Config"
_CHECKPOINT_FOR_DOC = "OpenGVLab/pvt_v2_b0"
_EXPECTED_OUTPUT_SHAPE = [1, 256, 7, 7]
_IMAGE_CLASS_CHECKPOINT = "OpenGVLab/pvt_v2_b0"
_IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_281" # ImageNet ID for "tabby, tabby cat"
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Pvt
class PvtV2DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class PvtV2OverlapPatchEmbeddings(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, config: PvtV2Config, layer_idx: int):
super().__init__()
patch_size = config.patch_sizes[layer_idx]
patch_size = (patch_size, patch_size) if isinstance(patch_size, int) else patch_size
stride = config.strides[layer_idx]
num_channels = config.num_channels if layer_idx == 0 else config.hidden_sizes[layer_idx - 1]
hidden_size = config.hidden_sizes[layer_idx]
self.patch_size = patch_size
self.proj = nn.Conv2d(
num_channels,
hidden_size,
kernel_size=patch_size,
stride=stride,
padding=(patch_size[0] // 2, patch_size[1] // 2),
)
self.layer_norm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
def forward(self, pixel_values):
embeddings = self.proj(pixel_values)
_, _, height, width = embeddings.shape
embeddings = embeddings.flatten(2).transpose(1, 2)
embeddings = self.layer_norm(embeddings)
return embeddings, height, width
class PvtV2DepthWiseConv(nn.Module):
"""
Depth-wise (DW) convolution to infuse positional information using zero-padding. Depth-wise convolutions
have an equal number of groups to the number of input channels, meaning one filter per input channel. This
reduces the overall parameters and compute costs since the key purpose of this layer is position encoding.
"""
def __init__(self, config: PvtV2Config, dim: int = 768):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, hidden_states, height, width):
batch_size, seq_len, num_channels = hidden_states.shape
hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width)
hidden_states = self.dwconv(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
return hidden_states
class PvtV2SelfAttention(nn.Module):
"""Efficient self-attention mechanism."""
def __init__(self, config: PvtV2Config, hidden_size: int, num_attention_heads: int, spatial_reduction_ratio: int):
super().__init__()
self.linear_attention = config.linear_attention
self.pruned_heads = set()
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
f"heads ({self.num_attention_heads})"
)
self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.attn_drop = nn.Dropout(config.attention_probs_dropout_prob)
self.proj = nn.Linear(self.hidden_size, self.hidden_size)
self.proj_drop = nn.Dropout(config.hidden_dropout_prob)
self.spatial_reduction_ratio = spatial_reduction_ratio
if self.linear_attention:
self.pool = nn.AdaptiveAvgPool2d(7)
self.spatial_reduction = nn.Conv2d(self.hidden_size, self.hidden_size, kernel_size=1, stride=1)
self.layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
self.act = nn.GELU()
elif spatial_reduction_ratio > 1:
self.spatial_reduction = nn.Conv2d(
self.hidden_size, self.hidden_size, kernel_size=spatial_reduction_ratio, stride=spatial_reduction_ratio
)
self.layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
def transpose_for_scores(self, hidden_states) -> torch.Tensor:
new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
hidden_states = hidden_states.view(new_shape)
return hidden_states.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
height: int,
width: int,
output_attentions: bool = False,
) -> Tuple[torch.Tensor]:
batch_size, seq_len, num_channels = hidden_states.shape
query_layer = self.transpose_for_scores(self.query(hidden_states))
if self.linear_attention:
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
hidden_states = (
self.spatial_reduction(self.pool(hidden_states)).reshape(batch_size, num_channels, -1).permute(0, 2, 1)
)
hidden_states = self.act(self.layer_norm(hidden_states))
elif self.spatial_reduction_ratio > 1:
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
hidden_states = (
self.spatial_reduction(hidden_states).reshape(batch_size, num_channels, -1).permute(0, 2, 1)
)
hidden_states = self.layer_norm(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attn_drop(attention_probs)
context_layer = (attention_probs @ value_layer).transpose(1, 2).reshape(batch_size, seq_len, num_channels)
context_layer = self.proj(context_layer)
context_layer = self.proj_drop(context_layer)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.query = prune_linear_layer(self.query, index)
self.key = prune_linear_layer(self.key, index)
self.value = prune_linear_layer(self.value, index)
self.proj = prune_linear_layer(self.proj, index, dim=1)
# Update hyper params and store pruned heads
self.num_attention_heads = self.num_attention_heads - len(heads)
self.all_head_size = self.attention_head_size * self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
class PvtV2ConvFeedForwardNetwork(nn.Module):
def __init__(
self,
config: PvtV2Config,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
):
super().__init__()
out_features = out_features if out_features is not None else in_features
self.dense1 = nn.Linear(in_features, hidden_features)
self.dwconv = PvtV2DepthWiseConv(config, hidden_features)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.dense2 = nn.Linear(hidden_features, out_features)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.relu = nn.ReLU() if config.linear_attention else nn.Identity()
def forward(self, hidden_states: torch.Tensor, height, width) -> torch.Tensor:
hidden_states = self.dense1(hidden_states)
hidden_states = self.relu(hidden_states)
hidden_states = self.dwconv(hidden_states, height, width)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense2(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class PvtV2BlockLayer(nn.Module):
def __init__(self, config: PvtV2Config, layer_idx: int, drop_path: float = 0.0):
super().__init__()
hidden_size: int = config.hidden_sizes[layer_idx]
num_attention_heads: int = config.num_attention_heads[layer_idx]
spatial_reduction_ratio: int = config.sr_ratios[layer_idx]
mlp_ratio: float = config.mlp_ratios[layer_idx]
self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
self.attention = PvtV2SelfAttention(
config=config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
spatial_reduction_ratio=spatial_reduction_ratio,
)
self.drop_path = PvtV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps)
mlp_hidden_size = int(hidden_size * mlp_ratio)
self.mlp = PvtV2ConvFeedForwardNetwork(config=config, in_features=hidden_size, hidden_features=mlp_hidden_size)
def forward(self, hidden_states: torch.Tensor, height: int, width: int, output_attentions: bool = False):
self_attention_outputs = self.attention(
hidden_states=self.layer_norm_1(hidden_states),
height=height,
width=width,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:]
attention_output = self.drop_path(attention_output)
hidden_states = attention_output + hidden_states
mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width)
mlp_output = self.drop_path(mlp_output)
layer_output = hidden_states + mlp_output
outputs = (layer_output,) + outputs
return outputs
class PvtV2EncoderLayer(nn.Module):
def __init__(self, config: PvtV2Config, layer_idx: int):
super().__init__()
self.patch_embedding = PvtV2OverlapPatchEmbeddings(
config=config,
layer_idx=layer_idx,
)
# Transformer block
# stochastic depth decay rule
drop_path_decays = torch.linspace(0, config.drop_path_rate, sum(config.depths)).tolist()
block_layers = []
for block_idx in range(config.depths[layer_idx]):
block_layers.append(
PvtV2BlockLayer(
config=config,
layer_idx=layer_idx,
drop_path=drop_path_decays[sum(config.depths[:layer_idx]) + block_idx],
)
)
self.blocks = nn.ModuleList(block_layers)
# Layer norm
self.layer_norm = nn.LayerNorm(config.hidden_sizes[layer_idx], eps=config.layer_norm_eps)
def forward(self, hidden_states, output_attentions):
all_self_attentions = () if output_attentions else None
# first, obtain patch embeddings
hidden_states, height, width = self.patch_embedding(hidden_states)
# second, send embeddings through blocks
for block in self.blocks:
layer_outputs = block(hidden_states, height, width, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions += (layer_outputs[1],)
# third, apply layer norm
hidden_states = self.layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (all_self_attentions,)
return outputs, height, width
class PvtV2Encoder(nn.Module):
def __init__(self, config: PvtV2Config):
super().__init__()
self.config = config
self.gradient_checkpointing = False
# encoder layers
self.layers = nn.ModuleList([PvtV2EncoderLayer(config, i) for i in range(config.num_encoder_blocks)])
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
batch_size = pixel_values.shape[0]
hidden_states = pixel_values
for idx, layer in enumerate(self.layers):
if self.gradient_checkpointing and self.training:
layer_output = self._gradient_checkpointing_func(layer.__call__, hidden_states, output_attentions)
else:
layer_output = layer(hidden_states, output_attentions)
outputs, height, width = layer_output
hidden_states = outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[1],)
# reshape back to (batch_size, num_channels, height, width)
hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class PvtV2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = PvtV2Config
base_model_prefix = "pvt_v2"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv2d):
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
fan_out //= module.groups
module.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if module.bias is not None:
module.bias.data.zero_()
PVT_V2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~PvtV2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
PVT_V2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`PvtImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Pvt-v2 encoder outputting raw hidden-states without any specific head on top.",
PVT_V2_START_DOCSTRING,
)
class PvtV2Model(PvtV2PreTrainedModel):
def __init__(self, config: PvtV2Config):
super().__init__(config)
self.config = config
# hierarchical Transformer encoder
self.encoder = PvtV2Encoder(config)
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(PVT_V2_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""
Pvt-v2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.
""",
PVT_V2_START_DOCSTRING,
)
class PvtV2ForImageClassification(PvtV2PreTrainedModel):
def __init__(self, config: PvtV2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.pvt_v2 = PvtV2Model(config)
# Classifier head
self.classifier = (
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(PVT_V2_INPUTS_DOCSTRING.format("(batch_size, channels, height, width)"))
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor],
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.pvt_v2(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# convert last hidden states to (batch_size, height*width, hidden_size)
batch_size = sequence_output.shape[0]
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
sequence_output = sequence_output.permute(0, 2, 3, 1)
sequence_output = sequence_output.reshape(batch_size, -1, self.config.hidden_sizes[-1])
# global average pooling
sequence_output = sequence_output.mean(dim=1)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
PVTv2 backbone, to be used with frameworks like DETR and MaskFormer.
""",
PVT_V2_START_DOCSTRING,
)
class PvtV2Backbone(PvtV2Model, BackboneMixin):
def __init__(self, config: PvtV2Config):
super().__init__(config)
super()._init_backbone(config)
self.num_features = config.hidden_sizes
@add_start_docstrings_to_model_forward(PVT_V2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("OpenGVLab/pvt_v2_b0")
>>> model = AutoBackbone.from_pretrained(
... "OpenGVLab/pvt_v2_b0", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 256, 7, 7]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.encoder(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
)
hidden_states = outputs.hidden_states
feature_maps = ()
for idx, stage in enumerate(self.stage_names):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
__all__ = ["PvtV2ForImageClassification", "PvtV2Model", "PvtV2PreTrainedModel", "PvtV2Backbone"]
```
|
==================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.04 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\qwen2_5_vl\__init__.py
ENCODING: utf-8
```py
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_qwen2_5_vl import *
from .modeling_qwen2_5_vl import *
from .processing_qwen2_5_vl import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
==================================================================================================================================================
SOURCE CODE FILE: configuration_qwen2_5_vl.py
LINES: 1
SIZE: 13.44 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\qwen2_5_vl\configuration_qwen2_5_vl.py
ENCODING: utf-8
```py
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# This file was automatically generated from src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_qwen2_5_vl.py file directly. One of our CI enforces this.
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# coding=utf-8
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class Qwen2_5_VLVisionConfig(PretrainedConfig):
model_type = "qwen2_5_vl"
base_config_key = "vision_config"
def __init__(
self,
depth=32,
hidden_size=3584,
hidden_act="silu",
intermediate_size=3420,
num_heads=16,
in_channels=3,
patch_size=14,
spatial_merge_size=2,
temporal_patch_size=2,
tokens_per_second=4,
window_size=112,
out_hidden_size=3584,
fullatt_block_indexes=[7, 15, 23, 31],
**kwargs,
):
super().__init__(**kwargs)
self.depth = depth
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.num_heads = num_heads
self.in_channels = in_channels
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.temporal_patch_size = temporal_patch_size
self.tokens_per_second = tokens_per_second
self.window_size = window_size
self.fullatt_block_indexes = fullatt_block_indexes
self.out_hidden_size = out_hidden_size
class Qwen2_5_VLConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen2_5_VLModel`]. It is used to instantiate a
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 152064):
Vocabulary size of the Qwen2_5_VL model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen2_5_VLModel`]
hidden_size (`int`, *optional*, defaults to 8192):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 29568):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 80):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 80):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
vision_config (`Dict`, *optional*):
The config for the visual encoder initialization.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
```python
>>> from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLConfig
>>> # Initializing a Qwen2_5_VL style configuration
>>> configuration = Qwen2_5_VLConfig()
>>> # Initializing a model from the Qwen2-VL-7B style configuration
>>> model = Qwen2_5_VLForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen2_5_vl"
sub_configs = {"vision_config": Qwen2_5_VLVisionConfig}
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `Qwen2_5_VL`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=152064,
hidden_size=8192,
intermediate_size=29568,
num_hidden_layers=80,
num_attention_heads=64,
num_key_value_heads=8,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-05,
use_cache=True,
tie_word_embeddings=False,
rope_theta=1000000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=80,
attention_dropout=0.0,
vision_config=None,
rope_scaling=None,
**kwargs,
):
if isinstance(vision_config, dict):
self.vision_config = self.sub_configs["vision_config"](**vision_config)
elif vision_config is None:
self.vision_config = self.sub_configs["vision_config"]()
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.rope_scaling = rope_scaling
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
# and change type from 'mrope' to 'default' because `mrope` does default RoPE calculations
# one can set it to "linear"/"dynamic" etc. to have scaled RoPE
# TODO: @raushan update config in the hub
if self.rope_scaling is not None and "type" in self.rope_scaling:
if self.rope_scaling["type"] == "mrope":
self.rope_scaling["type"] = "default"
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self, ignore_keys={"mrope_section"})
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
__all__ = ["Qwen2_5_VLConfig"]
```
|
=============================================================================================================================================
SOURCE CODE FILE: modeling_qwen2_5_vl.py
LINES: 1
SIZE: 97.39 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\qwen2_5_vl\modeling_qwen2_5_vl.py
ENCODING: utf-8
```py
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# This file was automatically generated from src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_qwen2_5_vl.py file directly. One of our CI enforces this.
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# coding=utf-8
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
from ...modeling_outputs import BaseModelOutputWithPast, ModelOutput
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_qwen2_5_vl import Qwen2_5_VLConfig, Qwen2_5_VLVisionConfig
if is_flash_attn_available():
from ...modeling_flash_attention_utils import apply_rotary_emb, flash_attn_varlen_func
if is_flash_attn_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Qwen2_5_VLConfig"
class Qwen2_5_VLMLP(nn.Module):
def __init__(self, config, bias: bool = False):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_state):
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
class Qwen2_5_VisionPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 14,
temporal_patch_size: int = 2,
in_channels: int = 3,
embed_dim: int = 1152,
) -> None:
super().__init__()
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.in_channels = in_channels
self.embed_dim = embed_dim
kernel_size = [temporal_patch_size, patch_size, patch_size]
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
target_dtype = self.proj.weight.dtype
hidden_states = hidden_states.view(
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
)
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
return hidden_states
class Qwen2_5_VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
freqs = torch.outer(seq, self.inv_freq)
return freqs
class Qwen2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Qwen2RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Qwen2_5_VLPatchMerger(nn.Module):
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size**2)
self.ln_q = Qwen2RMSNorm(context_dim, eps=1e-6)
self.mlp = nn.Sequential(
nn.Linear(self.hidden_size, self.hidden_size),
nn.GELU(),
nn.Linear(self.hidden_size, dim),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
return x
def apply_rotary_pos_emb_flashatt(
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
cos = cos.chunk(2, dim=-1)[0].contiguous()
sin = sin.chunk(2, dim=-1)[0].contiguous()
q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q)
k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k)
return q_embed, k_embed
class Qwen2_5_VLVisionFlashAttention2(nn.Module):
def __init__(self, dim: int, num_heads: int = 16) -> None:
super().__init__()
self.num_heads = num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=True)
self.proj = nn.Linear(dim, dim)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
seq_length = hidden_states.shape[0]
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be "
"removed and `position_embeddings` will be mandatory."
)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
cos = emb.cos()
sin = emb.sin()
else:
cos, sin = position_embeddings
q, k = apply_rotary_pos_emb_flashatt(q.unsqueeze(0), k.unsqueeze(0), cos, sin)
q = q.squeeze(0)
k = k.squeeze(0)
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
seq_length, -1
)
attn_output = self.proj(attn_output)
return attn_output
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_vision(
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
orig_q_dtype = q.dtype
orig_k_dtype = k.dtype
q, k = q.float(), k.float()
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
q_embed = q_embed.to(orig_q_dtype)
k_embed = k_embed.to(orig_k_dtype)
return q_embed, k_embed
class Qwen2_5_VLVisionAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 16) -> None:
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=True)
self.proj = nn.Linear(dim, dim)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
seq_length = hidden_states.shape[0]
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be "
"removed and `position_embeddings` will be mandatory."
)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
cos = emb.cos()
sin = emb.sin()
else:
cos, sin = position_embeddings
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin)
attention_mask = torch.full(
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
)
for i in range(1, len(cu_seqlens)):
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0
q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
attn_output = torch.matmul(attn_weights, v)
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output)
return attn_output
class Qwen2_5_VLVisionSdpaAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 16) -> None:
super().__init__()
self.num_heads = num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=True)
self.proj = nn.Linear(dim, dim)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
seq_length = hidden_states.shape[0]
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be "
"removed and `position_embeddings` will be mandatory."
)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
cos = emb.cos()
sin = emb.sin()
else:
cos, sin = position_embeddings
q, k = apply_rotary_pos_emb_vision(q, k, cos, sin)
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
for i in range(1, len(cu_seqlens)):
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
attn_output = F.scaled_dot_product_attention(
q.unsqueeze(0), k.unsqueeze(0), v.unsqueeze(0), attention_mask, dropout_p=0.0
)
attn_output = attn_output.squeeze(0).transpose(0, 1)
attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output)
return attn_output
QWEN2_5_VL_VISION_ATTENTION_CLASSES = {
"eager": Qwen2_5_VLVisionAttention,
"flash_attention_2": Qwen2_5_VLVisionFlashAttention2,
"sdpa": Qwen2_5_VLVisionSdpaAttention,
}
class Qwen2_5_VLVisionBlock(nn.Module):
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
super().__init__()
self.norm1 = Qwen2RMSNorm(config.hidden_size, eps=1e-6)
self.norm2 = Qwen2RMSNorm(config.hidden_size, eps=1e-6)
self.attn = QWEN2_5_VL_VISION_ATTENTION_CLASSES[attn_implementation](
config.hidden_size, num_heads=config.num_heads
)
self.mlp = Qwen2_5_VLMLP(config, bias=True)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
hidden_states = hidden_states + self.attn(
self.norm1(hidden_states),
cu_seqlens=cu_seqlens,
rotary_pos_emb=rotary_pos_emb,
position_embeddings=position_embeddings,
)
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
return hidden_states
Qwen2_5_VL_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Qwen2_5_VLConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Qwen2_5_VL Model outputting raw hidden-states without any specific head on top.",
Qwen2_5_VL_START_DOCSTRING,
)
class Qwen2_5_VLPreTrainedModel(PreTrainedModel):
config_class = Qwen2_5_VLConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Qwen2_5_VLDecoderLayer", "Qwen2_5_VLVisionBlock"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = False # TODO (joao): fix. torch.compile failing probably due to `cache_positions`
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv3d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class Qwen2_5_VisionTransformerPretrainedModel(Qwen2_5_VLPreTrainedModel):
config_class = Qwen2_5_VLVisionConfig
_no_split_modules = ["Qwen2_5_VLVisionBlock"]
def __init__(self, config, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.spatial_merge_size = config.spatial_merge_size
self.patch_size = config.patch_size
self.fullatt_block_indexes = config.fullatt_block_indexes
self.window_size = config.window_size
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
self.patch_embed = Qwen2_5_VisionPatchEmbed(
patch_size=config.patch_size,
temporal_patch_size=config.temporal_patch_size,
in_channels=config.in_channels,
embed_dim=config.hidden_size,
)
head_dim = config.hidden_size // config.num_heads
self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList(
[Qwen2_5_VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)]
)
self.merger = Qwen2_5_VLPatchMerger(
dim=config.out_hidden_size,
context_dim=config.hidden_size,
spatial_merge_size=config.spatial_merge_size,
)
self.gradient_checkpointing = False
def rot_pos_emb(self, grid_thw):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def get_window_index(self, grid_thw):
window_index: list = []
cu_window_seqlens: list = [0]
window_index_id = 0
vit_merger_window_size = self.window_size // self.spatial_merge_size // self.patch_size
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h, llm_grid_w = (
grid_h // self.spatial_merge_size,
grid_w // self.spatial_merge_size,
)
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
"""
Args:
hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`):
The final hidden states of the model.
grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`):
The temporal, height and width of feature shape of each image in LLM.
Returns:
`torch.Tensor`: hidden_states.
"""
hidden_states = self.patch_embed(hidden_states)
rotary_pos_emb = self.rot_pos_emb(grid_thw)
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
cu_window_seqlens = torch.tensor(
cu_window_seqlens,
device=hidden_states.device,
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
seq_len, _ = hidden_states.size()
hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
hidden_states = hidden_states[window_index, :, :]
hidden_states = hidden_states.reshape(seq_len, -1)
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
dim=0,
# Select dtype based on the following factors:
# - FA2 requires that cu_seqlens_q must have dtype int32
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
# See https://github.com/huggingface/transformers/pull/34852 for more information
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for layer_num, blk in enumerate(self.blocks):
if layer_num in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
else:
cu_seqlens_now = cu_window_seqlens
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
blk.__call__, hidden_states, cu_seqlens_now, None, position_embeddings
)
else:
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens_now, position_embeddings=position_embeddings)
hidden_states = self.merger(hidden_states)
reverse_indices = torch.argsort(window_index)
hidden_states = hidden_states[reverse_indices, :]
return hidden_states
class Qwen2_5_VLRotaryEmbedding(nn.Module):
def __init__(self, config: Qwen2_5_VLConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
# In contrast to other models, Qwen2_5_VL has different position ids for the grids
# So we expand the inv_freq to shape (3, ...)
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class Qwen2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).
Explanation:
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately.
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
difference with modern LLMs.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
mrope_section(`List(int)`):
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
mrope_section = mrope_section * 2
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
unsqueeze_dim
)
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
unsqueeze_dim
)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Qwen2_5_VLAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: Qwen2_5_VLConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.is_causal = True
self.attention_dropout = config.attention_dropout
self.rope_scaling = config.rope_scaling
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.rotary_emb = Qwen2_5_VLRotaryEmbedding(config=config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# Fix precision issues in Qwen2-VL float16 inference
# Replace inf values with zeros in attention weights to prevent NaN propagation
if query_states.dtype == torch.float16:
attn_weights = torch.where(torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class Qwen2_5_VLFlashAttention2(Qwen2_5_VLAttention):
"""
Qwen2_5_VL flash attention module, following Qwen2_5_VL attention module. This module inherits from `Qwen2_5_VLAttention`
as the weights of the module stays untouched. The only required change would be on the forward pass
where it needs to correctly call the public API of flash attention and deal with padding tokens
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
config.max_window_layers layers.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
# Because the input can be padded, the absolute sequence length depends on the max position id.
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
if (
self.config.use_sliding_window
and getattr(self.config, "sliding_window", None) is not None
and self.layer_idx >= self.config.max_window_layers
):
sliding_window = self.config.sliding_window
else:
sliding_window = None
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
sliding_window=sliding_window,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class Qwen2_5_VLSdpaAttention(Qwen2_5_VLAttention):
"""
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from Qwen2Attention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"Qwen2_5_VLModel is using Qwen2_5_VLSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
QWEN2_5_VL_ATTENTION_CLASSES = {
"eager": Qwen2_5_VLAttention,
"flash_attention_2": Qwen2_5_VLFlashAttention2,
"sdpa": Qwen2_5_VLSdpaAttention,
}
class Qwen2_5_VLDecoderLayer(nn.Module):
def __init__(self, config: Qwen2_5_VLConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
logger.warning_once(
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
"unexpected results may be encountered."
)
self.self_attn = QWEN2_5_VL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
self.mlp = Qwen2MLP(config)
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
@add_start_docstrings(
"The bare Qwen2_5_VL Model outputting raw hidden-states without any specific head on top.",
Qwen2_5_VL_START_DOCSTRING,
)
class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
def __init__(self, config: Qwen2_5_VLConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Qwen2_5_VLDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._attn_implementation = config._attn_implementation
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Qwen2_5_VLRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# torch.jit.trace() doesn't support cache objects in the output
if use_cache and past_key_values is None and not torch.jit.is_tracing():
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
# the hard coded `3` is for temporal, height and width.
if position_ids is None:
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
elif position_ids.dim() == 2:
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Qwen2_5_VL. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: Qwen2_5_VLConfig,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to place the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`Qwen2_5_VLConfig`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
@dataclass
class Qwen2_5_VLCausalLMOutputWithPast(ModelOutput):
"""
Base class for Qwen2_5_VL causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
The rope index difference between sequence length and multimodal rope.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
rope_deltas: Optional[torch.LongTensor] = None
QWEN2_5_VL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
pixel_values (`torch.FloatTensor` of shape `(seq_length, num_channels * image_size * image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
[`Qwen2_5_VLImageProcessor`] for processing images.
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
The tensors corresponding to the input videos. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
[`Qwen2_5_VLImageProcessor`] for processing videos.
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
The temporal, height and width of feature shape of each image in LLM.
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
The temporal, height and width of feature shape of each video in LLM.
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
The rope index difference between sequence length and multimodal rope.
"""
class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
config_class = Qwen2_5_VLConfig
_no_split_modules = ["Qwen2_5_VLDecoderLayer", "Qwen2_5_VLVisionBlock"]
def __init__(self, config):
super().__init__(config)
self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(config.vision_config)
self.model = Qwen2_5_VLModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.rope_deltas = None # cache rope_deltas here
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def get_rope_index(
self,
input_ids: Optional[torch.LongTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
Explanation:
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
Examples:
input_ids: [T T T T T], here T is for text.
temporal position_ids: [0, 1, 2, 3, 4]
height position_ids: [0, 1, 2, 3, 4]
width position_ids: [0, 1, 2, 3, 4]
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
and 1D rotary position embedding for text part.
Examples:
Temporal (Time): 3 patches, representing different segments of the video in time.
Height: 2 patches, dividing each frame vertically.
Width: 2 patches, dividing each frame horizontally.
We also have some important parameters:
fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second.
tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity.
temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames.
interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs.
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100]
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
text temporal position_ids: [101, 102, 103, 104, 105]
text height position_ids: [101, 102, 103, 104, 105]
text width position_ids: [101, 102, 103, 104, 105]
Here we calculate the text start position_ids as the max vision position_ids plus 1.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
The temporal, height and width of feature shape of each image in LLM.
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
The temporal, height and width of feature shape of each video in LLM.
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
Returns:
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
"""
spatial_merge_size = self.config.vision_config.spatial_merge_size
image_token_id = self.config.image_token_id
video_token_id = self.config.video_token_id
vision_start_token_id = self.config.vision_start_token_id
mrope_position_deltas = []
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
total_input_ids = input_ids
if attention_mask is None:
attention_mask = torch.ones_like(total_input_ids)
position_ids = torch.ones(
3,
input_ids.shape[0],
input_ids.shape[1],
dtype=input_ids.dtype,
device=input_ids.device,
)
image_index, video_index = 0, 0
attention_mask = attention_mask.to(total_input_ids.device)
for i, input_ids in enumerate(total_input_ids):
input_ids = input_ids[attention_mask[i] == 1]
image_nums, video_nums = 0, 0
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
vision_tokens = input_ids[vision_start_indices + 1]
image_nums = (vision_tokens == image_token_id).sum()
video_nums = (vision_tokens == video_token_id).sum()
input_tokens = input_ids.tolist()
llm_pos_ids_list: list = []
st = 0
remain_images, remain_videos = image_nums, video_nums
for _ in range(image_nums + video_nums):
if image_token_id in input_tokens and remain_images > 0:
ed_image = input_tokens.index(image_token_id, st)
else:
ed_image = len(input_tokens) + 1
if video_token_id in input_tokens and remain_videos > 0:
ed_video = input_tokens.index(video_token_id, st)
else:
ed_video = len(input_tokens) + 1
if ed_image < ed_video:
t, h, w = (
image_grid_thw[image_index][0],
image_grid_thw[image_index][1],
image_grid_thw[image_index][2],
)
second_per_grid_t = 0
image_index += 1
remain_images -= 1
ed = ed_image
else:
t, h, w = (
video_grid_thw[video_index][0],
video_grid_thw[video_index][1],
video_grid_thw[video_index][2],
)
if second_per_grid_ts is not None:
second_per_grid_t = second_per_grid_ts[video_index]
else:
second_per_grid_t = 1.0
video_index += 1
remain_videos -= 1
ed = ed_video
llm_grid_t, llm_grid_h, llm_grid_w = (
t.item(),
h.item() // spatial_merge_size,
w.item() // spatial_merge_size,
)
text_len = ed - st
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
range_tensor = torch.arange(llm_grid_t).view(-1, 1)
expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w)
time_tensor = expanded_range * second_per_grid_t * self.config.vision_config.tokens_per_second
time_tensor_long = time_tensor.long()
t_index = time_tensor_long.flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
if st < len(input_tokens):
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
text_len = len(input_tokens) - st
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
return position_ids, mrope_position_deltas
else:
if attention_mask is not None:
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
else:
position_ids = (
torch.arange(input_ids.shape[1], device=input_ids.device)
.view(1, 1, -1)
.expand(3, input_ids.shape[0], -1)
)
mrope_position_deltas = torch.zeros(
[input_ids.shape[0], 1],
device=input_ids.device,
dtype=input_ids.dtype,
)
return position_ids, mrope_position_deltas
@add_start_docstrings_to_model_forward(QWEN2_5_VL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Qwen2_5_VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
>>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
>>> messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is None:
inputs_embeds = self.model.embed_tokens(input_ids)
if pixel_values is not None:
pixel_values = pixel_values.type(self.visual.dtype)
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
n_image_features = image_embeds.shape[0]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
mask = input_ids == self.config.image_token_id
mask_unsqueezed = mask.unsqueeze(-1)
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
image_mask = mask_expanded.to(inputs_embeds.device)
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
if pixel_values_videos is not None:
pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
n_video_features = video_embeds.shape[0]
if n_video_tokens != n_video_features:
raise ValueError(
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
)
mask = input_ids == self.config.video_token_id
mask_unsqueezed = mask.unsqueeze(-1)
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
video_mask = mask_expanded.to(inputs_embeds.device)
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
if attention_mask is not None:
attention_mask = attention_mask.to(inputs_embeds.device)
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
# calculate RoPE index once per generation in the pre-fill stage only
if (
(cache_position is not None and cache_position[0] == 0)
or self.rope_deltas is None
or (past_key_values is None or past_key_values.get_seq_length() == 0)
):
position_ids, rope_deltas = self.get_rope_index(
input_ids,
image_grid_thw,
video_grid_thw,
second_per_grid_ts,
attention_mask,
)
self.rope_deltas = rope_deltas
# then use the prev pre-calculated rope-deltas to get the correct position ids
else:
batch_size, seq_length, _ = inputs_embeds.shape
delta = (
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
if cache_position is not None
else 0
)
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
if cache_position is not None: # otherwise `deltas` is an int `0`
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
position_ids = position_ids.add(delta)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
outputs = self.model(
input_ids=None,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return Qwen2_5_VLCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
rope_deltas=self.rope_deltas,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
pixel_values=None,
pixel_values_videos=None,
image_grid_thw=None,
video_grid_thw=None,
second_per_grid_ts=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
pixel_values=pixel_values,
pixel_values_videos=pixel_values_videos,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
use_cache=use_cache,
**kwargs,
)
# Qwen2-5-VL position_ids are prepareed with rope_deltas in forward
model_inputs["position_ids"] = None
if cache_position[0] != 0:
model_inputs["pixel_values"] = None
model_inputs["pixel_values_videos"] = None
return model_inputs
def _get_image_nums_and_video_nums(
self,
input_ids: Optional[torch.LongTensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Get the number of images and videos for each sample to calculate the separation length of the sample tensor.
These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Returns:
image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`)
video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`)
"""
image_token_id = self.config.image_token_id
video_token_id = self.config.video_token_id
vision_start_token_id = self.config.vision_start_token_id
vision_start_mask = input_ids == vision_start_token_id
vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1)
image_mask = input_ids == image_token_id
video_mask = input_ids == video_token_id
image_nums = torch.sum(vision_first_mask & image_mask, dim=1)
video_nums = torch.sum(vision_first_mask & video_mask, dim=1)
return image_nums, video_nums
def _expand_inputs_for_generation(
self,
expand_size: int = 1,
is_encoder_decoder: bool = False,
input_ids: Optional[torch.LongTensor] = None,
**model_kwargs,
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
# Overwritten -- Support for expanding tensors without a batch size dimension
# e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t
# pixel_values.shape[0] is sum(seqlen_images for samples)
# image_grid_thw.shape[0] is sum(num_images for samples)
if expand_size == 1:
return input_ids, model_kwargs
visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"]
def _expand_dict_for_generation_visual(dict_to_expand):
image_grid_thw = model_kwargs.get("image_grid_thw", None)
video_grid_thw = model_kwargs.get("video_grid_thw", None)
image_nums, video_nums = self._get_image_nums_and_video_nums(input_ids)
def _repeat_interleave_samples(x, lengths, repeat_times):
samples = torch.split(x, lengths)
repeat_args = [repeat_times] + [1] * (x.dim() - 1)
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0)
return result
for key in dict_to_expand:
if key == "pixel_values":
# split images into samples
samples = torch.split(image_grid_thw, list(image_nums))
# compute the sequence length of images for each sample
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
dict_to_expand[key] = _repeat_interleave_samples(
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
)
elif key == "image_grid_thw":
# get the num of images for each sample
lengths = list(image_nums)
dict_to_expand[key] = _repeat_interleave_samples(
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
)
elif key == "pixel_values_videos":
samples = torch.split(video_grid_thw, list(video_nums))
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
dict_to_expand[key] = _repeat_interleave_samples(
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
)
elif key == "video_grid_thw":
lengths = list(video_nums)
dict_to_expand[key] = _repeat_interleave_samples(
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
)
elif key == "second_per_grid_ts":
if not isinstance(dict_to_expand[key], list):
raise TypeError(
f"Expected value for key '{key}' to be a list, but got {type(dict_to_expand[key])} instead."
)
tensor = torch.tensor(dict_to_expand[key])
lengths = list(video_nums)
tensor = _repeat_interleave_samples(tensor, lengths=lengths, repeat_times=expand_size)
dict_to_expand[key] = tensor.tolist()
return dict_to_expand
def _expand_dict_for_generation(dict_to_expand):
for key in dict_to_expand:
if (
key != "cache_position"
and dict_to_expand[key] is not None
and isinstance(dict_to_expand[key], torch.Tensor)
and key not in visual_keys
):
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
return dict_to_expand
# input_ids is required for expanding visual inputs
# If input_ids is unavailable, visual inputs will not be used; therefore, there is no need to expand visual inputs.
if input_ids is not None and input_ids.numel() != 0:
model_kwargs = _expand_dict_for_generation_visual(model_kwargs)
if input_ids is not None:
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
model_kwargs = _expand_dict_for_generation(model_kwargs)
if is_encoder_decoder:
if model_kwargs.get("encoder_outputs") is None:
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
return input_ids, model_kwargs
__all__ = ["Qwen2_5_VLForConditionalGeneration", "Qwen2_5_VLModel", "Qwen2_5_VLPreTrainedModel"]
```
|
============================================================================================================================================
SOURCE CODE FILE: modular_qwen2_5_vl.py
LINES: 1
SIZE: 43.64 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\qwen2_5_vl\modular_qwen2_5_vl.py
ENCODING: utf-8
```py
# coding=utf-8
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Qwen2.5-VL model."""
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss
from transformers.models.qwen2_vl.configuration_qwen2_vl import Qwen2VLConfig
from transformers.models.qwen2_vl.modeling_qwen2_vl import (
PatchEmbed,
PatchMerger,
Qwen2RMSNorm,
Qwen2VLCausalLMOutputWithPast,
Qwen2VLForConditionalGeneration,
Qwen2VLModel,
Qwen2VLPreTrainedModel,
VisionAttention,
VisionRotaryEmbedding,
VisionSdpaAttention,
)
from transformers.models.qwen2_vl.processing_qwen2_vl import Qwen2VLImagesKwargs, Qwen2VLProcessor
from ...activations import ACT2FN
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput, VideoInput
from ...modeling_flash_attention_utils import is_flash_attn_available
from ...processing_utils import ProcessingKwargs, Unpack, VideosKwargs
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
if is_flash_attn_available():
from ...modeling_flash_attention_utils import apply_rotary_emb, flash_attn_varlen_func
logger = logging.get_logger(__name__)
def apply_rotary_pos_emb_flashatt(
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
cos = cos.chunk(2, dim=-1)[0].contiguous()
sin = sin.chunk(2, dim=-1)[0].contiguous()
q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q)
k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k)
return q_embed, k_embed
class Qwen2_5_VLVisionConfig(PretrainedConfig):
model_type = "qwen2_5_vl"
base_config_key = "vision_config"
def __init__(
self,
depth=32,
hidden_size=3584,
hidden_act="silu",
intermediate_size=3420,
num_heads=16,
in_channels=3,
patch_size=14,
spatial_merge_size=2,
temporal_patch_size=2,
tokens_per_second=4,
window_size=112,
out_hidden_size=3584,
fullatt_block_indexes=[7, 15, 23, 31],
**kwargs,
):
super().__init__(**kwargs)
self.depth = depth
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.num_heads = num_heads
self.in_channels = in_channels
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.temporal_patch_size = temporal_patch_size
self.tokens_per_second = tokens_per_second
self.window_size = window_size
self.fullatt_block_indexes = fullatt_block_indexes
self.out_hidden_size = out_hidden_size
class Qwen2_5_VLConfig(Qwen2VLConfig):
model_type = "qwen2_5_vl"
sub_configs = {"vision_config": Qwen2_5_VLVisionConfig}
class Qwen2_5_VLMLP(nn.Module):
def __init__(self, config, bias: bool = False):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_state):
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
class Qwen2_5_VisionPatchEmbed(PatchEmbed):
pass
class Qwen2_5_VisionRotaryEmbedding(VisionRotaryEmbedding):
pass
class Qwen2_5_VLPatchMerger(PatchMerger):
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
super().__init__(dim, context_dim, spatial_merge_size)
self.ln_q = Qwen2RMSNorm(context_dim, eps=1e-6)
class Qwen2_5_VLVisionFlashAttention2(nn.Module):
def __init__(self, dim: int, num_heads: int = 16) -> None:
super().__init__()
self.num_heads = num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=True)
self.proj = nn.Linear(dim, dim)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
seq_length = hidden_states.shape[0]
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be "
"removed and `position_embeddings` will be mandatory."
)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
cos = emb.cos()
sin = emb.sin()
else:
cos, sin = position_embeddings
q, k = apply_rotary_pos_emb_flashatt(q.unsqueeze(0), k.unsqueeze(0), cos, sin)
q = q.squeeze(0)
k = k.squeeze(0)
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
seq_length, -1
)
attn_output = self.proj(attn_output)
return attn_output
class Qwen2_5_VLVisionAttention(VisionAttention):
pass
class Qwen2_5_VLVisionSdpaAttention(VisionSdpaAttention):
pass
QWEN2_5_VL_VISION_ATTENTION_CLASSES = {
"eager": Qwen2_5_VLVisionAttention,
"flash_attention_2": Qwen2_5_VLVisionFlashAttention2,
"sdpa": Qwen2_5_VLVisionSdpaAttention,
}
class Qwen2_5_VLVisionBlock(nn.Module):
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
super().__init__()
self.norm1 = Qwen2RMSNorm(config.hidden_size, eps=1e-6)
self.norm2 = Qwen2RMSNorm(config.hidden_size, eps=1e-6)
self.attn = QWEN2_5_VL_VISION_ATTENTION_CLASSES[attn_implementation](
config.hidden_size, num_heads=config.num_heads
)
self.mlp = Qwen2_5_VLMLP(config, bias=True)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
rotary_pos_emb: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
hidden_states = hidden_states + self.attn(
self.norm1(hidden_states),
cu_seqlens=cu_seqlens,
rotary_pos_emb=rotary_pos_emb,
position_embeddings=position_embeddings,
)
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
return hidden_states
class Qwen2_5_VLPreTrainedModel(Qwen2VLPreTrainedModel):
pass
class Qwen2_5_VisionTransformerPretrainedModel(Qwen2_5_VLPreTrainedModel):
config_class = Qwen2_5_VLVisionConfig
_no_split_modules = ["Qwen2_5_VLVisionBlock"]
def __init__(self, config, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.spatial_merge_size = config.spatial_merge_size
self.patch_size = config.patch_size
self.fullatt_block_indexes = config.fullatt_block_indexes
self.window_size = config.window_size
self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
self.patch_embed = Qwen2_5_VisionPatchEmbed(
patch_size=config.patch_size,
temporal_patch_size=config.temporal_patch_size,
in_channels=config.in_channels,
embed_dim=config.hidden_size,
)
head_dim = config.hidden_size // config.num_heads
self.rotary_pos_emb = Qwen2_5_VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList(
[Qwen2_5_VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)]
)
self.merger = Qwen2_5_VLPatchMerger(
dim=config.out_hidden_size,
context_dim=config.hidden_size,
spatial_merge_size=config.spatial_merge_size,
)
self.gradient_checkpointing = False
def rot_pos_emb(self, grid_thw):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def get_window_index(self, grid_thw):
window_index: list = []
cu_window_seqlens: list = [0]
window_index_id = 0
vit_merger_window_size = self.window_size // self.spatial_merge_size // self.patch_size
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h, llm_grid_w = (
grid_h // self.spatial_merge_size,
grid_w // self.spatial_merge_size,
)
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
"""
Args:
hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`):
The final hidden states of the model.
grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`):
The temporal, height and width of feature shape of each image in LLM.
Returns:
`torch.Tensor`: hidden_states.
"""
hidden_states = self.patch_embed(hidden_states)
rotary_pos_emb = self.rot_pos_emb(grid_thw)
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
cu_window_seqlens = torch.tensor(
cu_window_seqlens,
device=hidden_states.device,
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
seq_len, _ = hidden_states.size()
hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
hidden_states = hidden_states[window_index, :, :]
hidden_states = hidden_states.reshape(seq_len, -1)
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
dim=0,
# Select dtype based on the following factors:
# - FA2 requires that cu_seqlens_q must have dtype int32
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
# See https://github.com/huggingface/transformers/pull/34852 for more information
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for layer_num, blk in enumerate(self.blocks):
if layer_num in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
else:
cu_seqlens_now = cu_window_seqlens
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
blk.__call__, hidden_states, cu_seqlens_now, None, position_embeddings
)
else:
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens_now, position_embeddings=position_embeddings)
hidden_states = self.merger(hidden_states)
reverse_indices = torch.argsort(window_index)
hidden_states = hidden_states[reverse_indices, :]
return hidden_states
class Qwen2_5_VLModel(Qwen2VLModel):
pass
@dataclass
class Qwen2_5_VLCausalLMOutputWithPast(Qwen2VLCausalLMOutputWithPast):
pass
class Qwen2_5_VLForConditionalGeneration(Qwen2VLForConditionalGeneration):
config_class = Qwen2_5_VLConfig
_no_split_modules = ["Qwen2_5_VLDecoderLayer", "Qwen2_5_VLVisionBlock"]
def __init__(self, config):
super().__init__(config)
self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(config.vision_config)
def get_rope_index(
self,
input_ids: Optional[torch.LongTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
Explanation:
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
Examples:
input_ids: [T T T T T], here T is for text.
temporal position_ids: [0, 1, 2, 3, 4]
height position_ids: [0, 1, 2, 3, 4]
width position_ids: [0, 1, 2, 3, 4]
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
and 1D rotary position embedding for text part.
Examples:
Temporal (Time): 3 patches, representing different segments of the video in time.
Height: 2 patches, dividing each frame vertically.
Width: 2 patches, dividing each frame horizontally.
We also have some important parameters:
fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second.
tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity.
temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames.
interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs.
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100]
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
text temporal position_ids: [101, 102, 103, 104, 105]
text height position_ids: [101, 102, 103, 104, 105]
text width position_ids: [101, 102, 103, 104, 105]
Here we calculate the text start position_ids as the max vision position_ids plus 1.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
The temporal, height and width of feature shape of each image in LLM.
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
The temporal, height and width of feature shape of each video in LLM.
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
Returns:
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
"""
spatial_merge_size = self.config.vision_config.spatial_merge_size
image_token_id = self.config.image_token_id
video_token_id = self.config.video_token_id
vision_start_token_id = self.config.vision_start_token_id
mrope_position_deltas = []
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
total_input_ids = input_ids
if attention_mask is None:
attention_mask = torch.ones_like(total_input_ids)
position_ids = torch.ones(
3,
input_ids.shape[0],
input_ids.shape[1],
dtype=input_ids.dtype,
device=input_ids.device,
)
image_index, video_index = 0, 0
attention_mask = attention_mask.to(total_input_ids.device)
for i, input_ids in enumerate(total_input_ids):
input_ids = input_ids[attention_mask[i] == 1]
image_nums, video_nums = 0, 0
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
vision_tokens = input_ids[vision_start_indices + 1]
image_nums = (vision_tokens == image_token_id).sum()
video_nums = (vision_tokens == video_token_id).sum()
input_tokens = input_ids.tolist()
llm_pos_ids_list: list = []
st = 0
remain_images, remain_videos = image_nums, video_nums
for _ in range(image_nums + video_nums):
if image_token_id in input_tokens and remain_images > 0:
ed_image = input_tokens.index(image_token_id, st)
else:
ed_image = len(input_tokens) + 1
if video_token_id in input_tokens and remain_videos > 0:
ed_video = input_tokens.index(video_token_id, st)
else:
ed_video = len(input_tokens) + 1
if ed_image < ed_video:
t, h, w = (
image_grid_thw[image_index][0],
image_grid_thw[image_index][1],
image_grid_thw[image_index][2],
)
second_per_grid_t = 0
image_index += 1
remain_images -= 1
ed = ed_image
else:
t, h, w = (
video_grid_thw[video_index][0],
video_grid_thw[video_index][1],
video_grid_thw[video_index][2],
)
if second_per_grid_ts is not None:
second_per_grid_t = second_per_grid_ts[video_index]
else:
second_per_grid_t = 1.0
video_index += 1
remain_videos -= 1
ed = ed_video
llm_grid_t, llm_grid_h, llm_grid_w = (
t.item(),
h.item() // spatial_merge_size,
w.item() // spatial_merge_size,
)
text_len = ed - st
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
range_tensor = torch.arange(llm_grid_t).view(-1, 1)
expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w)
time_tensor = expanded_range * second_per_grid_t * self.config.vision_config.tokens_per_second
time_tensor_long = time_tensor.long()
t_index = time_tensor_long.flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
if st < len(input_tokens):
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
text_len = len(input_tokens) - st
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
return position_ids, mrope_position_deltas
else:
if attention_mask is not None:
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
else:
position_ids = (
torch.arange(input_ids.shape[1], device=input_ids.device)
.view(1, 1, -1)
.expand(3, input_ids.shape[0], -1)
)
mrope_position_deltas = torch.zeros(
[input_ids.shape[0], 1],
device=input_ids.device,
dtype=input_ids.dtype,
)
return position_ids, mrope_position_deltas
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
>>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
>>> messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is None:
inputs_embeds = self.model.embed_tokens(input_ids)
if pixel_values is not None:
pixel_values = pixel_values.type(self.visual.dtype)
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
n_image_features = image_embeds.shape[0]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
mask = input_ids == self.config.image_token_id
mask_unsqueezed = mask.unsqueeze(-1)
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
image_mask = mask_expanded.to(inputs_embeds.device)
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
if pixel_values_videos is not None:
pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
n_video_features = video_embeds.shape[0]
if n_video_tokens != n_video_features:
raise ValueError(
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
)
mask = input_ids == self.config.video_token_id
mask_unsqueezed = mask.unsqueeze(-1)
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
video_mask = mask_expanded.to(inputs_embeds.device)
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
if attention_mask is not None:
attention_mask = attention_mask.to(inputs_embeds.device)
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
# calculate RoPE index once per generation in the pre-fill stage only
if (
(cache_position is not None and cache_position[0] == 0)
or self.rope_deltas is None
or (past_key_values is None or past_key_values.get_seq_length() == 0)
):
position_ids, rope_deltas = self.get_rope_index(
input_ids,
image_grid_thw,
video_grid_thw,
second_per_grid_ts,
attention_mask,
)
self.rope_deltas = rope_deltas
# then use the prev pre-calculated rope-deltas to get the correct position ids
else:
batch_size, seq_length, _ = inputs_embeds.shape
delta = (
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
if cache_position is not None
else 0
)
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
if cache_position is not None: # otherwise `deltas` is an int `0`
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
position_ids = position_ids.add(delta)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
outputs = self.model(
input_ids=None,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return Qwen2_5_VLCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
rope_deltas=self.rope_deltas,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
pixel_values=None,
pixel_values_videos=None,
image_grid_thw=None,
video_grid_thw=None,
second_per_grid_ts=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
pixel_values=pixel_values,
pixel_values_videos=pixel_values_videos,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
use_cache=use_cache,
**kwargs,
)
# Qwen2-5-VL position_ids are prepareed with rope_deltas in forward
model_inputs["position_ids"] = None
if cache_position[0] != 0:
model_inputs["pixel_values"] = None
model_inputs["pixel_values_videos"] = None
return model_inputs
class Qwen2_5_VLVideosProcessorKwargs(VideosKwargs, total=False):
fps: Union[List[float], float]
class Qwen2_5_VLImagesKwargs(Qwen2VLImagesKwargs):
pass
class Qwen2_5_VLProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: Qwen2_5_VLImagesKwargs
videos_kwargs: Qwen2_5_VLVideosProcessorKwargs
_defaults = {
"text_kwargs": {
"padding": False,
},
"videos_kwargs": {"fps": 2.0},
}
class Qwen2_5_VLProcessor(Qwen2VLProcessor):
r"""
Constructs a Qwen2.5-VL processor which wraps a Qwen2.5-VL image processor and a Qwen2 tokenizer into a single processor.
[`Qwen2_5_VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
[`~Qwen2_5_VLProcessor.__call__`] and [`~Qwen2_5_VLProcessor.decode`] for more information.
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
image_processor_class = "AutoImageProcessor"
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
return names_from_processor + ["second_per_grid_ts"]
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
videos: VideoInput = None,
**kwargs: Unpack[Qwen2_5_VLProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
"""
output_kwargs = self._merge_kwargs(
Qwen2_5_VLProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(images=images, videos=None, **output_kwargs["images_kwargs"])
image_grid_thw = image_inputs["image_grid_thw"]
else:
image_inputs = {}
image_grid_thw = None
if videos is not None:
videos_inputs = self.image_processor(images=None, videos=videos, **output_kwargs["images_kwargs"])
video_grid_thw = videos_inputs["video_grid_thw"]
fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
if isinstance(fps, (int, float)):
second_per_grid_ts = [self.image_processor.temporal_patch_size / fps] * len(video_grid_thw)
elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
second_per_grid_ts = [self.image_processor.temporal_patch_size / tmp for tmp in fps]
else:
raise ValueError(
f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
)
videos_inputs.update({"second_per_grid_ts": second_per_grid_ts})
else:
videos_inputs = {}
video_grid_thw = None
if not isinstance(text, list):
text = [text]
if image_grid_thw is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.image_token in text[i]:
text[i] = text[i].replace(
self.image_token,
"<|placeholder|>" * (image_grid_thw[index].prod() // merge_length),
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.image_token)
if video_grid_thw is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.video_token in text[i]:
text[i] = text[i].replace(
self.video_token,
"<|placeholder|>" * (video_grid_thw[index].prod() // merge_length),
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.video_token)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
__all__ = [
"Qwen2_5_VLConfig",
"Qwen2_5_VLForConditionalGeneration",
"Qwen2_5_VLModel",
"Qwen2_5_VLPreTrainedModel",
"Qwen2_5_VLProcessor",
]
```
|
===============================================================================================================================================
SOURCE CODE FILE: processing_qwen2_5_vl.py
LINES: 1
SIZE: 12.16 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\qwen2_5_vl\processing_qwen2_5_vl.py
ENCODING: utf-8
```py
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# This file was automatically generated from src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_qwen2_5_vl.py file directly. One of our CI enforces this.
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
# coding=utf-8
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput, VideoInput
from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
from ...tokenization_utils_base import PreTokenizedInput, TextInput
class Qwen2_5_VLVideosProcessorKwargs(VideosKwargs, total=False):
fps: Union[List[float], float]
class Qwen2_5_VLImagesKwargs(ImagesKwargs):
min_pixels: Optional[int]
max_pixels: Optional[int]
patch_size: Optional[int]
temporal_patch_size: Optional[int]
merge_size: Optional[int]
class Qwen2_5_VLProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: Qwen2_5_VLImagesKwargs
videos_kwargs: Qwen2_5_VLVideosProcessorKwargs
_defaults = {
"text_kwargs": {
"padding": False,
},
"videos_kwargs": {"fps": 2.0},
}
class Qwen2_5_VLProcessor(ProcessorMixin):
r"""
Constructs a Qwen2.5-VL processor which wraps a Qwen2.5-VL image processor and a Qwen2 tokenizer into a single processor.
[`Qwen2_5_VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
[`~Qwen2_5_VLProcessor.__call__`] and [`~Qwen2_5_VLProcessor.decode`] for more information.
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
super().__init__(image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
videos: VideoInput = None,
**kwargs: Unpack[Qwen2_5_VLProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
"""
output_kwargs = self._merge_kwargs(
Qwen2_5_VLProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(images=images, videos=None, **output_kwargs["images_kwargs"])
image_grid_thw = image_inputs["image_grid_thw"]
else:
image_inputs = {}
image_grid_thw = None
if videos is not None:
videos_inputs = self.image_processor(images=None, videos=videos, **output_kwargs["images_kwargs"])
video_grid_thw = videos_inputs["video_grid_thw"]
fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
if isinstance(fps, (int, float)):
second_per_grid_ts = [self.image_processor.temporal_patch_size / fps] * len(video_grid_thw)
elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
second_per_grid_ts = [self.image_processor.temporal_patch_size / tmp for tmp in fps]
else:
raise ValueError(
f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
)
videos_inputs.update({"second_per_grid_ts": second_per_grid_ts})
else:
videos_inputs = {}
video_grid_thw = None
if not isinstance(text, list):
text = [text]
if image_grid_thw is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.image_token in text[i]:
text[i] = text[i].replace(
self.image_token,
"<|placeholder|>" * (image_grid_thw[index].prod() // merge_length),
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.image_token)
if video_grid_thw is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.video_token in text[i]:
text[i] = text[i].replace(
self.video_token,
"<|placeholder|>" * (video_grid_thw[index].prod() // merge_length),
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.video_token)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(
self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
skip_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
**kwargs:
Additional arguments to be passed to the tokenizer's `batch_decode method`.
Returns:
`List[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
names_from_processor = list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
return names_from_processor + ["second_per_grid_ts"]
__all__ = ["Qwen2_5_VLProcessor"]
```
|
=============================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 2.38 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\qwen2\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_qwen2": ["Qwen2Config"],
"tokenization_qwen2": ["Qwen2Tokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_qwen2_fast"] = ["Qwen2TokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_qwen2"] = [
"Qwen2ForCausalLM",
"Qwen2ForQuestionAnswering",
"Qwen2Model",
"Qwen2PreTrainedModel",
"Qwen2ForSequenceClassification",
"Qwen2ForTokenClassification",
]
if TYPE_CHECKING:
from .configuration_qwen2 import Qwen2Config
from .tokenization_qwen2 import Qwen2Tokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_qwen2_fast import Qwen2TokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_qwen2 import (
Qwen2ForCausalLM,
Qwen2ForQuestionAnswering,
Qwen2ForSequenceClassification,
Qwen2ForTokenClassification,
Qwen2Model,
Qwen2PreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
```
|
===================================================================================================================================
SOURCE CODE FILE: __init__.py
LINES: 1
SIZE: 1.02 KB
PATH: scripts\freecad_env\Lib\site-packages\transformers\models\qwen2_audio\__init__.py
ENCODING: utf-8
```py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule
from ...utils.import_utils import define_import_structure
if TYPE_CHECKING:
from .configuration_qwen2_audio import *
from .modeling_qwen2_audio import *
from .processing_qwen2_audio import *
else:
import sys
_file = globals()["__file__"]
sys.modules[__name__] = _LazyModule(__name__, _file, define_import_structure(_file), module_spec=__spec__)
```
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.